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Abstract—Network policies govern the use of an institution’s
networks, and are usually written in a high-level human-readable
natural language. Normally these policies are enforced by low-
level, technically detailed network configurations. The translation
from network policies into network configurations is a tedious,
manual and error-prone process. To address this issue, we
propose a new intermediate language called POlicy LANguage
Jor Campus Operations (POLANCO), which is a human-readable
network policy definition language intended to approximate
natural language. Because POLANCO is a high-level language,
the translation from natural language policies to POLANCO
is straightforward. Despite being a high-level human readable
language, POLANCO can be used to express network policies in
a technically precise way so that policies written in POLANCO
can be automatically translated into a set of software defined
networking (SDN) rules and actions that enforce the policies.
Moreover, POLANCO is capable of incorporating information
about the current network state, reacting to changes in the
network and adjusting SDN rules to ensure network policies
continue to be enforced correctly. We present policy examples
found on various public university websites and show how they
can be written as simplified human-readable statements using
POLANCO and how they can be automatically translated into
SDN rules that correctly enforce these policies.

Index Terms—network policy, software defined networks, cam-
pus network

I. INTRODUCTION

Campus networks have evolved into complex infrastructure
consisting of routers, switches, access points, and middle-
boxes (e.g. firewalls, load balancers, and intrusion detec-
tion/prevention systems) interconnecting a plethora of devices,
including general-purpose equipment like computer desktops
and servers; personal and corporate mobile devices (e.g.
phones, laptops, tablets); appliances that provide monitoring
and threat detection; and special purpose devices deployed at
key places across the physical campus (e.g. copiers, printers,
badge readers, motion sensors, IP telephones, surveillance
camera, video-conferencing equipment, and payment termi-
nals).

Historically campus network policies have largely focused
on keeping the campus network secure, blocking forbidden
traffic, detecting and preventing intrusions, only allowing
authorized users to use the (wireless) network, etc. Because
network policies were largely about security, they could often
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be implemented with relatively little effort using an off-the-
shelf network security device such as a firewall or intrusion
detection and prevention system (IDS/IDP). These devices
often came with pre-configured commonly used security poli-
cies (i.e., best-of-breed security rules) that sufficed, with some
customization, for most campuses. Consequently, campus net-
work policy documents have historically been rather brief
documents (if they exist at all), relying on, and defaulting
to, the pre-configured policies that came with the firewall or
IDS/IDP device.

However, the growing complexity of campus networks has
led to the need for more complex network policies; policies
that not only ensure security, but also define how the network
is to be used — what is expected, allowable, and acceptable use
of the network. For example, the campus network policy may
limit access to a research lab’s network to authorized users of
the lab, or may prevent unallowed or unauthorized traffic from
being sent to a particular device such as a printer, surveillance
camera, or door lock, or may disallow unencrypted traffic in
certain situations such as credit card transaction networks.

Given the growing complexity of campus networks, insti-
tutions are increasingly appointing committees — which we
will refer to as Policy Writing Committees (PWCs) — to make
decisions about what the campus network policies should be
(at a very high-level), ultimately producing a network policy
document. PWCs are often comprised of administrators who
understand “who” should be able to access “what”, but lack the
technical expertise of network sys-admins. They write policies
in high-level human-readable natural language formats that
must be mapped (by a networking expert) into technically
detailed (low-level) network configuration files that enforce the
policies. The potential for errors entering into this mapping
process — performed by some human network sys-admin —
is significant and occurs frequently in practice (see Fig. 1).
The process is heavily reliant on the level of expertise of
the individual(s) in charge of configuring the network system
and the interpretation of the policies. Moreover, modifications
to the network often break policies that were being correctly
enforced earlier. In short, the need to translate increasingly
complex high-level human-readable campus network policies
(written by non-technical policy writing committees) into low-
level detailed, complex and error-free, network configurations
that enforce those policies is becoming a significant challenge
for campuses.
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Fig. 1. Network policy enforcement today

To address the growing gap and challenge of translating
between high-level natural language network policies written
by campus PWCs and the low-level complex network config-
urations needed to enforce those policies, we propose a new
intermediate language called POlicy LANguage for Campus
Operations (POLANCO). POLANCO is a human-readable
network policy definition language intended to approximate
natural language — language that might be used by a PWC.
Because it is a high-level language, translation from natural
language policies to POLANCO is often a straightforward
(Iess error prone) process than making the jump from nat-
ural language to network configuration files. Despite being
human-readable, POLANCO can be used to express network
policies in a technically precise way — a way that can be
automatically translated (via processing) into a set of software
defined networking (SDN) rules and actions (or to network
configuration files) that enforce the policies, ensuring that the
specified policies are being correctly enforced by the network.
Moreover, POLANCO is capable of incorporating information
about the network (e.g., topology or device changes), reacting
to changes in the network and adjusting SDN rules to ensure
network policies continue to be enforced correctly.

