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Multi-scale mining of kinematic distributions with wavelets
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Typical LHC analyses search for local features in kinematic distributions. Assumptions
about anomalous patterns limit them to a relatively narrow subset of possible signals.
Wavelets extract information from an entire distribution and decompose it at all scales,
simultaneously searching for features over a wide range of scales. We propose a sys-
tematic wavelet analysis and show how bumps, bump-dip combinations, and oscillatory
patterns are extracted. Our kinematic wavelet analysis kit KWAK provides a publicly
available framework to analyze and visualize general distributions.
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1 New Physics at Multiple Scales

Despite the proliferation of advanced statistical methods at the LHC, simple analyses of well-
chosen kinematic distributions remain a powerful first attempt to tease out new physics with
fuzzily specified characteristics. Resonances in invariant mass distributions or enhanced tails
at high energies can reveal the existence of new particles produced on-shell, or the presence
of heavy physics manifest as higher-dimensional operators, respectively.

Simple analyses are also particularly amenable to data-driven background determination.
For example, a resonance search in an invariant mass distribution relies on a sideband fit,
leading to a background-only hypothesis given as a simple functional form. At any point along
the invariant mass distribution the analysis searches for an excess or bump via a sliding mass
window. The underlying assumption is that the signal is a local excess, so the window is
characterized by a scale related to the resonance width. This is also the origin of the look-
elsewhere effect, which links the local significance to a global significance based on treating
the entire distribution as one measurement.

The situation becomes more complicated when we search for more generic patterns. For
example, quantum interference between the resonant signal and the smooth background typ-
ically implies that the deviation from the background becomes a deficit together with the ex-
cess, or a bump-dip [1-7]. It is particularly prominent when the resonant particle has a large
width. A typical bump hunt combines the bump-dip to a net excess, considerably weakening
the search.

There exist new physics models where modifications to the background are even less local-
ized. Theories with compact extra dimensions [8,9] and their 4D product gauge group [10,11]
or clockwork [12] analogues predict towers of states, implying periodic invariant mass pat-
terns. While individual resonant structures are local and amenable to searches for bumps, an
optimal search requires us to consider the entire distribution.

The general question for analyses of a single kinematic distributions is whether there exists
an approach which balances the power of searching for local features with the flexibility of
searches which retain information about longer scales or global features. Wavelet transforms
are a standard tool which simultaneously decomposes data on an interval into different scales,
allowing for sensitivity to local and global features. The wavelet transform

1. retains all information from the distribution in an orthogonal decomposition basis;
2. automatically zooms in to the proper resolution to match a given anomaly; and
3. retains all of the local information about the features of the distribution.

Wavelets have been successfully applied to a number of analyses in particle physics [13-19].
Applied to kinematic LHC data, they systematically evaluate the complete kinematic distri-
bution, without any assumptions about the shape or scale of the potential anomaly. Because
they represent an orthogonal change of basis, they maps the contents of a given number of
bins onto the same number of wavelet coefficients, allowing us to mine a distribution for new
physics without loss of information.

In this short paper we introduce the Haar wavelet transform as a tool to search for new
physics in a kinematic LHC distribution. We introduce the Haar wavelet and illustrate its
main features in Sec. 2, considering idealized deviations in the form of narrow and broad
bumps, bump-dips, and an oscillatory pattern. In Sec. 3.1 we apply our analysis to simulated
data inspired by the ATLAS di-photon invariant mass [20, 21], injecting the same set of signal
patterns. We analyze the actual ATLAS di-photon distribution in Sec. 3.2. Appendices include
some details of the statistical analysis, and introduce our publicly available Python analysis
package, KWAK.
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2 Wavelet Transform

A Wavelet transform represents a given function in terms of simple orthonormal basis. In that
sense it is similar to a Fourier transform, with the main difference that the wavelet basis retains
a notion of locality in position space, which is relinquished by the Fourier transform.

2.1 Haar wavelet

A particularly simple wavelet is the Haar wavelet in one dimension [22], defined on the interval
x €[0,1]. The first two basis functions are

+1 =0..1/2
ho(x)=1 and  hy(x) = {_1 i: s /1 )

They characterize the over-all normalization of the function and its relative change from one
side of the interval to the other, respectively. The next two basis functions are constructed
from h;(x), compressed in x by a factor of two,

hy1(x) = V2 hy(2x) hyo(x) = v2h(2x—1). (2)

They characterize the change from one side of each subintervals to the other. Further basis
functions continue to subdivide the intervals from the previous level. For example, the next
step defines four functions, compressed by an additional factor two,

h31(x) =2 hy(4x) hso(x) =2h;(4x—1)
h3’3(x) =2 h1(4x - 2) h3’4(x) =2 h1(4x - 3) . (3)

