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On the Global Minimizers of Real Robust Phase
Retrieval with Sparse Noise

Aleksandr Aravkin1∗, James Burke2†, Daiwei He2

Abstract—We study a class of real robust phase retrieval
problems under a Gaussian assumption on the coding matrix
when the received signal is sparsely corrupted by noise. The
goal is to establish conditions on the sparsity under which the
input vector can be exactly recovered. The recovery problem
is formulated as residual minimization in the `1-norm. The
main contribution is a robust phase retrieval counterpart to the
seminal paper by Candes and Tao on compressed sensing (`1
regression) [Decoding by linear programming. IEEE Transactions
on Information Theory, 51(12):4203–4215, 2005]. The analysis
depends on a key new property of the coding matrix called
the Absolute Range Property (ARP) which is the analogue to
the Null Space Property (NSP) in compressed sensing. When
the residuals are computed using squared magnitudes, we show
that ARP follows from a standard Restricted Isometry Property
(RIP). However, when the residuals are computed using absolute
magnitudes, a different kind of RIP or growth property is
required. We conclude by showing that the robust phase retrieval
objectives are sharp with respect to their minimizers with high
probability.

I. INTRODUCTION

Phase retrieval has been widely studied in machine learning,
signal processing and optimization. The goal of finite dimen-
sional phase retrieval is to recover a signal x ∈ Cn or Rn
given a finite number of observations of the amplitude of its
linear measurements:

| 〈ai, x〉 | = bi, 1 ≤ i ≤ m (I.1)

where ai ∈ Cn or Rn, bi ∈ R are observations, and x is an
unknown signal we wish to recover (e.g. see [33]). When the
bi are observed with error, then we say that the phase retrieval
problem is noisy and refer this as the noisy case. Observe
that recovery is only unique with respect to equivalence in the
metric

φ1(x, y) := min {‖x− µy‖ | |µ| = 1} (I.2)

(called the natural metric in [4]). Consequently, in the noise-
less case, recovery of the signal is equivalent to the injectivity
of the signal modulus mapping A1(x) =

∑m
j=1 | 〈aj , x〉 |ej

from Cn or Rn to the space of equivalence classes determined
by this metric (x is equivalent to y if and only if φp(x, y) = 0).
If it is assumed that the measurement vectors {ai}mi=1 form
a frame (i.e. a spanning set), then much is known about
the number of measurements required in order to assure
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the injectivity of A1. For example, if m ≥ 2n − 1, it is
generically injective on Rn [3], and if m ≥ 4n − 4, it is
generically injective on Cn [22]. In addition, if the frame
can be precisely specified, then recovery is possible in the
noiseless case through finite recursions using as few as 3n−2
measurements ([6], [29], [30]). In [15], Candés et al. show
that, under general distributional assumptions on A, the semi-
definite programming relaxation called Phaselift can exactly
recover the signal for m ≥ c0n log n with high probability,
where c0 is a universal constant. This result is refined in
[13] for exact recovery for m ≥ c0n measurements with
high probability. In the noisy complex case, Bodmann and
Hammen [6] give explicitly chosen frames {ai}mi=1 of size
m ≥ 6n − 3 for which concrete error bounds or stability
bounds on the signal recovery are established. In both the
real and complex noisy cases, Candés and Li [13] show
that if the measurement vectors {ai}mi=1 are independently
generated from either uniform or Gaussian distributions on the
unit sphere, then an estimate of the signal obtained through
Phaselift yields a stability bound on the error with high
probability for m ≥ c0n. By explicitly choosing a frame,
Balan and Zou [4] obtain refined stability bounds in the
noisy case and show the intimate connection between such
error bounds and the following bi-Lipschitzian property of
the modulus mapping A1: there exists positive real scalars
0, µ1 < µ2 such that

µ1φ1(x, y) ≤ ‖A1(x)−A1(y)‖1 ≤ µ2φ1(x, y), (I.3)

for some choice of p, q ∈ [1,∞]. This property is reminiscent
of the restricted isometry property in compressed sensing and
plays an essential role in our study as well. In its most general
form, the phase retrieval problem is NP-hard [34].

In this paper we focus on the sparse real phase retrieval
problem which has been well studied in the recent literature
([13], [14], [18], [24], [28]). In sparse phase retrieval one
assumes that the true signal satisfies all but a few but unknown
number of the equalities in (I.1). This is a special instance of
the noisy case of phase retrieval. In particular, we address
the question of exact signal recovery through `1 residual
minimization problems of the form

min
x
fp(x) := ‖Ap(x)− b‖1 for p = 1, 2, (I.4)

where A1 is the signal modulus mapping and A2 is its
componentwise square. By exact signal recovery, we mean
the recovery of solutions to the `0 problem

{x∗,−x∗} = argmin
x
‖|Ax|p − b‖0 . (I.5)
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For convenience, let A ∈ Rm×n be the matrix whose rows
are the vectors {ai}mi=1 in (I.1) so that A1(x) = |Ax| and
A2(x) = |Ax|2, where, for any vector z ∈ Rm, |z| and z2 are
vectors in Rm whose components are the absolute value and
squares of those in z, respectively. We assume that the matrix
A satisfies the following Gaussian assumption:

G : The entries of A are i.i.d. standard Gaussians N(0, 1).

