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Abstract

We define a new family of similarity and distance measures on graphs, and explore their the-

oretical properties in comparison to conventional distance metrics. These measures are

defined by the solution(s) to an optimization problem which attempts find a map minimizing

the discrepancy between two graph Laplacian exponential matrices, under norm-preserving

and sparsity constraints. Variants of the distance metric are introduced to consider such

optimized maps under sparsity constraints as well as fixed time-scaling between the two

Laplacians. The objective function of this optimization is multimodal and has discontinuous

slope, and is hence difficult for univariate optimizers to solve. We demonstrate a novel pro-

cedure for efficiently calculating these optima for two of our distance measure variants. We

present numerical experiments demonstrating that (a) upper bounds of our distance metrics

can be used to distinguish between lineages of related graphs; (b) our procedure is faster at

finding the required optima, by as much as a factor of 103; and (c) the upper bounds satisfy

the triangle inequality exactly under some assumptions and approximately under others.

We also derive an upper bound for the distance between two graph products, in terms of the

distance between the two pairs of factors. Additionally, we present several possible applica-

tions, including the construction of infinite “graph limits” by means of Cauchy sequences of

graphs related to one another by our distance measure.

1 Introduction

Structure comparison, as well as structure summarization, is a ubiquitous problem, appearing

across multiple scientific disciplines. In particular, many scientific problems (e.g. inference of

molecular properties from structure, pattern matching in data point clouds and scientific

images) may be reduced to the problem of inexact graph matching: given two graphs, compute

a measure of similarity that gainfully captures structural correspondence between the two.

Similarly, many algorithms for addressing multiple scales of dynamical behavior rely on meth-

ods for automatically coarsening some model architecture.

In this work we present a graph distance metric, based on the Laplacian exponential kernel

of a graph. This measure generalizes the work of Hammond et al. [1] on graph diffusion dis-

tance for graphs of equal size; crucially, our distance measure allows for graphs of inequal size.

We formulate the distance measure as the solution to an optimization problem dependent on
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a comparison of the two graph Laplacians. This problem is a nested optimization problem

with the innermost layer consisting of multivariate optimization subject to matrix constraints

(e.g. orthogonality). To compute this dissimilarity score efficiently, we also develop and dem-

onstrate the lower computational cost of an algorithm which calculates upper bounds on the

distance. This algorithm produces a prolongation/restriction operator, P, which produces an

optimally coarsened version of the Laplacian matrix of a graph. Prolongation/restriction oper-

ators produced via the method in this paper have previously been applied to accelerate the

training of machine learning algorithms in [2].

1.1 Prior work

Quantitative measures of similarity or dissimilarity between graphs have been studied for

decades owing to their relevance for problems in pattern recognition including structure-

based recognition of extended and compound objects in computer vision, prediction of chemi-

cal similarity based on shared molecular structure, and many other domains. Related problems

arise in quantitative modeling, for example in meshed discretizations of partial differential

equations and more recently in trainable statistical models of data that feature graph-like mod-

els of connectivity such as Bayes Networks, Markov Random Fields, and artificial neural net-

works. A core problem is to define and compute how “similar” two graphs are in a way that is

invariant to a permutation of the the vertices of either graph, so that the answer doesn’t depend

on an arbitrary numbering of the vertices. On the other hand unlike an arbitrary numbering,

problem-derived semantic labels on graph vertices may express real aspects of a problem

domain and may be fair game for detecting graph similarity. The most difficult case occurs

when such labels are absent, for example in an unstructured mesh, as we shall assume. Here

we detail several measures of graph dissimilarity, chosen by historical significance and similar-

ity to our measure.

We mention just a few prior works to give an overview of the development of graph dis-

tance measures over time, paying special attention to those which share theoretical or algorith-

mic characteristics with the measure we introduce. Our mathematical distinctions concern the

following properties:

• Does the distance measure require an inner optimization loop? If so is it mainly a discrete or

continuous optimization formulation?

• Does the distance measure calculation naturally yield some kind of explicit map from real-

valued functions on vertices of one graph to functions on vertices of the other? (A map from

vertices to vertices would be a special case.) If we use the term “graph signal” to mean a func-

tion f: V(G1)!S which identifies each vertex of a graph G1 with some state s 2 S, then a map-

explicit graph distance is one whose calculation yields a second function g: V(G2)!V(G1),

with the composite function f � g: V(G2)!S.

• Is the distance metric definable on the spectrum of the graph alone, without regard to other

data from the same graph? The “spectrum” of a graph is a graph invariant calculated as the

eigenvalues of a matrix related to the adjacency matrix of the graph. Depending on context,

the spectrum can refer to eigenvalues of the adjacency matrix, graph Laplacian, or normal-

ized graph Laplacian of a graph. We will usually take the underlying matrix to be the graph

Laplacian, defined in detail in Section 1.3. Alternatively, does it take into account more

detailed “structural” aspects of the graph? This categorization (structural vs. spectral) is simi-

lar to that introduced in [3].
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For each of the graph distance variants discussed here, we label them according to the

above taxonomy. For example, the two prior works by Eschera et. al. and Hammond et al (dis-

cussed in Sections 1.1.4 and 1.1.5) would be labelled as (structural, explicit, disc-opt) and

(spectral, implicit, non-opt), respectively. Our distance measure would be labelled (spectral,

explicit, cont-opt).

1.1.1 Quadratic matching of points and graphs (structural, explicit, cont-opt). Other

work focuses on the construction of a point-to-point correspondence between the vertices of

two graphs. Gold et. al. [4] define the dissimilarity between two unlabelled weighted graphs

(with adjacency matrices A(1) and A(2) and n1 and n2 vertices, respectively) as the solution to

the following optimization problem (for real-valued M = [mij]:

minimize
Xn2

j¼1

Xn1

k¼1

�
Xn2

l¼1

Að1Þ

jl mlk �
Xn1

p¼1

mjpA
ð2Þ

pk

�2

¼ Að1ÞM � MAð2Þk k
2

F

subject to
Xn2

i¼1

mij ¼ 1; j ¼ 1 . . . n1

Xn1

j¼1

mij ¼ 1; i ¼ 1 . . . n2

mij � 0 i ¼ 1 . . . n2

j ¼ 1 . . . n1

ð1Þ

where �k k
2

F is the squared Frobenius norm. This problem is similar in structure to the optimi-

zation considered in Section 4: a key difference being that Gold et al. consider optimization

over real-valued matchings between graph vertices, whereas we consider 0-1 valued matchings

between the eigenvalues of the graph Laplacians. In [5, 6] the authors present computational

methods for computing this optimum, and demonstrate applications of this distance measure

to various machine learning tasks such as 2D and 3D point matching, as well as graph cluster-

ing. Gold et al. also introduce the softassign, a method for performing combinatorial optimiza-

tion with both row and column constraints, similar to those we consider.

1.1.2 Cut-distance of graphs (structural, implicit, disc-opt). Lovász [7] defines the cut-
distance of a pair of graphs as follows: Let the □-norm of a matrix B be given by:

Bk k□ ¼
1

n2
max

S;T�1...n

�
�
�
�

X

i2S;j2T

Bij

�
�
�
� ð2Þ

Given two labelled graphs G1, G2, on the same set of vertices, and their adjacency matrices

A1 and A2, the cut-distance dcut(G1, G2) is then given by

DcutðG1;G2Þ ¼ A1 � A2k k□ ð3Þ

(for more details, see [7]). Computing this distance requires combinatorial optimization (over

all vertex subsets of G1, G2) but this optimization does not result in an explicit map between G1

and G2.

1.1.3 Wasserstein earth mover distance (spectral, implicit, disc-opt). One common

metric between graph spectra is the Wasserstein Earth Mover Distance. Most generally, this

distance measures the cost of transforming one probability density function into another by

moving mass under the curve. If we consider the eigenvalues of a (possibly weighted) graph as

point masses, then the EMD measures the distance between the two spectra as the solution to a
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transport problem (transporting one set of points to the other, subject to constraints e.g. a

limit on total distance travelled or a limit on the number of ‘agents’ moving points). The EMD

has been used in the past in various graph clustering and pattern recognition contexts; see [8].

In the above categorization, this is an optimization-based spectral distance measure, but is

implicit, since it does not produce a map from vertices of G1 to those of G2 (informally, this is

because the EMD is not translating one set of eigenvalues into the other, but instead trans-

forming their respective histograms). Recent work applying the EMD to graph classification

includes [9, 10]. Some similar recent works [11, 12] have used optimal transport theory to

compare graphs. In this framework, signals on each graph are smoothed, and considered as

draws from probability distribution(s) over the set of all graph signals. An optimal transport

algorithm is used to find the optimal mapping between the two probability distributions,

thereby comparing the two underlying graphs.

1.1.4 Graph-edit distance. The graph edit distance measures the total cost of converting

one graph into another with a sequence of local edit moves, with each type of move (vertex

deletion or addition, edge deletion or addition, edge division or contraction) incurring a speci-

fied cost. Costs are chosen to suit the graph analysis problem at hand; determining a cost

assignment which makes the edit distance most instructive for a certain set of graphs is an

active area of research. The distance measure is then the sum of these costs over an optimal

sequence of edits, which must be found using some optimization algorithm i.e. a shortest-path

algorithm (the best choice of algorithm may vary, depending on how the costs are chosen).

The sequence of edits may or may not (depending on the exact set of allowable edit moves) be

adaptable into an explicit map between vertex-sets. Classic pattern recognition literature

includes: [13–16].

1.1.5 Diffusion distance due to Hammond et al. [1]. We discuss this recent distance

metric more thoroughly below. This distance measures the difference between two graphs as

the maximum discrepancy between probability distributions which represent single-particle

diffusion beginning from each of the nodes of G1 and G2. This distance is computed by com-

paring the eigenvalues of the heat kernels of the two graphs. The optimization involved in cal-

culating this distance is a simple unimodal optimization over a single scalar, t, representing the

passage of time for the diffusion process on the two graphs; hence we do not count this among

the “optimization based” methods we consider.

1.1.6 Novel diffusion-derived measures. In this work, we introduce a family of related

graph distance measures which compare two graphs in terms of similarity of a set of probabil-

ity distributions describing single-particle diffusion on each graph. For two graphs G1 and G2

with respective Laplacians L(G1) and L(G2), the matrices etL(G1) and etL(G2) are called the Lapla-
cian Exponential Kernels of G1 and G2 (t is a scalar representing the passage of time). The col-

umn vectors of these matrices describe the probability distribution of a single-particle

diffusion process starting from each vertex, after t time has passed. The norm of the difference

of these two kernels thus describes how different these two graphs are, from the perspective of

single-particle diffusion, at time t. Since these distributions are identical at very-early and very

late times t (we formalize this notion in Section 2.1), a natural way to define a graph distance is

to take the supremum over all t. When the two graphs are the same size, so are the two kernels,

which may therefore be directly compared with a matrix norm. This case is the case considered

by Hammond et al. [1]. However, to compare two graphs of different sizes, we need a mapping

between the column vectors of etL(G1) and etL(G2).

Optimization over a suitably constrained prolongation/restriction operator between the

graph Laplacians of the two graphs is a permutation-invariant way to compare the behavior of

a diffusion process on each. The prolongation map P thus calculated may then be used to map

signals (by which we mean values associated with vertices or edges of a graph) on G1 to the
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space of signals on G2 (and vice versa). In [2] we implicitly consider the weights of an artificial

neural network model to be graph signals, and use these operators to train a hierarchy of

linked neural network models. However, in that work we do not address efficient calculation

of this distance or the associated operators, a major focus of this paper.

We also, in sections 3.2 and 3.3 consider a time conversion factor between diffusion on

graphs of unequal size, and consider the effect of limiting this optimization to sparse maps

between the two graphs (again, our case reduces to Hammond when the graphs in question are

the same size, dense P and R matrices are allowed, and our time-scaling parameter is set to 1).

In this work, we present an algorithm for computing the type of nested optimization given

in our definition of distance (Eqs 8 and 9). The innermost loop of our distance measure opti-

mization consists of a Linear Assignment Problem (LAP, defined below) where the entries of

the cost matrix have a nonlinear dependence on some external variable. Our algorithm greatly

reduces both the count and size of calls to the external LAP solver. We use this algorithm to

compute an upper bound on our distance measure, but it could also be useful in other similar

nested optimization contexts: specifically, nested optimization where the inner loop consists of

a linear assignment problem whose costs depend quadratically on the parameter in the outer-

most loop.

1.2 Background

The ideal for a quantitative measure of similarity or distance on some set S is usually taken to

be a distance metric d : S � S7!R satisfying for all x, y, z 2 S:

• Non-negativity: d(x, y)�0

• Identity: d(x, y) = 0 , x = y

• Symmetry: d(x, y) = d(y, x)

• Triangle inequality: d(x, z)�d(x, y) + d(y, z)

Then (S, d) is a metric space. Euclidean distance on Rd and geodesic distance on manifolds

satisfy these axioms. They can be used to define algorithms that generalize from Rd to other

spaces. A variety of weakenings of these axioms are required in many applications, by drop-

ping some axioms and/or weakening others. For example if S is a set of nonempty sets of a

metric space S0, one can define the “Hausdorff distance” on S which is an extended pseudo-
metric that obeys the triangle inequality but not the Identity axiom and that can take values

including + 1. As another example, any measure measure of distance on graphs which is

purely spectral (in the taxonomy of Section 1.1) cannot distinguish between graphs which

have identical spectra. We discuss this in more detail in Section 2.3.

Additional properties of distance metrics that generalize Euclidean distance may pertain to

metric spaces related by Cartesian product, for example, by summing the squares of the dis-

tance metrics on the factor spaces. We will consider an analog of this property in Section 3.4.

