
Checking Network Security Policy Violations
via Natural Language Questions

Pinyi Shi, Yongwook Song, Zongming Fei, James Griffioen
Laboratory for Advanced Networking, University of Kentucky

Lexington, Kentucky 40506-0495, USA
Emails: {pinyishi,ywsong2,fei,griff}@netlab.uky.edu

Abstract—Network security policies provide high-level direc-
tives regarding acceptable and unacceptable use of the network.
Organizations specify these high-level directives in policy doc-
uments written using human-readable natural language. The
challenge is to convert these natural language policies to the
network configurations/specifications needed to enforce the pol-
icy. Network administrators, who are responsible for enforcing
the policies, typically translate the policies manually, which is
a challenging and error-prone process. As a result, network
operators (as well as the policy authors) often want to verify
that network policies are being correctly enforced.

In this paper, we propose Network Policy Conversation Engine
(NPCE), a system designed to help network operators (or policy
writers) interact with the network using natural language (similar
to the language used in the network policy statements themselves)
to understand whether policies are being correctly enforced.
The system leverages emerging big data collection and analysis
techniques to record flow and packet level activity throughout
the network that can be used to answer users policy questions.
The system also takes advantage of recent advances in Natural
Language Processing (NLP) to translate natural language policy
questions into the corresponding network queries. To evaluate
our system, we demonstrate a wide range of policy questions –
inspired by actual networks policies posted on university websites
– that can be asked of the system to determine if a policy violation
has occurred.

I. INTRODUCTION

An organization’s computer network, whether it be a small
company network, a medium-size campus/enterprise network,
or a large-scale ISP network, are governed by organization-
specific policies that define acceptable and unacceptable uses
of the network. Organizations typically establish Policy Com-
mittees that are charged with writing the policies for the
various networks used by the organization. The network
policies produced by Policy Committees take the form of
documents written in human-readable natural language that
have little resemblance to the network configurations needed
to enforce these policies. Historically the translation from
human-readable natural language policies to low-level network
configurations that enforce the policies has been done in a
manual, error-prone, fashion by experienced network security
staff members. Errors in translation can occur for any number
of reasons ranging from misinterpretation of the policy, to
human error while translating, to the inability to fully im-
plement the policy given the network capabilities, to network
complexities that result in unexpected behavior.

Recent attempts to partially automate the translation process
help reduce the potential for errors by automating portions of
the translation and configuration process. However, they still
require a human-(expert)-in-the-loop to interpret the natural
language policies and convert them to a format that can
be automatically processed [1]. Related efforts to specify
policy using intent-based networking [2] specifications can
also simplify a network operator’s job by translating from
natural language policies to intents that are carried out by the
intent-based network. However, such systems do not eliminate
the human-in-the-loop, and the specified intents do not always
map correctly onto the desired effect.

While progress has been made to improve the translation
of natural language network policies into low-level network
configurations that enforce those policies, policy violations
are still possible. But how does one find such violations?
Designing software to automatically identify and detect er-
rors in the translation process is difficult [3], [4]. Moreover,
analyzing the low-level network implementation and mapping
it back to the natural language policies to see if it is correctly
enforcing the policies is subject to the same types of problems
as the forward translation from natural language to network
configuration. The problem is further complicated by the
reality that violations are sometimes allowed – i.e., policy
exceptions [5]. In addition, Policy Committees can make
mistakes when writing policies, mistakes that often do not
become apparent until one examines the network traffic and
observes unexpected behavior.

To address this problem, we describe an approach based on
interactive interrogation of the network using natural language
(that can be performed by both network experts and Policy
Committee members) to determine if a policy violation has
occurred – an approach designed to discover violations that
have occurred rather than detect and/or prevent violations
from occurring. For example, consider the natural language
network policy “Cleartext Telnet and FTP traffic are prohib-
ited”. A network operator (or policy writer) might interactively
question the network about this policy by asking any one of
the following questions of the network “Is there any FTP or
Telnet traffic in the network?” or more specific variations “Is
there any FTP traffic in the network?” or more generally “Is
there any cleartext traffic in the network?”. Such questions
would be posed to a database of captured network traffic
and packet trace to determine whether any such traffic has



been seen by the network. Such information can help both
those writing the policies and those translating them into
configurations. Moreover, it leverages information about the
network’s actual behavior (e.g., traffic) in addition to the
network’s configuration.