To demonstrate the power of POLANCO, we present pol-
icy examples found on various public university websites
and show how they can be written as simplified human-
readable statements using POLANCO. We then describe how
POLANCO policy statements can be automatically and con-
tinuously translated into an SDN controller that is able to push
out network configuration rules that enforce the specified pol-
icy. (For the purposes of this paper, we assume that the campus
network is managed and controlled by a single organization
(Campus IT) and that the network is “programmable” in some
way — e.g., OpenFlow [1] or NETCONF [2] — via a centralized
SDN controller.)

The rest of the paper is organized as follows. Section II
begins by discussing the issue of mapping natural language
network policies into network configurations. Section III de-
scribes the network policy language POLANCO and its design
principles. Network policies expressed in POLANCO are
translated into Business Rule Management System (BRMS)
code that is then translated into network configurations, as
described in Section IV. In Section V, we describe an initial

prototype and show some example policies that the system is
capable of enforcing. In Section VI, we describe related work.
Finally, we present our conclusions in Section VII.

II. NETWORK POLICY MAPPING

Institutions appoint policy writing committees to define (and
document) the policies that specify how institutional com-
putional and network resources may be used. Most institutions
have a set of Acceptable Use Policies (AUPs) that define how
campus resources may and may not be used. In some cases,
there may be a specific AUP focused on campus network
policies, and in other cases the campus network policies may
be spread across multiple AUPs, or embedded in a single
AUP. For our purposes, we assume the campus network
policies are represented by a single AUP devoted to network
policy. AUP documents are predominantly intended for non-
technical audiences (the users of the systems/network), and are
written with imprecise, verbose, and business-like vocabulary.
Unfortunately, these documents are oftentimes the only source
of truth for network operators to enforce policies. Their lack
of precision makes it difficult and error-prone for operators to
translate the policies into network equipment.

Unfortunately, PWCs rarely understand the low-level mech-
anisms (e.g., network configurations) used to enforce the
policies, and thus are oftentimes unaware of the challenges
of implementing the policies they write. Moreover, given the
complexity of today’s campus networks consisting of thou-
sands of switches, access points, firewalls, IDS/IDP systems,
load balancers, NAT boxes, etc, the potential to introduce
errors in the (human/manual) translation process is significant.

Ideally, there should be minimal human intervention in the
translation process, relying instead on automated process to
transform the PWC’s policies (written in imprecise natural
language format) to the complex set of low-level network
configuration rules that must be distributed to thousands of net-
work devices across the campus. While we want to minimize
the human element, it is important that we not abolish it since
it is important that the natural language documents produced
by PWCs be interpreted by a network expert to ensure the
PWC did not unintentionally specify policies that they did not
intend. At the same time, the human expert should not be
responsible for the entire translation process.

To address this need, we propose an intermediate step in
the mapping process that removes the potential for errors
and enables feedback between PWCs and network operators.
Rather than crafting device configurations themselves, network
operators write a set of simplified and structured human-
readable policy statements — statements that are still under-
standable by PWCs, but yet can be parsed and automatically
converted into the low-level config rules pushed out to network
switches.

To minimize the human effort needed to translate PWC net-
work policy documents, we developed a high-level language
called POlicy LANguage for Campus Operations (POLANCO)
that maintains the readability of natural language, but offers



TABLE I
EQUIVALENCE BETWEEN NETWORK POLICY STATEMENTS FOUND IN AUPS AND STATEMENTS WRITTEN IN POLANCO

Id | Network Policy Statements

POLANCO Statements

and applications; disable all others [3]

Configure operating systems to meet system best practices. This
P1 | includes but is not limited to the following: Enable necessary services

when node is connected to a web-server then allow-only web traffic

P2 clear text like telnet and ftp are prohibited and will be blocked [4]

Applications which transmit sensitive information over the network in

block “applications which transmit sensitive information”

network [5]

In no case shall DNS servers (except those maintained by IT de-
P3 | partment for the express purposes delineated) be connected to the

when node is connected to a host then allow-only DNS-response traffic
from authorized DNS servers.