1.3 Definitions

Graph Laplacian: For an undirected graph G with adjacency matrix A and vertex degrees d1,

d2. . .dn, we define the Laplacian of the graph as

LðGÞ ¼ A � diagðfd1; d2 . . . dngÞ

¼ A � diagð1 � AÞ

¼ AðGÞ � DðGÞ

ð4Þ
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L(G) is sometimes instead defined as D(G) − A(G); we take this sign convention for L(G)

because it agrees with the standard continuum Laplacian operator, Δ, of a multivariate func-

tion f: Df ¼
Pn

i¼1

d2 f
dx2

i
.

Frobenius norm: The squared Frobenius norm, Ak k
2

F of a matrix A is given by the sum of

squares of matrix entries. This can equivalently be written as Tr[AT A].

Linear Assignment Problem (LAP): We take the usual definition of the Linear Assignment

Problem (see [17, 18]): we have two lists of items S and R (sometimes referred to as “workers”

and “jobs”), and a cost function c : S � R ! R which maps pairs of elements from S and R to

an associated cost value. This can be written as a linear program for real-valued xij as follows:

minimize
Xm

i¼1

Xn

j¼1

cðsi; rjÞxij

subject to
Xm

i¼1

xij � 1; j ¼ 1 . . . n

Xn

j¼1

xij � 1; i ¼ 1 . . .m

xij � 0 i ¼ 1 . . .m; j ¼ 1 . . . n

ð5Þ

Generally, “Linear Assignment Problem” refers to the square version of the problem where

|S| = |R| = n, and the objective is to allocate the n jobs to n workers such that each worker has

exactly one job and vice versa. The case where there are more workers than jobs, or vice versa,

is referred to as a Rectangular LAP or RLAP. In practice, the conceptually simplest method for

solving an RLAP is to convert it to a LAP by augmenting the cost matrix with several columns

(rows) of zeros. In this case, solving the RLAP is equivalent to solving a LAP with size max(n,

m). Other computational shortcuts exist; see [19] for details. Since the code we use to solve

RLAPs takes the augmented cost matrix approach, we do not consider other methods in this

paper.

Matching: we refer to a 0-1 matrix M which is the solution of a particular LAP as a “match-

ing”. We may refer to the “pairs” or “points” of a matching, by which we mean the pairs of

indices (i, j) with Mij = 1. We may also say in this case that M “assigns” i to j.
Hierarchical graph sequences: A Hierarchical Graph Sequence (HGS) is a sequence of

graphs, indexed by l 2 N ¼ 0; 1; 2; 3 . . ., satisfying the following:

• G0 is the graph with one vertex and one self-loop, and;

• Successive members of the lineage grow roughly exponentially—that is, there exists some

base b such that the growth rate as a function of level number l is Oðbl1þ�

Þ, for all � > 0.

Graded graph: A graded graph is a graph along with a vertex labelling, where vertices are

labelled with non-negative integers such that Δl, the difference in label over any edge, is in {−1,

0, 1}. We will refer to the Δl = 0 edges as “within-level” and the l = ±1 edges as “between-level”.

Graph lineages: A graph lineage is a graded graph with two extra conditions:

• The vertices and edges with Δl = 0 form a HGS; and

• the vertices and edges with Δl = ±1 form a HGS of bipartite graphs.

More plainly, a graph lineage is an exponentially growing sequence of graphs along with

ancestry relationships between nodes. We will also use the term graph lineage to refer to the
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HGS in the first part of the definition. Some intuitive examples of graph lineages in this sense

are the following:

• Path graphs or cycle graphs of size bn for any integer b.

• More generally, grid graphs of any dimension d, of side length b, yielding a lineage which

grows with size bdn (with periodic or nonperiodic boundary conditions).

• For any probability distribution p(x, y) whose support is points in the unit square, we can

construct a graph by discretizing the map of p as a function of x and y, and interpreting the

resulting matrix as the adjacency matrix of a graph. For a specific probability distribution p,

the graphs derived this way with discretizations of exponentially increasing bin count form a

graph lineage.

• The triangulated mesh is a common object in computer graphics [20–22], representing a dis-

cretization of a 2-manifold embedded in R3. Finer and finer subdivisions of such a mesh con-

stitute a graph lineage.

Several examples of graph lineages are used in the discussion of the numerical properties of

Graph Diffusion Distance in Section 5.1. Additional examples (a path graph and a triangulated

mesh) can be found in Figs 1 and 2.

Box product (□) of graphs: For two graphs G and H with vertex sets V(G) = {g1, g2. . .gn}
and V(H) = {h1, h2. . .hm}, we say the product graph G□H is the graph with vertex set V(G□H)

Fig 1. The first seven levels of the graph lineage of path graphs, with ancestry relationships. Δl = 0 edges are

colored in orange, Δl = ±1 edges are colored in blue. Self-loops are not illustrated.

https://doi.org/10.1371/journal.pone.0249624.g001

Fig 2. Top: subsamples of a mesh of the Utah teapot, of increasing density (each node is connected to its 8 nearest neighbors by the Δl = ±0 edges,

rendered in blue). These samples form a graph lineage (Δl = ±1 edges are not illustrated). Bottom: the same set of nodes, with only Δl = ±1 edges plotted

(in orange) for one node from the coarsest level and its descendants.

https://doi.org/10.1371/journal.pone.0249624.g002
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= V(G) × V(H) and an adjacency relationship defined by: (g1, h1)�(g2, h2) in G□H if and only

if g1 � g2 in G and h1 = h2, or g1 = g2 and h1 � h2 in H. Note that the adjacency matrix of this

relationship may be represented by the following identity:

AðG□HÞ ¼ AðGÞ � Im þ In � AðHÞ ð6Þ

where � is the Kronecker Product of matrices (See [23], Section 11.4).

2 Graph diffusion distance definitions

2.1 Diffusion distance definition

We generalize the diffusion distance defined by Hammond et al. [1]. This distortion measure

between two graphs G1 and G2, of the same size, was defined as:

DHammondðG1;G2Þ ¼ sup
t

etL1 � etL2k k
2

F ð7Þ

where Li represents the graph Laplacian of Gi.

This may be interpreted as measuring the maximum divergence, as a function of t, between

diffusion processes starting from each vertex of each graph, as measured by the squared

Euclidean distance between the column vectors of etLi . Each column vj of etLi (which is called

the Laplacian Exponential Kernel) describes a probability distribution of visits (by a random

walk of duration t, with node transition probabilities given by the columns of eL) to the vertices

of Gi, starting at vertex j. This distance metric is then measuring the difference between the

two graphs by comparing these probability distributions; the motivation between taking the

supremum over all t is that the value of the objective function at the maximum is the most

these two distributions can diverge. See Fig 3 for an example of a distance calculation, with a

characteristic peak. For further intuition about why the peak is the most natural place to take

as the distance, rather than some other arbitrary time, note that at very early times and very

late times, the probability distribution of vertex visits is agnostic to graph structure: at early

times no diffusion has had a chance to take place, while at very late times the distribution of

Fig 3. A plot illustrating unimodality of diffusion distance. D2 was calculated between two grid graphs Sq7 and Sq8

of size 7 × 7 and 8 × 8, respectively. The distance is given by the formula D2 Sq
7
; Sq

8
jt

� �
¼

inf a>0infPjCðPÞ Pet
aLðSq7Þ � etaLðSq8ÞP

�
�

�
�2

F as a function of t. The peak, at t �.318, yields the distance D2(Sq7, Sq8).

https://doi.org/10.1371/journal.pone.0249624.g003
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vertex-visits converges to the stationary state for each connected component of the graph.

Hence we are most interested in a regime of t-values in between these extremes, where differ-

ences in G1 and G2 are apparent in their differing probability distributions.

Our contribution generalizes this measure to allow for graphs of differing size. We add two

variables to this optimization: a prolongation operator, P (represented as a rectangular matrix),

and a time-scaling factor, α. The dissimilarity between two graphs G1 and G2 (with Laplacians

Li = L(Gi)) is then defined as:

D2ðG1;G2Þ ¼ sup
t>0

inf
a>0

inf
PjCðPÞ

Pet
aL1 � eatL2P

�
�

�
�2

F ð8Þ

where CðPÞ represents some set of constraints on the matrix P. For the remainder of this work

we use D(G1, G2) to refer to the distance and D2(G1, G2) to refer to the squared distance—this

notation is chosen to simplify the exposition of some proofs. It will be convenient for later cal-

culations to introduce and assume the concept of transitive constraints—by which we mean

that for any constraint C, satisfaction of C by P1 and P2 implies satisfaction of C by their prod-

uct P1 P2 (when such a product is defined). Some (non-exclusive) examples of transitive con-

straints include orthogonality, particular forms of sparsity, and their conjunctions.

The simplest transitive constraint we will consider is that P should be orthogonal. Intui-

tively, an orthogonal P represents a norm-preserving map between nodes of G1 and nodes of

G2, so we are measuring how well diffusion on G1 approximates diffusion on G2, as projected

by P. Note that since in general P is a rectangular matrix it is not necessarily true that PPT = I.
We assume that |G1| = n1 � n2 = |G2|; if not, the order of the operands is switched, so that P is

always at least as wide as it is tall. We also briefly consider a sparsity constraint in section 3.3

below. Since sparsity is more difficult to treat numerically, our default constraint will be

orthogonality alone. Other constraints could include bandedness and other structural con-

straints (see Section 6). We also note that because L is finite-dimensional, the exponential map

is continuous and therefore we can swap the order of optimization over t and α. The optimiza-

tion procedure outlined in this paper optimizes these variables in the order presented above

(namely: an outermost loop of maximization over t, a middle loop of minimization over α
given t, and an innermost loop of minimization over P given t and α).

The other additional parameter, α, controls dilation between the passage of time in the two

graphs, to account for different scales. Again, the intuition is that we are interested in the dif-

ference between structural properties of the graph (from the point of view of single-particle

diffusion) independent of the absolute number of nodes in the graph. As an example, diffusion

on an n × n grid is a reasonably accurate approximation of more rapid diffusion on a 2n × 2n
grid, especially when n is very large. In our discussion of variants of this dissimilarity score, we

will use the notation D2(G1, G2|x = c) to mean restrictions of any of our distortion measure

equations where variable x is held to a constant value c; In cases where it is clear from context

which variable is held to a fixed value c, we will write D2(G1, G2|c).
At very early times the second and higher-order terms of the Taylor Series expansion of the

matrix exponential function vanish, and so etL � I + tL. This motivates the early-time or “lin-

ear” version of this distance, ~D:

~D2ðG1;G2Þ ¼ inf
a>0

inf
PjCðPÞ

1

a
PL1 � aL2P

�
�
�
�

�
�
�
�

2

F

ð9Þ

�
1

t2
inf
a>0

inf
PjCðPÞ

Pet
aL1 � eatL2P

�
�

�
�2

F

� �

ð10Þ

PLOS ONE Graph diffusion distance

PLOS ONE | https://doi.org/10.1371/journal.pone.0249624 April 27, 2021 9 / 44

https://doi.org/10.1371/journal.pone.0249624


(Note that the identity matrices cancel). The outermost optimization (maximization over t)
is removed for this version of the distance, as t can be factored out:

t
a
PL1 � atL2P

�
�
�

�
�
�

2

F
¼ t2

1

a
PL1 � aL2P

�
�
�
�

�
�
�
�

2

F

ð11Þ

For the exponential version of the dissimilarity score, we note briefly that the supremum

over t of our objective function must exist, since for any G1, G2:

D2ðG1;G2Þ � D2 G1;G2

�
�
�
�a ¼ 1;P ¼

I

0

" # !

ð12Þ

In other words, the infimum over all P and α is bounded above by any particular choice of

values for these variables. Since

D2 G1;G2

�
�
�
�t ¼ 0; a ¼ 1; P ¼

I

0

" # !

¼ 0; ð13Þ

and

lim
tc!1

D2 G1;G2

�
�
�
�tc; a ¼ 1; P ¼

I

0

" # !

¼ 0 ð14Þ

this upper bound must have a supremum (possibly 0) at some t� 2 [0, 1). Then

D2 G1;G2

�
�
�
�t

�; a ¼ 1;P ¼
I

0

" # !

ð15Þ

must be finite and therefore so must the objective function.

2.2 Directedness of distance and constraints

We note that this distance measure, as defined so far, is directed: the operands G1 and G2 serve

differing roles in the objective function. This additionally makes the constraint predicate CðPÞ

ambiguous: when we state that C represents orthogonality, it is not clear whether we are refer-

ring to PT P = I or PPT = I (only one of which can be true for a non-square matrix P). To

remove this ambiguity, we will, for the computations in the rest of this manuscript, define the

distance metric to be symmetric: the distance between G1 and G2 with |G1| � |G2| is always

D(G1, G2). P is then always at least as tall as it is wide, so of the two choices of orthogonality

constraint we select PT P = I.

2.3 Variants of distance measure

Thus far we have avoided referring to this graph dissimilarity function as a “distance metric”.

As we shall see later, full optimization of Eqs 8 and 9 over α and P is too loose, in the sense

that the distances D(G1, G2), D(G2, G3), and D(G1, G3) do not necessarily satisfy the triangle

inequality. The same is true for ~D. See Section 5.3.1 for numerical experiments suggesting a

particular parameter regime where the triangle inequality is satisfied. We thus define several

restricted/augmented versions of both D and ~D which are guaranteed to satisfy the triangle

inequality. These different versions are summarized in Table 1. These variously satisfy some of

the conditions necessary for generalized versions of distance metrics, including:
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• Premetric: a function d(x, y) for which d(x, y)�0 and d(x, y) = d(y, x) for all x, y.

• Pseudometric: As a premetric, but additionally d(x, z)�d(x, y) + d(y, z) for all x, y, z.