Our approach is based on recent advances in big data anal-
ysis techniques that allow detailed information about network
behavior, including the collection of flow and/or packet-level
information over time, to be used to answer questions about
network policy violations. Furthermore, it leverages emerging
interactive conversation systems – driven by recent advances
in natural language processing (NLP) and artificial intelligence
(AI) – to read and respond to natural language questions from
network operators or network policy writers.

Our Network Policy Conversation Engine (NPCE) contin-
uously collects detailed traffic information from the network
and then allows users to interactively issue policy questions,
written in human-readable natural language, to the network.
Given a question, the NPCE system automatically generates a
corresponding query over the collected network traffic looking
for behavior that may represent a violation.

NPCE defines a mapping layer that functions as the inter-
mediary between the natural language questions and the low-
level database queries. When interacting with the user, it helps
parse and understand the natural language questions, but can
also provide hints and instructions about useful information
that would be helpful in searching for policy violations. When
interacting with the underlying traffic databases, the mapping
layer helps with the translation by identifying the specific
information that needs to be explored and will need to be
included in the generated low-level database query. To assist in
this process, NPCE maintains an alias file that maps between
the high-level human terms used in questions to the corre-
sponding low-level database fields, allowing the system to be
easily extended to handle new terms and policies. The system
utilizes Google DialogFlow [6] to implement a conversational
user interface where users can ask their questions and receive
answers using natural language. NPCE outputs answers in a
simple human-readable format that easily shows whether a
policy is being violated or not, but could be enhanced to
output more descriptive answers using approaches such as
those used in Net2Text [7]. NPCE leverages common tools
such as NetFlow [8] and Tcpdump [9] in combination with big
data analysis system such as Logstash and Elasticsearch [10]
to scalably obtain detailed network traffic information at both
the flow and packet level over time from large portions of the
network, thereby enabling policy analysis not possible with
current systems.

To illustrate the potential of a system like NPCE, we
collected many different types of campus network policies
currently posted on various university websites, and developed
natural language questions that users (operators or policy
writers) might interactively ask to explore whether policy vio-
lations are occurring. We show how NPCE extracts the useful
information from the questions, and how the information is
used to generate the lower-level database queries, showing

whether network security policies have been violated or not.
The rest of paper is organized as follows. Section II de-

scribes the mapping layer in Network Policy Conversation
Engine, which focuses on the extraction of useful information
in the questions. Section III illustrates the architecture of
the system and how each component of the system works.
Section IV presents network security policies found on various
university websites and demonstrates how to use our system
to answer the natural language questions with regard to these
policies to check policy violations. Section V provides a
literature review of related work. Section VI summarizes our
findings and concluding thoughts.

II. THE NPCE MAPPING LAYER

The role of the NPCE mapping layer is to translate user
questions (written in human-readable natural language) into
corresponding database queries (written in low-level query
languages) that can identify and extract the information needed
to answer the questions.

A. Design Principles

As an intermediary between the user interface and the under-
lying database, the mapping layer should meet the following
requirements.

(1) The mapping layer should be capable of extracting
all the useful information in the questions related to policy
violations. Users may ask the same question in different
ways. Network administrators tend to use low-level details to
describe the network traffic (e.g., port 22) while other users
may use high-level terms (e.g., ssh) in their network policy
questions. It is vital that the mapping be able to recognize all
these identifiers no matter whether the identifiers are high-level
or low-level.

(2) The mapping layer should clearly categorize the
extracted information so that the translation from the
mapping to the database queries is verifiable and straight-
forward. The identification of keywords and the removal
of redundant information not only simplifies the interpreta-
tion of the questions, but also make the translation process
straightforward since only the relevant information needs to be
placed in the corresponding fields in a query to complete the
translation. The mapping itself should also be flexible enough
to be translated to any lower-level query language based on
the database.

B. Identifiers and Entities of the Mapping

The mapping layer in NPCE was developed to parse and
categorize useful information contained in the natural language
questions. We start by analyzing the format of the natural
language questions to obtain the facts and events being asked
about in the network.