Our goal is to establish a sparse phase retrieval counterpart to
the seminal results by Candes and Tao on compressed sensing
(`1 regression) [16]. Compressed sensing problems [26] take
the form

min
y
‖y‖1 such that Φy = c, (I.6)

where Φ ∈ Rn×N , y ∈ RN , c ∈ Rn. This problem is known
to be equivalent to the `1 linear regression problem

min
x
‖Ax− b‖1 , (I.7)

where Φb = −c and A ∈ RN×(N−n) (e.g., the columns of
A form basis of Null(Φ)). In [16] it is shown that there is a
universal constant c0 > 2 such that, under suitable conditions
on A (e.g., assumption G), if m > c0n, then the set of sparse
residual solutions to (I.1) coincides with the set of solutions
to the two robust phase retrieval problems (I.4), with high
probability (Theorem III.2 coupled with Lemma IV.2 for p = 2
and Lemma IV.8 for p = 1).

A key underlying structural requirement used by [16] is
the Restricted Isometry Property (RIP). The RIP also plays a
role in our study when p = 2. However, in the p = 1 case a
different property, which we call the p-Absolute Growth Prop-
erty (p-AGP) (see Definition II.3), is required. When p = 2,
RIP implies 2-AGP. The p-AGP holds under assumption G,
with high probability (see Lemmas IV.1 and IV.7). A second
key property, which mimics the so-called Null Space Property
(NSP) in compressed sensing ([21], [23], [27], [31]) is also
introduced. We call this the p-Absolute Range Property (p-
ARP) (see Definition II.1), and show that p-AGP implies
p-ARP under assumption G with high probablility. In [12],
it is shown that, for problem (I.6), if Φ satisfies RIP with
parameter δ2s <

√
2 − 1, then Φ satisfies NSP of order s.

Correspondingly, we show that the p-AGP implies the p-ARP
with high probability under assumption G. (see Lemmas IV.2
and IV.8).

The two most popular approaches to the real phase retrieval
recovery are through semidefinite programming relaxations
([2], [13], [15], [20], [25], [32], [37]) and convex-composite
optimization ([8], [24], [28]). These approaches begin by
formulating the real phase retrieval problem as a regression
problem of the form

min
x
ρ(|Ax|2 − b), (I.8)

where ρ is chosen to be either the `1-norm or the squared
`2-norm. This structure plays a key role in both optimality
conditions and algorithm development [8].

In the noiseless case, when there exists a vector x∗ ∈ Rn
such that |Ax∗|2 = b, a gradient based method called

Wirtinger Flow (WF) was introduced by [14] to solve the
smooth problem

min
x

∥∥|Ax|2 − b∥∥2

2
.

WF admits a linear convergence rate when properly initialized.
Further work along this line includes the Truncated Wirtinger
Flow (TWF), e.g., see [20]. Truncated Wirtinger Flow requires
m ≥ Cn measurements as opposed to the m ≥ Cn log n mea-
surements for WF to obtain a linear rate. A similar approach
using sub-gradients is used to minimize minx ‖|Ax| − b‖22 in
[38] for the noiseless case.

Different solution methods are employed to solve (I.4) for
p = 2 and p = 1. When p = 1, one can apply a smoothing
method to the absolute value function ([1], [33]), or use other
relaxation techniques that preserve the nonsmooth objective
but introduce auxiliary variables [40]. When p = 2, the solu-
tion methods typically exploit the convex-composite structure
of the objective f2 in (I.4) and rely on two key conditions:
weak convexity (i.e., f2 + ρ

2 ‖·‖
2 is convex for some ρ > 0)

and sharpness (i.e., f2(x)−min f2 ≥ c · dist(x,X ) for some
c > 0 where X is the set of minimizers of f ). Under these two
properties, Duchi and Ruan [28], Drusvyatskiy et al. [24] and
Charisopoulos, et al.[18] establish convergence and iteration
complexity results for prox-linear and subgradient algorithms.
Recently, Zhang et al. [39] and Chen et al.[19] considered
gradient-based methods for the problem minx f2(x) when the
noise is sm sparse for some s < 1. To establish locally linear
convergence of their algorithms the authors of [39] require that
the measurements satisfy m ≥ cn log n for c > 0, while the
authors of [19] require that s < c/ logm for some c > 0. The
results in [28] and [18] require m ≥ cn for some c > 0 and
for some s ∈ [0, 1

2 ) sufficiently small.
Conditions for the weak convexity of f2 follow from results

in [24] and [28] under assumptions weaker than assumption
G. In both the noiseless and noisy cases, the sharpness of
f2 also follows from results in [24] and [28]. We establish
sharpness for both f1 and f2 under assumption G uniformly
for all possible supports of the sparse noise. Our result for
the p = 2 case has a similar flavor to those in [28] and [18],
but more closely parallels the result of Candes and Tao in
the compressed sensing case. When p = 1, our result has
no precedence in the literature and requires a new approach.
The function f1 is not weakly convex since it is not even
subdifferentially regular [33].

