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Abstract—Network policies govern the use of an institution’s
networks, and are usually written in a high-level human-readable
natural language. Normally these policies are enforced by low-
level, technically detailed network configurations. The translation
from network policies into network configurations is a tedious,
manual and error-prone process. To address this issue, we
propose a new intermediate language called POlicy LANguage
for Campus Operations (POLANCO), which is a human-readable
network policy definition language intended to approximate
natural language. Because POLANCO is a high-level language,
the translation from natural language policies to POLANCO
is straightforward. Despite being a high-level human readable
language, POLANCO can be used to express network policies in
a technically precise way so that policies written in POLANCO
can be automatically translated into a set of software defined
networking (SDN) rules and actions that enforce the policies.
Moreover, POLANCO is capable of incorporating information
about the current network state, reacting to changes in the
network and adjusting SDN rules to ensure network policies
continue to be enforced correctly. We present policy examples
found on various public university websites and show how they
can be written as simplified human-readable statements using
POLANCO and how they can be automatically translated into
SDN rules that correctly enforce these policies.

Index Terms—network policy, software defined networks, cam-
pus network

I. INTRODUCTION

Campus networks have evolved into complex infrastructure

consisting of routers, switches, access points, and middle-

boxes (e.g. firewalls, load balancers, and intrusion detec-

tion/prevention systems) interconnecting a plethora of devices,

including general-purpose equipment like computer desktops

and servers; personal and corporate mobile devices (e.g.

phones, laptops, tablets); appliances that provide monitoring

and threat detection; and special purpose devices deployed at

key places across the physical campus (e.g. copiers, printers,

badge readers, motion sensors, IP telephones, surveillance

camera, video-conferencing equipment, and payment termi-

nals).

Historically campus network policies have largely focused

on keeping the campus network secure, blocking forbidden

traffic, detecting and preventing intrusions, only allowing

authorized users to use the (wireless) network, etc. Because

network policies were largely about security, they could often

This work was supported in part by the National Science Foundation under
Grants ACI-1541380, ACI-1541426, and ACI-1642134.

be implemented with relatively little effort using an off-the-

shelf network security device such as a firewall or intrusion

detection and prevention system (IDS/IDP). These devices

often came with pre-configured commonly used security poli-

cies (i.e., best-of-breed security rules) that sufficed, with some

customization, for most campuses. Consequently, campus net-

work policy documents have historically been rather brief

documents (if they exist at all), relying on, and defaulting

to, the pre-configured policies that came with the firewall or

IDS/IDP device.

However, the growing complexity of campus networks has

led to the need for more complex network policies; policies

that not only ensure security, but also define how the network

is to be used – what is expected, allowable, and acceptable use

of the network. For example, the campus network policy may

limit access to a research lab’s network to authorized users of

the lab, or may prevent unallowed or unauthorized traffic from

being sent to a particular device such as a printer, surveillance

camera, or door lock, or may disallow unencrypted traffic in

certain situations such as credit card transaction networks.

Given the growing complexity of campus networks, insti-

tutions are increasingly appointing committees – which we

will refer to as Policy Writing Committees (PWCs) – to make

decisions about what the campus network policies should be

(at a very high-level), ultimately producing a network policy

document. PWCs are often comprised of administrators who

understand “who” should be able to access “what”, but lack the

technical expertise of network sys-admins. They write policies

in high-level human-readable natural language formats that

must be mapped (by a networking expert) into technically

detailed (low-level) network configuration files that enforce the

policies. The potential for errors entering into this mapping

process – performed by some human network sys-admin –

is significant and occurs frequently in practice (see Fig. 1).

The process is heavily reliant on the level of expertise of

the individual(s) in charge of configuring the network system

and the interpretation of the policies. Moreover, modifications

to the network often break policies that were being correctly

enforced earlier. In short, the need to translate increasingly

complex high-level human-readable campus network policies

(written by non-technical policy writing committees) into low-

level detailed, complex and error-free, network configurations

that enforce those policies is becoming a significant challenge

for campuses.



Fig. 1. Network policy enforcement today

To address the growing gap and challenge of translating

between high-level natural language network policies written

by campus PWCs and the low-level complex network config-

urations needed to enforce those policies, we propose a new

intermediate language called POlicy LANguage for Campus

Operations (POLANCO). POLANCO is a human-readable

network policy definition language intended to approximate

natural language – language that might be used by a PWC.