Questions can be categorized into three groups:
(1) Questions asking about the value of an identifier

that satisfies certain conditions. For example, “Which IP
addresses sent packets to 10.10.1.1?” In this question, the user



Identifiers Example Values
Object Traffic, Packet, Flow, Byte

Device Host, Switch, Router,
Firewall, Server, Printer

Timestamp ’in the last’ ’number’:value
(minute, hour, day, month )

Attribute <Protocol>, ’IP’:value, ’Port’:value

Protocol HTTP, FTP, BitTorrent, Telnet,
TFTP, Rlogin, DNS, DHCP

Traffic Direction incoming, outgoing, bi-directional

Comparison Operator equal to, greater than (or equal),
not equal to, less than (or equal)

Aggregation max, min, average, count, unique count

Special Terms
the Internet, non-standard port, port scanning,
IP source routing, campus <Device>,
authorized <Protocol>servers and etc.

Answer (True, False), the number of <Object>,
<Attribute>

Object Description
<Attribute>, <Traffic Direction>,
<Comparison Operator>, <Aggregation>,
<Special Terms>

Device Description <Attribute>, <Comparison Operator>,
<Aggregation>, <Special Terms>

TABLE I
IDENTIFIERS AND EXAMPLE VALUES OF THE MAPPING LAYER

is asking about the value of the IP address that satisfies the
condition “sent packets to 10.10.1.1”.

(2) Questions asking about the correctness of a state-
ment. For example, “Does host A have IP address 10.10.1.1?”
In this question, the user is asking about the correctness of the
statement “host A have IP address 10.10.1.1”.

(3) Questions asking about the number of identifiers that
meet certain conditions. There are various ways to ask this
type of questions. For example, “How many packets did host
A send?” and “Is there any packet sent by host A?” In the
above examples, the user is interested in getting the number
of packets that are sent by host A. From the perspective of
queries, we need to count the number of packets, and the
condition is that the packets are sent by host A. The only
difference between the answers to these questions is that we
should add “Yes/No” based on the value of the count of
packets for the second example.

The Five W’s is a concept to gather information about a
natural language sentence [11]. In particular, it represents the
following five keywords (who, when, what, where, why). We
only chose what, where, when to collect information about
network traffic. The questions we should ask include “What
information are we gathering?” and “When and where does
the network event happen?”.

Besides the three W’s we selected, other information can be
thought of as the descriptions. In Table I, we list the identifiers
and entities for the mapping.

The Object identifier covers the subject of the question,
representing “what”. The Device identifier specifies the place
in which network events happened, representing “where”,
and the Timestamp identifier regulates the time period, rep-
resenting “when”. When people query the status of network
traffic, they may also use the low-level network identifiers,
to describe the traffic as well as the network devices. These

descriptions are covered by the Object Description identifier
and the Device Description identifier. Both identifiers involve
low-level network identifiers such as the protocol, the IP
address and the port number. The mapping also includes
identifiers that deal with traffic direction, value comparison
and aggregation to increase the expressiveness. The Special
Terms identifier represents the high-level networking terms
which can also be described using the corresponding low-
level network identifiers. In the body of database queries,
only the low-level identifiers will appear. With the assistance
of alias files where the low-level details of the special terms
are recorded, this translation process can be automated. The
information in the alias file is consulted each time the special
terms are recognized. As have been noted earlier, the questions
are categorized into different groups. The Answer identifier
reflects the type of the answer to be returned to the users. As
a result, we only need to find the answer that matches the
descriptions given in the Object Description and the Device
Description identifiers.

III. SYSTEM ARCHITECTURE

Network Policy Conversation Engine (NPCE), a system that
takes advantage of the recent advances in NLP and modern
database solutions to answer natural language questions, is
shown in Fig. 1. The main components of the system are
the natural language processing module, the query generation
module and the big data storage and analysis database used to
store detailed information about network traffic.