P4 explicitly allowed [6]

All inbound traffic to the campus is blocked by default, unless

when node is a Firewall then block traffic from Internet to campus-
network

the structure needed to be automatically translated into the
network configurations that implement the network policies.

To demonstrate the relationship between POLANCO and
high-level natural language network policies written by PWCs,
consider the policies described in Table I. Table I provides
example network policy excerpts taken from the AUPs of
four different academic institutions along with their equivalent
POLANCO statements. Although the statements differ, the
mapping between PWC policies and POLANCO maintains
much of the same language.

A high-level representation of the pipeline we propose for
network policy mapping using POLANCO is shown in Fig. 2.
At the start of the pipeline, human intervention (i.e., network
engineer) is required to translate PWC policies into high-level
POLANCO statments—note this allows both the PWCs and
network operators to ensure they are defining and enforcing
the same network policy. Given a POLANCO specification,
the transformation to SDN rules that get pushed into switches
can be completely automated.

The first stage of the translation process leverages a Business
Rule Management System (BRMS) (see Section IV) to combine
POLANCO policy statements with information about the cur-
rent state of the network (obtained from the SDN controller) to
determine how best to implement the policy given the current
network topology. The output of the BRMS are rules that
are then pushed to the appropriate network switches by the
SDN controller or possibly to network servers/devices. For
example, policies P1 and P3 would generate an appropriate
set of OpenFlow rules to enforce the policy at switches; policy
P4, on the other hand, would generate a set of iptable rules for
a firewall, while policy P2 would result in a combination of
both since the policy needs to be applied at every node. Should
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Fig. 2. Proposed network policy translation pipeline

an event change the network state (i.e. a new device is added
to the network), previously translated POLANCO statements
could be dynamically deactivated and retranslated given the
new system conditions. We leverage built-in topology discov-
ery mechanisms found in emerging network architectures such
as SDN controllers in order to learn the global view of the
network, track network events (e.g. links up, available network
paths, hosts joining the network), and abstract out through a
RESTful API, connections to data plane devices.

III. A NETWORK POLICY LANGUAGE

As noted earlier, a technically-precise, human-readable lan-
guage would be useful as a way to provide feedback between
PWCs and network operators, and to automate the transla-
tion process from policies into low-level configurations. We
describe below the set of design goals for POLANCO:

1) High-Level Network Identifiers: While network
switches ultimately must be configured using low-level
identifiers (e.g., MAC addresses, IP addresses, and
VLAN numbers), humans write policy using high-level
concepts and identifiers. Consequently, we want a lan-
guage based on high-level identifiers. Instead of using
network identifiers, we need the ability to assign each
identifier a role and/or trait (e.g. address, device types,
type of traffic, group of users) and raise the level of
abstraction. Human-readable statements based on such
assignments can (1) be easily understood by PWCs,
(2) help move towards the documentation of policies
that were previously deployed, and (3) be expanded
by translation mechanisms into low-level details when
needed.

2) High-level Concepts/Descriptions: The proposed lan-
guage must have terms to describe common network
abstractions such as file servers, web servers, printers,
firewalls, secure channels, blocking, mirroring, etc. The
translation mechanisms used to install low-level con-
figurations should derive the types of configurations
needed to enforce the policy, what portions of the
network should configurations be pushed to, and how
the configurations should look.

3) Event-Aware: While some of the policies that need to
be enforced on networks do not change over long periods
of time, some policies are dynamic, periodic, or based on



the current status of the system. The written statements
must actively enforce policy and adapt network config-
urations to cope with events such as the addition of new
equipment to the network, detection of a malicious actor
or an infected machine, changes in the policy, current
time of day, etc.

4) Exception Specification: The language should allow for
the explicit specification of authorized exceptions. Our
past work [7], [8] has demonstrated that exceptions are a
common part of a policy ecosystem. The current process
to deploy policy exceptions is largely manual and time-
consuming and should be specifiable via the language
and automatically deployable. The language should act
as a middle layer where both policies and their excep-
tions can be written and automatically deployed.

POLANCO was developed following these design goals.
Based on gathered network information, the language allows
network operators to write simplified and precise human-
readable policy statements using the syntax shown in Fig. 3.

TABLE I
LIST OF VALUES FOR EACH POLANCO TOKEN

TOKEN TOKEN Values

device-type Firewall, Web Server, Switch, Printer, etc.

Allow, Allow-Only, Block,
Send to (Controller, IDS, HoneyPot), Mirror to (Port)

traffic-type Web, FTP, Video, Print Jobs, etc.

netlab-network, storage-systems, authorized DNS, etc.