Continuing to sub-divide the x-interval, the higher wavelet functions h, ,, are organized in
families labelled by level ¢ and increasingly localized in x. The label m = 1 ... 2/~ specifies
their position inside the interval. With the normalization h,,, oc 2(¢~1/2 the real wavelet
functions are orthonormal,

1
J dx he,m(X) hz/,m/(X) = 5[@/ 5mm/ B (4)
0

allowing the wavelet representation of a function f(x) to be easily inverted,

1
FQ=D fimhm(x) & fin= J dox g g ()f () . (5)
{,m 0

In this notation the similarity to a Fourier transform is manifest: the wavelets at each level
resolve a waveform pattern that is the £th harmonic of the interval, but divided into 2¢~1
locations along the interval, saturating the Nyquist criterion. The first coefficient f; is special
in that it represents the over-all normalization of the distribution, and we will neglect it in
most of our shape analysis below.
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Figure 1: Toy wavelet analysis for a narrow (upper left) and a wide (upper right)
bump, a bump-dip (lower left), and an oscillatory signal (lower right) on top of a flat
background. The top panel shows the original distribution, the one below the pat-
tern reconstructed retaining the largest 10% wavelet coefficients, and the remaining
panels show the values of the wavelet coefficients f; through f~7,m for 128 bins and
no statistical fluctuations. The reconstructed signal (orange) is overlaid on top of
the original (in purple). For each level the coefficients are aligned with their actual
position in the distribution.

A kinematic distribution f(x) with 2 bins f; defines L levels of wavelet coefficients. In-
cluding f,, there are a total of 2- wavelet coefficients, and the wavelet coefficients contain
precisely the same information as the number of bin in the distribution. Because each wavelet
basis state spans two distinct regions, the resolution at level £ corresponds to 2 x 2¢71 = 2¢
bins. From the definition of the wavelet transform in Eq.(5) it is clear that, for example, the
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highest wavelet coefficients encode the 2% /2 pairwise differences between neighboring bins,

fim=fom1—fom  form=1..2""1, (6)

where in the discretized distribution f(x) = f; the bin index j =1... 2L replaces the continu-
ous parameter x. The localized wavelet coefficients are aligned with the original distribution
f (x) such that at the highest level each wavelet coefficient fL,m corresponds to two bins f5,,_;
and f,,,, and the next level corresponds to four bins, etc. In many applications of the wavelet
transformation it is standard to normalize the wavelet coefficients by a factor of 2¢~1/2 but
in our statistical analysis of integer-valued signals the definition in Eq.(6) is more convenient.

2.2 Toy Examples

In Fig. 1 we show the set of wavelet coefficients at each level for four toy distributions:

a narrow Gaussian bump;
a wide Gaussian bump;
a bump-dip combination; and

Hwh =

an oscillatory pattern with a shifted starting point.

Each distribution is added to a flat background and represented by a histogram with 128 bins.
For the flat background alone all wavelet coefficients vanish by definition, Eq.(6). In each
pane, the top panel shows the original histogram, and the lower panels show the wavelet
coefficients from £ = 7 to £ = 1, followed by f, in the bottom panel. In this toy illustration we
neglect statistical fluctuations, so the wavelet coefficients correspond perfectly to the source
distribution. As discussed above, we align the wavelet coefficients of each level ¢ with the
corresponding bins of the original distribution f (x).

The upper left panel of Fig. 1 with the narrow bump illustrates how the large wavelet
coefficients are localized at the position of the narrow excess. The largest wavelet coefficients
appear at level £ = 5, where the entire bump is covered by the two coefficients f5’7 and f5’8.
This information encodes the fact that we are looking at a localized feature of size 1/2° ~ 0.03
of the original range x = 0 ... 1. Interesting features can be reconstructed by considering a
subset of the leading wavelet coefficients, which contain the most important information,

fapprox(x) = Z fé,m hym(x) . (7

leading f

By removing subleading coefficients, contributions of limited statistical significance are ex-
cised, allowing for sharp and robust image of the deviation from the background model. The
second line in the upper left panel shows the result from the leading 10% of wavelet coeffi-
cients in size. Indeed, the small set of leading wavelets describe the bump pattern well, at the
expense only of resolution from the highest level, £ = 7. In the upper right panel we repeat
this analysis for a bump with twice the width. As expected, most of the power is contained in
the £ = 4 coefficients.

The lower left panel of Fig. 1 describes a bump-dip, as it for example appears through
quantum interference with wide resonances [6]. Itis a challenge to the standard bump-hunting
methods, which average the bump and the dip structures unless the resolution is sufficient and
very carefully tuned. The total width of the feature is chosen to be about twice the width of the
narrow bump, and indeed the largest wavelet coefficient is f4,3, corresponding to the correct
scale and position. At this scale, both the bump and the dip individually contribute positively
to the wavelet coefficient.
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Finally, an off-set oscillatory pattern is assumed for the lower right panel of Fig. 1. Such a
modification poses a serious challenge for LHC searches [12]. The frequency of the pattern is
such that most of its power appears at £ = 4 with m > 2, reflecting the fact that the oscillations
begin after an initial gap. We also show the approximate reconstructed signal, retaining the
leading 10% wavelet coefficients, confirming that the signal pattern is again well described.
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Figure 2: Statistical distribution for the wavelet coefficient f assuming Poisson distri-
butions of the two bins of the kinematic distribution f; 5. The two input distributions
are described by their means u; .