Fig. 1. NPCE System Architecture

A. The NLP Module and Entity Extraction

Entity extraction is a NLP technique to extract and classify
important words in the text (entities) into pre-defined entity
sets from the unstructured text. It is the first step toward
understanding the user question, where the useful information
is extracted and the redundant information is ignored. The
accuracy of this step is dependent on the completeness and
correctness of the pre-defined entity sets. In our system, the
pre-defined entity sets are based on the identifiers specified
in the mapping layer. We collect a list of synonyms for each
entity type. When the user asks a question which contains
keywords that are exactly the same as, or similar to, the
pre-defined entities, the NLP module is able to detect and



recognize them. The output of this module is a list of entities
consisting of an entity name and the resolved value.

B. The Query Generation Module

Another important part of the system is the query generation
module whose job is to take as input the output from the
NLP module and process it to generate the database query.
First, the module must determine how to use the detected low-
level details. For example, the module takes into account the
information of the Traffic Direction identifier and the order in
which the IP addresses or port numbers appear to determine
the correct fields the detailed information should be placed in.

Second, the module must pass the information – e.g. the
5-tuple values – to the query and issue REST API calls to
the database. The basic query syntax for such calls involves
a simple match statement. More advanced queries involve
comparison operators and aggregation functions, and enable
queries to be generated for a wide range of potential natural
language questions.

C. Capturing and Storing Network Traffic

A number of tools and services have been developed to
capture network traffic. In general, they focus on capturing
network traffic at either the flow-level or the packet-level. For
example, NetFlow is designed to capture network traffic at the
flow level by aggregating the packets with the same 5-tuple
into compact records describing the observed flows. Tools such
as Tcpdump can be used to inspect the header information of
every packet. Both approaches have their own advantages since
organizations typically select the tools based on their needs.
As a proof-of-concept, we assume that both packet-level and
flow-level traffic capturing tools are available for us to use and
the database provides adequate space to store the information
of the captured traffic.

The challenge is to collect flow and packet-level data at
scale. Fortunately, emerging big data collection and analysis
systems offer services capable of collecting, filtering, com-
pacting, storing, and later searching or analyzing flow and
packet-level data at scale. NPCE leverages the ELK stack [10]
for this task. At the heart of ELK is Elasticsearch, a search
and analytic engine that provides excellent performance and
scalability and is built on Apache Lucene [12]. The syntax of
the Elasticsearch query DSL (Domain Specific Language) is
human-readable, which makes it easy to generate the queries
from the entities returned by the NLP module. Moreover, it
supports several “beats” that can efficiently collect data about
packets and flows, ranging from Packetbeat [13] that collect
NetFlow-style data (or we can use Netflow directly if the
device supports it) as well as filebeats that can read and parse
TCPdump files. Collected data is efficiently imported into the
Elasticsearch database where it can be queried and analyzed
(possibly passing through Logstash if filtering is required).

As an aside, note that network intrusion detection systems
(NIDS), designed to detect attacks, serve a different purpose.
As such, IDS that uses signature-based detection mechanism,

such as Snort [14] and Suricata [15], can generate real-
time alerts once the captured traffic matches attack traffic
signatures. IDS systems based on anomaly detection such as
Zeek [16] can analyze packet capture files and create log files
categorized by the protocol name and look for anomalies. Such
information could also be ingested into NPCE and could be
useful for finding network policy violations, but the data being
collected is usually specified in such a way that attacks or
anomalous behavior can be identified, not necessarily policy
violations.

IV. PROTOTYPE IMPLEMENTATION

In this section, we present the test topology we set up
and the network security policies found on various university
websites to demonstrate the capabilities of NPCE. We show
for each policy the questions that can be asked to check the
violations and how they are translated to the Elasticsearch
queries.

As shown in Figure 2, we set up the topology in the Global
Environment for Network Innovations (GENI) platform [17],
where people can conduct networking research at scale. We
include an OpenVSwitch (OVS) in the topology to use its
Netflow module to capture flow information of network traffic.
The other components of the prototype implementation are
the same as have been discussed in the previous section. In
particular, we took advantage of Google Dialogflow to train
and extract the entities. The reason we picked Dialogflow out
of various natural language understanding platforms is that it
can be integrated with many popular messaging applications
so that people can ask questions in the applications they use
daily. We wrote a web server using Flask [18] to work as the
query generation module. For the selection of the database, our
choice was Elasticsearch, which is built on Apache Lucene.
The log files of NetFlow and Tcpdump were sent to the
Elasticsearch server for analysis.