Because it is a high-level language, translation from natural

language policies to POLANCO is often a straightforward

(less error prone) process than making the jump from nat-

ural language to network configuration files. Despite being

human-readable, POLANCO can be used to express network

policies in a technically precise way – a way that can be

automatically translated (via processing) into a set of software

defined networking (SDN) rules and actions (or to network

configuration files) that enforce the policies, ensuring that the

specified policies are being correctly enforced by the network.

Moreover, POLANCO is capable of incorporating information

about the network (e.g., topology or device changes), reacting

to changes in the network and adjusting SDN rules to ensure

network policies continue to be enforced correctly.

To demonstrate the power of POLANCO, we present pol-

icy examples found on various public university websites

and show how they can be written as simplified human-

readable statements using POLANCO. We then describe how

POLANCO policy statements can be automatically and con-

tinuously translated into an SDN controller that is able to push

out network configuration rules that enforce the specified pol-

icy. (For the purposes of this paper, we assume that the campus

network is managed and controlled by a single organization

(Campus IT) and that the network is “programmable” in some

way – e.g., OpenFlow [1] or NETCONF [2] – via a centralized

SDN controller.)

The rest of the paper is organized as follows. Section II

begins by discussing the issue of mapping natural language

network policies into network configurations. Section III de-

scribes the network policy language POLANCO and its design

principles. Network policies expressed in POLANCO are

translated into Business Rule Management System (BRMS)

code that is then translated into network configurations, as

described in Section IV. In Section V, we describe an initial

prototype and show some example policies that the system is

capable of enforcing. In Section VI, we describe related work.

Finally, we present our conclusions in Section VII.

II. NETWORK POLICY MAPPING

Institutions appoint policy writing committees to define (and

document) the policies that specify how institutional com-

putional and network resources may be used. Most institutions

have a set of Acceptable Use Policies (AUPs) that define how

campus resources may and may not be used. In some cases,

there may be a specific AUP focused on campus network

policies, and in other cases the campus network policies may

be spread across multiple AUPs, or embedded in a single

AUP. For our purposes, we assume the campus network

policies are represented by a single AUP devoted to network

policy. AUP documents are predominantly intended for non-

technical audiences (the users of the systems/network), and are

written with imprecise, verbose, and business-like vocabulary.

Unfortunately, these documents are oftentimes the only source

of truth for network operators to enforce policies. Their lack

of precision makes it difficult and error-prone for operators to

translate the policies into network equipment.

Unfortunately, PWCs rarely understand the low-level mech-

anisms (e.g., network configurations) used to enforce the

policies, and thus are oftentimes unaware of the challenges

of implementing the policies they write. Moreover, given the

complexity of today’s campus networks consisting of thou-

sands of switches, access points, firewalls, IDS/IDP systems,

load balancers, NAT boxes, etc, the potential to introduce

errors in the (human/manual) translation process is significant.

Ideally, there should be minimal human intervention in the

translation process, relying instead on automated process to

transform the PWC’s policies (written in imprecise natural

language format) to the complex set of low-level network

configuration rules that must be distributed to thousands of net-

work devices across the campus. While we want to minimize

the human element, it is important that we not abolish it since

it is important that the natural language documents produced

by PWCs be interpreted by a network expert to ensure the

PWC did not unintentionally specify policies that they did not

intend. At the same time, the human expert should not be

responsible for the entire translation process.

To address this need, we propose an intermediate step in

the mapping process that removes the potential for errors

and enables feedback between PWCs and network operators.

Rather than crafting device configurations themselves, network

operators write a set of simplified and structured human-

readable policy statements – statements that are still under-

standable by PWCs, but yet can be parsed and automatically

converted into the low-level config rules pushed out to network

switches.

To minimize the human effort needed to translate PWC net-

work policy documents, we developed a high-level language

called POlicy LANguage for Campus Operations (POLANCO)

that maintains the readability of natural language, but offers



TABLE I
EQUIVALENCE BETWEEN NETWORK POLICY STATEMENTS FOUND IN AUPS AND STATEMENTS WRITTEN IN POLANCO

Id Network Policy Statements POLANCO Statements

P1
Configure operating systems to meet system best practices. This
includes but is not limited to the following: Enable necessary services
and applications; disable all others [3]

when node is connected to a web-server then allow-only web traffic

P2
Applications which transmit sensitive information over the network in
clear text like telnet and ftp are prohibited and will be blocked [4]

block “applications which transmit sensitive information”

P3
In no case shall DNS servers (except those maintained by IT de-
partment for the express purposes delineated) be connected to the
network [5]

when node is connected to a host then allow-only DNS-response traffic
from authorized DNS servers.