2.3 Statistical Analysis

Realistic distributions inevitably contain statistical fluctuations. A kinematic distribution f (x)
is experimentally represented by 2L bins fj» where f; is the number of events in the jth bin
and is integer-valued. If we assume that the bins are statistically independent, each bin count
is described by a Poisson distribution with mean u;,

A
P(filup) = —=, (8)
fi!
which implies that the probability distribution for the m = 1 wavelet coefficient of the highest

level £ =L is
. e_Hl_PLZ M{lugz
P(flup, ) = ) ————F——
W)= 2

o Uy fr2
=e Hih (—) Z§(24/p112) 9
fi.f2

Uz

f=f—fs

where 7, is the nth modified Bessel function of the first kind. This probability distribution is
referred to as the Skellam distribution [23]. Its mean, variance, skew, and excess kurtosis are

U=py — Uy, o =ty + Uy,

My — 1
=0, Yo = . (]-O)
(ug + p2)3/2 2 Uy + o

When the Poisson distributions per bin in Eq.(8) becomes Gaussian, u; + u, > 1, v; and y,
vanish, and P(f) approaches the expected Gaussian shape. We show the probability distribu-
tion for the wavelet coefficients in Fig. 2, assuming independent Poisson distributions for the
bins of the underlying kinematic distribution. The tails of P( f) are exponentially suppressed,
and as the mean values u; , of the input distributions increase, the resulting P( f) indeed

Y1

6
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approaches a Gaussian. In Appendix A, we provide the probability distribution P(f|H,) for
generic values of £ < L and m > 1, and for a generic hypothesis pattern Hy,.

A statistical analysis traces all of the correlations of the input distribution f (x) in terms of
the bin values f; to the wavelet coefficients fJ If we do nothing other than transform from the
fj to the fj, the two descriptions are equivalent. The power in the wavelet analysis is in how
the deviations are reflected in a subset of the wavelets, which simultaneously analyze different
scales and can be filtered to enhance specific kinds of searches. For example, the oscillatory
pattern largely lives in a set of wavelet coefficients of a single given level ¢.

Fixed Resolution Global Significance: From Eq.(6), it is clear that each bin of the distribu-
tion only contributes linearly to a single wavelet coefficient. If the individual bins are statisti-
cally independent, the wavelet coefficients for a single level are also statistically independent,
allowing them to be trivially combined into a single statistical analysis.

A p value can be calculated from Eq.(9) for each wavelet coefficient f},m, and translated
into a test statistic q; ,, defined as

do,m = —2 lnpl,m: (1D

which obeys a y2 distribution with two degrees of freedom. For wavelet coefficients of fixed
{ the gy ,,, can be summed together to create a combined test statistic qy,

k
Q= qm- (12)
m=1

If the fe,m are statistically independent then q, follows a y2 distribution with 2k degrees of
freedom, meaning that the statistical fluctuation in the ensemble of wavelet coefficients sharing
the same £ can be easily quantified. In Eq.(20) in Appendix A we show that p,, the combined
p-value for all ng’m of a given ¢, can be written in terms of an incomplete gamma function.

This metric is highly useful for identifying features in the data that are spread over multiple
coefficients within the same level of the wavelet transformation, and we refer to it as the fixed
resolution global significance (FRGS). The situation is more subtle when an analysis requires
combining multiple levels into a single statistical analysis, for example when searching for
different local features of different scales.

3 Di-photon Mass Distribution

For a more realistic illustration we rely on a measured ATLAS di-photon invariant mass spec-
trum, m,., [21]. With its statistical fluctuations it allows us to perform a semi-realistic wavelet
analysis with different injected signals. We choose the same patterns as in Sec. 2.2. After that
we analyze the actual ATLAS results in a desperate attempt to search for new physics at the
LHC.

3.1 Injected Signals
The background-only hypothesis for the ATLAS measurement shown in Fig. 3 is described by

the functional form [20]

m
fa(x)=N (1—x"3)P x%  with x=

Myy
7 (13)
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We fit the coefficients N, a, and b to the ATLAS di-photon spectrum [21 ], shown for reference
in Fig. 3, and use this as a more realistic bases to inject the same four signal patterns used
before, namely

a narrow Gaussian bump with mass 600 GeV and width 80 GeV;

a wide Gaussian bump with mass 750 GeV and width 300 GeV;

a bump-dip with a peak at 700 GeV and a dip 100 GeV below; and

an oscillation with a wave length of 265 GeV and a first peak at 415 GeV.