The paper is organized as follows. In section 2, we introduce
the new properties p-ARP and p-AGP and provide a detailed
description of how our program of proof parallels the program
used in compressed sensing. In Section 3, we show that if A
satisfies p-ARP and the residual | |Ax∗|p − b| is sufficiently
sparse, then {±x∗} ⊂ argmin fp with equality under assump-
tion G. In section 4, we show that assumption G implies that p-
AGP implies p-ARP with high probability. In the final section
we show that fp is sharp with respect to argmin fp, with high
probability.

A. Notation

Lower case letters (i.e. x, y) denote vectors, while xi
denotes the ith component of the x. c0, c1, c2, c̃0, c̃1, C denote
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universal constants. ‖x‖, ‖x‖1 denote the Euclidean and
`1 norms of vector x, while ‖x‖0 denotes the `0 ‘norm’
|{i|xi 6= 0}|. For a matrix X , ‖X‖F denotes the Frobenius,
‖X‖ denotes the `2 operator norm, and Xi denotes the ith row
of X . When x = (xi)1≤i≤n is a vector, |x| := (|xi|)1≤i≤n
and xp := (xpi )1≤i≤m. For a vector v ∈ Rm, and T ⊂ [m] :=
{1, 2, ...,m}, vT is defined to be a vector in Rm where the ith
entry is vi if i ∈ T and 0 else where. supp(x) := {i |xi 6= 0}.
We say a vector x is L sparse if ‖x‖0 := |supp(x)| ≤ L.

II. THE ROADMAP

Recall from the compressed sensing literature ([21], [23])
that a matrix Φ ∈ Rm×n satisfies Null Space Property (NSP)
of order L at ψ ∈ (0, 1) if

‖yT ‖1 ≤ ψ ‖yT c‖1 ∀ y ∈ Null(Φ) and |T | ≤ L. (II.1)

It is shown in [27] and [31] that every L-sparse signal y∗ ∈ Rm
is the unique minimizer of the compressed sensing problem
(I.6) with b = Φy∗ if and only if Φ ∈ Rp×m satisfies NSP of
order L for some ψ ∈ (0, 1). NSP of order L is implied by
the Restricted Isometry Property (RIP) for a sufficiently small
RIP parameter δ2L [12], where a matrix Φ ∈ Rp×m is said to
satisfy RIP with constant δL if [16]

(1−δL) ‖y‖22 ≤ ‖Φy‖
2
2 ≤ (1+δL) ‖y‖22 ∀L-sparse y ∈ Rm.

(II.2)
It is known that RIP is satisfied under many distributional hy-
pothesis on the matrix Φ, for example, random matrices Φ with
entries i.i.d. Gaussian or Bernoulli random variables are known
to satisfies RIP with high probability for L ≤ Cm/ logm
for a universal constant C ([5], [16], [17], [35]). The general
pattern of the proof for establishing that sufficiently sparse y∗
is the unique minimizer of problem (I.6) using distributional
assumptions on Φ is given in the following program:

Dist.
Assu. RIP NSP y∗minimizes (I.6).

[16] [12] [27][31]

(II.3)
We extend this program to the class of robust phase retrieval

problems (I.4) and show that, under assumption G, when the
residuals |Ax∗|p − b are sufficiently sparse, the vectors ±x∗
are the global minimizers of the real robust phase retrieval
problems (I.4) with high probability. In our program, we
substitute NSP and RIP with new properties called the p-
Absolute Range Property (p-ARP) and the p-Absolute Growth
Property (p-AGP), respectively.

Definition II.1 (p-Absolute Range Property (p-ARP)). For
p ∈ {1, 2}, we say A ∈ Rm×n satisfies the p-Absolute Range
Property of order Lp for ψp ∈ (0, 1) if, for any x, y ∈ Rn and
for any T ⊆ [m] with |T | ≤ Lp,

‖(|Ax|p − |Ay|p)T ‖1≤ψp ‖(|Ax|
p − |Ay|p)T c‖1

∀x, y ∈ Rn and T ⊆ [m] with |T |≤Lp.
(II.4)

Definition II.1 only makes sense when m must be signifi-
cantly larger than n as is illustrated by the following example.

Example II.2. For p ∈ {1, 2}, an example in which ARP
does not hold for any order L is A = In for any ψ ∈ (0, 1).

An example in which ARP of order L = 3 holds is A =
(In, In, In)T for any ψ ∈ [ 1

2 , 1).