• ρ-inframetric: As a premetric, but additionally d(x, z)�ρ(d(x, y) + d(y, z)) and d(x, y) = 0 if

and only if x = y, for all x, y, z.

Additionally, we note here that a distance measure on graphs using Laplacian spectra can at

best be a pseudometric, since isospectral, non-isomorphic graphs are well-known to exist [24,

25]. Characterizing the conditions under which two graphs are isospectral but not isomorphic

is an open problem in spectral graph theory. However, previous computational work has led to

the conjecture that “almost all” graphs are uniquely defined by their spectra [26–28], in the

sense that the probability of two graphs of size n being isospectral but not isomorphic goes to 0

as n ! 1. Furthermore, our numerical experiments have indicated that the violation of the

triangle inequality is bounded, in the sense that D(G1, G3)�ρ�(D(G1, G2) + D(G2, G3)) for ρ �

2.1. This means that even in the least restricted case our similarity measure may be a 2.1-infra-

pseudometric on graphs (and, since such isospectral, non-isomorphic graphs are relatively

rare, it behaves like a 2.1-inframetric). As we will see in Section 3, in some more restricted

cases we can prove triangle inequalities, making our measure a pseudometric. In Section 4.1,

we discuss an algorithm for computing the optima in Eqs (8) and (9). First, we discuss some

theoretical properties of this dissimilarity measure.

3 Theoretical properties of D(G1, G2)

In this section we prove several properties of various instances of our graph dissimilarity score,

including triangle inequalities for some specific versions and an upper bound on the distance

between two graph products.

Table 1. Summary of this paper’s investigation of different forms of our graph dissimilarity measure. In this work, we systematically explore properties of this measure

given sparsity parameter s = 0, and various regimes of t (fixed at some early time, or maximized over all t) and α (fixed at α = 1, fixed at a constant power r of the ratio of

graph sizes, or minimized over all α. We leave exploration of nonzero values of the sparsity parameter to future work. Variants not explicitly called out are not considered.

In the case where α and t are both optimized and s > 0, it is unclear which of the metric conditions GDD satisfies, hence the corresponding classification is left blank.

t α s Classification Treatment in this manuscript

Fixed at tc <

�

Fixed at αc = 1 s = 0 Pseudometric Defined in Eq 18. Optimized by one pass of LAP solver. Triangle inequality proven in Theorem 2.

Fixed at tc <

�

Fixed at

ac ¼
n1

n2

� �r
s = 0 Pseudometric Defined in Eq (24). Optimized by one pass of LAP solver. Triangle inequality proven in Theorem 4.

Fixed at tc <

�

Optimized s = 0 Premetric Defined in Eq 9. Optimized by Algorithm 1. Triangle inequality violations examined experimentally in Section

5.3.1.

Optimized Fixed at αc = 1 s = 0 Metric When |G1| = |G2|, this is Hammond et. al’s version of graph distance.

Optimized Optimized s = 0 Premetric Defined in Eq 8. Optimized by Algorithm 2. Graph Product upper bound proven in Theorem 5. Triangle

inequality violations examined experimentally in Section 5.3.1. Used to calculate graph distances in Sections

5.3.2 and 5.3.3.

Fixed at tc <

�

Fixed at αc = 1 s > 0 Pseudometric Triangle inequality proven in Theorem 2.

Fixed at tc <

�

Fixed at

ac ¼
n1

n2

� �r
s > 0 Pseudometric Triangle inequality proven in Theorem 4.

Optimized Optimized s > 0 Discussed in Section 3.3.

https://doi.org/10.1371/journal.pone.0249624.t001
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3.1 Triangle inequality for α = 1

Lemma 1. For any matrices M and P, with P satisfying PT P = I, PMk k
2

F� Mk k
2

F and

MPk k
2

F� Mk k
2

F .

Proof. Suppose without loss of generality that PT P = I. Then:

1. PMk k
2

F¼ Tr ½MTPTPM� ¼ Tr ½MTM� ¼ Mk k
2

F

2. If PT P = I, then letting PPT = P, P is a projection operator satisfying PT = P = P2. Then,

Mk k
2

F¼ Tr ½MTM� ¼ Tr ½MTMðP þ ðI � PÞÞ�

¼ Tr ½MTMP� þ Tr ½MTMðI � PÞ�

¼ Tr ½MTMPPT� þ Tr ½MTMðI � PÞ
2
�

¼ MPk k
2

Fþ MðI � PÞk k
2

F

� MPk k
2

F

ð16Þ

Theorem 2. ~D2 satisfies the triangle inequality for α = 1.

Proof. Let G1, G2, G3 be simple graphs, with Laplacians L1, L2, L3. Let

P31 ¼ arg inf
PjCðPÞ

PL1 � L3Pk k
2

F ð17Þ

Then

~D2ðG1;G3ja ¼ 1Þ ¼ P31L1 � L3P31k k
2

F¼ inf
PjCðPÞ

PL1 � L3Pk k
2

F

� inf
P32;P21jCðP32P21Þ

P32P21L1 � L3P32P21k k
2

F

ð18Þ

where we write CðP32P21Þ to signify that the product P32 P21 satisfies the original transitive con-

straints on P, e.g. orthogonality and/or sparsity. Since the constraint predicate CðPÞ satisfies Eq

(25), then so does their product, so we may write

~DðG1;G3ja ¼ 1Þ � inf
P32jCðP32Þ

inf
P21jCðP21Þ

P32P21L1 � L3P32P21k kF

¼ inf
P32jCðP32Þ

inf
P21jCðP21Þ

P32P21L1 � P32L2P21 þ P32L2P21 � L3P32P21k kF

� inf
P32jCðP32Þ

inf
P21jCðP21Þ

ð P32P21L1 � P32L2P21k kF

þ P32L2P21 � L3P32P21k kFÞ

¼ inf
P32jCðP32Þ

inf
P21jCðP21Þ

ð P32ðP21L1 � L2P21Þk kF

þ ðP32L2 � L3P32ÞP21k kFÞ

ð19Þ
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By Lemma 1,

~DðG1;G3ja ¼ 1Þ � inf
P32jCðP32Þ

inf
P21jCðP21Þ

ð P21L1 � L2P21k kF

þ P32L2 � L3P32k kFÞ

¼ inf
P21jCðP21Þ

P21L1 � L2P21k kF

þ inf
P32jCðP32Þ

P32L2 � L3P32k kF

¼ ~DðG1;G2ja ¼ 1Þ þ ~DðG2;G3ja ¼ 1Þ

ð20Þ

We note that in this proof we use L1, L2, and L3 (making this the small-t or linear version of

the objective function), but the same argument holds when all three are replaced with etLi , so

we also have

Corollary 3. D satisfies the triangle inequality for α = 1.

Proof. By the same calculation as in Theorem 2, with all Li replaced by etcLi , we have

DðG1;G3jtc; a ¼ 1Þ � DðG1;G2jtc; a ¼ 1Þ þ DðG2;G3jtc; a ¼ 1Þ
ð21Þ

for any constant tc. Then, letting

t13 ¼ arg sup
tc

DðG1;G3jtc; a ¼ 1Þ ð22Þ
we have:

DðG1;G3ja ¼ 1Þ ¼ sup
tc

DðG1;G3jtc; a ¼ 1Þ

¼ DðG1;G3jt13; a ¼ 1Þ

� DðG1;G2jt13; a ¼ 1Þ þ DðG2;G3jt13; a ¼ 1Þ

� sup
tc

DðG1;G2jtc; a ¼ 1Þ

þ sup
tc

DðG2;G3jtc; a ¼ 1Þ

¼ DðG1;G2ja ¼ 1Þ þ DðG2;G3ja ¼ 1Þ

ð23Þ

Note that in the proofs of Theorem 2, Theorem 4, and Corollary 3, we assume that the con-

straint predicate CðPÞ includes at least orthogonality (so that we may apply Lemma 1). How-

ever, this constraint predicate could be more strict, e.g. include both orthogonality and

sparsity. Hence these statements also apply to the s > 0 cases in Table 1, which we do not oth-

erwise consider in this work: in our numerical experiments we (for reasons of computational

simplicity) only require our optimization over P be orthogonally constrained.

3.2 Time-Scaled Graph Diffusion Distance

For any graphs G1 and G2, we define the Time-Scaled Graph Diffusion Distance (TSGDD) as a

scaled version of the linear distance, with α fixed. Namely, let

~D2
r ðG1;G2Þ ¼ ðn1n2Þ

�2r ~D2 G1;G2

�
�
�
�a ¼

n1

n2

� �r� �

¼ inf
PjCðPÞ

ðn1n2Þ
�2r n1

n2

� ��r

PL1 �
n1

n2

� �r

L2P
�
�
�
�

�
�
�
�

2

F

ð24Þ
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The intuition for this version of the distance measure is that we are constraining the time

dilation, α, between G1 and G2 to be a power of the ratio of the two graph sizes. The factor (n1

n2)
−2r is needed to ensure this version of the distance satisfies the triangle inequality, as seen in

Theorem 4.

Theorem 4. The TSGDD, as defined above, satisfies the triangle inequality.

Proof. As above, let G1, G2, G3 be three graphs with ni = |Gi| and n1 � n2 � n3, and let Li be

the Laplacian of Gi. Let CðPÞ represent a transitive constraint predicate, also as described previ-

ously. Then, for a constant r 2 R, we have:

~DrðG1;G3Þ ¼

inf
PjCðPÞ

ðn1n3Þ
�r n1

n3

� ��r

PL1 �
n1

n3

� �r

L3P
�
�
�
�

�
�
�
�
F

� inf
P32;P21jCðP32P21Þ

ðn1n3Þ
�r n1

n3

� ��r

P32P21L1 �
n1

n3

� �r

L3P32P21

�
�
�
�

�
�
�
�
F

under the assumption, as in Eq (25), that CðP32Þ ^ CðP21Þ ) CðP32P21Þ,

~DrðG1;G3Þ �

inf
P32 ;P21jCðP32Þ^CðP21Þ

ðn1n3Þ
�r n1

n3

� ��r

P32P21L1 �
n1

n3

� �r

L3P32P21

�
�
�
�

�
�
�
�
F

¼ inf
P32;P21 jCðP32Þ^CðP21Þ

ðn1n3Þ
�r
�
�
�
�

n1

n3

� ��r

P32P21L1 �
n1n3

n2
2

� �r

P32L2P21

þ
n1n3

n2
2

� �r

P32L2P21 �
n1

n3

� �r

L3P32P21

�
�
�
�
F

� inf
P32;P21 jCðP32Þ^CðP21Þ

ðn1n3Þ
�r n1

n3

� ��r

P32P21L1 �
n1n3

n2
2

� �r

P32L2P21

�
�
�
�

�
�
�
�
F

þðn1n3Þ
�r
�
�
�
�

n1n3

n2
2

� �r

P32L2P21 �
n1

n3

� �r

L3P32P21

�
�
�
�
F

¼ inf
P32;P21 jCðP32Þ^CðP21Þ

ðn1n3Þ
�r n3

n2

� �r n1

n2

� ��r

P32P21L1 �
n1

n2

� �r

P32L2P21

�
�
�
�

�
�
�
�
F

þ ðn1n3Þ
�r n1

n2

� �r n2

n3

� ��r

P32L2P21 �
n2

n3

� �r

L3P32P21

�
�
�
�

�
�
�
�
F

¼ inf
P32;P21 jCðP32Þ^CðP21Þ

ðn1n2Þ
�r n1

n2

� ��r

P32P21L1 �
n1

n2

� �r

P32L2P21

�
�
�
�

�
�
�
�
F

þ ðn2n3Þ
�r n2

n3

� ��r

P32L2P21 �
n2

n3

� �r

L3P32P21

�
�
�
�

�
�
�
�
F
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By Lemma 1,

~DrðG1;G3Þ � inf
P32;P21jCðP32Þ^CðP21Þ

ðn1n2Þ
�r n1

n2

� ��r

P21L1 �
n1

n2

� �r

L2P21

�
�
�
�

�
�
�
�
F

þ ðn2n3Þ
�r n2

n3

� ��r

P32L2 �
n2

n3

� �r

L3P32

�
�
�
�

�
�
�
�
F

¼ inf
P21jCðP21Þ

ðn1n2Þ
�r n1

n2

� ��r

P21L1 �
n1

n2

� �r

L2P21

�
�
�
�

�
�
�
�
F

þ inf
P32jCðP32Þ

ðn2n3Þ
�r n2

n3

� ��r

P32L2 �
n2

n3

� �r

L3P32

�
�
�
�

�
�
�
�
F

¼ ~DrðG1;G2Þ þ ~DrðG2;G3Þ

and so

~DrðG1;G3Þ � ~DrðG1;G2Þ þ ~DrðG2;G3Þ

for any fixed r 2 R.

3.3 Sparse-diffusion distance

We introduce the notation CðPÞ for a constraint predicate that must be satisfied by prolonga-

tion matrix P, which is transitive in the sense that:

CðP32Þ ^ CðP21Þ ) CðP32P21Þ: ð25Þ

The simplest example is CðPÞ ¼ CorthogðPÞ � ðPTP ¼ IÞ. However, sparsity can be intro-

duced in transitive form by CðPÞ ¼ CorthogðPÞ ^ CsparsityðPÞ where

CsparsityðPÞ � ðmax
i;j

degreei;jðPÞ � ðnPcoarse=nPfineÞ
s
Þ

for some real number s � 0. This predicate is transitive since

max
i;j

degreei;jðP32P21Þ � max
i;j

degreei;jðP32Þmax
i;j

degreei;jðP21Þ;

and since n2 cancels out from the numerator and denominator of the product of the fanout

bounds. Here, degreei,j(M) is the total number of nonzero entries in row i or column j of M.