W=

The combined kinematic distribution is binned into a histogram, subject to Poisson fluctua-
tions. The injected signal pattern is normalized to give an approximately 50 deviation in at
least one of the wavelet coefficients.

The wavelet decompositions of the four resulting distributions are shown in Fig. 4. The
top pane of each panel shows the resulting distribution in m,,. The lowest six panes of each
panel indicate the number of standard deviations in the corresponding wavelet coefficient
compared to the background-only hypothesis, with color coding to guide the eye to more
significant deviations. The second pane of each panel shows the reconstructed signal based on
the indicated fraction of wavelet coefficients most significantly different from the background.

From Fig. 4, it is evident that both the narrow and wide resonant examples show the power
of the wavelet transform to pick out the location and size of such a feature without making
specific analysis choices beyond the initial binning of the histogram. Both are relatively well
reconstructed with modest pixelation by a small fraction of 3% and 5% of the most significantly
deviating wavelet coefficients. As in the toy example, the bump-dip is much more easily teased
out by the wavelet that best matches its structure than a typical resonance search would be
able to handle. In this case, a 5.50 deviation in the { = 3, m = 2 wavelet coefficient correctly
identifies its location and structure, and the reconstruction based on the 5% most significant
wavelets reflects its structure. The oscillatory pattern is correctly identified at { = 4, where the
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Figure 3: Di-photon invariant mass distribution after spin-0 resonance search selec-
tion from ATLAS [21] and background-only fit (upper panel). The lower panel shows
the difference between data and the fit for each bin.
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Figure 4: Wavelet transform of the di-photon invariant mass distribution with back-
ground hypothesis fit to the ATLAS data. We inject a narrow resonance (top left),
wide resonance (top right), bump-dip (lower left), and oscillation pattern (lower
right). The top panes show the input distribution, the next a signal reconstruction
based on the indicated fraction of most significant coefficients, and the remaining
panes the significance of each coefficient. The x-axis bins correspond to a linear
scale between m,,, = 200 GeV and 1.45 TeV. In the second panel we show the sig-
nal function (in purple) that was used to generate the data for each function. Each
wavelet coefficient is color-coded based on its deviation from the background hy-
pothesis, with a color scale chosen individually for each plot based on the size of the
most significant excess.

wavelet structure most closely matches the injected frequency. Its reconstruction in the second
pane of the plot reflects the challenge of striking a balance between keeping enough coefficients
to faithfully reconstruct the wave form, while excluding statistical noise and background.

As the reconstructed signal provides primarily qualitative information about the nature of
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the statistical excess, there is no “correct” number of wavelet coefficients to use in the signal
reconstruction. Instead of keeping a particular fraction of the coefficients, one could just as
easily specify a minimum value of N,. Our choices in Fig. 4 to use 3%, 5% or 12% of the
coefficients are roughly equivalent to setting N;nin ~ 2. Without relying on this subjective
benchmark, the presence or absence of new physics can be inferred directly from the analysis
of individual wavelet coefficients, and from combined metrics like the fixed resolution global
significance (FRGS).
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Figure 5: The same as Figure 4, for the Kaluza Klein pattern described in the text.
The table presents the FRGS for each level £. As with the oscillatory example from
Figure 4, reconstructing the signal using (in this example) 7% of the wavelet coef-
ficients involves a tradeoff between noise reduction and fidelity to the finer details
of the injected signal. The FRGS, on the other hand, correctly identifies significant
excesses in the £ = 4, £ = 5 and ¢ = 3 resolution levels of 5.30, 4.20, and 2.90,
respectively.

A more realistic oscillatory pattern could correspond to a Kaluza Klein spectrum of res-
onances. We consider a series of resonances inspired by a warped extra dimension [24] for
which the first resonance appears at m; ~ 320 GeV with a width of I} ~ 18 GeV, and subse-
quent masses and widths m; and I} are given by

X e

1 1
my, [} ~ Fl: (14)
xgl) t xgl)

m; ~

where le is the ith zero of the Bessel function J; (x).

This is a case where the signal is spread throughout the distribution, and the FRGS is useful
to combine the significances from the statistically independent wavelet coefficients of a given
level. In Fig. 5, we show the wavelet transform of this signal on top of the ATLAS background

10
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model. Individual wavelet coefficients show up to ~ 40 deviations from the background model
at £ = 3 and { = 4, corresponding to the first three resonances in the tower. Combining the
significances at each level, the FRGS indicates a 5.30 deviation at £ = 3, along with 3-40
excesses at other resolutions.

This example illustrates the power of the wavelet transform and FRGS to tease out oscil-
latory signals, even when the ‘frequency’ of the signal is not constant. Our analysis could be
just as easily applied to cases with large numbers of new states, for example [12] and [25],
and to models with multiple resonances at arbitrary masses and widths.