The close connection between p-ARP and NSP is seen by
observing that Φ satisfies NSP of order L for ψ ∈ (0, 1) (II.1)
if

‖(Ax−Ay)T ‖1 ≤ ψ ‖(Ax−Ay)T c‖
∀x, y ∈ Rn and T ⊆ [m] with |T | ≤ L,

where the columns of A form a basis of Null(Φ).

Definition II.3 (p-Absolute Growth Property (p-AGP)). For
p ∈ {1, 2}, we say that the matrix A ∈ Rm×n satisfies the p-
Absolute Growth Property if there exists constants 0 < µ1 <
µ2 < 2µ1 for which the modulus mapping Ap satisfies the
bi-Lipschitz property

µ1φp(x, y)≤ 1

m
‖|Ax|p − |Ay|p|‖1≤µ2φp(x, y) ∀x, y∈Rn,

(II.5)
where

∀x, y ∈ Rn, φ2(x, y) :=
∥∥xxT − yyT∥∥

F
and

φ1(x, y) := min{‖x+ y‖ , ‖x− y‖}
(II.6)

This definition for φ1 coincides with (I.2) in the real case.
The mapping φ2 is called the matrix-norm metric in [4]. The
matrix-norm metric is the most common and starightforward
to use when p = 2 since φ2(x, y) =

∥∥|x|2 − |y|2∥∥
1
.

The relationship between RIP and p-AGP is seen by com-
paring (II.2) with (II.5). The essential difference is that RIP
for compressed sensing applies to any selection of L columns
from Φ where L is considered to be small since it determines
the sparsity of the solution. On the other hand, our p-AGP
applies to the rows of A corresponding to the zero entries in
the sparse residual vector |Ax∗|p − b.

Our program of proof tracks that for compressed sensing
(II.3) as follows.
For p = 2,

G RIP⇒ 2-AGP 2-ARP x∗minimizes f2(x).Lem IV.1 Lem IV.2 Thm III.2

For p = 1,

G 1-AGP 1-ARP x∗minimizes f1(x).Lem IV.7 Lem IV.8 Thm III.2

III. GLOBAL MINIMIZATION UNDER P-ARP

In this section we parallel the discussion given in [12]
and [23] with NSP replaced by p-ARP. The first step is to
introduce a measure of residual sparsity. Given y ∈ Rn, let
T ⊆ [m] be the set of indices corresponding to the L largest
entries in the residual vector ||Ax|p − b| and define

σpL(x) := ‖(|Ax|p − b)T c‖1 .

Note that σpL(x) = 0 if and only if ‖|Ax|p − b‖0 ≤ L.

Lemma III.1. Let A ∈ Rm×n, p ∈ {1, 2} and L ∈ (0,m). If
the matrix A satisfies p-ARP of order L for ψ ∈ (0, 1), then

‖|Ax|p − |Ay|p‖1 ≤
1 + ψ

1− ψ
(‖|Ax|p − b‖1 − ‖|Ay|

p − b‖1

+ 2σpL(y)),
(III.1)

for all x, y ∈ Rn.
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Proof. For either p = 1 or p = 2, let T be the indices of the
L largest entries in ||Ay|p − b|. Then

‖(|Ax|p−|Ay|p)T c‖1≤‖(|Ax|
p − b)T c‖1+‖(|Ay|p − b)T c‖1

= ‖|Ax|p − b‖1 − ‖(|Ax|
p − b)T ‖1 + σpL(y)

= ‖(|Ay|p − b)T ‖1 − ‖(|Ax|
p − b)T ‖1

+ ‖|Ax|p − b‖1 − ‖|Ay|
p − b‖1 + 2σpL(y)

≤ ‖(|Ax|p − |Ay|p)T ‖1 + ‖|Ax|p − b‖1
− ‖|Ay|p − b‖1 + 2σpL(y).

(III.2)
By p-ARP,

‖(|Ax|p − |Ay|p)T ‖1 ≤ ψ ‖(|Ax|
p − |Ay|p)T c‖1 . (III.3)

Consequently, by (III.2) and (III.3),

‖(|Ax|p − |Ay|p)T c‖ ≤ 1

1− ψ
(‖|Ax|p − b‖1 − ‖|Ay|

p − b‖1

+ 2σpL(y)).
(III.4)

By (III.3), we know

‖|Ax|p−|Ay|p‖=‖(|Ax|p−|Ay|p)T ‖1+‖(|Ax|p−|Ay|p)T c‖1
≤ (1 + ψ) ‖(|Ax|p − |Ay|p)T c‖1 .

By combining this with (III.4), we obtain (III.1) which holds
true for all x, y ∈ Rn.

The main result of this section follows.

Theorem III.2. Let L ∈ (0,m), p ∈ {1, 2}, and suppose x∗ ∈
Rn is such that (|Ax∗|p− b) is L sparse. Let the assumptions
of Lemma III.1 holds. Then x∗ is a global minimizer of the
robust phase retrieval problem (I.4). Moreover, for any x,

‖|Ax|p − |Ax∗|p‖1 ≤
2(1 + ψ)

1− ψ
σpL(x).