P4
All inbound traffic to the campus is blocked by default, unless
explicitly allowed [6]

when node is a Firewall then block traffic from Internet to campus-
network

the structure needed to be automatically translated into the

network configurations that implement the network policies.

To demonstrate the relationship between POLANCO and

high-level natural language network policies written by PWCs,

consider the policies described in Table I. Table I provides

example network policy excerpts taken from the AUPs of

four different academic institutions along with their equivalent

POLANCO statements. Although the statements differ, the

mapping between PWC policies and POLANCO maintains

much of the same language.

A high-level representation of the pipeline we propose for

network policy mapping using POLANCO is shown in Fig. 2.

At the start of the pipeline, human intervention (i.e., network

engineer) is required to translate PWC policies into high-level

POLANCO statments–note this allows both the PWCs and

network operators to ensure they are defining and enforcing

the same network policy. Given a POLANCO specification,

the transformation to SDN rules that get pushed into switches

can be completely automated.

The first stage of the translation process leverages a Business

Rule Management System (BRMS) (see Section IV) to combine

POLANCO policy statements with information about the cur-

rent state of the network (obtained from the SDN controller) to

determine how best to implement the policy given the current

network topology. The output of the BRMS are rules that

are then pushed to the appropriate network switches by the

SDN controller or possibly to network servers/devices. For

example, policies P1 and P3 would generate an appropriate

set of OpenFlow rules to enforce the policy at switches; policy

P4, on the other hand, would generate a set of iptable rules for

a firewall, while policy P2 would result in a combination of

both since the policy needs to be applied at every node. Should

Fig. 2. Proposed network policy translation pipeline

an event change the network state (i.e. a new device is added

to the network), previously translated POLANCO statements

could be dynamically deactivated and retranslated given the

new system conditions. We leverage built-in topology discov-

ery mechanisms found in emerging network architectures such

as SDN controllers in order to learn the global view of the

network, track network events (e.g. links up, available network

paths, hosts joining the network), and abstract out through a

RESTful API, connections to data plane devices.

III. A NETWORK POLICY LANGUAGE

As noted earlier, a technically-precise, human-readable lan-

guage would be useful as a way to provide feedback between

PWCs and network operators, and to automate the transla-

tion process from policies into low-level configurations. We

describe below the set of design goals for POLANCO:

1) High-Level Network Identifiers: While network

switches ultimately must be configured using low-level

identifiers (e.g., MAC addresses, IP addresses, and

VLAN numbers), humans write policy using high-level

concepts and identifiers. Consequently, we want a lan-

guage based on high-level identifiers. Instead of using

network identifiers, we need the ability to assign each

identifier a role and/or trait (e.g. address, device types,

type of traffic, group of users) and raise the level of

abstraction. Human-readable statements based on such

assignments can (1) be easily understood by PWCs,

(2) help move towards the documentation of policies

that were previously deployed, and (3) be expanded

by translation mechanisms into low-level details when

needed.

2) High-level Concepts/Descriptions: The proposed lan-

guage must have terms to describe common network

abstractions such as file servers, web servers, printers,

firewalls, secure channels, blocking, mirroring, etc. The

translation mechanisms used to install low-level con-

figurations should derive the types of configurations

needed to enforce the policy, what portions of the

network should configurations be pushed to, and how

the configurations should look.

3) Event-Aware: While some of the policies that need to

be enforced on networks do not change over long periods

of time, some policies are dynamic, periodic, or based on



the current status of the system. The written statements

must actively enforce policy and adapt network config-

urations to cope with events such as the addition of new

equipment to the network, detection of a malicious actor

or an infected machine, changes in the policy, current

time of day, etc.