A policy always starts with the keyword policy followed
by an operator-defined name assigned to it. Policies can be
assigned a priority that influences the order of the policy
processing by the rule engine that produces network configu-
rations (see Section IV); higher priority policies are evaluated
first and are particularly useful for specifying exceptions
that need to be evaluated first. POLANCO statements are
written using the syntax shown in lines 5-8 of Fig. 3. The
syntax is based on business rule management specification
(see Section IV) using the keywords when and then. The
syntax in Fig. 3 also shows four types of tokens that can be
replaced with the values shown in Table II.

The values of the device-type correspond to the labels added
to the nodes recorded in the SDN controller (e.g., stored in
a graph database) during network information gathering. At
present, POLANCO supports actions that include allowing (i.e.
forwarding) legitimate traffic, blocking (i.e. dropping) packets
of a particular flow, sending packets of the matching flow
to an external entity (specified as a parameter) for further
processing, and mirroring (i.e. copying packets) to a partic-
ular port (if applicable) for out-of-band analysis. As we can
see, gathering network information is vital for the definition
of POLANCO statements since it provides the context in
which policies are applied. In terms of the syntax of the
statements themselves, policies should be written following
the conditional-body structure of conventional business rules.
For policies that have to be applied in all the devices in the

network, the conditional part of the POLANCO statement may
be omitted.

Last but not least, the power of the POLANCO syntax
is that with simple combinations of words that describe the
types of nodes or their relationships it is possible to identify
the appropriate set of devices where network policies can be
applied. We present some examples in Section V.

IV. APPLYING POLICIES IN CONTEXT

Given a machine-readable language for expressing network
policy, we needed a way to convert the language into network
configurations. However, as we mentioned earlier, network
policies are dependent on the network state. For example,
knowing where to place a firewall to block certain types of
traffic requires understanding the current network topology
(i.e., network state information); or enabling traffic from
certain users to certain printers, requires understanding the
types of nodes (e.g., printers) and who is currently logged
into the network (e.g., Radius users).

Consequently, we leveraged practices used in business sys-
tems to make decisions based on the current state of the
system; namely Business Rule Management System. A BRMS
combines rule definitions with a series of facts and event
listeners to represent the realtime context, and is used to
determine what set of actions to trigger at any given time.
In our implementation, the state of the system is network
topology information (e.g. node types, links, paths) and the
actions correspond to API calls to the SDN controller that
would cause OpenFlow rules enforcing the policy to be
installed into routers.

Fig. 4 shows the components of a BRMS. At a high-level,
a BRMS consists of:

o A centralized repository where rules are stored (e.g. a
database, a folder).

¢ Authoring and maintenance tools used to define rules in
terms of system facts (e.g. a GUI, enhanced text editors)..

o A working memory with current system facts (e.g. net-
work information) stored as data objects. Facts may be
added on startup or (removed) as a consequence of other
rules being activated.

o A runtime environment (called a rule engine) that invokes
and/or deactivates rules throughout a continuous execu-
tion cycle and may also trigger the execution of external
procedures, e.g., code that issues RESTful calls to another
system and enforces the decision that has been made.

BRMS authoring tools usually come with syntax restrictions

that are commonly bound to the underlying programming
language used to develop the actual BRMS. These restrictions
make rule definition unnatural for policy administrators, partic-
ularly if they do not have a software-development background.
Despite their varying levels of complexity, the structure of a
business rule is generally the same and POLANCO adheres to
such a structure consisting of a conditional (antecedent) and
a body (consequent) [9]. The conditional (represented by the
keyword when) determines the set of constraints that must
be satisfied in order to activate a given rule. Constraints are



1 policy "policy-name"

S

3 [policy priority nl]

5 [when
6 Node is [connected to] a device-type
7 then]

8 [ ] [traffic-type]

PoLanCO Rule

traffic

Template

[from ]

Fig. 3. Syntax of the POlicy LANguage for Campus Operations

always written in terms of the properties of the data objects
that are part of the working memory of the BRMS. The
body (represented by the keyword then) contains the set of
actions that are executed if the constraints are satisfied. Unlike
constraints, actions may include API calls (local or external) or
modifications to working memory data objects. The fact that
any data object can be part of the working memory makes
BRMSs flexible mechanisms to enforce policies in different
contexts, including campus network policies. The information
needed to enforce network policies can be found in the
descriptions about nodes and connections of the underlying
topology.
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Fig. 4. High-level architecture of a BRMS

For example, recall the policy P2 shown in Table I that
requires IT administrators to disable insecure protocols from
network devices and systems in the network. Since data
objects representing network devices and systems are part
of the working memory, it is possible to write BRMS code
that would generate calls to a remote system (i.e. the SDN
controller) to push OpenFlow DROP rules into the affected
nodes. More importantly, the event-awareness of the system
makes it ideal to handle events such as a new network device
joining the network. In that case, since the policy is still valid
and active, the actions of the corresponding BRMS rule would
be activated and applied to the newly connected device.