If x̃ is another global minimizer, then |Ax̃| = |Ax∗|. If it
is further assumed that the entries of A are i.i.d. standard
Gaussians and m ≥ 2n−1, then, with probability 1, x∗ is the
unique solution of (I.4) up to multiplication by −1.

Proof. By Lemma III.1, since σpL(x∗) = 0,

‖|Ax|p − |Ax∗|p‖1 ≤
1 + ψ

1− ψ
(‖|Ax|p − b‖1 − ‖|Ax∗|

p − b‖1)

∀x ∈ Rn,
(III.5)

and so ‖|Ax|p − b‖1 ≥ ‖|Ax∗|p − b‖1 for all x, i.e., x∗ is a
global minimizer. Again by Lemma III.1,

‖|Ax|p − |Ax∗|p‖1 ≤
1 + ψ

1− ψ
(‖|Ax∗|p − b‖1 − ‖|Ax|

p − b‖1
(III.6)

+ 2σpL(x))

≤ 2(1 + ψ)

1− ψ
σpL(x) (III.7)

Inequality (III.5) also implies that if there is another minimizer
x̃, then |Ax∗| = |Ax̃|. The final statement on the uniqueness
of x∗ is established in [2, Corollary 2.6].

IV. ASSUMPTION G⇒ P-AGP⇒ P-ARP
We now use assumption G to show that p-AGP holds for A

with high probability, and that p-AGP implies p-ARP of order
L := sm with high probability for a constant s ∈ (0, 1). The
cases p = 2 and p = 1 are treated separately since different
techniques are required.
The p = 2 Case: We begin by re-stating [20, Lemma 1] in
our notation, where the conclusion of [20, Lemma 1] is called
RIP in [18].

Lemma IV.1 (Assumption G =⇒ 2-AGP(RIP)). [20, Lemma
1] Under assumption G, there exists universal constants
c0, c1, C such that for ε ∈ (0, 1), if m > c0nε

−2 log 1
ε , then

with probability at least 1− C exp(−c1ε2m),

0.9(1− ε) ‖M‖F ≤
1

m

m∑
i=1

|AiMATi | ≤
√

2(1 + ε) ‖M‖F
(IV.1)

for all symmetric rank-2 matrices M . In particular, if M =
xxT − yyT and φ2 is as give in (II.6), then inequality (IV.1)
implies 2-AGP with µ1 = 0.9(1− ε) and µ2 =

√
2(1 + ε).

Lemma IV.2 (Assumption G =⇒ 2-AGP =⇒ 2-ARP). Un-
der assumption G, there exist universal constants c0, c1, C >
0, s ∈ (0, 1), ψ ∈ (0, 1) such that if m > c0n and A ∈ Rm×n
satisfies G, then∥∥(|Ax|2 − |Ay|2)T

∥∥
1
≤ψ

∥∥(|Ax|2 − |Ay|2)T c

∥∥
1

∀x, y ∈ Rn and T ⊆ [m] with |T |≤sm
with probability at least 1− C exp(−c1m). Consequently, 2-
ARP holds for m with high probability for m sufficiently large.

Proof. We first derive conditions on ε, s ∈ (0, 1) so that ψ ∈
(0, 1) exists. To this end let ε, s ∈ (0, 1) be given. Let T ⊂ [m]
be any subset of sm indices and denote by AT c the (1 −
s)m×n sub-matrix of A whose rows correspond to the indices
in T c. With this notation, we have |AT cx| = |Ax|T c . Also
note that the entries of the matrix AT c satisfy G. By Lemma
IV.1, there exist universal constants c0, c1, C such that if m >
c0nε

−2 log 1
ε , then, for M = xxT − yyT and each subset

T ⊆ |m| with |T | = sm,

0.9(1− ε)
∥∥xxT − yyT∥∥

F
≤ 1

(1− s)m
∥∥(|Ax|2 − |Ay|2)T c

∥∥
1

≤
√

2(1 + ε)
∥∥xxT − yyT∥∥

F
(IV.2)

fails to hold with probability no greater than C exp(−c1ε2(1−
s)m), that is, 2-AGP holds for AT c . Since there are(

m

(1− s)m

)
=

(
m

sm

)
≤
(
e
m

sm

)sm
=
(e
s

)sm
such T ’s, the event
B := {(IV.2) holds for every T ⊆ [m] with |T | = sm}

∩{(IV.1) holds},
satisfies

P(B)≥1−C(e/s)sm exp(−c1ε2(1−s)m)−C exp(−c1ε2m)

=1− C exp((1 + c1ε
2)sm+ sm log(

1

s
)− c1ε2m)

− C exp(−c1ε2m).
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Choose ŝ > 0 so that (1 + c1ε
2)ŝ + ŝ log( 1