Fig. 2. Test Topology for Prototype Implementation

The entire workflow starts from the natural language ques-
tions asked by the user. Dialogflow takes the questions and
outputs a list of entities. These entities are categorized and sent



to the web server to be translated into the corresponding Elas-
ticsearch queries. Once these queries are issued to the database
through REST API calls, the user will get the answers in the
responses. The remaining part of this section demonstrates the
capabilities of NPCE with real-world network security policies
found on various university and organization websites.

A. Example Network Policies and Use Cases

We show how the natural language questions that check
policy violations can be translated to the Elasticsearch queries
step by step. Due to space limitation, we will only discuss the
related fields in an Elasticsearch query.

1) Policies regarding Insecure Application Layer Protocols:
The vulnerabilities in the application layer protocols are often
exploited by hackers to perform security attacks. As a result,
network security policies always require disabling these in-
secure protocols. We list below the network security policies
on the websites of the University of Missouri at St. Louis,
University of Birmingham and Indiana University:

“Applications which transmit sensitive information
over the network in clear text, such as telnet and ftp,
are prohibited and will be blocked.” [19]
“The University Wireless Network should not be

used inappropriately; in particular you should not
use the network to: run peer-to-peer (P2P) file
sharing software, e.g. BitTorrent.” [20]
“For a computer system to be managed securely,

functional unit technicians must: Disable or secure
remote access from system-to-system (e.g., rlogin).”
[21]

For these types of policies, users may ask questions in a
similar way to check violations. Taking the first policy for
example:

“Is there any ftp or telnet traffic in the network?”
In the question, only the protocol names are used to describe

the traffic. If device and timestamp are not mentioned in the
question, the query generation module assumes that the user
wants to query the data from all the switches in the network at
any time. The query is performed on all the collected network
traffic data to examine whether any policy violation has ever
happened in the network. For each application layer protocol,
an alias file records the corresponding low-level details such
as the transport layer protocol and destination port numbers.
They are used when the module generates the corresponding
Elasticsearch query.

Figure 3 shows the question and the alias file to check the
existence of FTP or Telnet traffic in the network. In the alias
file, the corresponding destination port numbers and transport
layer protocols are recorded. The extracted information indi-
cates what Answer will be returned to the user and what filters
to use when generating the database query.

Here the protocols and destination port numbers in the alias
file are used to build the Elasticsearch query as shown in
Figure 4.

Fig. 3. Question and Extracted Entities for FTP and Telnet Traffic

Fig. 4. Elasticsearch Query to Check FTP and Telnet Traffic

2) Policies regarding Prohibited Services: Some types of
traffic are prohibited everywhere in the network while others
are only disallowed in a selected area of the network. We
found network policies about rogue servers and non-standard
ports on the websites of Villanova University and Salem State
University:

“Network usage judged appropriate by the Univer-
sity is permitted. Some activities deemed inappropri-
ate include, but are not limited to: Attaching unau-
thorized network devices, including but not limited
to wireless routers, gateways DHCP or DNS servers;
or a computer set up to act like such a device.” [22]
“Most network services through non-standard ports

are not supported. Services through non-standard
ports may be restricted to a limited number of
subnets or hosts. For example, WWW access via the
standard HTTP port will be permitted, but via some
other arbitrary port number may not be permitted.”
[23]

The question and extracted entities for the first policy is
shown in Figure 5. In this question, the comparison operator
and the IP addresses are the additional information. The
authorized server is recognized as a special term so that the
IP addresses of the servers are fetched from the alias file.

Based on the direction of the traffic, the IP addresses of the
authorized servers are used as the destination IP addresses.
Because of the existence of “not” in the question, the destina-
tion IP addresses is placed in the “must not” field to generate
the Elasticsearch query as shown in Figure 6.