This transitive sparsity constraint depends on a power-law parameter s � 0. When s = 0,

there is no sparsity constraint.

Another form of sparsity constraints are those which specify a pattern on matrix entries

which are allowed to be nonzero. Two simple examples (which are also transitive) are matrices

which are constrained to be upper triangular, as well as matrices which are constrained to be

of the form A�B where A and B are themselves both constrained to be sparse. More compli-

cated are n1 × n2 matrices which are constrained to be banded for some specified pattern of

bands: more specifically, that there is a reordering of the rows and columns that the number

of diagonal bands (of width 1, slope
n1

n2
) with nonzero entries is less than

n1

n2

� �q
for some 0 �

q < 1. For example, linear interpolation matrices between d-dimensional grids, with non-over-

lapping source regions, follow this constraint.

As a final note on sparsity, we observe that any of the optimizations detailed in this work

could also be performed including a sparsity term (for example, the |�|1-norm of the matrix P,

calculated as ∑i∑j|pij| is one possibility, as are terms which penalize t or α far from 1), rather
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than explicit sparsity constraints. A potential method of performing this optimization would

be to start by optimizing the non-sparse version of the objective function (as detailed in Sec-

tion 4.1) and then slowly increasing the strength of the regularization term.

3.4 Upper bounds for graph products

We now consider the case where we want to compute the distance of two graph box products,

i.e. D(G1, G2) where

G1 ¼ Gð1Þ

1 □Gð2Þ

1 and G2 ¼ Gð1Þ

2 □Gð2Þ

2
ð26Þ

and

Pð1Þ ¼ arg inf
PcjCðPcÞ

DðGð1Þ

1 ;Gð1Þ

2 jtc; ac; PcÞ

Pð2Þ ¼ arg inf
PcjCðPcÞ

DðGð2Þ

1 ;Gð2Þ

2 jtc; ac; PcÞ

ð27Þ

are known for some tc, αc. Previous work [2] included a proof of a similar inequality for the

small-t (“linear”) case of our objective function.

Theorem 5. Let G1 and G2 be graph box products as described above, and for a graph G let
L(G) be its Laplacian. For fixed t = tc, α = αc, P(i) as given above, for any λ 2 [0, 1], we have

inf
Pc jCðPcÞ

DðG1;G2Þ �

l e
tc
ac
LðGð2Þ

1
Þ

�
�
�

�
�
�
F

þ etcacLðGð2Þ

2
Þ

�
�
�

�
�
�
F

� �
D Gð1Þ

1 ;Gð1Þ

2 jPð1Þ

� �

þ 1 � lð Þ e
tc
ac
LðGð1Þ

1
Þ

�
�
�

�
�
�
F

þ etcacLðGð1Þ

2
Þ

�
�
�

�
�
�
F

� �
D Gð2Þ

1 ;Gð2Þ

2 jPð2Þ

� �

ð28Þ

where all distances are evaluated at t = tc, α = αc, but we have omitted those terms for simplicity
of notation.

Proof. For graph products Gi, we have

LðGiÞ ¼ LðGð1Þ

i Þ � LðGð2Þ

i Þ

¼ ðLðGð1Þ

i Þ � I
jLðGð2Þ

i Þj
Þ þ ðI

jLðGð1Þ

i Þj
� LðGð2Þ

i ÞÞ
ð29Þ

(this fact can be easily verified from the formula for the adjacency matrix of a graph

box product, given in the definition in Section 1.3), and so

exp ½cLðGiÞ� ¼ exp ½cðLðGð1Þ

i Þ � I
jLðGð2Þ

i Þj
Þ þ ðI

jLðGð1Þ

i Þj
� LðGð2Þ

i ÞÞ�: ð30Þ

Because A�I|B| and I|A|�B commute for any A and B,

exp ½cLðGiÞ� ¼ exp ½cðLðGð1Þ

i Þ � I
jLðGð2Þ

i Þj
Þ� exp ½cðI

jLðGð1Þ

i Þj
� LðGð2Þ

i ÞÞ�

¼ ð exp ½cLðGð1Þ

i Þ� � I
jLðGð2Þ

i Þj
ÞðI

jLðGð1Þ

i Þj
� exp ½cLðGð2Þ

i Þ�Þ

¼ exp ½cLðGð1Þ

i Þ� � exp ½cLðGð2Þ

i Þ�

ð31Þ
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We will make the following abbreviations:

E1 ¼ e
tc
ac
LðG1Þ Eð1Þ

1 ¼ e
tc
ac
LðGð1Þ

1
Þ Eð2Þ

1 ¼ e
tc
ac
LðGð2Þ

1
Þ

E2 ¼ etcacLðG2Þ Eð1Þ

2 ¼ etcacLðGð1Þ

2
Þ Eð2Þ

2 ¼ etcacLðGð2Þ

2
Þ

Then,

inf
PjCðPÞ

DðG1;G2Þ � DðG1;G2jPð1Þ � Pð2ÞÞ

¼ ðPð1Þ � Pð2ÞÞE1 � E2ðPð1Þ � Pð2ÞÞk kF

ð32Þ

¼ ðPð1Þ � Pð2ÞÞðEð1Þ

1 � Eð2Þ

1 Þ � ðEð1Þ

2 � Eð2Þ

2 ÞðPð1Þ � Pð2ÞÞ
�
�

�
�
F

¼ ðPð1ÞEð1Þ

1 � Pð2ÞEð2Þ

1 Þ � ðEð1Þ

2 Pð1Þ � Eð2Þ

2 Pð2ÞÞ
�
�

�
�

2

F

¼ kðPð1ÞEð1Þ

1 � Pð2ÞEð2Þ

1 Þ � ðPð1ÞEð1Þ

1 � Eð2Þ

2 Pð2ÞÞ

þðPð1ÞEð1Þ

1 � Eð2Þ

2 Pð2ÞÞ � ðEð1Þ

2 Pð1Þ � Eð2Þ

2 Pð2ÞÞkF

� ðPð1ÞEð1Þ

1 � Pð2ÞEð2Þ

1 Þ � ðPð1ÞEð1Þ

1 � Eð2Þ

2 Pð2ÞÞ
�
�

�
�
F

þ ðPð1ÞEð1Þ

1 � Eð2Þ

2 Pð2ÞÞ � ðEð1Þ

2 Pð1Þ � Eð2Þ

2 Pð2ÞÞ
�
�

�
�
F

ð33Þ

¼ Pð1ÞEð1Þ

1 � ðPð2ÞEð2Þ

1 � Eð2Þ

2 Pð2ÞÞ
�
�

�
�
F

þ ðPð1ÞEð1Þ

1 � Eð1Þ

2 Pð1ÞÞ � Eð2Þ

2 Pð2Þ
�
�

�
�
F

ð34Þ

¼ Pð1ÞEð1Þ

1

�
�

�
�
F
Pð2ÞEð2Þ

1 � Eð2Þ

2 Pð2Þ
�
�

�
�
F

þ Pð1ÞEð1Þ

1 � Eð1Þ

2 Pð1Þ
�
�

�
�
F
Eð2Þ

2 Pð2Þ
�
�

�
�
F
:

ð35Þ

By Lemma 1,

inf
PjCðPÞ

DðG1;G2Þ � Eð1Þ

1

�
�

�
�
F Pð2ÞEð2Þ

1 � Eð2Þ

2 Pð2Þ
�
�

�
�
F

þ Pð1ÞEð1Þ

1 � Eð1Þ

2 Pð1Þ
�
�

�
�
F
Eð2Þ

2

�
�

�
�
F
:

ð36Þ

If we instead use ðEð1Þ

2 Pð1Þ � Pð2ÞEð2Þ

1 Þ as the cross term in Eq (33), we have

inf
P
DðG1;G2Þ � Eð1Þ

2

�
�

�
�
F
Pð2ÞEð2Þ

1 � Eð2Þ

2 Pð2Þ
�
�

�
�
F

þ Pð1ÞEð1Þ

1 � Eð1Þ

2 Pð1Þ
�
�

�
�
F Eð2Þ

1

�
�

�
�
F

ð37Þ

A linear combination of these two bounds gives us the desired bound.

This has the additional consequence that

inf
PcjCðPcÞ

DðG1;G2Þ �

min e
tc
ac
LðGð2Þ

1
Þ

�
�
�

�
�
�
F

þ etcacLðGð2Þ

2
Þ

�
�
�

�
�
�
F

� �
D Gð1Þ

1 ;Gð1Þ

2 jPð1Þ

� �
;

h

e
tc
ac
LðGð1Þ

1
Þ

�
�
�

�
�
�
F

þ etcacLðGð1Þ

2
Þ

�
�
�

�
�
�
F

� �
D Gð2Þ

1 ;Gð2Þ

2 jPð2Þ

� �i

ð38Þ
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Additionally, if

Eð1Þ

i ¼ Eð2Þ

i for i 2 1; 2 and Pð1Þ ¼ Pð2Þ; ð39Þ

This reduces further to

DðG1;G2jPð1Þ � Pð1ÞÞ � minð Eð1Þ

1

�
�

�
�
F
; Eð1Þ

2

�
�

�
�
F
Þ Pð1ÞEð1Þ

1 � Eð1Þ

2 Pð1Þ
�
�

�
�
F

ð40Þ

and so

DðGð1Þ

1 □Gð1Þ

1 ;Gð1Þ

2 □Gð1Þ

2 jtc; acÞ

� min e
tc
ac
LðGð1Þ

1
Þ

�
�
�

�
�
�
F
; etcacLðGð1Þ

2
Þ

�
�
�

�
�
�
F

� �
D Gð1Þ

1 ;Gð1Þ

2 jtc; ac

� � ð41Þ

An example of such a graph sequence is the sequence of two-dimensional square grids,

which are each the box product of two identical one-dimensional grids i.e. path graphs:

Sqn = Pan□Pan.

3.5 Spectral lower bound

In Theorem 7 we will derive and make use of an upper bound on the graph distance

~DðG1;G2Þ. This upper bound is calculated by constraining the variable P to be not only orthog-

onal, but also P ¼ U2MUT
1

where M is the solution (i.e. “matching”, in the terminology of that

section) to a Linear Assignment problem with costs given by a function of the eigenvalues of

L(G1) and L(G2). In this section we derive a similar lower bound on the distance.

Let G1 and G2 be undirected graphs with Laplacians L1 = L(G1) and L2 = L(G2), and let α>

0 be constant. By Eq (52), we have

~D2ðG1;G2Þ ¼ inf
a>0

inf
PTP¼I

Xn2

i¼1

Xn1

j¼1

p2

ij
1

a
l

ð1Þ

j � al
ð2Þ

i

� �2
 !

: ð42Þ

The following upper bound on ~D is achieved by constraining P to be not only orthogonal,

but related to a constrained matching problem between the two lists of eigenvalues:

~D2ðG1;G2Þ � infa>0 infM
1

a
ML1 � aL2M

�
�
�
�

�
�
�
�

2

F

subject to
Xn2

i¼1

mij � 1; j ¼ 1 . . . n1

Xn1

j¼1

mij � 1; i ¼ 1 . . . n2

mij � 0 i ¼ 1 . . . n2; j ¼ 1 . . . n1;

ð43Þ

where Λ1 and Λ2 are diagonal matrices of the eigenvalues of L1 and L2 respectively. Here we

used the explicit map ~P ¼ UT
2
PU1 as a change of basis; we then converted the constraints on P

into equivalent constraints on ~P, and imposed additional constraints so that the resulting opti-

mization (a linear assignment problem) is an upper bound. See the proof of Theorem 7 for the

details of this derivation. We show in this section that a less constrained assignment problem

is a lower bound on ~D2. We do this by computing the same mapping ~P ¼ UT
2
PU1 and then

dropping some of the constraints on ~P (which is equivalent to dropping constraints on P,
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yielding a lower bound). The constraint PT P = I is the conjunction of n2
1

constraints on the col-

umn vectors of P: if pi is the ith column of P, then PT P = I is equivalent to:

pi � pi ¼ 1 8i ¼ 1 . . . n1 ð44Þ

pi � pi ¼ 0 8i ¼ 1 . . . n1; j ¼ 1 . . . i � 1; i þ 1 . . . n1; ð45Þ

If we discard the constraints in Eq (45), we are left with the constraint that every column of

p must have unit norm.

Construct the “spectral lower bound matching” matrix P(SLB) as follows:

PðSLBÞ

i;j ¼

(
1 if i ¼ argmin

k

1

a
l

ð1Þ

j � al
ðkÞ

k

� �2

0 otherwise:
ð46Þ

For any α, this matrix is the solution to a matching problem (less constrained than the origi-

nal optimization over all P) where each l
ð1Þ

j is assigned to the closest l
ð2Þ

i , allowing collisions. It

clearly satisfies the constraints in Eq (44), but may violate those in Eq (45). Thus, we have

~D2ðG1;G2Þ ¼ inf
a>0

inf
PTP¼I

Xn2

i¼1

Xn1

j¼1

p2

ij
1

a
l

ð1Þ

j � al
ð2Þ

i

� �2
 !

:

� ~D2

�
G1;G2

�
�
�PðSLBÞ

�
ð47Þ

Various algorithms exist to rapidly find the member of a set of points which is closest to

some reference point (for example, KD-Trees [29]). For any α, the spectral lower bound can be

calculated by an outer loop over alpha and an inner loop which applies one of these methods.

We do not consider joint optimization of the lower bound over P and α in this work.

3.6 Regularized distance

We can add a regularization term to the graph diffusion distance, as follows: define

DregðG1;G2Þ ¼ sup
t

inf
PjCðPÞ

inf
a>0

f PetaL1 � etaL2P
�
�

�
�
F

þ et
aL1 � etL1

�
�

�
�
F

þ etL2P � etaL2Pk kFg

We can show analytically that this distance satisfies the triangle inequality:

Theorem 6. Dreg satisfies the triangle inequality.