ŝ ) < c1
2 ε

2. Then,
for all s ∈ (0, ŝ), P(B) ≥ 1− 2C exp(−(c1/2)ε2m). Thus, if
event B occurs, we have

‖(|Ax|2−|Ay|2)T ‖1 =
∥∥|Ax|2−|Ay|2∥∥

1
−
∥∥(|Ax|2−|Ay|2)T c

∥∥
1

≤
√

2(1 + ε)m
∥∥xxT−yyT∥∥

F

− 0.9(1− ε)(1− s)m
∥∥xxT−yyT∥∥

F

≤
√

2(1 + ε)−0.9(1− ε)(1− s)
0.9(1− ε)(1− s)

∥∥(|Ax|2−|Ay|2)T c

∥∥
1
,

(IV.3)
where the first inequality follows from (IV.1) applied to the
first term and (IV.2) applied to the second, and the second
inequality follows by (IV.2). Consequently, as long as s ∈
(0, ŝ) is chosen so that ψ :=

√
2(1+ε)−0.9(1−ε)(1−s)

0.9(1−ε)(1−s) < 1, the
conclusion follows. This can be accomplished by choosing ε
so that

√
2(1+ε)

1.8(1−ε) < 1 (or equivalently, 0 < ε < 1.8−
√

2
1.8+

√
2

) and

then choosing s ∈ (0, min{ŝ, 1−
√

2(1+ε)
1.8(1−ε)}).

The p = 1 Case: We begin with four technical lemmas whose
proofs are given in the appendix (Section VII).

Lemma IV.3. Under assumption G, there exist universal
constants c̃0, c̃1, C̃ such that for ε > 0 sufficiently small,
if m > c̃0ε̃

−4n log ε̃−2, then with probability at least 1 −
C̃ exp(−c̃1ε̃4m),

(1−ε̃)
√

2

π
‖h‖ ≤ 1

m

m∑
i=1

|Aih| ≤ (1+ε̃)

√
2

π
‖h‖ ∀h ∈ Rn.

(IV.4)

Lemma IV.4. Under assumption G, there exists univer-
sal constants c̃0, c̃1, C̃ such that for ε̃ sufficiently small,
if m > c̃0nε̃

−4 log 1
ε̃2 , then with probability at least 1 −

C̃ exp(−c̃1ε̃4m),

1

m

m∑
i=1

∣∣|Aix|2 − |Aiy|2∣∣ 12 ≥ 0.77(1− ε̃)
∥∥xxT − yyT∥∥ 1

2

F

∀x, y ∈ Rn.
(IV.5)

Lemma IV.5. For x, y ∈ Rn, if xT y ≥ 0 (i.e. ‖x− y‖ ≤
‖x+ y‖), then

‖x+ y‖+ (
√

2− 1) ‖x− y‖ ≥ ‖x‖+ ‖y‖ (IV.6)

Lemma IV.6. For x, y ∈ Rn,
√

2
∥∥xxT − yyT∥∥

F
≥ ‖x+ y‖ ‖x− y‖ (IV.7)

We now show that if the matrix A satisfies assumption G,
then it satisfies 1−AGP with high probability.

Lemma IV.7 (Assumption G =⇒ 1-AGP). Under assump-
tion G, there exist universal constants c̃0, c̃1, C̃ > 0 such that
for ε̃ > 0 sufficiently small, if m > c̃0nε̃

−4 log 1
ε̃2 , then with

probability at least 1− C̃ exp(−c̃1ε̃4m),

µ1φ1(x, y) ≤ 1

m
‖|Ax| − |Ay|‖1 ≤ µ2φ1(x, y) ∀x, y ∈ Rn,

(IV.8)

where φ1(x, y) is defined in (II.6), µ1 =
√

2
π (2 −

√
2 − ε̃)

and µ2 =
√

2
π (1 + ε̃). Consequently, 1-AGP holds with high

probability for m sufficiently large.

Proof. By Lemma IV.3 and Lemma IV.4, there exist uni-
versal constant c0, c1, C such that for ε sufficiently small,
if m > c0nε

−4 log 1
ε2 , then with probability at least 1 −

C exp(−c1ε4m), (IV.4) and (IV.5) hold. Since we can sub-
stitute y by −y if necessary, without loss of generality, we
assume ‖x− y‖ ≤ ‖x+ y‖.

The right hand inequality in (IV.8) easily follows by (IV.4)
and triangle inequality

‖|Ax| − |Ay|‖1 ≤ ‖A(x− y)‖1 .