For the second policy, users may ask the following question:
“Is there any campus server that has incoming traffic on



Fig. 5. Questions and Extracted Entities for the Policy about Rogue Servers

Fig. 6. Elasticsearch Query to Check the Existence of Rogue Servers

non-standard ports?”
In the alias file, the IP addresses of the campus servers

and the standard port of the application protocols can be
found. Based on the direction of the traffic, the IP addresses
of the servers are used as the destination IP addresses and
the port numbers are used as the destination port numbers.
Additionally, the comparison operator determines that the
destination port numbers are placed in the “must not” field
in the Elasticsearch query.

3) Policy regarding Device Access Control: Access control
policies regulate whether some network devices are accessible
by other devices. Here, we list the policies regarding the
accessibility of campus printers found on the website of UC
Berkeley:

“Campus printers should not be exposed to the
public Internet.” [24]

We show the question and the extracted entities in Figure 7.
This question is trying to figure out the amount of traffic
between two IP ranges. The alias file records the IP addresses
of the campus printers as well as the campus IP range.
The Internet represents all the IP addresses other than those
specified in the campus IP range. The comparison operator

“other than” is used to get the IP range of the Internet. The
direction of the traffic also determines the IP range of the
Internet that is used as the source IP address.

Fig. 7. Question and Extracted Entities for the Policy about Campus Printer

The IP addresses of the campus printers are placed in the
“should” field for the match of destinations. We used regular
expressions to show the IP range in the CIDR notation. The
expression is placed in the “must not” field which reflects the
comparison operator “other than”. The related Elasticsearch
query is shown in Figure 8.

Fig. 8. Elasticsearch Query for Campus Printer Access Policy

4) Policy regarding Port Scanning: Port scanning is a
method of detecting the open ports on network devices. Based
on the characteristic of the generated network traffic, port
scanning can be described as a connection that attempts to
send traffic to a large number of ports within a time period.
On the website of University of Louisiana at Lafayette, we
found a policy regarding port scanning:

“Port scanning or security scanning is expressly
prohibited unless prior notification to Information
Technology Security is made.” [25]

There are various ways to ask questions that check viola-
tions against this policy. The reason lies in the fact that port
scanning is a high-level term and the traffic generated by port
scanning has the corresponding low-level details. People who
do not understand the details of port scanning may directly



ask questions as “Is there any port scanning traffic in the
network?”. On the other hand, people who understand port
scanning may ask questions using the low-level details, such
as “Did any host in the network send traffic to more than
500 different ports?”. To deal with both types of questions,
we exploit the use of the alias file where the definition of
port scanning is saved. The number of different ports and
the time period are defined by the organization based on the
network topology and requirements. The question along with
the extracted entities can be found in Figure 9.

Fig. 9. Question and Extracted Entities for the Policy about Port Scanning

Based on the direction of the traffic, we are trying to
find the source IP address that sent traffic to more than
500 different destination port numbers. In Elasticsearch, we
use cardinality for the unique count, and bucketselector to
express the comparison relationship in the agg field. The
corresponding Elasticsearch query is shown in Figure 10.

Fig. 10. Elasticsearch Query Example for Port Scanning Traffic

5) Policy regarding IP Source Routing: Policy violations
shown in the previous sections can be checked using the data
collected by NetFlow since only the fields in the 5-tuple are
used as the filter to generate the query. However, checking
some policy violations requires analyzing the specific header
information of each packet. IP source routing is an approach
where people can specify the route that the packets will take

to reach the destination. Using this approach, attackers can get
the information of the network in the response. We found a
policy that requires disabling IP source routing on the network
devices from the website of the SANS Institute as follows:

“The following services or features must be dis-
abled: All source routing and switching.” [26]

To identify the IP source routing traffic, the IP Option field
in the packet header needs to be checked. We collected the
data using Tcpdump and convert the .pcap file into a .json file
which has additional information showing the value of the IP
Option field. Then the .json file is imported to Elasticsearch
for the queries. The alias file records the details of IP source
routing and the values are the codes for the two types of source
routing, namely Loose Source Routing (LSR) and Strict Source
Routing (SSR) in the IP Option field as shown in Figure 11.
The corresponding Elasticsearch query is shown in Figure 12.