Proof. For graphs G1, G2, G3 and Laplacians L1, L2, L3, for any fixed t � 0, we have:

DregðG1;G3jtÞ ¼ inf
PjCðPÞ

inf
a>0

f Pet
aL1 � etaL3P

�
�

�
�
F þ et

aL1 � etL1

�
�

�
�
F

þ etL3P � etaL3Pk kFg

� DregðG1;G3jt; a ¼ 1Þ

¼ inf
PjCðPÞ

f PetL1 � etL3Pk kF þ etL1 � etL1k kF

þ etL3P � etL3Pk kFg

¼ inf
PjCðPÞ

PetL1 � etL3Pk kF
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Suppose that

a32; P32 ¼ arg inf
a>0

inf
PjCðPÞ

f Pet
aL2 � etaL3P

�
�

�
�
F þ etaL2 � etL2

�
�

�
�
F

þ etL3P � etaL3Pk kFg

a21; P21 ¼ arg inf
a>0

inf
PjCðPÞ

f Pet
aL1 � etaL2P

�
�

�
�
F

þ etaL1 � etL1

�
�

�
�
F

þ etL2P � etaL2Pk kFg

Then,

inf
PjCðPÞ

PetL1 � etL3Pk kF � P32P21etL1 � etL3P32P21k kF

inf
PjCðPÞ

PetL1 � etL3Pk kF � kP32P21etL1 � P32P21e
t

a21
L1 þ P32P21e

t
a21

L1

� P32eta21L2P21 þ P32eta21L2P21 � P32etL2P21

þP32etL2P21 � P32e
t

a32
L2P21 þ P32e

t
a32

L2P21

� eta32L3P32P21 þ eta32L3P32P21 � etL3P32P21kF

� P32P21etL1 � P32P21e
t

a21
L1

�
�
�

�
�
�
F

þ P32P21e
t

a21
L1 � P32eta21L2P21

�
�
�

�
�
�
F

þ P32eta21L2P21 � P32etL2P21k kF

þ P32etL2P21 � P32e
t

a32
L2P21

�
�
�

�
�
�
F

þ P32e
t

a32
L2P21 � eta32L3P32P21

�
�
�

�
�
�
F

þ eta32L3P32P21 � etL3P32P21k kF

by Lemma 1,

inf
PjCðPÞ

PetL1 � etL3Pk kF � etL1 � e
t

a21
L1

�
�
�

�
�
�
F

þ P21e
t

a21
L1 � eta21L2P21

�
�
�

�
�
�
F

þ eta21L2P21 � etL2P21k kF

þ etL2 � e
t

a32
L2

�
�
�

�
�
�
F

þ P32e
t

a32
L2 � eta32L3P32

�
�
�

�
�
�
F

þ eta32L3P32 � etL3P32k kF

¼ DregðG1;G2jt ¼ cÞ þ DregðG2;G3jt ¼ cÞ

Since this is true for any fixed t, let

t� ¼ arg sup
t
DregðG1;G3jtÞ:
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Then

DregðG1;G3Þ ¼ sup
c
DregðG1;G3jtÞ

¼ DregðG1;G3jt�Þ

� DregðG1;G2jt�Þ þ DregðG2;G3jt ¼ t�Þ

� sup
t21

DregðG1;G2jt21Þ þ sup
t32

DregðG2;G3jt32Þ

¼ DregðG1;G2Þ þ DregðG2;G3Þ

We can construct a similar regularized version of the linear objective function:

~DregðG1;G2Þ ¼
1

a
PL1 � aL2P

�
�
�
�

�
�
�
�þ

1

a
L1 � L1

�
�
�
�

�
�
�
�þ PL2 � aL2P

�
�
�

�
�
�

The term “regularized” here refers to the fact that the additional terms included in Dreg and

~Dreg penalize α distorting the respective Laplacians far from their original values. In practice,

many of the theoretical guarantees provided earlier in this manuscript may not apply to opti-

mization of the augmented objective function. Hence, a major area of future work will be mod-

ification of our optimization procedure to compute this form of distance.

3.7 Theory summary

Triangle inequalities are proven for some members of the proposed family of graph distortion

or “distance” measures, including infinitesimal and finite diffusion time, a power law for spar-

sity, and/or a power law for the time scaling factor between coarse and fine scales. However,

the case of an optimal (not power law) time conversion factor α needs to be investigated by

numerical experiment, and that requires new algorithms, introduced in Section 4. We also

show that in the case of distances between graph box products, optimization over P for the

product graphs is bounded above by a monotonic function of the optimum over the compo-

nent graphs.

3.8 Summary of distance metric versions

Table 1 summarizes the variants of our distance metric.

4 Numerical methods for optimal time conversion, α
Optimizing the α parameter for conversion between coarse and fine time scales in the pro-

posed family of graph distance measures, in addition to optimizing the prolongation matrix P
under transitive constraints CðPÞ, is a nontrivial numerical problem that in our experience

seems to require new methods. We develop such methods here and apply them to investigate

the resulting graph “distance” measure in the next section.

4.1 Algorithm development

In this section, we describe the algorithm used to calculate upper bounds on graph distances as

the joint optima (over P, t, and α) of the distance Eqs 8 and 9, under orthogonality constraints

only, i.e. the case CðPÞ ¼ fPjPTP ¼ Ig. At the core of both algorithms is a subroutine to solve

the Linear Assignment Problem (LAP—see Eq (5)) repeatedly, in order to find the subpermu-

tation matrix which is optimal at a particular value of α. Namely, we are interested in
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calculating ~D as

~DðG1;G2Þ ¼ min
a

f ðaÞ where f ðaÞ ¼ inf
PjPTP¼I

1

a
PLðG1Þ � aLðG2ÞP

�
�
�
�

�
�
�
� ð48Þ

which, for orthogonality or any other compact constraint

¼ min
PjPTP¼I

1

a
PLðG1Þ � aLðG2ÞP

�
�
�
�

�
�
�
�:

However, we have found that the unique structure of this optimization problem admits a

specialized procedure which is faster and more accurate than nested univariate optimization of

α and t (where each innermost function evaluation consists of a full optimization over P at

some t, α). We first briefly describe the algorithm used to find the optimal P and α for ~D2. The

formal description of the algorithm is given by Algorithm 1. In both cases, we reduce the

computational complexity of the optimization over P by imposing the additional constraint

that P must be a subpermutation matrix when rotated into the spectral basis (we define subper-

mutations in the proof of Theorem 7). This constraint is compatible with the orthogonality

constraint (all subpermutation matrices are orthogonal, but not vice versa). The tradeoff of

this reduction of computational complexity is that we can only guarantee that our optima are

upper bounds of the optima over all orthogonal P. However, in practice, this bound seems

to be tight: we have yet to find an example where orthogonally-constrained optimization was

able to improve in objective function value over optimization constrained to subpermutation

matrices. Therefore, we shall for the remainder of this paper refer to the optima calculated as

distance values, when strictly they are distance upper bounds. We also note here that a distance

lower bound is also possible to calculate by relaxing the constraints in CðPÞ (for instance, by

replacing the optimization over all P with a less constrained matching problem—see Section

3.5).

4.1.1 Optimization of ~D2.

Algorithm 1 Abbreviated pseudocode for the algorithm described in Section 4.1.1, for com-

puting infP;a
~D2.

1: procedure D-TILDE(L1, L2, αlow, αhigh.)
2: Compute λ(1), λ(2) as the eigenvalues of L1 and L2.
3: Compute, by optimizing a linear assignment, Mlow and Mhigh as the
optimal matchings at αlow, αhigh respectively. Initialize the list of
optimal matchings as {Mlow, Mhigh}.
4: Until the current list of matchings is not expanded in the follow-
ing step, or the entire interval [αlow, αhigh] is marked as explored:
5: Attempt to expand the list of optimal matchings by solving a
linear assignment problem at the α where the cost curves of two match-
ings (currently in the list) intersect. If no better assignment
exists, then mark the interval covered by those matchings as explored,
as guaranteed by Theorem 9.
6: Return the lowest-cost M and its optimal α.
7: end procedure

Joint optimization of ~D2 over α and P is a nested optimization problem (see [30] and [31]

for a description of nested optimization), with potential combinatorial optimization over P
dependent on each choice of α. Furthermore, the function f ðaÞ ¼ infPjCðPÞ

~D2ðG1;G2jaÞ is both

multimodal and continuous but with in general discontinuous derivative (See Fig 4). Univari-

ate optimization procedures such as Golden Section Search result in many loops of some pro-

cedure to optimize over P, which in our restricted case must each time compute a full solution
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to a LAP with n2 × n1 weights. In our experience, this means that these univariate methods

have a tendency to get stuck in local optima. We reduce the total number of calls to the LAP

solver, as well as the size of the LAPs solved, by taking advantage of several unique properties

of the optimization as a function of α. When the optimal P(1) and P(2) are known for α1 and α2,

then for any αc such that min(α1, α2)�αc � max(α1, α2), the optimal P(c) at αc must satisfy:

Pð1Þ

ij ¼ 1 ^ Pð2Þ

ij ¼ 1 ) PðcÞ
ij ¼ 1 (see Theorem 9). Thus, the optimization over P at αc is already

partially solved given the solutions at α1 and α2, and so we need only re-compute the remain-

ing (smaller) subproblem on the set of assignments where P(1) and P(2) disagree. This has two

consequences for our search over α: First, the size of LAP problems which must be solved at

each step decreases over time (as we find P-optima for a denser and denser set of α). Secondly,

these theoretical guarantees mean that we can mark intervals of α-values as being explored

Fig 4. Two plots demonstrating characteristics of distance calculation between a (7× 7) grid and an (8 × 8) grid.

(a): Plot illustrating the discontinuity and multimodality of the linear version of distance. Each gray curve represents a

function fPc ðacÞ ¼ ~D2ðSq7; Sq8jac;PcÞ. The thicker curve is the lower convex hull of the thinner curves as a function of

α, that is: f ðacÞ ¼ infPjCðPÞ
~D2ðSq7; Sq8jacÞ. We see that f(α) is continuous, but has discontinuous slope, as well as several

local optima (marked by arrowheads). These properties make ~D difficult to optimize, necessitating the development of

Algorithm 1. (b): As in (a), but with D2(Sq7, Sq8|t = .318) plotted instead of ~D2. This t value is the location of the

maximum in Fig 3.

https://doi.org/10.1371/journal.pone.0249624.g004
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(meaning we have provably found the P which are optimal over the interval) and thus do not

have to perform the relatively expensive optimization over P for any α in that interval.

4.1.2 Optimization of D2.

Algorithm 2 Abbreviated pseudocode for the algorithm described in Section 4.1.2, for com-

puting supt infP,α D2.
1: procedure D(L1, L2, αlow, αhigh, step size �)
2: Compute λ(1), λ(2) as the eigenvalues of L1 and L2.
3: Solve the Linear Version of the problem using Algorithm 1, obtain-
ing α�, M�. According to the argument presented in the definition of
linear distance (Eq 9) this solution holds for very small t. Keep the
entire frontier of matchings found during the execution of Algorithm
1. Set t = 0, d(0) = D(G1, G2|α�, M�, t)
4: Until d(t + �)<d(t):
5: t = t + �

6: Use the linear algorithm with etL1 and etL2 as the input matrices,
initializing the list of matchings with those found at the previous t.
7: Set d(t) = D(G1, G2|α�, M�, t) where α�, M� are the optima from
the previous step.
8: Return the maxt d(t).
9: end procedure

Many of the theoretical guarantees underlying our algorithm for computing ~D2 no longer

hold for the exponential version of the distance. We adapt our linear-version procedure into

an algorithm for computing this version, with the caveat that the lack of these guarantees

means that our upper bound on the exponential version may be looser than that on the linear

version. It is still clearly an upper bound, since the α and P found by this procedure satisfy the

given constraints α> 0 and PT P = I. In particular, we have observed cases where the exponen-

tial-distance analog of Theorem 9 would not hold, meaning we cannot rule out α-intervals as

we can in the linear version. Thus, this upper bound may be looser than the that computed for

the linear objective function.

For the exponential version of the algorithm, we first compute the list of optimal P for the

linear version, assuming (since etL � I + L for very small t) that this is also the list of optimal P
for the exponential version of the objective function at some low t. We proceed to increment t
with some step size Δt, in the manner of a continuation method [32]. At each new t value, we

search for new optimal P along the currently known frontier of optima as a function of α.

When a new P is found as the intersection of two known Pi, Pi+1, it is inserted into the list,

which is kept in order of increasing α. For each P in this frontier, we find the optimal α, keep-

ing P and t constant. Assuming infPinfα D2(G1, G2|tc) is unimodal as a function of tc, we

increase tc until infPinfα D2(G1, G2|tc)�infPinfα D2(G1, G2|tc + Δt), storing all P matrices found

as optima at each tc value. P which were on the lower convex hull at some prior value of t but

not the current value are retained, as they may regain optimality for some α-range at a future

value of t (we have observed this, in practice). For this list P1, P2. . .Pm, we then compute sup-

tinfαinfi D2(G1, G2|Pi). Since the exponential map is continuous, and we are incrementing t by

very small steps, we also propose the further computational shortcut of storing the list of opti-

mal α at time t to use as starting points for the optimization at t + Δt. In practice, this made lit-

tle difference in the runtime of our optimization procedure.