4) Exception Specification: The language should allow for

the explicit specification of authorized exceptions. Our

past work [7], [8] has demonstrated that exceptions are a

common part of a policy ecosystem. The current process

to deploy policy exceptions is largely manual and time-

consuming and should be specifiable via the language

and automatically deployable. The language should act

as a middle layer where both policies and their excep-

tions can be written and automatically deployed.

POLANCO was developed following these design goals.

Based on gathered network information, the language allows

network operators to write simplified and precise human-

readable policy statements using the syntax shown in Fig. 3.

TABLE II
LIST OF VALUES FOR EACH POLANCO TOKEN

TOKEN TOKEN Values

device-type Firewall, Web Server, Switch, Printer, etc.

Action (param)
Allow, Allow-Only, Block,
Send to (Controller, IDS, HoneyPot), Mirror to (Port)

traffic-type Web, FTP, Video, Print Jobs, etc.

end-point netlab-network, storage-systems, authorized DNS, etc.

A policy always starts with the keyword policy followed

by an operator-defined name assigned to it. Policies can be

assigned a priority that influences the order of the policy

processing by the rule engine that produces network configu-

rations (see Section IV); higher priority policies are evaluated

first and are particularly useful for specifying exceptions

that need to be evaluated first. POLANCO statements are

written using the syntax shown in lines 5-8 of Fig. 3. The

syntax is based on business rule management specification

(see Section IV) using the keywords when and then. The

syntax in Fig. 3 also shows four types of tokens that can be

replaced with the values shown in Table II.

The values of the device-type correspond to the labels added

to the nodes recorded in the SDN controller (e.g., stored in

a graph database) during network information gathering. At

present, POLANCO supports actions that include allowing (i.e.

forwarding) legitimate traffic, blocking (i.e. dropping) packets

of a particular flow, sending packets of the matching flow

to an external entity (specified as a parameter) for further

processing, and mirroring (i.e. copying packets) to a partic-

ular port (if applicable) for out-of-band analysis. As we can

see, gathering network information is vital for the definition

of POLANCO statements since it provides the context in

which policies are applied. In terms of the syntax of the

statements themselves, policies should be written following

the conditional-body structure of conventional business rules.

For policies that have to be applied in all the devices in the

network, the conditional part of the POLANCO statement may

be omitted.

Last but not least, the power of the POLANCO syntax

is that with simple combinations of words that describe the

types of nodes or their relationships it is possible to identify

the appropriate set of devices where network policies can be

applied. We present some examples in Section V.

IV. APPLYING POLICIES IN CONTEXT

Given a machine-readable language for expressing network

policy, we needed a way to convert the language into network

configurations. However, as we mentioned earlier, network

policies are dependent on the network state. For example,

knowing where to place a firewall to block certain types of

traffic requires understanding the current network topology

(i.e., network state information); or enabling traffic from

certain users to certain printers, requires understanding the

types of nodes (e.g., printers) and who is currently logged

into the network (e.g., Radius users).

Consequently, we leveraged practices used in business sys-

tems to make decisions based on the current state of the

system; namely Business Rule Management System. A BRMS

combines rule definitions with a series of facts and event

listeners to represent the realtime context, and is used to

determine what set of actions to trigger at any given time.

In our implementation, the state of the system is network

topology information (e.g. node types, links, paths) and the

actions correspond to API calls to the SDN controller that

would cause OpenFlow rules enforcing the policy to be

installed into routers.

Fig. 4 shows the components of a BRMS. At a high-level,

a BRMS consists of:

• A centralized repository where rules are stored (e.g. a

database, a folder).

• Authoring and maintenance tools used to define rules in

terms of system facts (e.g. a GUI, enhanced text editors)..

• A working memory with current system facts (e.g. net-

work information) stored as data objects. Facts may be

added on startup or (removed) as a consequence of other

rules being activated.

• A runtime environment (called a rule engine) that invokes

and/or deactivates rules throughout a continuous execu-

tion cycle and may also trigger the execution of external

procedures, e.g., code that issues RESTful calls to another

system and enforces the decision that has been made.

BRMS authoring tools usually come with syntax restrictions

that are commonly bound to the underlying programming

language used to develop the actual BRMS. These restrictions

make rule definition unnatural for policy administrators, partic-

ularly if they do not have a software-development background.