Fig. 11. Question and Extracted Entities for the policy regarding IP source
routing

Fig. 12. Elasticsearch Query for IP Source Routing Packets

V. RELATED WORK

Various abstractions and intent definition languages have
been proposed to simplify network policy enforcement. Jin-
jing, an intent framework proposed for the accurate configu-
ration of Access Control List (ACL), comes along with the
intent definition language, namely LAI (Language for ACL
Intents) [27]. This intent language uses different primitives to
define the actions to take on various devices for the ACL.
We argue that NPCE is more general. It provides users with a
natural language interface so that the users do not need to learn
the syntax of the intermediate intent definition language. Nile,
an intent definition language proposed in [28], has a powerful
template that reflects the intents of the various network poli-
cies. Similar to our work, their proposed refinement process
also starts with natural language. However, Nile only focuses
on the intent refinement process while NPCE not only takes
the natural language as input but also generates the database



queries, which makes the entire process automated. Policy
Graph Abstraction (PGA) [29] provides an approach where
network administrators can specify network policies using
graphs. The focus of the paper is on how to solve the conflicts
among graphs when people in different departments compose
graphs simultaneously. The state of the network needs to be
considered when network administrators enforce the policies.
Unlike policy enforcement, checking policy violations can be
done by multiple people at any time simultaneously.

Other work deals with fetching network information using
natural language questions. Net2Text [7] helps the network
operators find the routing and forwarding behaviors of net-
work traffic, while in NPCE, we focus on whether network
policies are violated. We derive the special terms from policy
documents and find the traffic described by these terms. The
work described in [30] presents an abstraction layer that can
be used to either enforce a network policy or get answers to
network queries. The queries of the users are first mapped
to various abstraction tasks and then fulfilled using the SDN
controller. However, we argue that NPCE allows the users to
look at the history of the network traffic data to determine
whether any policy violation has ever happened, while using
SDN controller one can only know the status of the network
at that instant.

Also related is the work focusing on translating the natural
language questions into the corresponding SQL queries [31],
[32]. Various machine learning models such as reinforcement
learning are applied to achieve high translation accuracy. We
argue that NPCE fits the context of checking network policy
violations better since it contains domain specific knowledge
in the networking area that cannot be processed by other gen-
eral purpose translation schemes. The existence of the mapping
layer also provides flexibility on the tools an organization can
use to store network traffic data.

VI. CONCLUSION

In this paper, we proposed an approach to use natural
language queries to check network security policy violations.
The proposed Network Policy Conversation Engine system
provides users with a friendly chatbot interface to ask ques-
tions in a natural language without knowing the details of
the queries. It translates users natural language questions into
network traffic database queries on behalf of the users so that
even the people who do not have sufficient query programming
skills can still use the system to check policy violations. The
mapping layer, which works as an intermediate agent, ensures
that users questions can be translated into various database
queries . To evaluate NPCE, we took network security policies
from various University websites and asked questions related
to these policies. The results showed that useful information
in the natural language questions could be smoothly extracted
to build the Elasticsearch queries that fetch answers to the
questions from the database, so that we can check whether
these network policies have been violated or not.

VII. ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grant ACI-1642134.

REFERENCES

[1] S. Rivera, Z. Fei, and J. Griffioen, “POLANCO: Enforcing Natural
Language Network Policies,” in Proceedings of the 29th International
Conference on Computer Communications and Networks (ICCCN),
2020.

[2] “Cisco whitepaper: Intent-based Networking, Building the bridge
between business and IT,” https://www.cisco.com/c/dam/en/us/
solutions/collateral/enterprise-networks/digital-network-architecture/
nb-09-intent-networking-wp-cte-en.pdf.

[3] D. Farrar, J. Huffman Hayes, G. Adkins, J. Griffioen, and C. Bumgard-
ner, “NetSecOps and Policy Checking An Application of Traceability
Techniques,” in In Proceedings of Grand Challenges of Traceability
2017, 2017.

[4] J. H. Hayes, “Towards Improved Network Security Requirements and
Policy: Domain-Specific Completeness Analysis via Topic Modeling,”
in 2020 IEEE 28th International Requirements Engineering Conference
Workshops (REW), 2020.