4.2 Algorithm correctness proof

Theorem 7. For any two graphs G1 and G2 with Laplacians L(G1) and L(G2), for fixed α, the
optimization over P given in the innermost loop of Eq 9 is upper bounded by a Linear Assignment
Problem as defined in Eq (5). This LAP is given by taking R to be the eigenvalues l

ð1Þ

j of L(G1)
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and S to be the eigenvalues l
ð2Þ

i of L(G2), with the cost of a pair (equivalently, one entry of the
cost matrix C) given by

Cij ¼ cðsi; rjÞ ¼ c l
ð2Þ

i ; l
ð1Þ

j

� �
¼

1

a
l

ð1Þ

j � al
ð2Þ

i

� �2

ð49Þ

Proof. L(G1) and L(G2) are both real symmetric matrices, so they may be diagonalized as

LðGiÞ ¼ UiLiUT
i , where the Ui are rotation matrices, and the Λi are diagonal matrices with the

eigenvalues l
ðiÞ
1

; l
ðiÞ
2

. . . l
ðiÞ
ni

along the diagonal. Because the Frobenius norm is invariant under

rotation, we have:

~D2ðG1;G2Þ ¼ inf
a>0

inf
PTP¼I

1

a
PLðG1Þ � aLðG2ÞP

�
�
�
�

�
�
�
�

2

F

¼ inf
a>0

inf
PTP¼I

1

a
UT

2
PLðG1ÞU1 � aUT

2
LðG2ÞPU1

�
�
�
�

�
�
�
�

2

F

¼ inf
a>0

inf
PTP¼I

1

a
UT

2
PU1L1U

T
1
U1 � aUT

2
U2L2U

T
2
PU1

�
�
�
�

�
�
�
�

2

F

¼ inf
a>0

inf
PTP¼I

1

a
UT

2
PU1L1 � aL2U

T
2
PU1

�
�
�
�

�
�
�
�

2

F

:

ð50Þ

Because the Ui are orthogonal, the transformation ~P ¼ UT
2
PU1 preserves orthogonality, so

~D2ðG1;G2Þ ¼ inf
a>0

inf
PTP¼I

1

a
PL1 � aL2P

�
�
�
�

�
�
�
�

2

F

¼ inf
a>0

inf
PTP¼I

1

a
L1

�
�
�
�

�
�
�
�

2

F

þ aL2P
�
�
�

�
�
�

2

F
�2Tr PTL2PL1½ �

¼ inf
a>0

inf
PTP¼I

Tr
1

a2
L

2

1

� �

þ Tr a2PTL
2

2
P

� �
� 2Tr PTL2PL1½ �

� �

writing P = [pij],

~D2ðG1;G2Þ ¼ inf
a>0

inf
PTP¼I

 
1

a2

Xn1

j¼1

l
ð1Þ

j

2

þ a2
Xn2

i¼1

Xn1

j¼1

p2

ijl
ð2Þ

i

2

� 2
Xn2

i¼1

Xn1

j¼1

p2

ijl
ð2Þ

i l
ð1Þ

j

! ð51Þ

¼ inf
a>0

inf
PTP¼I

Xn2

i¼1

Xn1

j¼1

p2

ij
1

a2
l

ð1Þ

j

2

� 2l
ð2Þ

i l
ð1Þ

j þ a2l
ð2Þ

i

2

� � !

¼ inf
a>0

inf
PTP¼I

Xn2

i¼1

Xn1

j¼1

p2

ij
1

a
l

ð1Þ

j � al
ð2Þ

i

� �2
 ! ð52Þ

For any given α,

inf
PTP¼I

Xn2

i¼1

Xn1

j¼1

p2

ij

l
ð1Þ

j

a
� al

ð2Þ

i

 !2 !

� inf
~P jsubð~PÞ

Xn2

i¼1

Xn1

j¼1

~p2

ij

l
ð1Þ

j

a
� al

ð2Þ

i

 !2 !

;
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where subpermð~PÞ could be any other condition more strict than the constraint PT P = I. Here

we take this stricter constraint to be the condition that ~P is a subpermutation matrix: an

orthogonal matrix (i.e. ~PT~P ¼ IÞ for which ~P 2 f0; 1g
n2�n1 . Equivalently, a subpermutation

matrix is a {0, 1}-valued matrix ½~pij� such that for each i 2 {1, . . .n1 � n2}, exactly one j 2 {1,

. . .n2 � n1} takes the value 1 rather than 0 (so
Pn2

j¼1
~Pji ¼ 1), and for each j 2 {1, . . .n2 � n1},

either zero or one i 2 {1, . . .n1 � n2} takes the value 1 rather than 0 (so
Pn1

i¼1
~Pji � 1).

Furthermore, this optimization is exactly a linear assignment problem of eigenvalues of

L(G1) to L(G2), with the cost of a pair ðl
ð1Þ

j ; l
ð2Þ

i Þ given by

c l
ð1Þ

j ; l
ð2Þ

i

� �
¼

1

a
l

ð1Þ

j � al
ð2Þ

i

� �2

Note also that the same argument applies to the innermost two optimizations of the calcula-

tion of D2 (the exponential version of the diffusion distance) as well as D2
r . In the D2 case the

entries of the cost matrix are instead given by

c l
ð1Þ

j ; l
ð2Þ

i

� �
¼ e

1
al

ð1Þ

j � eal
ð2Þ

i

� �2

If we instead loosen the constraints on P, we can calculate a lower bound on the distance.

See Appendix 3.5 for lower bound details.

Recall that our definition of a ‘matching’ in Section 1.3 was a P matrix representing a partic-

ular solution to the linear assignment problem with costs given as in Eq (49). For given G1, G2,

and some matching M, let

fMðaÞ ¼ ~D2ðG1;G2ja;UT
2
MU1Þ ð53Þ

where U1, U2 diagonalize L1 and L2 as in Eq (50).

Lemma 8. For two unique matchings M1 and M2 (for the same G1, G2) the equation fM1
ðaÞ �

fM2
ðaÞ ¼ 0 has at most one real positive solution in α. This follows from the fact that when P and

t are fixed, the objective function is a rational function in α (see Eq (51)), with a quadratic
numerator and an asymptote at α = 0.

Proof. By Eq (51), we have

fM1
ðaÞ � fM2

ðaÞ ¼

1

a2

Xn1

j¼1

l
ð1Þ

j

2

þ a2
Xn2

i¼1

Xn1

j¼1

½M1�
2

ijl
ð2Þ

i

2

� 2
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i¼1

Xn1

j¼1

½M1�
2

ijl
ð2Þ

i l
ð1Þ

j

 !
ð54Þ

�
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l
ð1Þ

j

2

þ a2
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Xn1
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½M2�
2
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ð2Þ

i

2
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Xn1

j¼1

½M2�
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ijl
ð2Þ
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ð1Þ
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Xn1

j¼1

½M2�
2

ijl
ð2Þ
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ð56Þ

þ 2
Xn2

i¼1

Xn1

j¼1

½M2�
2

ijl
ð2Þ

i l
ð1Þ

j � 2
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i¼1

Xn1

j¼1

½M1�
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ð57Þ
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Abbreviating the sums, we have

a2ðA1 � A2Þ þ ðC2 � C1Þ ¼ 0 ð58Þ

and so

a ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � C1

A1 � A2

r

ð59Þ

Since A1, A2, C1, C2 are all nonnegative reals, at most one of these roots is positive.

We will say that a matching M “assigns” j to i if and only if Mij = 1.

Theorem 9. If two matchings M1 and M3 which yield optimal upper bounds for the linear dis-
tance ~D2 (at α1 � α and α3 � α respectively) agree on a set of assignments, then the optimal M at
αmust also agree with that set of assignments.

Proof. We need the following lemmas:

Lemma 10. If an optimal matching assigns i to m(i) (so that eigenvalue l
ð1Þ

i of G1 is paired
with l

ð2Þ

f ðiÞ of G2 in the sum of costs Eq (49)), then the sequence m(1), m(2), . . .m(n1) is monotonic
increasing.

Proof. This follows from the fact that the two sequences of eigenvalues are monotonic non-

decreasing, so if there’s a ‘crossing’ (i1 < i2 but m(i2)<m(i1)) then the new matching obtained

by uncrossing those two pairs (performing a 2-opt step as defined in [33]) has strictly lesser

objective function value. Hence an optimal matching can’t contain any such crossings.

Lemma 11. For all positive real α� � � > 0, let M1 be an optimal matching at α� − � and M2

be optimal at α� + �. For 1 � i � n1, let s1(i) and s2(i) be the indices of λ(2) paired with i in M1

and M2, respectively. Then for all i, s1(i)�s2(i).
Proof. Define a “run” for s1, s2 as a sequence of consecutive indices l, l + 1, . . .l + k in [1, n1]

such that for any l, l + 1: min(s1(l + 1), s2(l + 1)) < max(s1(l), s2(l)). The following must be true

about a “run”:

1. Within a run, either s1(l)<s2(l) or s1(l)>s2(l) for all l. Otherwise, we have one or more cross-

ings (as in Lemma 10): for some l we have s1(l)>s1(l + 1) or s2(l)>s2(l + 1). Any crossing

may be uncrossed for a strictly lower objective function value—violating optimality of M1

or M2.

2. Any pair of matchings as defined above consists of a sequence of runs, where we allow a

run to be trivial i.e. be a single index.

Next, we show that within a run, we must have s1(i)<s2(i) for all i. Let S = {l, l + 1, . . .l + k}

be a run. By optimality of M1, M2 at α� − � and α� + � respectively, we have:

X

i2S

1

a� � �
l

ð1Þ

i � ða� � �Þl
ð2Þ

s1ðiÞ

� �2

<
X

i2S

1

a� � �
l

ð1Þ

i � ða� � �Þl
ð2Þ

s2ðiÞ

� �2

and

X

i2S

1

a� þ �
l

ð1Þ

i � ða� þ �Þl
ð2Þ

s2ðiÞ

� �2

<
X

i2S

1

a þ �
l

ð1Þ

i � ða þ �Þl
ð2Þ

s1ðiÞ

� �2

:

Respectively, these simplify to

�
X

i2S

ðl
ð2Þ

s1ðiÞ � l
ð2Þ

s2ðiÞÞð�2l
ðiÞ
i þ ða� � �Þ

2
ðl

ð2Þ

s1ðiÞ þ l
ð2Þ

s2ðiÞÞÞ > 0
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and
X

i2S

ðl
ð2Þ

s1ðiÞ � l
ð2Þ

s2ðiÞÞð�2l
ðiÞ
i þ ða� þ �Þ

2
ðl

ð2Þ

s1ðiÞ þ l
ð2Þ

s2ðiÞÞÞ > 0:

Summing these inequalities and cancelling �2l
ðiÞ
i , we have:

X

i2S

n
ða� þ �Þ

2
��

l
ð2Þ

s1ðiÞ

�2

þ
�

l
ð2Þ

s2ðiÞ

�2�
� ða� � �Þ

2
��

l
ð2Þ

s1ðiÞ

�2

þ
�

l
ð2Þ

s2ðiÞ

�2�o
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Summing and reducing gives us

4a��

�
X

i2S

�
l

ð2Þ

s1ðiÞ

�2

�
X

i2S

�
l

ð2Þ

s2ðiÞ

�2
�

> 0 and so
X

i2S

�
l

ð2Þ

s1ðiÞ

�2

>
X

i2S

�
l

ð2Þ

s2ðiÞ

�2

:

However, since the l
ð2Þ

j are monotonic nondecreasing, this means we cannot also have

s1(i)>s2(i) for all i 2 S, since that would imply

Xn1

i¼1

l
ð2Þ

s1ðiÞ

� �2

<
Xn1

i¼1

�
l

ð2Þ

s2ðiÞ

�2

:

Therefore, in a run of arbitrary length, all indices must move ‘forward’ (meaning that s1(i)<
s2(i) for all i in the run), and so (since any pair of matchings optimal at such α define a set of

runs) we must have s1(i)�s2(i). This completes the proof of the lemma.

Thus, for three matchings M1, M2, M3 which optimal at a sequence of α1 � α2 � α3, we

must have s1(i)�s2(i)�s3(i) for all i. In particular, if s1(i) = s3(i), we must also have s1(i) = s2(i)
= s3(i).

Theorem 12. If two matchings M1 and M3 yield optimal upper bounds for the linear distance
~D2 at α1 and α3 respectively, and fM1

ða2Þ ¼ fM2
ða2Þ for some α2 s.t. α1 � α2 � α3, then either (1)

M1 and M3 are optimal over the entire interval [α1, α3] or (1) some other matching M2 improves
over M1 and M3 at α2.

Proof. This follows directly from the facts that fM1
ðaÞ and fM2

ðaÞ (as defined in Eq (53)), can

only meet at one real positive value of α (Lemma 8). Say that the cost curves for M1 (known to

be optimal at α = α1) and M3 (optimal at α = α3) meet at α = α2, and furthermore assume that

α1 � α2 � α3. If some other matching M2 improves over (meaning, has lesser obj. function

value as a function of α) M1 or M3 anywhere in the interval [α1, α3], it must improve over both

at α = α2, since it may intersect each of these cost curves at most once on this interval. If M1

and M3 are both optimal at their intersection point (meaning no such distinct M2 exists) then

we know that no other matching improves on either of them over the the interval [α1, α3] and

may therefore mark it as explored during the outermost loop (otimization over α) of Algo-

rithm 1.

Together, the preceeding properties verify that our algorithm will indeed find the joint opti-

mum over all α and P (for fixed t = c, for ~D, subject to subpermutation constraints on P): it

allows us to find the entire set of P subpermutation matrices which appear on the lower convex

hull of distance as a function of alpha.

4.3 Implementation details

We implement Algorithms 1 and 2 in the programming language “Python” (version 3.6.1)

[34]. Numerical arrays were stored using the numpy package [35]. Our inner LAP solver was

the package lapsolver [36]. Univariate optimization over t and α was performed with the
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‘bounded’ method of the scipy.optimize package [37], with bounds set at [0, 10.0] for each vari-

able and a input tolerance of 10−12. Laplacians were computed with the laplacian method from

the package networkX [38], and their eigenvalues were computed with scipy.linalg.eigh.