SciPost Phys. 8, 043 (2020)

3.2 ATLAS Distribution
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Figure 6: Top: wavelet analysis of the ATLAS m,, data (left) and an example null
hypothesis distribution (right). Bottom: Fixed resolution global significance at each
level for the ATLAS and ‘Null’ data sets.

Our final example is to analyze the actual ATLAS di-photon distribution [21], shown in
Fig. 3. While we already know from the original analysis that it contains no indications of new
physics, we can still use it as an example for our wavelet analysis tool in a realistic setting.
The wavelet transform of the ATLAS di-photon data is shown in the left pane of Fig. 6. The
fluctuations in all wavelet coefficients are small and reach the 2¢ level in only two places.
In the table below we give the FRGS at each level and, as expected, the ATLAS distribution
indicates no signs of new physics. In fact, the wavelet coefficients appear to be slightly more
consistent with the null hypothesis than one would naively expect. For instance, given the 64
bins translated into 32 coefficients at level £ = 6 or 64 coefficients altogether we would expect
around 20 to deviate at the 1o level and 3 to deviate at the 20 level.

We can compare the ATLAS result to a background-only set of toy data based on per-bin
Poisson statistics, shown in the left pane of Fig. 6. Indeed, the statistical fluctuations are
slightly more pronounced. From the corresponding Table we see that the difference is most

11
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visible at the level £ = 5. While it is beyond our ability to delve further in a meaningful way
into what the origin of this feature is, one could imagine that it is the result of correlations
between nearby m,, bins, which our analysis treats as independent. Correlations between bins
and bin migration certainly have the potential to soften the statistical anomaly. In fact, one
could imagine that the wavelet analysis might potentially offer a means to obtain interesting
insights into such correlations in a way that is orthogonal to traditional approaches.

4 Outlook

Wavelets are a novel way to represent data in a way which, by simultaneously retaining infor-
mation on multiple scales, allows for a flexible search for features on multiple scales. We have
applied the Haar wavelet to a one-dimensional kinematic distribution, and demonstrated that
local features of various sizes and global structures can both be disentangled. As toy examples
we have shown how narrow and wide bumps, a bump-dip, and a KK-inspired oscillation pat-
tern can be extracted from toy data as well as from an ATLAS di-photon mass spectrum. The
background model is a simple, model-independent fit function.

We have discussed how the different features can be separated and understood from a
universal analysis of wavelet coefficients, and how we can perform a statistical analysis on the
wavelet coefficients. In the absence of correlations the translation from mass bins to wavelet
coefficients is a simple linear transformation without any loss of information. Including cor-
relations requires a proper statistical treatment. One of the most interesting aspects of our
analysis is the fixed resolution global significance (FRGS) determined from one set of wavelet
coefficients. To visualize the relevance of an anomaly we can also reconstruct the signal-
background combination from the leading wavelet coefficients and find very good agreement
with the injected signal. We hope that they will find fruitful use in future analysis of LHC data.

Our Kinematic Wavelet Analysis Kit (KWAK) is available as a numerical python package at
https://github.com/alexxromero/kwak wavelets.
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A Statistical Method

Our statistical analysis is conducted on the coefficients of the Haar wavelet transformation
of a binned distribution f, where f; is the number of events in the i bin of the distribu-
tion. For this integer-valued signal we use a wavelet transformation with fL’l = f1 — fo,
fL_l’l = f1 + fo — f3 — f4, and so on, based on a basis of functions h, ,, which are orthog-
onal but not normalized.

Given some hypothesis H, that predicts the mean expected value u; for each f; and under
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the assumption of Poisson statistics, the probability distribution P( f}’mlHo) can be shown to
have the same form as Eq.(9). The derivation is simple, and relies on the observation that
every f can be written in the form f = fo— fp for some Poisson-distributed variables f, and
fp. For wavelet coefficient f}’m, these f, , are given by

j(l, max
fa: Z fj: ja,minZZL_e-H(m_l)‘i'l ja,maxzzL_e(zm_l)
ja, min
jb, max
fb = Z fj; jb,minzzL_e(zm_]-)'i_]- jb,maxzzL_z-Hm* (15)
jb, min
As fq p are both sums of Poisson-distributed variables, f, and fj, follow Poisson distributions
with mean values

max jg p
Bep= 0. Wi (16)
min jg
and P(f|H,) is the Skellam distribution
y 3 o (ug V2
P(fy = fIHy) = Pt (M—) 52/ Hiafin). a7
b

Signals of new physics may in general be manifested in the wavelet coefficients as positive
or negative fluctuations in f away from the mean expected value u = p, —u;, and so we use a
two-tailed test to quantify the significance of a deviation. Given a background hypothesis H
and the measured value f for each wavelet coefficient, we define the p-value as the likelihood
of obtaining an outcome that is at least as extreme as the measured value, where by “more
extreme” we mean “less probable”. Expressed in terms of the finite sum over all i such that
P(ilHy) > P(f |Ho):
1-p= > P(ilHy). (18)

Vi: P(ilHo)>P(f|Ho)

An excess can also be characterized by the number of standard deviations between f and the
mean expected value u, which in the Gaussian limit u, + uy > 1 is given by

N, = v2erf }(1—p). (19)

Even in the non-Gaussian limit of the Skellam distribution, it is often convenient to reference
this definition of N (p) as a proxy for the p-value.