Fig. 5 shows BRMS code implementing the policy P2 using
Drools. The conditional of the rule (line 3) selects all the

nodes where the policy will be enforced (i.e. nodes that are
of type NETDEVICE). Then, the body of the rule includes
configuration details needed to enforce the policy such as:
protocol numbers of insecure protocols like FTP (ports 20 and
21) and telnet (port 23); Config data objects created using
information about each selected node in the conditional, the
protocols, and the action representing the policy decision; and
the internal function that uses the created Config objects
to push actual configurations (e.g. OpenFlow rules) into the
selected network nodes.

1 rule "disable-insecure-protocols"
2 when

3 Sn:

4 then

5 protocols =
6

;

8

9

Node (

type type.NETDEVICE) ;

new ArrayList<Integer> (

Arrays.asList (20,21,23));

new Config($n, protocols,

PolicyAction.BLOCK) ;
ConfigPusher.push (cfqg);

10 end

cfg =

Fig. 5. Example Drools code that generates configurations for network devices
in working memory

While the code in Fig. 5 hides a significant portion of
what is typically found in software written using traditional
programming languages, there are several elements such as
symbols, keywords, annotations, data structures, etc. that are
never found in human sentences; therefore, readable state-
ments are hard to construct using built-in BRMS syntax. In
contrast, POLANCO was intentionally designed to severely
restrict the token namespace that network administrators may
use to write human-readable policies. Yet, POLANCO is
translatable to BRMS-compatible machine code.

Once a network operator writes a POLANCO statement
s, s is divided into groups of words wy, ..., w, where each
w is passed as parameter to a translation function T'(w) that
generates valid BRMS code. Table III shows five w inputs and
their corresponding BRMS code. While the first two groups
of words (i.e. policy and policy priority) are simple word
replacements, the rest of the groups produce more complex



BRMS code (that is hidden from POLANCO users).

TABLE III
TRANSLATION FUNCTION T'(w)

POLANCO Grammar w | Drools Code T'(w)

policy rule
policy priority salience
Sn: NetDevice (
[Nn]ode is a Slabels: labels contains
{type} "{typeluc}");
policies.add(
{action} {param} CfgGen. fromNode (
. $n, PolicyAction.{action!uc},
traffic
{param},
aliasEvaluator.eval ("{src}"),

aliasEvaluator.eval ("{dst}");
CfgPush.push (policies);

from {src} to
{dst}

A. Network Information Gathering

BRMS code has the potential to enforce a large number
of policies. However its effectiveness largely depends on
the information that is fed up into the working memory
of the system. For that reason it is important to provide
mechanisms that gather relevant network information such
as the role a node has in the network (e.g. firewall, L3
router, L2 switch, printer, etc.), the enforcement mechanisms
every node supports (e.g. OpenFlow versions, iptables, remote
CLI commands, NETCONF), the type of node (e.g. network
device, end system), the status (e.g. infected, quarantined, up,
down), and the way nodes are connected with each other (e.g.
link capacities, VLAN information), in order to guarantee an
accurate translation of each POLANCO statement.

We allow for two levels of network information to improve
the expressiveness and precision of a POLANCO policy.
First, network operators must agree and associate every low-
level identifier to a high-level description. The association
is what enables the construction of precise human-readable
network policy statements and is done in a static file that
we refer to as alias file (Fig. 6 shows an excerpt of an
alias file). For example, MAC and IP addresses can identify
individual users, subnets could identify groups of users, VLAN
and port numbers could represent types of traffic. Note that
these associations have already been made when operating a
campus network. However, hardly ever the meaning of low-
level identifiers is used in AUPs.