Because of numerical precision issues arising during eigenvalue computation, it can be dif-

ficult to determine when two matchings agree, using eigenvalue comparison. In practice we

ignore this issue and assume that two matchings are only identical if they associate the same

indices of the two lists of eigenvalues. This means we may be accumulating multiple equivalent

representations of the same matching (up to multiplicity of eigenvalues) during our sweeps

through t and α. We leave mitigating this inefficiency for future work.

Code for computing diffusion distance, both with our algorithm and with naive univariate

optimiztion, may be found in the S1 Data associated with this paper, as well as a maintained

GitHub repository [39].

5 Numerical experiments

5.1 Graph lineages

In this subsection we introduce several graph lineages for which we will compute various

intra- and inter-lineage distances. Three of these are well-known lineages of graphs, and the

fourth is defined in terms of a product of complete graphs:

Path Graphs (Pan): 1D grid graphs of length n, with aperiodic boundary conditions.

Cycle Graphs (Cyn): 1D grid graphs of length n, with periodic boundary conditions.

Square Grid Graphs (Sqn): 2D grid graphs of dimensions n, with aperiodic boundary condi-

tions. Sqn = Pan□Pan

“Multi-Barbell” Graphs (Ban): Constructed as Cyn□Kn, where Kn is the complete graph on n
vertices.

These familes are all illustrated in Fig 5.

Additionally, some examples distances between elements of these graph lineages are illus-

trated in Fig 6. In these tables we see that in general intra-lineage distances are small, and

inter-lineage distances are large.

5.2 Numerical optimization methods

We briefly discuss here the other numerical methods we have used to calculate ~D2 and D2.

Nelder-Mead in Mathematica For very small graph pairs (n1 × n2 � 100) we are able to find

optimal P, α, t using constrained optimization in Mathematica 11.3 [40] using NMinimize,

which uses Nelder-Mead as its backend by default. The size limitation made this approach

unusable for any real experiments.

Orthogonally Constrained Opt. We also tried a variety of codes specialized for numeric opti-

mization subject to orthogonality constraints. These included (1) the python package PyMa-

nopt [41], a code designed for manifold-constrained optimization; (2) gradient descent in

Tensorflow using the penalty function g(P) = c||PT P − I||F (with c � 1 a small positive constant

weight) to maintain orthogonality, as well as (3) an implementation of the Cayley reparametri-

zation method from [42] (written by the authors of that same paper). In our experience, these

codes were slower, with poorer scaling with problem size, than combinatorial optimization

over subpermutation matrices, and did not produce improved results on our optimization

problem.

Black-Box Optimization Over α. We compare in more detail two methods of joint optimiza-

tion over α and P when P is constrained to be a subpermutation matrix in the diagonal basis

for L(G1) and L(G2). Specifically, we compare our approach given in Algorithm 1 to univariate
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optimization over α, where each function evaluation consists of full optimization over P. Fig 7

shows the results of this experiment. We randomly sample pairs of graphs as follows:

1. n1 is drawn uniformly from [5, 120].

2. n2 is drawn uniformly from [n1, n1 + 60].

3. G1 and G2 are generated by adding edges according to a Bernoulli distribution with proba-

bility p. We ran 60 trials for each p in {.125, .25, .375, .5, .625, .75, .875 }.

We compute the linear version of distance for each pair. Because our algorithm finds all of

the local minima as a function of alpha, we compute the cost of the golden section approach as

the summed cost of multiple golden section searches in alpha: one GS search starting from the

initial bracket [0.618α�, 1.618α�] for each local minimum α� found by our algorithm. We see

that our algorithm is always faster by at least a factor of 10, and occasionally faster by as much

as a factor of 103. This can be attributed to the fact that the golden section search is unaware of

the structure of the linear assignment problem: it must solve a full n2 × n2 linear assignment

problem for each value of α it explores. In contrast, our algorithm is able to use information

from prior calls to the LAP solver, and therefore solves a series of LAP problems whose sizes

are monotonically nonincreasing.

5.3 Experiments

5.3.1 Triangle inequality violation of D (exponential distance) and ~D (linear dis-

tance). As stated in Section 2.3, our full graph dissimilarity measure does not necessarily

obey the triangle inequality. In this section we systematically explore conditions under which

Fig 5. Graph lineages used in multiple numerical experiments in the main text.

https://doi.org/10.1371/journal.pone.0249624.g005
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Fig 6. Distances D2(G, H) calculated for several pairs of graphs. The top plot shows distances where G and H are

both chosen from {Grid13×13, P169, C169, Ba13}. At bottom, distances are calculated from G chosen in {Grid12×12, P144,

C144, Ba12} to H chosen in {Grid13×13, P169, C169, Ba13}. As expected, diagonal entries are smallest.

https://doi.org/10.1371/journal.pone.0249624.g006
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the triangle inequality is satisfied or not satisfied. We generate triplets G1, G2, G3 of random

graphs of sizes ni for n1 2 [5, 30], n2 2 [n1, n1 + 30], and n3 2 [n2, n2 + 30] by drawing edges

from the Bernoulli distribution with probability p (we perform 4500 trials for each p value in

[.125, .25, .375, .5, .625, .75, .875]). We compute the distance ~DðGi;GkÞ (for (i, k)2{(1, 3), (1,

2), (2, 3)}). The results may be seen in Fig 8. In this figure we plot a histogram of the “discrep-

ancy score”

DiscðG1;G2;G3Þ ¼ ~DðG1;G3Þ=ð ~DðG1;G2Þ þ ~DðG2;G3ÞÞ; ð60Þ

which measures the degree to which a triplet of graphs violates the triangle inequality (i.e. falls

outside of the unit interval [0, 1]), for approximately 3 × 104 such triplets. It is clear that, espe-

cially for the linear definition of the distance, the triangle inequality is not always satisfied.

However, we also observe that (for graphs of these sizes) the discrepancy score is bounded: no

triple violates the triangle inequality by more than a factor of approximately 1.8. This is shown

Fig 7. Comparison of runtimes for our algorithm and bounded golden section search over the same interval [10−6,

10]. Runtimes were measured by a weighted count of evaluations of the Linear Assignment Problem solver, with an n
× n linear assignment problem counted as n3 units of cost. Because our algorithm recovers the entire lower convex hull

of the objective function as a function of α, we compute the cost of the golden section search as the summed cost of

multiple searches, starting from an interval bracketing each local optimum found by our algorithm. We see that our

algorithm is much less computationally expensive, sometimes by a factor of 103. The most dramatic speedup occurs in

the regime where n1 � n2. Graphs were generated by drawing n1 uniformly from [5, 120], drawing n2 uniformly from

[n1, n1 + 60], and then adding edges according to a Bernoulli distribution with p in {.125, .25, .375, .5, .625, .75, .875 }

(60 trials each).

https://doi.org/10.1371/journal.pone.0249624.g007
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by the histogram of discrepancies in Fig 8. Additionally, the triangle inequality is satisfied in

28184 (95.2%) of cases.

We see similar but even stronger results when we run the same experiment with D2 instead

of ~D2; these may also be seen in Fig 8. We calculated the discrepancy score analogously, but

with D substituted for ~D. We see similarly that the degree of violation is bounded. In this case,

no triple violated the triangle inequality by a factor of more than 5, and in this case the triangle

inequality was satisfied in 99.8% of the triples. In both of these cases, the triangle inequality

violations may be a result of our optimization procedure finding local minima/maxima for

one or more of the three distances computed. We also repeat the above procedure for the same

triplets of graphs, but with distances computed not in order of increasing vertex size: calculat-

ing Disc(G2, G1, G3) and Disc(G3, G2, G1). All of these results are plotted in Fig 8.

Fig 8. Histograms of triangle inequality violation. These plots show the distribution of Disc(G1, G2, G3), as defined

in the text, for the cases (a) top: the linear or small-time version of distance and (b) bottom: the exponential or

arbitrary-time version of distance. We see that for the sizes of graph we consider, the largest violation of the triangle

inequality is bounded, suggesting that our distance measure may be an infra-ρ-pseudometric for some value of ρ � 1.8

(linear version) or ρ � 5.0 (exponential version). See Table 1 for a summary of the distance metric variants introduced

in this paper. We also plot the same histogram for out-of-order (by vertex size) graph sequences: Disc(G2, G1, G3) and

Disc(G3, G2, G1). Each plot has a line at x = 1, the maximum discrepancy score for which the underlying distances

satisfy the triangle inequality.

https://doi.org/10.1371/journal.pone.0249624.g008
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5.3.2 Intra- and inter-lineage distances. We compute pairwise distances for sequences of

graphs in the graph lineages displayed in Fig 5. For each pair of graph families (Square Grids,

Paths, Cycles, and Multi-Barbells), we compute the distance from the ith member of one line-

age to the (i + 1)-st member of each other lineage, and take the average of the resulting dis-

tances from i = 1 to i = 12. These distances are listed in Table 2. As expected, average distances

within a lineage are smaller than the distances from one lineage to another.

We note here that the idea of computing intra- and inter- lineage distances is similar to

recent work [43] computing distances between graph ensembles: certain classes of similarly-

generated random graphs. Graph diffusion distance has been previously shown (in [43]) to

capture key structural information about graphs; for example, GDD is known to be sensitive

to certain critical transitions in ensembles of random graphs as the random parameters are

varied. This is also true for our time dilated version of GDD. More formally: let Gp and G0

p rep-

resent random graphs on n vertices, drawn from the Erdős-Renyi distribution with edge prob-

ability p. Then DðGp;G
0

pÞ has a local maximum at p ¼ 1

n, representing the transition between

disconnected and connected graphs. This is true for our distance as well as the original version

due to Hammond.

5.3.3 Graph limits. Here, we provide preliminary evidence that graph distance measures

of this type may be used in the definition of a graph limit—a graphlike object which is the limit

of an infinite sequence of graphs. This idea has been previously explored, most famously by

Lovász [7], whose definition of a graph limit (called a graphon) is as follows: Recall the defini-

tion of graph cut-distance Dcut(G, H) from Eq 3, namely: the cut distance is the maximum dis-

crepancy in sizes of edge-cuts, taken over all possible subsets of vertices, between two graphs

on the same vertex-set. A graphon is then an equivalence class of Cauchy sequences of graphs,

under the equivalence relation that two sequences G1, G2, . . . and H1, H2, . . . are equivalent if

Dcut(Gi, Hi) approaches 0 as n ! 1. Here we are calling a sequence of graphs “Cauchy” if for

any � > 0 there is some N such that for all n, m � N, Dcut(Gn, Gm)<�.

We propose a similar definition of graph limits, but with our diffusion distance substituted

as the distance measure used in the definition of a Cauchy sequence of graphs. Hammond et.

al. argue in [1] why their variant of diffusion distance may be a more descriptive distance mea-

sure than cut-distance. More specifically, they show that on some classes of graphs, some edge

deletions ‘matter’ much more than others: removal of a single edge changes the diffusive prop-

erties of the graph significantly. However, the graph-cut distance between the new and old

graphs is the same, regardless of which edge has been removed, while the diffusion distance

captures this nuance. For graph limits, however, our generalization to unequal-sized graphs via

P is of course essential. Furthermore, previous work [44] on sparse graph limits has shown

that in the framework of Lovász all sequences of sparse graphs converge (in the infinite-size

limit) to the zero graphon. Graph convergence results specific to sparse graphs include the

Benjamini-Schramm framework [45], in which graph sequences are compared using the

Table 2. Mean distances between graphs in several lineages. For two lineages G1, G2. . . (listed at left) and H!, H2, . . . (listed at the top), each entry shows the mean dis-

tance D(Gi, Hi+1) (where the average is taken over i = 1 to 12). As expected, we see that the distance from elements of a graph lineage to other members of the same lineage

(the diagonal entries of the table) is smaller than distances taken between lineages. Furthermore as expected, 1D paths are more similar (but not equal) to 1D cycles than to

other graph lineages.

Square Grids Paths Cycles Multi-Barbells

Square Grids 0.0096700 0.048162 0.046841 0.63429

Paths 0.30256 0.0018735 0.010300 2.1483

Cycles 0.27150 0.0083606 0.0060738 2.0357

Multi-Barbells 0.21666 0.75212 0.72697 0.029317

https://doi.org/10.1371/journal.pone.0249624.t002
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distributional limits of subgraph frequencies. These two graph comparison methods both have

the characteristic that the “limit object” of a sequence of graphs is rigorously defined. In this

section we attempt to show empirically that such a limit object of graph sequences under GDD

may exist, and therefore merit further investigation.

We examine several sequences of graphs of increasing size for the required Cauchy behav-

ior (in terms of our distance measure) to justify this variant definition of a “graph limit”. For

each of the graph sequences defined in Section 5.1, we examine the distance between succes-

sive members of the sequence, plotting D2(Gn, Hn+1) for each choice of G and H. These

sequences of distances are plotted in Fig 9.

In this figure, we see that generally distance diverges between different graph lineages, and

converges for successive members of the same lineage, as n ! 1. We note the exceptions to

this trend:

1. The distances between n-paths and n + 1-cycles appear to be converging; this is intuitive, as

we would expect that difference between the two spectra due to distortion from the ends of

the path graph would decrease in effect as n ! 1.

2. We also show analytically, under similar assumtions, that the distance between successive

path graphs also shrinks to zero (Theorem 14).

We do not show that all similarly-constructed graph sequences display this Cauchy-like

behavior. We hope to address this deeper question, as well as a more formal exploration of the

limit object, with one or more modified versions of the objective function (see Section 3.6).