Despite their varying levels of complexity, the structure of a

business rule is generally the same and POLANCO adheres to

such a structure consisting of a conditional (antecedent) and

a body (consequent) [9]. The conditional (represented by the

keyword when) determines the set of constraints that must

be satisfied in order to activate a given rule. Constraints are



PoLanCO Rule Template

1 policy "policy-name"

2

3 [policy priority n]

4

5 [when

6 Node is [connected to] a device-type

7 then]

8 Action [param] [traffic-type] traffic [from end point A] [to end point B]

Fig. 3. Syntax of the POlicy LANguage for Campus Operations

always written in terms of the properties of the data objects

that are part of the working memory of the BRMS. The

body (represented by the keyword then) contains the set of

actions that are executed if the constraints are satisfied. Unlike

constraints, actions may include API calls (local or external) or

modifications to working memory data objects. The fact that

any data object can be part of the working memory makes

BRMSs flexible mechanisms to enforce policies in different

contexts, including campus network policies. The information

needed to enforce network policies can be found in the

descriptions about nodes and connections of the underlying

topology.

Fig. 4. High-level architecture of a BRMS

For example, recall the policy P2 shown in Table I that

requires IT administrators to disable insecure protocols from

network devices and systems in the network. Since data

objects representing network devices and systems are part

of the working memory, it is possible to write BRMS code

that would generate calls to a remote system (i.e. the SDN

controller) to push OpenFlow DROP rules into the affected

nodes. More importantly, the event-awareness of the system

makes it ideal to handle events such as a new network device

joining the network. In that case, since the policy is still valid

and active, the actions of the corresponding BRMS rule would

be activated and applied to the newly connected device.

Fig. 5 shows BRMS code implementing the policy P2 using

Drools. The conditional of the rule (line 3) selects all the

nodes where the policy will be enforced (i.e. nodes that are

of type NETDEVICE). Then, the body of the rule includes

configuration details needed to enforce the policy such as:

protocol numbers of insecure protocols like FTP (ports 20 and

21) and telnet (port 23); Config data objects created using

information about each selected node in the conditional, the

protocols, and the action representing the policy decision; and

the internal function that uses the created Config objects

to push actual configurations (e.g. OpenFlow rules) into the

selected network nodes.

1 rule "disable-insecure-protocols"

2 when

3 $n: Node( type == type.NETDEVICE);

4 then

5 protocols = new ArrayList<Integer>(

6 Arrays.asList(20,21,23));

7 cfg = new Config($n, protocols,

8 PolicyAction.BLOCK);

9 ConfigPusher.push(cfg);

10 end

Fig. 5. Example Drools code that generates configurations for network devices
in working memory

While the code in Fig. 5 hides a significant portion of

what is typically found in software written using traditional

programming languages, there are several elements such as

symbols, keywords, annotations, data structures, etc. that are

never found in human sentences; therefore, readable state-

ments are hard to construct using built-in BRMS syntax. In

contrast, POLANCO was intentionally designed to severely

restrict the token namespace that network administrators may

use to write human-readable policies. Yet, POLANCO is

translatable to BRMS-compatible machine code.

Once a network operator writes a POLANCO statement

s, s is divided into groups of words w0, ..., wn where each

wi is passed as parameter to a translation function T (w) that

generates valid BRMS code. Table III shows five w inputs and

their corresponding BRMS code. While the first two groups

of words (i.e. policy and policy priority) are simple word

replacements, the rest of the groups produce more complex



BRMS code (that is hidden from POLANCO users).

TABLE III
TRANSLATION FUNCTION T (w)

POLANCO Grammar w Drools Code T (w)
policy rule

policy priority salience

[Nn]ode is a

{type}

$n: NetDevice(

$labels: labels contains

"{type!uc}");

{action} {param}

traffic

policies.add(

CfgGen.fromNode(

$n, PolicyAction.{action!uc},

{param},

from {src} to

{dst}

aliasEvaluator.eval("{src}"),

aliasEvaluator.eval("{dst}");

CfgPush.push(policies);

A. Network Information Gathering

BRMS code has the potential to enforce a large number

of policies. However its effectiveness largely depends on

the information that is fed up into the working memory

of the system. For that reason it is important to provide

mechanisms that gather relevant network information such

as the role a node has in the network (e.g. firewall, L3

router, L2 switch, printer, etc.), the enforcement mechanisms

every node supports (e.g. OpenFlow versions, iptables, remote

CLI commands, NETCONF), the type of node (e.g. network

device, end system), the status (e.g. infected, quarantined, up,

down), and the way nodes are connected with each other (e.g.

link capacities, VLAN information), in order to guarantee an

accurate translation of each POLANCO statement.