Currently, there are two main components per item, namely,
an alias (or a traffic type) which is the actual word that is
to be used in POLANCO statements, and a list of specifi-
cations (specs) that contain information regarding the low-
level identifiers associated with a given alias. The code gen-
erated by the transformation function 7'(w) maps the aliases
back to the corresponding low-level identifiers. In addition to
the alias file, we rely on state-of-the-art topology discovery
capabilites of SDN controllers that use protocols such as
LLDP, BDDP, SNMP to gather router/switch information, and
packet inspection (e.g. ARP, DHCP, ND) to discover end-
host information. The topology discovery features can serve
as an initial topology sketch comprised of OpenFlow-enabled

alias: netlab-net
specs:
- ip: 123.100.22.0/27

1
2
3
4
5 _
6
7
8
9

alias: campus network
specs:
- ip: 123.100.0.0/16

10 traffic: web
11 specs:
12 - port:
13 — protocol: tcp
14 — number: 80
15 - port:
16 - protocol: tcp
17 - number: 443
18 I
19 traffic: ftp
20 Specs:
21 - port:
2 — protocol: tcp
23 - number: 21
24 - port:
25 - protocol: tcp
2 - number: 20
27 -
% traffic: telnet
9 specs:
30 - port:
31 - protocol: tcp
32 - number: 23

33 -

4  traffic: applications which transmit

35 information in cleartext
36 sSpecs:

37 - xftp

38 - *telnet

Fig. 6. Excerpt from an example alias file

devices, the connections between them, and the connections
to attached devices. Unfortunately, network discovery in SDN
oftentimes only distinguishes between two types of nodes,
OpenFlow switches and end systems, when networks actually
consist of many more systems. The alias file described
above could be used to add properties to the discovered
nodes. For example, hosts discovered in the IP address range
123.100.22.0/27 can be marked as “netlab” machines. In
addition, operators may use traditional network management
protocols (e.g. SNMP) to extract information from network
devices (both OpenFlow and non-OpenFlow) and add it as
properties to specific nodes in the discovered topology. Over-
all, the network information gathering can be further enhanced
by dedicated discovery systems that could edit portions of the
alias file (thereby becoming readily available to POLANCO
statements). However such systems are out of the scope of this

paper.



V. PROTOTYPE IMPLEMENTATION

This section shows examples on how to use POLANCO to
write simple, human-readable statements that implement high-
level imprecise policies found on several academic institutions
websites. All the presented examples assume there is an
associated alias file that defines the port numbers of certain
types of traffic (e.g. DHCP, DNS, FTP, or HTTP traffic) as well
as IP addresses of known end systems (e.g. printers, DHCP
servers). Due to space constraints, the alias file is not shown.
In most cases, the file is rather straightforward to define (see
Fig. 6 for an example alias file).

A. Disabling Insecure Protocols

Recall P2 in Table I whose POLANCO statement is “block
applications which transmit information in cleartext”.

Note that the conditional part of both POLANCO statements
is omitted because the policy must be enforced in all network
devices on the campus network which is the default behavior.
Fig. 7 shows a network where the policy is enforced at various
places, namely, a firewall, a router, and two switches. The
definitions in the alias file we presented in Fig. 6 cause the
BRMS to make requests to the SDN controller that would
generate OpenFlow rules dropping any incoming packets from
any interface whose destination is any of FTP control and data
ports (20 and 21) and the telnet port (23).

[ i Controller ]

s S
:‘ 3

SWITCH A

E; = w ‘ match: dst_port=20
C action: drop
EDGE RDUTER match: dst_port=21
'\% ! FIREWALL action: drop
v match: dst_port=23
p— action: drop
LAPTOP
SWITCH B
PN
CAMERA
PC PRINTER

Fig. 7. Enforcing a campus-wide policy that disables insecure protocols

The network configurations shown are in the form of
OpenFlow version 1.3 rules. However, during the network
information gathering phase each network could have been
assigned a different mechanism for policy enforcement (e.g.
a different version of OpenFlow, NETCONF/Yang, iptables,
remote SSH commands, etc).

B. Securing Network Printers

Most printers come with default configurations allowing
users to use them out-of-the-box once plugged into the net-
work. Carelessly plugging network printers into an enterprise
network poses various risks because multiple unnecessary
services are enabled and printers can be accessed from outside
the network if they mistakenly get a public IP assigned.

Fig. 8 shows a printer policy found on the University of
California—Berkeley’s website [10] addressing these concerns.

To secure your printers from unauthorized
access, print configuration alterations,
eavesdropping, and device compromise follow
these printer security best practices:

— Campus printers should not be exposed to
the public Internet.

- Use encrypted connections when accessing
the printers administrative control panel.
- Do not run unnecessary services.