5.3.4 Limit of path graph distances. In this section, we demonstrate analytically that the

sequence of path graphs of increasing size is Cauchy in the sense described by the previous sec-

tion. In the following theorem (Theorem 14), we assume that the optimal value of t approaches

some value ~t as n ! 1. We have not proven this to be the case, but have observed this behav-

ior for both square grids and path graphs (see Fig 10 for an example of this behavior). Lemmas

13 and 14 show a related result for path graphs; we note that the spectrum of the Laplacian (as

Fig 9. Cauchy-like behavior of graph distance as a function of sequence index, n. The distance between successive

square grids and all other graph sequences appears to diverge (the same behavior is seen for k-barbells). Notably, the

distance between Gridn×n and Grid(n+1)×(n+1) does not appear to converge, until much higher values of n (n > 100) than

the other convergent series. This may be because the distances calculated are an upper bound, and may be converging

more slowly than the ‘true’ optima.

https://doi.org/10.1371/journal.pone.0249624.g009
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we define it in this paper) of a path graph of size n is given by

lk ¼ �2 þ 2 cos
kp

n � 1
k 2 f0:::n � 1g:

Lemma 13. For any finite k, t, we have

lim
n!1

n et �2þ2 cos pk
nð Þð Þ � et �2þ2 cos pk

nþ1ð Þð Þ
� �2

¼ 0

Proof. Clearly for finite k, t

lim
n!1

et �2þ2 cos pk
nð Þð Þ � et �2þ2 cos pk

nþ1ð Þð Þ
� �

¼ 0

Then,

lim
n!1

n e�2þ2 cos pk
nð Þ � e�2þ2 cos pk

nþ1ð Þ
� �

¼ lim
n!1

e�2þ2 cos pk
nð Þ � e�2þ2 cos pk

nþ1ð Þ
� �

1

n

Evaluating this expression requires applying L’Hôpital’s rule. Hence, we have:

lim
n!1

e�2þ2 cos pk
nð Þ � e�2þ2 cos pk

nþ1ð Þ
� �

1

n

¼ lim
n!1

2pkt
sin pk

nð Þe
2t cos pk

nð Þ�1ð Þ

n2 �
sin pk

nþ1

� �
e2t cos pk

nþ1ð Þ�1ð Þ

ðn þ 1Þ
2

0

@

1

A

�1

n2

¼ 2pkt lim
n!1

n2 sin pk
nþ1

� �
e2t cos pk

nþ1ð Þ�1ð Þ

ðn þ 1Þ
2

� sin
pk
n

� �

e2t cos pk
nð Þ�1ð Þ

0

@

1

A:

Fig 10. Limiting behavior of D and two parameters as path graph size approaches infinity. All distances were

calculated between Pathn and Pathn+1. We plot the value of the objective function, as well as the optimal values of α and

t, as n ! 1. Optimal α rapidly approach 1 and the optimal distance tends to 0. Additionally, the optimal t value

approaches a constant (t �.316345), providing experimental validation of the assumption we make in proving

Theorem 14.

https://doi.org/10.1371/journal.pone.0249624.g010
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Since both of the limits

lim
n!1

n2 sin pk
nþ1

� �
e2t cos pk

nþ1ð Þ�1ð Þ

ðn þ 1Þ
2

0

@

1

A

and

lim
n!1

� sin
pk
n

� �

e2t cos pk
nð Þ�1ð Þ

� �

exist (and are 0),

2pkt lim
n!1

n2 sin pk
nþ1

� �
e2t cos pk

nþ1ð Þ�1ð Þ

ðn þ 1Þ
2

� sin
pk
n

� �

e2t cos pk
nð Þ�1ð Þ

0

@

1

A ¼ 0

and therefore

lim
n!1

n et �2þ2 cos pk
nð Þð Þ � et �2þ2 cos pk

nþ1ð Þð Þ
� �2

¼ 0

Theorem 14. If limn!1 arg supt D2 (Pan, Pan+1|t) exists, then:

lim
n!1

D2ðPan;Panþ1Þ ¼ 0:

Proof. Assume that limn!1 arg suptD2ðPan; Panþ1jtÞ ¼ ~t . Then, we must have

lim
n!1

D2ðPan;Panþ1Þ � lim
n!1

D2ðPan;Panþ1j~tÞ

Hence, it remains only to prove that

lim
n!1

D2ðPan; Panþ1jtÞ ¼ 0

for any finite t (which will then include ~t). First, for any particular (n + 1) × n subpermutation

matrix S, note that

D2ðPan; Panþ1jtÞ ¼ inf
a>0

inf
PjCðPÞ

D2ðPan;Panþ1jt; P; aÞ

� D2ðPan;Panþ1jt; a ¼ 1;UT
nþ1

SUnÞ

Here, Un and Un+1 are the matrices which diagonalize L(Pan) and L(Pan+1) respectively

(note also that a diagonalizer of a matrix L also diagonalizes eL). If at each n we select S to be

the subpermutation S ¼
I

0

" #

, then (using the same argument as in Theorem 7) the objective
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function simplifies to:

D2ðPan;Panþ1jt; P ¼ UT
nþ1

SUn; a ¼ 1Þ

¼ SecLPan � ecLPanþ1 S
�
�

�
�2

F

¼
Xn�1

k¼0

ec �2þ2 cos pk
nð Þð Þ � ec �2þ2 cos pk

nþ1ð Þð Þ
� �2

� max
0�k�n�1

n ec �2þ2 cos pk
nð Þð Þ � ec �2þ2 cos pk

nþ1ð Þð Þ
� �2

By Lemma 13, for any finite k, t, we have

lim
n!1

n et �2þ2 cos pk
nð Þð Þ � et �2þ2 cos pk

nþ1ð Þð Þ
� �2

¼ 0

So for any � > 0, 9N such that when n � N, for any c, k,

n ec �2þ2 cos pk
nð Þð Þ � ec �2þ2 cos pk

nþ1ð Þð Þ
� �2

< �

But then

Xn�1

k¼0

ec �2þ2 cos pk
nð Þð Þ � ec �2þ2 cos pk

nþ1ð Þð Þ
� �2

< �

as required. Thus, the Cauchy condition is satisfied for the lineage of path graphs Pan

Given a graph lineage which consists of levelwise box products between two lineages, it

seems natural to use our upper bound on successive distances between graph box products to

prove convergence of the sequence of products. As an example, the lineage consisting of square

grids is the levelwise box product of the lineage of path graphs with itself. However, in this we

see that this bound may not be very tight. Applying Eq (41) from Theorem 5, we have (for any

tc, αc):

DðSqn; Sqnþ1
Þ � DðSqn; Sqnþ1

jtc; acÞ

� D Panþ1;Panþ1jtc; ac

� ��
e
tc
ac
LðPanÞ

�
�
�

�
�
�
F

þ etcacLðPanþ1Þk kF

�

As we can see in Fig 11, the right side of this inequality seems to be tending to a nonzero

value as n ! 1, whereas the actual distance (calculated by our optimization procedure)

appears to be tending to zero.

5.3.5 Shape analysis for discretized meshes. In this section we demonstrate that graph

diffusion distance captures structural properties of 3D point clouds. Ten 3D meshes (see Fig

12 for an illustration of the meshes used) were chosen to represent an array of objects with

varying structural and topological properties. Not all of the mesh files chosen are simple mani-

folds: for example, the “y-tube” is an open-ended cylinder with a fin around its equator. Each

mesh was used to produce multiple graphs, via the following procedure:

1. Subsampling the mesh to 1000 points;

2. Performing a clustering step on the new point cloud to identify 256 cluster centers;

3. Connecting each cluster center to its 16 nearest neighbors in the set of cluster centers.
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Since each pass of this procedure (with different random seeds) varied in Step 1, each pass

produced a different graph. We generated 20 graphs for each mesh, and compared the graphs

using GDD.

The results of this experiment can be seen in Fig 13. This Figure shows the three first princi-

pal components of the distance matrix of GDD on the dataset of graphs produced as described

above. Each point represents one graph in the dataset, and is colored according to the mesh

which was used to generate it. Most notably, all the clusters are tight and do not overlap. Close

clusters represent structurally similar objects: for example, the cluster of graphs from the tube

mesh is very close to the cluster derived from the tube with an equatorial fin. This synthetic

dataset example demonstrates that graph diffusion distance is able to compare structural infor-

mation about point clouds and meshes.

Fig 11. Comparison of the distance D(Sqn, Sqn+1) as a function of n, to the upper bound calculated as the

optimum of distance between Pan and Pan+1. We see that the upper found converges to some constant D � 0.01782,

whereas the actual distance appears to be converging to 0 as n ! 1.

https://doi.org/10.1371/journal.pone.0249624.g011

Fig 12. 3D meshes used in the shape analysis experiment. Each mesh was used to produce several sampled

discretizations, which were then compared using GDD.

https://doi.org/10.1371/journal.pone.0249624.g012
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6 Applications and future work

We briefly discuss possible applications of both our distance metric and our procedure for cal-

culating the relevant minima.

6.1 Algebraic multigrid

The need for prolongation / restriction operators arises naturally in the Algebraic MultiGrid

(AMG) context, where a hierarchy of progressively coarser meshes are constructed, with the

goal of speeding convergence of a model with local update (“smoothing”) rules. A model with

modes of behavior at wavelengths which are much larger than the neighborhood of one update

will take many update steps to converge. Thus, the goal in AMG is to iteratively construct a

series of coarsened meshes, so that update steps at the coarser scales can address coarser

modes of behavior. A fine-scale model state is translated into a coarse-scale state via a “restric-

tion” operator. After a coarse-scale smoothing step, the new coarse state is translated back to

the fine-scale by “prolonging” it. Our procedure for calculating P could be incorporated as a

preprocessing step, in the case where the series of meshes are known in advance; otherwise,

the P from the previous round of coarsening could be used as the initial conditions to a modi-

fied version of our solver. In either case, the matrix P is a natrual choice of prolongation/

restriction operator for this type of coarsening scheme, since it optimally transforms the Lapla-

cian of one graph into another.

Fig 13. Embedding of pairwise distances between mesh discretizations. We see that GDD clusters each category of

mesh tightly, and furthermore that clusters are nearby when they are structurally similar meshes, and distant otherwise.

Axes represent the three principal components of the distance matrix and are thus unitless.

https://doi.org/10.1371/journal.pone.0249624.g013
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6.2 Graph limits

In this work we briefly introduce a new definition of graph limits based on the diffusion dis-

tance, which raises several natural questions: What does the “limit” of a sequence of graphs

under diffusion distance look like? Are there pairs of sequences that converge to the same such

object, as in the example of path graphs and cycle graphs? Can we separate graph sequences

into equivalence classes based on which of these they converge to? We hope to address these

questions in future work.

6.3 Graph convolutional networks

Graph convolutional networks (GCNs) are a variant of the convolutional neural networks
(CNNs) widely used in machine vision. In the same way that CNNs learn a set of trained

image filters and apply them across multiple spatial locations in an image, GCNs learn a set of

filters which are applied to local neighborhoods of a graph. One implementation of GCNs due

to Kipf and Welling [46] uses a Chebyshev polynomial of the Laplacian matrix as an approxi-

mation of the graph fourier transform, demonstrating comparable results to the full transform

but far fewer multiplication operation needed. However, construction of pooling operators for

GCNs is still an area of open research. Since our P is a restriction operator that preserves infor-

mation about the Laplacian, it is natural to use it as a pooling operator in this type of model. In

[47] we make use of the optimization procedure described in this manuscript to find optimal

(in the sense of Graph Diffusion Distance) coarsenings of a graph representing a protein nano-

tube. Since our procedure yields a P matrix which maps between the coarse and fine graphs,

we are then able to define a machine learning model which learns to reproduce the protein’s

energetic dynamics at multiple spatial scales. As a result of this multiscale construction, this

multiscale model is more computationally efficient by an order of magnitude.

6.4 Graph clustering

We can also use the diffusion distance and its variants to compare graphs or neighborhoods of

graphs for structural similarity, independent of graph size. Section 5.3.5 showcases an example

of doing this with a small synthetic database of 3D point clouds derived from mesh files of sev-

eral well-known objects. This is similar to the approach of [4] for comparing point clouds in

2D and 3D, in the sense that both approaches optimize an objective function based to a match-

ing between elements of the two graphs. This type of similarity measure may then be used to

convert a dataset of graphs to a distance-to-cluster-centers representation, or for any other of

the typical methods used in machine learning for converting sets of pairwise distances into

fixed-length feature vectors (k-medoids, kernel methods, multidimensional scaling, etc.). In

this setting, our distance measure has an additional benefit: since computing it yields an

explicit projection operator between the nodes of the graphs, we may use the set of P we com-

pute to project signals (e.g. labels on the vertices of each graph in the dataset) to a common

space.

7 Conclusion

In this work, we present a novel generalization of graph diffusion distance which allows for

comparison of graphs of inequal size. We consider several variants of this distance measure to

account for sparse maps between the two graphs, and for maps between the two graphs which

are optimal given a fixed time-dilation factor α. We prove several important theory properties

of distances in this family of measures, including triangle inequalities in some cases and Cau-

chy-like behavior of some graph sequences. We present a new procedure for optimizing the
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objective function defined by our distance measure, prove the correctness of this procedure,

and demonstrate its efficiency in comparison to univariate search over the dilation parameter,

α. Numerical experiments suggest that this dissimilarity score satisfies the triangle inequality

up to some constant ρ � 2.1. We demonstrate that this measure of graph distance may be used

to compare graph lineages (families of exponentially-growing graphs with shared structure),

and additionally that certain lineages display Cauchy-sequence like behavior as the graph size

approaches infinity. We suggest several possible applications of our distance measure to scien-

tific problems in the contexts of pattern matching and machine learning.
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