We allow for two levels of network information to improve

the expressiveness and precision of a POLANCO policy.

First, network operators must agree and associate every low-

level identifier to a high-level description. The association

is what enables the construction of precise human-readable

network policy statements and is done in a static file that

we refer to as alias file (Fig. 6 shows an excerpt of an

alias file). For example, MAC and IP addresses can identify

individual users, subnets could identify groups of users, VLAN

and port numbers could represent types of traffic. Note that

these associations have already been made when operating a

campus network. However, hardly ever the meaning of low-

level identifiers is used in AUPs.

Currently, there are two main components per item, namely,

an alias (or a traffic type) which is the actual word that is

to be used in POLANCO statements, and a list of specifi-

cations (specs) that contain information regarding the low-

level identifiers associated with a given alias. The code gen-

erated by the transformation function T (w) maps the aliases

back to the corresponding low-level identifiers. In addition to

the alias file, we rely on state-of-the-art topology discovery

capabilites of SDN controllers that use protocols such as

LLDP, BDDP, SNMP to gather router/switch information, and

packet inspection (e.g. ARP, DHCP, ND) to discover end-

host information. The topology discovery features can serve

as an initial topology sketch comprised of OpenFlow-enabled

1 ...

2 alias: netlab-net

3 specs:

4 - ip: 123.100.22.0/27

5 ---

6 alias: campus network

7 specs:

8 - ip: 123.100.0.0/16

9 ---

10 traffic: web

11 specs:

12 - port:

13 - protocol: tcp

14 - number: 80

15 - port:

16 - protocol: tcp

17 - number: 443

18 ---

19 traffic: ftp

20 specs:

21 - port:

22 - protocol: tcp

23 - number: 21

24 - port:

25 - protocol: tcp

26 - number: 20

27 ---

28 traffic: telnet

29 specs:

30 - port:

31 - protocol: tcp

32 - number: 23

33 ---

34 traffic: applications which transmit

35 information in cleartext

36 specs:

37 - *ftp

38 - *telnet

39 ...

Fig. 6. Excerpt from an example alias file

devices, the connections between them, and the connections

to attached devices. Unfortunately, network discovery in SDN

oftentimes only distinguishes between two types of nodes,

OpenFlow switches and end systems, when networks actually

consist of many more systems. The alias file described

above could be used to add properties to the discovered

nodes. For example, hosts discovered in the IP address range

123.100.22.0/27 can be marked as “netlab” machines. In

addition, operators may use traditional network management

protocols (e.g. SNMP) to extract information from network

devices (both OpenFlow and non-OpenFlow) and add it as

properties to specific nodes in the discovered topology. Over-

all, the network information gathering can be further enhanced

by dedicated discovery systems that could edit portions of the

alias file (thereby becoming readily available to POLANCO

statements). However such systems are out of the scope of this

paper.



V. PROTOTYPE IMPLEMENTATION

This section shows examples on how to use POLANCO to

write simple, human-readable statements that implement high-

level imprecise policies found on several academic institutions

websites. All the presented examples assume there is an

associated alias file that defines the port numbers of certain

types of traffic (e.g. DHCP, DNS, FTP, or HTTP traffic) as well

as IP addresses of known end systems (e.g. printers, DHCP

servers). Due to space constraints, the alias file is not shown.

In most cases, the file is rather straightforward to define (see

Fig. 6 for an example alias file).

A. Disabling Insecure Protocols

Recall P2 in Table I whose POLANCO statement is “block

applications which transmit information in cleartext”.

Note that the conditional part of both POLANCO statements

is omitted because the policy must be enforced in all network

devices on the campus network which is the default behavior.

Fig. 7 shows a network where the policy is enforced at various

places, namely, a firewall, a router, and two switches. The

definitions in the alias file we presented in Fig. 6 cause the

BRMS to make requests to the SDN controller that would

generate OpenFlow rules dropping any incoming packets from

any interface whose destination is any of FTP control and data

ports (20 and 21) and the telnet port (23).