[5] J. Griffioen, Z. Fei, S. Rivera, J. Chappell, M. Hayashida, P. Shi,
C. Carpenter, Y. Song, B. Chitre, H. Nasir et al., “Leveraging SDN to
Enable Short-term On-demand Security Exceptions,” in 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM).
IEEE, 2019, pp. 13–18.

[6] “Dialogflow, Create Conversational Experiences Across Devices and
Platforms,” https://cloud.google.com/dialogflow.

[7] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Net2text:
Query-guided Summarization of Network Forwarding Behaviors,” in
15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’18), 2018, pp. 609–623.

[8] “Introduction to Cisco IOS NetFlow - A Technical Overview,”
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/
ios-netflow/prod white paper0900aecd80406232.html.

[9] “Tcpdump/Libpcap Public Repository,” https://www.tcpdump.org/.
[10] “What is The ELK Stack?” https://www.elastic.co/what-is/elk-stack.
[11] Z. Zhang, B. Wang, F. Ahmed, I. Ramakrishnan, R. Zhao, A. Viccellio,

and K. Mueller, “The Five Ws for Information Visualization with Ap-
plication to Healthcare Informatics,” IEEE transactions on visualization
and computer graphics, vol. 19, no. 11, pp. 1895–1910, 2013.

[12] “Ultra-fast Search Library: Lucene,” https://lucene.apache.org/core/.
[13] “Lightweight Shipper for Network Data,” https://www.elastic.co/beats/

packetbeat/.
[14] “What is Snort?” https://www.snort.org/.
[15] “Suricata, Open Source IDS/IPS/NSM Engine,” https://suricata-ids.org/.
[16] “Zeek Manual,” https://docs.zeek.org/en/master/.
[17] “What is Geni?” https://www.geni.net/about-geni/what-is-geni/.
[18] “Flask, Web Development One Drop At a Time,” https://flask.

palletsprojects.com/en/1.1.x/.
[19] “UMSL Network Policies,” https://www.umsl.edu/technology/

networking/networkpolicy.html.
[20] “University of Birmingham Wireless Network Policy,” https://intranet.

birmingham.ac.uk/it/teams/infrastructure/core/wireless/help/policy.aspx.
[21] “Indiana University Security of Information Technology Resources,”

https://policies.iu.edu/policies/it-12-security-it-resources/index.html.
[22] “Villanova University Network Security Policy,” https://www1.villanova.

edu/villanova/unit/policies/AcceptableUse/security.html.
[23] “Salem State University Network Security Policy,” https://records.

salemstate.edu/sites/records/files/policiesNetwork20Security20Policy.
pdf.

[24] “UC Berkeley Network Printer Security Best Practices,” https:
//security.berkeley.edu/education-awareness/best-practices-how-articles/
system-application-security/network-printer-security.

[25] “University of Louisiana at Lafayette Security and Accetable
Use Policies,” https://helpdesk.louisiana.edu/sites/helpdesk/files/IT
Security Policy.pdf.

[26] “The Sans Institute Router and Switch Security Policy,” https://assets.
contentstack.io/v3/assets/blt36c2e63521272fdc/blt6cbaf88421cd16f6/
5e9dfac0674ec260f325c430/router and switch security policy.pdf.



[27] B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji,
Y. Sang, M. Zhang et al., “Safely and automatically updating in-network
acl configurations with intent language,” in Proceedings of the ACM
Special Interest Group on Data Communication, 2019, pp. 214–226.

[28] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville,
“Refining network intents for self-driving networks,” in Proceedings of
the Afternoon Workshop on Self-Driving Networks, 2018, pp. 15–21.

[29] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using Graphs to Ex-
press and Automatically Reconcile Network Policies,” ACM SIGCOMM

Computer Communication Review, vol. 45, no. 4, pp. 29–42, 2015.
[30] A. Alsudais and E. Keller, “Hey Network, Can You Understand Me?”

in 2017 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2017, pp. 193–198.

[31] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating Structured
Queries from Natural Language using Reinforcement Learning,” arXiv
preprint arXiv:1709.00103, 2017.

[32] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. Radev, “Typesql: Knowledge-
based Type-aware Neural Text-to-sql Generation,” arXiv preprint
arXiv:1804.09769, 2018.