Fig. 8. Printer policy of the University of California—Berkeley

Network operators can write POLANCO statements that
enforce the practices suggested in the policy in the following
way: First, if every end system with a publicly reachable
IP is labeled ‘PUBLIC’ and there is an inventory with the
MAC addresses of authorized printers labeled ‘PRINTER’,
then these labels could be included in POLANCO statements
to block traffic to/from a misconfigured printer. Second, if IT
administrators learn that a printer’s control panel is accessible
via web, POLANCO statements can use the corresponding
alias for HTTPS traffic to represent secure access to control
panel. Moreover, we can use the allow-only action keyword
to ensure that access to unnecessary services is denied. If the
BRMS code cannot directly push a configuration to an end-
system, the closest network node connected to the selected
device is used as the place to enforce the policy.

-

Match: , r‘
ELEIE Internet =
dst_ip: 172.16.23.3, 7
dst_port:443,
src_ip: 172.16.0.0/12 Campus Network
Action: output=normal Match src_ip: 128.163.5.4
Priority: n +1 Actlon drop
Match: dst_ip: 172.16.23.3 | o™ @ Match: dst_ip: 128.163.5.4
B:tlon: drop -—r uActlon drop
riority: n
CS PRIVATE CPH PUBLIC
PRINTER PRINTER
172.16.23.3 128.163.5.4

Fig. 9. Three printers in the network with their IP assignments

Fig. 9 shows the topology used in this example and Fig. 10
shows the POLANCO statements used to generate network
configs.

The relevant portion of the topology consists of two printers
that were (mis)configured and labeled during the topology
discovery phase. Each printer has three labels representing
the department it belongs to, the type of address assigned
and the type of end system. For the Computer Science (CS)
printer, two types of rules are added, one that drops traffic
to all unnecessary services, and one that explicitly allows



HTTPS traffic to local users. Although not shown, note that
an equivalent set of rules should be installed for the reverse
direction and any other network range considered ‘local’ (e.g.
10.0.0.0/8, 192.168.0.0/16). For instance, for the the College
of Public Health (CPH) printer that got assigned a public IP,
traffic in both directions is blocked.

1

2 when node is a PUBLIC PRINTER

3 then block all traffic

4

s when node is a PRIVATE PRINTER

¢ then allow-only secure-web traffic
7 from local addresses

Fig. 10. POLANCO statements securing printers from external access

C. Firewall for External Connections

Firewalls are often the first line of defense of any network,
including campus networks. It is not uncommon to see policies
and guidelines for network traffic that is destined to/from
the Internet. Consider an excerpt from a policy involving the
perimeter firewall at the University of Missouri-St. Louis [4]
shown in Fig. 11.

All UMSL network traffic to and from the
Internet must go through the firewall.
Any network traffic going around the
firewall must be accounted for and
explicitly allowed by the Computer

¢ Security Incident Response Team (CSIRT).

L N

Fig. 11. UMSL Firewall Policy

Enforcing the core of the policy (line 1) is straightforward
in POLANCO. Assume the topology discovered during the
network information gathering is the one shown in Fig. 12.
There are switches inside the network that send traffic out
of the network and switches outside the campus network that
forward data into the network.

INNER SWITCH

- — | ' OUTER SWITCH EDGE ROUTER
Campus Firewall &
Core ’ 5

57 ' e? ®|| ISP Backup

TER SWITCH
INNER SWITCH OUTER SWITC EDGE ROUTER
Firewall

Fig. 12. Example topology discovered at the edge of a campus network

The POLANCO statements that enforce the policy are
shown in Fig. 13. Both POLANCO statements would sub-
sequently be translated into the appropriate network configu-
rations for both INNER and OUTER switches. The translation

process identifies information such as the designated interface
where packets must be forwarded to, and the IP addresses
the rules need to match on (e.g. the campus network address
range). Moreover, the blue link connecting the upper OUTER
SWITCH with the lower INNER SWITCH offers an alternative
path to traditional routing protocols (e.g. OSPF, BGP) that
bypasses the firewalls. The POLANCO statements force all
traffic to avoid the alternative route and appropriately send all
traffic through the firewall.

Though not shown in the figure, note that network operators
can use a policy priority in the POLANCO statements to
explicitly allow exceptions to the policy and allow the usage
of the path that bypasses the firewall. We described the details
of an exception system in [7], [8].

D. Rogue Servers

POLANCO can enforce policies that forbid the deployment
of rogue servers—a system that is providing services to the
network that IT staff is not managing. Take for example policy
P3 found at the Oberlin College and Conservatory.