For the left hand inequality in (IV.8), we consider two cases:
(1) ‖x− y‖ ≤ ‖x+ y‖ ≤ 10 ‖x− y‖, and (2) ‖x+ y‖ ≥
10 ‖x− y‖.
(1) Assume ‖x− y‖ ≤ ‖x+ y‖ ≤ 10 ‖x− y‖. Then

1

m
‖|Ax| − |Ay|‖1 =

1

m

m∑
i=1

||Aix| − |Aiy||

=
1

m

m∑
i=1

|Ai(x+ y)|+ 1

m

m∑
i=1

|Ai(x− y)|

− 1

m

m∑
i=1

|Aix| −
1

m

m∑
i=1

|Aiy|

≥
√

2

π
((1− ε) ‖x+ y‖+ (1− ε) ‖x− y‖

− (1 + ε) ‖x‖ − (1 + ε) ‖y‖)

≥
√

2

π
((2−

√
2−
√

2ε) ‖x− y‖ − 2ε ‖x+ y‖)

≥
√

2

π
(2−

√
2− (

√
2 + 20)ε) ‖x− y‖ ,

(IV.9)

where the second equality is from ||a| − |b|| = |a+ b|+
|a− b|− |a|− |b| for a, b ∈ R, the first inequality is from
(IV.4) (with h successively set to x+y, x−y, x, and y),
the second inequality uses (IV.6), and the last inequality
follows from our assumption that ‖x+ y‖ ≤ 10 ‖x− y‖.

(2) Assume ‖x+ y‖ ≥ 10 ‖x− y‖. Then

1

m
‖|Ax| − |Ay|‖1 =

1

m

m∑
i=1

||Aix| − |Aiy||

≥

(
1

m

m∑
i=1

||Aix|2−|Aiy|2|
1
2

)2/(
1

m

m∑
i=1

(|Aix|+|Aiy|)

)

≥
√
π

2

0.772(1− ε)2
∥∥xxT − yyT∥∥

F

(1 + ε)(‖x‖+ ‖y‖)

≥ 0.772
√
π(1− ε)2 ‖x+ y‖ ‖x− y‖

2(1 + ε)(‖x‖+ ‖y‖)

≥ 0.772
√
π(1− ε)2 ‖x+ y‖ ‖x− y‖

2(1 + ε)(‖x+ y‖+ (
√

2− 1) ‖x− y‖)

≥ 5 · 0.772
√
π(1− ε)2

(
√

2 + 9)(1 + ε)
‖x− y‖ ,

(IV.10)
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where the first inequality is by Cauchy-Schwarz inequal-
ity applied to the vectors with ui = ||Aix| − |Aiy||

1
2

and vi = ||Aix| + |Aiy||
1
2 , the second inequality is

by Lemma IV.4 and Lemma IV.3, the third inequality
is by Lemma IV.6, the fourth inequality is by Lemma
IV.5 and the last inequality follows from our assumption
that ‖x+ y‖ ≥ 10 ‖x− y‖. When 0 < ε < 0.01, one can
show by direct computation that

5 · 0.772
√
π(1− ε)2

(
√

2 + 9)(1 + ε)
> 0.02 +

√
2

π
(2−

√
2),

and so
1

m
‖|Ax| − |Ay|‖1 ≥

√
2

π
(2−

√
2) ‖x− y‖ (IV.11)

Consequently, when 0 < ε < 0.01,

1

m
‖|Ax| − |Ay|‖1 ≥

√
2

π

(
2−
√

2− (20 +
√

2)ε
)

) ‖x− y‖ .

By substituting ε̃/(
√

2 + 20) for ε and adjusting c0 and c1
accordingly, we arrived at the desired result.

Lemma IV.8 (Assumption G =⇒ 1-AGP =⇒ 1-ARP). Un-
der assumption G, there exist universal constants c0, c1, C >
0, s ∈ (0, 1), ψ ∈ (0, 1) such that if m > c0n, then

‖(|Ax| − |Ay|)T ‖1≤ψ ‖(|Ax| − |Ay|)T c‖1
∀x, y ∈ Rn and T ⊆ [m] with |T |≤sm

holds with probability at least 1 − C exp(−c1m). Conse-
quently, 1-ARP holds with high probability for m sufficiently
large.

Proof. The proof strategy is similar to Lemma IV.2. Let
φ1(x, y) be as defined in (II.6). We begin by deriving con-
ditions on ε, s ∈ (0, 1) so that ψ ∈ (0, 1) exists. Let c0, c1, C
be the universal constants given by Lemma IV.7 so that the
implications of the lemma hold for ε ∈ (0, 1). Then choose
s ∈ (0, 1) and m so that (1− s)m > c0nε

−4 log 1
ε2 . Then, for

any x, y ∈ Rn and each subset T ⊆ [m] with |T | = sm, the
double sided inequality√

2

π
(2−

√
2− ε)φ1(x, y) ≤ 1

(1− s)m
‖(|Ax| − |Ay|)T c‖1

≤
√

2

π
(1 + ε)φ1(x, y)

(IV.12)
fails to hold with probability no larger than C exp(−c1ε4(1−
s)m), that is, 1-AGP holds for AT c . Consider the event

B := {(IV.12) holds for every T ⊆ [m] with |T | = sm}
∩{(IV.8) holds}.