Fixed Resolution Global Significance: In a distribution with statistically independent bins,
the wavelet coefficients within a given level £ are also mutually independent, making it straight-
forward to combine their significances. Following [26], the test statistic g; = —21n p; obeys a
x 2 distribution with two degrees of freedom: thus, the combined test statistic ¢ = q;+qo+. . .+qx
with k independent wavelet coefficients follows the y? distribution with 2k degrees of free-
dom, x%k.

After computing ¢, = ».q,, from allm = 1,2,..., 2t=1 coefficients in the £ level of the
wavelet transformation, we calculate the fixed resolution global significance from the cumu-
lative distribution function of the y (228) distribution:

(k22 r(2%, 4q,)

D(Xzzk) =
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where y(k, z) is the lower incomplete gamma function. This p, represents the likelihood that
Poisson sampling of the hypothesis Hy would return a value for the combined test statistic that
is at least as large as q,.

The fixed resolution global significance is particularly powerful for identifying signals that
exhibit oscillatory behavior, whereas well localized signals such as simple bumps and bump-
dips are more likely to be best identified by a small set of individual wavelet coefficients.

B Kinematic Wavelet Analysis Kit

The Kinematic Wavelet Analysis Kit (KWAK) is a numerical Python package for the statistical
analysis of binned distributions of a single kinematic variable. Its central function is to de-
termine the probability distribution for each coefficient of the wavelet transformation of the
data, and to identify the most significant deviations from a given background hypothesis. The
KwAK package also provides a number of plotting options for displaying the results of the anal-
ysis, and is available online at https://github.com/alexxromero/kwak_wavelets, or installed
via the command

pip install kwak

for either Python 2 or Python 3.

KWAK provides multiple options for calculating the probability distribution for each wavelet
coefficient, including an exact approach based on Eq.(17), and three related approximate
methods.

Kaluza-Klein Kaluza-Klein
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Figure 7: Left: the Kaluza-Klein model from the main text
is used as a demonstration of the mnsigScalogram plot with
reconstruction_scaled = nsigma_colorcode = False. Right:
a wScalogram_nsig plot of the same Kaluza-Klein model with
reconstruction_scaled = nsigma_colorcode = logscale = True and
firsttrend =False.

Exact Method: The exact approach is based on the assumption of Poisson statistics, and is
valid specifically for kinematic distributions where the systematic error can be neglected. In
this case the p-value for every coefficient in the wavelet transformation can be calculated by
evaluating Eq.(18) directly, using the Skellam distribution of Eq.(17).
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Figure 8: Using the same Kaluza-Klein model, two further plot examples are shown.
Left: nsigFixedRes withnsigma_colorcode = False. Right: wScalogram with
filled =False on a logarithmic scale with firsttrend = True.

This approach can be computationally intensive: the sums over less-extreme probabilities
in Eq.(18) require repeated evaluation of the k™ modified Bessel function of the first kind,
where k = f is an integer that scales with the number of events in the associated bins. Our
KwAK implementation uses the mpmath Python library to conduct the calculation at arbitrary
precision, to handle the exponentially large or small values of Z;(z). KwAK also uses mpmath
to accommodate data sets with especially large fluctuations, where the individual probabilities
P(f|H,) would otherwise be smaller than the floating point error.

These calculations are implemented in KwAK in the kwak . exact class:

kwak.exact(data, hypothesis, outputdir=None)

where data and hypothesis are one-dimensional arrays of equal length. If a value is pro-
vided for the optional keyword argument outputdir, the results of the analysis will be saved
to a newly created directory with that name.

Instantiating the kwak . exact class creates several objects, including:

e self.Nsigma: the p-value for every wavelet coefficient, mapped to a value of “N,”
following Eq.(19).

e self .NsigmaFixedRes: the fixed resolution global significance for each level of the
wavelet transformation.

e self.Histogram: the probability distribution for each wavelet coefficient P(i|H,), cal-
culated only for the values of i necessary to evaluate the sum of Eq.(18).

Evaluating the 64-bin diphoton examples of Fig. 4 takes O(500) seconds when using the
exact approach.