Fig. 7. Enforcing a campus-wide policy that disables insecure protocols

The network configurations shown are in the form of

OpenFlow version 1.3 rules. However, during the network

information gathering phase each network could have been

assigned a different mechanism for policy enforcement (e.g.

a different version of OpenFlow, NETCONF/Yang, iptables,

remote SSH commands, etc).

B. Securing Network Printers

Most printers come with default configurations allowing

users to use them out-of-the-box once plugged into the net-

work. Carelessly plugging network printers into an enterprise

network poses various risks because multiple unnecessary

services are enabled and printers can be accessed from outside

the network if they mistakenly get a public IP assigned.

Fig. 8 shows a printer policy found on the University of

California–Berkeley’s website [10] addressing these concerns.

To secure your printers from unauthorized

access, print configuration alterations,

eavesdropping, and device compromise follow

these printer security best practices:

- Campus printers should not be exposed to

the public Internet.

- Use encrypted connections when accessing

the printers administrative control panel.

- Do not run unnecessary services.

Fig. 8. Printer policy of the University of California–Berkeley

Network operators can write POLANCO statements that

enforce the practices suggested in the policy in the following

way: First, if every end system with a publicly reachable

IP is labeled ‘PUBLIC’ and there is an inventory with the

MAC addresses of authorized printers labeled ‘PRINTER’,

then these labels could be included in POLANCO statements

to block traffic to/from a misconfigured printer. Second, if IT

administrators learn that a printer’s control panel is accessible

via web, POLANCO statements can use the corresponding

alias for HTTPS traffic to represent secure access to control

panel. Moreover, we can use the allow-only action keyword

to ensure that access to unnecessary services is denied. If the

BRMS code cannot directly push a configuration to an end-

system, the closest network node connected to the selected

device is used as the place to enforce the policy.

Fig. 9. Three printers in the network with their IP assignments

Fig. 9 shows the topology used in this example and Fig. 10

shows the POLANCO statements used to generate network

configs.

The relevant portion of the topology consists of two printers

that were (mis)configured and labeled during the topology

discovery phase. Each printer has three labels representing

the department it belongs to, the type of address assigned

and the type of end system. For the Computer Science (CS)

printer, two types of rules are added, one that drops traffic

to all unnecessary services, and one that explicitly allows



HTTPS traffic to local users. Although not shown, note that

an equivalent set of rules should be installed for the reverse

direction and any other network range considered ‘local’ (e.g.

10.0.0.0/8, 192.168.0.0/16). For instance, for the the College

of Public Health (CPH) printer that got assigned a public IP,

traffic in both directions is blocked.

1

2 when node is a PUBLIC PRINTER

3 then block all traffic

4

5 when node is a PRIVATE PRINTER

6 then allow-only secure-web traffic

7 from local addresses

Fig. 10. POLANCO statements securing printers from external access

C. Firewall for External Connections

Firewalls are often the first line of defense of any network,

including campus networks. It is not uncommon to see policies

and guidelines for network traffic that is destined to/from

the Internet. Consider an excerpt from a policy involving the

perimeter firewall at the University of Missouri-St. Louis [4]

shown in Fig. 11.

1 All UMSL network traffic to and from the

2 Internet must go through the firewall.

3 Any network traffic going around the

4 firewall must be accounted for and

5 explicitly allowed by the Computer

6 Security Incident Response Team (CSIRT).

Fig. 11. UMSL Firewall Policy

Enforcing the core of the policy (line 1) is straightforward

in POLANCO. Assume the topology discovered during the

network information gathering is the one shown in Fig. 12.

There are switches inside the network that send traffic out

of the network and switches outside the campus network that

forward data into the network.

Fig. 12. Example topology discovered at the edge of a campus network

The POLANCO statements that enforce the policy are

shown in Fig. 13. Both POLANCO statements would sub-

sequently be translated into the appropriate network configu-

rations for both INNER and OUTER switches. The translation

process identifies information such as the designated interface

where packets must be forwarded to, and the IP addresses

the rules need to match on (e.g. the campus network address

range). Moreover, the blue link connecting the upper OUTER

SWITCH with the lower INNER SWITCH offers an alternative

path to traditional routing protocols (e.g. OSPF, BGP) that

bypasses the firewalls. The POLANCO statements force all

traffic to avoid the alternative route and appropriately send all

traffic through the firewall.