The key to enforce the policy is to distinguish between
authorized servers and regular hosts using two labels. By
distinguishing servers from hosts it is possible to block DNS
(or any other traffic that manages IP address like DHCP)
traffic destined to the latter. Note that it does not suffice to
solely block all DNS packets to enforce the policy because
legitimate end systems would be unable to resolve names.
Instead, the BRMS should produce configurations that only
allow responses issued by authorized servers and block mes-
sages issued by any other device (i.e. a rogue server). The
POLANCO statements are presented in Fig. 14.

Fig. 15 shows the translation of POLANCO statements
into OpenFlow rules. First, the BRMS selects all the network
devices that are connected to a REGULAR-HOST node (i.e.
SWITCH A and SWITCH C). Then, the allow—-only action
of the POLANCO statements (lines 1 and 4) produces two
OpenFlow rules per selected switch. A similar approach could
be used for other types of servers such as DHCP. Specifically,
a rule with priority n drops all DNS response traffic, thereby
preventing messages originating from rogue servers from
reaching end systems; and another rule (with higher priority,
say, n + 1) that explicitly allows response traffic coming from
authorized servers to reach end systems for legitimate name
resolutions.

is an INNER SWITCH
to PERIMETER FIREWALL traffic
campus network to Internet

node
send
from

when
then

is an OUTER SWITCH
to PERIMETER FIREWALL traffic
Internet to campus network

node
send
from

when
then

R Y R N T

Fig. 13. POLANCO statements enforcing a firewall policy



1 when node 1is connected to a REGULAR-HOST
> then allow-only DNS-response traffic from
3 authorized DNS server

Fig. 14. POLANCO statements prohibiting traffic from rogue servers

match: [src_port=53, src_ip: 128.163.8.8]
action: output=Normal

match: [src_port=53, src_ip: 128.163.8.8]

priority: n + 1 action: output=Normal
match: [src_port=53] Campus Core priority: n + 1
action: drop 7 magch: [src_port=53]
priority: n \, action: drop
priority: n
4 SWITCHB |
E *Q?SWITCH A £ swircnc 57 &7
REGULAR-HOST g J

T ]

3

AUTHORIZED
DNS SERVER
128.163.8.8

-

REGULAR-HOST
(Rogue DNS)

i

REGULAR-HOST
(Rogue DNS)

Fig. 15. Rules installed to prevent rogue servers

VI. RELATED WORK

Firewalls are arguably the most well-established technology
for enforcing network policies, with a focus on protecting
networks from unauthorized access [11]. The types of net-
work policies that can be specified by the firewalls are very
limited and typically at low-level (IP addresses, port numbers,
etc). On-demand security exceptions [7], [8] takes advantages
of programmability provided by SDN networks and allows
trusted users to specify security exceptions for trusted flows,
such as big data transfer, to improve the throughput of these
flows on a campus network. These policies of security ex-
ception can be dynamically requested and implemented on
demand, and thus greatly improve the flexibility.

Policy Graph Abstraction (PGA) [12] allows network opera-
tors from various units in a campus network specify policies si-
multaneously using network graphs. Although we share PGA’s
goal to automate the way network operators translate high-
level policies into low-level network configuration commands,
PGA and our work address the problem from two perspec-
tives. PGA resembles diagrams network operators draw when
designing policies, while our work focuses on the definition
of human-readable and technically-precise statements derived
from AUP that use imprecise language.

Closely related to our work is OpenSec [13], an OpenFlow-
based framework where network operators can specify se-
curity policies in a human-readable language. Although
OpenSec’s language is more readable than what could nor-
mally be written using network programming languages, we
argue that POLANCO provides better human-readability be-
cause OpenSec’s language still uses low-level identifiers (e.g.,
VLAN numbers, port numbers), does not resemble human-
readable sentences found in AUP, and only focus on the packet
processing done by middle-boxes and does not consider poli-
cies that are embedded in configuration files of end systems.

VII. CONCLUSIONS

To bridge the gap between human readable network policies
and the enforcement of them via low level network con-
figurations and/or SDN rules, we introduce the POLANCO
language. POLANCO approximates natural language, but yet
is technically precise, capable of being translated into SDN
rules and actions that can automatically enforce the high
level policies. POLANCO leverages a BRMS-based translation
system that can observe and measure the changes in the
networks and dynamically adapt the SDN rules in switches to
enforce network policies when the network state changes. We
demonstrated the expressiveness of POLANCO by showing
that it can be used to expressed a variety of network policies
found on University websites.
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