Approximate Methods: In situations where the precision of the exact method is unnecessary,
or where the effect of systematic uncertainties cannot be neglected, it may be more appropriate
to calculate P(f |H,) using one of the approximate methods of the kwak.nsets class. These
three related approaches each approximate the wavelet coefficient probability distributions by
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generating a large number, N, of pseudo-random “data” sets drawn from the background-
only hypothesis H, using Poisson statistics.* After performing a wavelet transformation on
each pseudodata set, the nsets class assembles a histogram D; ,( f|H,) for each wavelet co-
efficient, counting the number of pseudoexperiments D; ,,, which return a value fNe’m = f for the
(£, m)th wavelet coefficient. The probability distribution for that coefficient is approximated
by:

Df,m(f|H0)
Nies ’

where the histogram D, ,, includes the values from (N —1) pseudoexperiments as well as the
real data. Our choice to use an unnormalized wavelet transformation ensures that f = u; — i,
is integer-valued.

This approach is limited by the fact that Eq.(21) does not resolve any probabilities smaller
than P;, = sttls. Reliably distinguishing 40 from 50 deviations, for example, requires some-
what better than N, = 107, after accounting for the fact that there may be several values of
f for which D(f|H,) = 1. Nevertheless, relatively small Ny, can be sufficient for identifying
deviations in the data, in much less time than is possible with exact. It also handles non-
Gaussian distributions well: no assumptions about the shape of P, ,( f|H,) are built in to this
analysis.

The default implementation of the nsets method described above can be expanded with
one of the two following options:

Py n(flHo) = (21)

e fastGaussian: calculates the mean and standard deviation for each histogram D; ,,

e extrapolate: applies a functional fit to the histogram Dy ,,, using an approximation
of the Skellam distribution

With the first option, rather than defining the probability distribution P, ,, and the p-value

P¢.m»> Ny is calculated directly and very simply from the mean u(f) and standard deviation

o(f) of the histogram Dy ,,:

fé,m - ‘u(fé,m)
o(fem)

In the Gaussian limit of the Skellam distribution, u; + u5 > 1, the fastGaussian approach
provides a much better approximation of N, for large fluctuations,

Ny (frm) = (22)

N, > V2erf! (1—(few)><N_1), (23)

sets

compared to what is possible with the default nsets method.

However, as seen in the left panel of Fig. 2, when u; + u, < 1 the Skellam distribution
does not resemble a Gaussian at all, instead peaking sharply at f = 0. For rare processes
with small but well-understood backgrounds, one or two events in some region of a kinematic
distribution may be highly significant, requiring us to employ a better approximation of the
Skellam distribution.

The extrapolate option is designed to handle both limits smoothly. It uses the curve
fitter from scipy.optimize to fit the histograms D, ,, with a modified Gaussian function

F 2
Dy m(f) ~ nexp (—% (ﬂ) —y \ﬂp) 04

o

for some p~1and y = 0.

*Systematic effects could in principle be mimicked by adding some smearing to the Poisson mean y; in each bin
of the pseudodata, but such modifications are left to the user.
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Unlike the default version of nsets or the fastGaussian alternative, the extrapolate
option requires a relatively large minimum value of N in order to run smoothly. If Ny is
not large enough to generate nonzero entries in the histogram D(f ) beyond the central values
of f =0,+1,+2, then the five parameter fit of Eq.(24) might not have a well-defined best fit
point. For bins in the kinematic distribution with expected mean values u; S 107}, it may be
necessary to use Ny > 10° to guarantee that extrapolate will provide a good fit for the
probability distribution.

All three approximate methods are integrated into the nsets class:

kwak.nsets(data, hypothesis, nsets, seed=int, outputdir=None,
fastGaussian=Boolean, extrapolate=Boolean)

where nsets = N, determines the number of pseudoexperiments to generate, and seed
specifies the seed to be used for the random number generator. By default, fastGaussian
and extrapolate are set to False. Given conflicting inputs fastGaussian = True and
extrapolate = True, the fastGaussian = True option takes precedence, and the
extrapolate calculation will not be performed.

The nsets class also has self .Nsigma, self .NsigmaFixedRes, and self .Histogram
objects; the only difference from the exact class is that for nsets the self.Histogram is
the collection of histograms D; ,, rather than the probability distributions Py ,,, = Dy ,, X NS;tls.
Comparison: A rough guide to when (and when not) to use each of the four methods is
given below:

e exact: Valid whenever the systematic uncertainties can be neglected. Especially useful
at quantifying large fluctuations, and for cases where the evaluation time is not impor-
tant.

e nsets (default): Provides fast analysis, best suited for data sets with moderate or small
fluctuations. Valid for non-Gaussian probability distributions.

e fastGaussian: As fast as the default nsets, and able to distinguish between moderate
and large fluctuations. Only valid for kinematic distributions where multiple events are
expected in every bin.

e extrapolate: Expands the default nsets method to distinguish between moderate
and large fluctuations, even in the non-Gaussian limit. Requires a larger minimum
N,.is ~ 10° when operating in this limit.