Though not shown in the figure, note that network operators

can use a policy priority in the POLANCO statements to

explicitly allow exceptions to the policy and allow the usage

of the path that bypasses the firewall. We described the details

of an exception system in [7], [8].

D. Rogue Servers

POLANCO can enforce policies that forbid the deployment

of rogue servers—a system that is providing services to the

network that IT staff is not managing. Take for example policy

P3 found at the Oberlin College and Conservatory.

The key to enforce the policy is to distinguish between

authorized servers and regular hosts using two labels. By

distinguishing servers from hosts it is possible to block DNS

(or any other traffic that manages IP address like DHCP)

traffic destined to the latter. Note that it does not suffice to

solely block all DNS packets to enforce the policy because

legitimate end systems would be unable to resolve names.

Instead, the BRMS should produce configurations that only

allow responses issued by authorized servers and block mes-

sages issued by any other device (i.e. a rogue server). The

POLANCO statements are presented in Fig. 14.

Fig. 15 shows the translation of POLANCO statements

into OpenFlow rules. First, the BRMS selects all the network

devices that are connected to a REGULAR-HOST node (i.e.

SWITCH A and SWITCH C). Then, the allow-only action

of the POLANCO statements (lines 1 and 4) produces two

OpenFlow rules per selected switch. A similar approach could

be used for other types of servers such as DHCP. Specifically,

a rule with priority n drops all DNS response traffic, thereby

preventing messages originating from rogue servers from

reaching end systems; and another rule (with higher priority,

say, n+1) that explicitly allows response traffic coming from

authorized servers to reach end systems for legitimate name

resolutions.

1 when node is an INNER SWITCH

2 then send to PERIMETER FIREWALL traffic

3 from campus network to Internet

4

5 when node is an OUTER SWITCH

6 then send to PERIMETER FIREWALL traffic

7 from Internet to campus network

Fig. 13. POLANCO statements enforcing a firewall policy



1 when node is connected to a REGULAR-HOST

2 then allow-only DNS-response traffic from

3 authorized DNS server

Fig. 14. POLANCO statements prohibiting traffic from rogue servers

� ✁✂ � �

Fig. 15. Rules installed to prevent rogue servers

VI. RELATED WORK

Firewalls are arguably the most well-established technology

for enforcing network policies, with a focus on protecting

networks from unauthorized access [11]. The types of net-

work policies that can be specified by the firewalls are very

limited and typically at low-level (IP addresses, port numbers,

etc). On-demand security exceptions [7], [8] takes advantages

of programmability provided by SDN networks and allows

trusted users to specify security exceptions for trusted flows,

such as big data transfer, to improve the throughput of these

flows on a campus network. These policies of security ex-

ception can be dynamically requested and implemented on

demand, and thus greatly improve the flexibility.

Policy Graph Abstraction (PGA) [12] allows network opera-

tors from various units in a campus network specify policies si-

multaneously using network graphs. Although we share PGA’s

goal to automate the way network operators translate high-

level policies into low-level network configuration commands,

PGA and our work address the problem from two perspec-

tives. PGA resembles diagrams network operators draw when

designing policies, while our work focuses on the definition

of human-readable and technically-precise statements derived

from AUP that use imprecise language.

Closely related to our work is OpenSec [13], an OpenFlow-

based framework where network operators can specify se-

curity policies in a human-readable language. Although

OpenSec’s language is more readable than what could nor-

mally be written using network programming languages, we

argue that POLANCO provides better human-readability be-

cause OpenSec’s language still uses low-level identifiers (e.g.,

VLAN numbers, port numbers), does not resemble human-

readable sentences found in AUP, and only focus on the packet

processing done by middle-boxes and does not consider poli-

cies that are embedded in configuration files of end systems.

VII. CONCLUSIONS

To bridge the gap between human readable network policies

and the enforcement of them via low level network con-

figurations and/or SDN rules, we introduce the POLANCO

language. POLANCO approximates natural language, but yet

is technically precise, capable of being translated into SDN

rules and actions that can automatically enforce the high

level policies. POLANCO leverages a BRMS-based translation

system that can observe and measure the changes in the

networks and dynamically adapt the SDN rules in switches to

enforce network policies when the network state changes. We

demonstrated the expressiveness of POLANCO by showing

that it can be used to expressed a variety of network policies

found on University websites.
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