As both the default nsets and the fastGaussian approximations can be run with
Nyois = 10° — 104, these methods are the best choices if the analysis must be repeated many
times.

The fastGaussian method remains accurate even for small values of N : for example,
calculating the FRGS for the Kaluza-Klein model shown in Fig. 5 with Ny, = 10° gives:

KKFRGS (N,) | £=1 (=2 (=3 (=4 (=5 (=6

exact: | 0.204 1.158 2.888 5.298 4.185 1.216
nsets-default: | 0.422 0.850 2.422 3.022 2.959 0.893
nsets-fastGaussian: | 0.230 1.157 2.859 5.267 4.459 1.497

Considering that fastGaussian with Ny = 10® already approaches the accuracy of the
exact method, and evaluates almost 1000 times more quickly, there is a real benefit to taking
the Gaussian approximation if appropriate.
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In the Gaussian limit with multiple events expected in every bin, the extrapolate ap-
proach can be used with a smaller minimum Ny, < 10°. Below Ny, < 10%, the evaluation
time becomes dominated by the curve fitting function, so that N, = 10° takes as long to
evaluate as Ny, = 10%. Thus, the primary purpose of extrapolate is to provide improved
accuracy in the 10% < N, < 10° range, especially for cases when the Gaussian approximation
is not necessarily appropriate.

Around N, = 1.5 x 10°, the three approximate calculations and the exact method
take equivalent amounts of time to evaluate. Unless systematic uncertainties are being in-
cluded in the calculation, there is no benefit to running any of the nsets approximations with
Nyers > 10, as exact becomes faster at this point.

Plotting Functions and Options: The plots of Figures 4, 5, and 6 are generated using one
of the plot types included in the KWAK package, kwak .nsigScalogram:

kwak.nsigScalogram(data, hypothesis, nsigma, *kwargs)

where nsigma should be the self.Nsigma object from an exact or nsets class. The top
two panels of this plot show a histogram of the data, and a reconstruction of the putative
signal using only the wavelet coefficients with the largest deviations away from the background
hypothesis. The remaining panels show the value of N, for each wavelet coefficient.

In addition to the mandatory arguments, a number of optional keyword arguments can be
used to change characteristics of the plot:

e For the reconstruction of the signal:

- nsigma_min = x: Uses only wavelet coefficients with N, > x.

- nsigma_percent = x: Uses only the most significant x x 100% wavelet coeffi-
cients.

- reconstruction_scaled = Boolean: Provides an option to divide all of the en-
tries in the reconstructed signal by the square root of the mean expected value for
that bin, so that the y axis corresponds loosely to “N,” rather than the number of
events in the signal.

e nsigma_colorcode = Boolean: Color codes the plot of the wavelet coefficients with a
scheme based on the size of N,.

e title =str: Prints a title above the plot, in size 18 font.
e xlabel = str: Prints a label for the x axis, in size 14 font.
e outputfile =str: Saves the plot as a PNG file with name "outputfile".

As an example of the default output of nsigScalogram, Fig. 7 shows the Kaluza-Klein model
of Fig. 5 but with reconstruction_scaled =nsigma_colorcode =False.

Rather than plotting N, for each wavelet coefficient, the plotting function
kwak.wScalogram_nsig replaces N, with the values of the wavelet coefficients themselves.
In addition to the keyword arguments available for nsigScalogram, kwak.wScalogram_nsig
has an option to plot the values of the wavelet coefficients on a logarithmic scale:

e logscale = Boolean.

Negatively signed wavelet coefficients are shown as positive values with hatched lines on the
logarithmic plot, as shown in the right panel of Fig. 7. A second additional optional argument,
firsttrend = Boolean, determines whether or not the value of the f,_, coefficient is shown.
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In the plots of the main text, the FRGS is typically shown as a separate table. Another
plotting method, kwak.nsigFixedRes, shows the FRGS N, value as an additional column
on the right:

kwak.nsigFixedRes(data, hypothesis, nsigma, nsigma_FRGS, *kwargs)

also with the optional keyword arguments corresponding to color-coding and plot labels. An
example with the default color coding is shown in the left panel of Fig. 8.

Finally, to display the wavelet transformation of the data without any reference to the
statistical analysis, we provide

kwak.wScalogram(data, *kwargs)

logscale = Boolean
firsttrend = Boolean
filled = Boolean

outputdir =str

where the new optional argument filled determines whether or not to fill the histograms for
the wavelet coefficients with a solid color. As before, negative coefficients on the logarithmic
scale are shaded with hatch marks. An example with filled = False is shown in the right
panel of Fig. 8.

For additional control over the relative sizes of the individual panels in each plot, the
range of y values shown for a particular panel, the text displayed inside the legends, or other
similar details, the user can edit the relevant parameters directly in nsigmaplots.py and
scalograms.py in the kwak/plotting folder.
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