By taking s sufficiently small, there exist positive constants c̃
and C̃ such that P(B) ≥ 1− C̃ exp(−c̃ε4m). On the event B,
we obtain

‖(|Ax| − |Ay|)T ‖1 = ‖|Ax| − |Ay|‖1 − ‖(|Ax| − |Ay|)T c‖1

≤
√

2

π
(1 + ε)mφ1(x, y)−

√
2

π
(2−
√

2−ε)(1−s)mφ1(x, y)

≤
√

2− 1 + 2ε

(2−
√

2− ε)(1− s)
‖(|Ax| − |Ay|)T c‖1

Therefore, if ε, s ∈ (0, 1) are such that ψ :=
√

2−1+2ε
(2−
√

2−ε)(1−s) <

1, the conclusion follows. In particular, this inequality holds
if 0 < ε < 3−2

√
2

3 ) and 0 < s < 3(1−ε)−2
√

2

2−
√

2−ε , where 3−2
√

2
3 ≥

0.05.

By combining the results of this section with those of
Section III, we find that, under assumption G, the solutions to
the `0 optimization problem (I.5) and `1 optimization problem
(I.4) coincide with high probability when the residuals are
sufficiently sparse.

V. SHARPNESS

Sharpness is an extremely useful tool for analyzing the
convergence and the rate of convergence of optimization
algorithms ([7], [9], [10], [11], [18], [24], [28]).

Definition V.1. [11] Let f : Rn → R and set X := argmin f .
Then f is said to be sharp with respect to X if

f(x) ≥ min
x
f + µdist (x |X ) ∀x ∈ Rn,

where dist (x |X ) := infy∈X ‖x− y‖.

In our context, good convergence rates for methods solving
(I.4) often require that the objective function fp satisfies
a sharpness condition. In this section we show that, under
assumption G, if |Ax∗|p − b is sufficiently sparse, then the
function

fp(x) :=
1

m
‖ |Ax|p − b‖1

is sharp with respect to the solution set {x∗,−x∗} with high
probability, for p = 1, 2.

Theorem V.2. Let assumption G hold and let p ∈ {1, 2}.
Then there exist constants Cp, cp0, cp1 > 0 and sp ∈ (0, 1),
such that if ‖|Ax∗|p − b‖0 ≤ spm, then, for m ≥ cp0n, fp is
sharp with probability at least 1− Cp exp(−cp1m).

Proof. Let c0, c1, and C be the maximum and s, ε ∈ (0, 1) the
smallest of the corresponding constants from Lemmas IV.1,
IV.2 and IV.8 so that the implications of all three of these
results stand for these values. By either Lemma IV.2 (p = 2)
or Lemma IV.8 (p = 1), A satisfies p-ARP of order sm for
ψp ∈ (0, 1) for p = 1, 2, where ψp are constants depending
on p. Since σsm(x∗) = 0, Lemma III.1 tells us that

fp(x)− fp(x∗) ≥
1− ψp
1 + ψp

∥∥|Ax|2 − |Ax∗|2∥∥1
. (V.1)

For p = 2, Lemma IV.1 tells us that if m ≥ c0ε
−2 log( 1

ε )n,
then, with probability at least 1− C exp

(
−c1ε−2 log 1

εm
)
,

1

m

∥∥|Ax|2 − |Ax∗|2∥∥1
≥ 0.9(1− ε)

∥∥xxT − yyT∥∥
F

≥ 0.45
√

2(1− ε) ‖x+ x∗‖ ‖x− x∗‖
= 0.45

√
2(1− ε) max{‖x− x∗‖ , ‖x+ x∗‖}φ1(x, x∗)

≥ 0.45
√

2(1− ε) ‖x∗‖dist (x | {x∗,−x∗} ) , (V.2)

where φ1(x, x∗) is defined in (II.6), the second inequality
follows from Lemma IV.6), and the final inequality follows
from the triangle inequality which tells us that
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max{‖x− x∗‖ , ‖x+ x∗‖} ≥ max{‖x‖ , ‖x∗‖}.
For p = 1, Lemma IV.7 tells us that, if m ≥ c0ε

−4 log( 1
ε2 )n,

then, with probability at least 1− C exp
(
−c1ε−4 log 1

ε2m
)
,

1

m
‖|Ax| − |Ax∗|‖1 ≥

√
2

π
(2−
√

2−ε) dist (x | {x∗,−x∗} ) .

Thus, in either case, by taking an 0 < ε < 1 small enough
and using (V.1), there is constant µ > 0 such that

fp(x)− fp(x∗) ≥ µdist (x | X ) ,

where X is argmin fp.

It is shown in [18] and [28] that if f2 is sharp and weakly
convex at argmin f2, then prox-linear method and subgradient
descent method with geometrically decreasing stepsize con-
verges locally quadratically and locally linearly, respectively.
Since weak convexity of f2 under assumption G ([28], [18],
[24]), sharpness in this regime guarantees these two algorithms
converge with the specified rate. In both algorithms proper
initialization is needed (e.g., Section 5 of [39]).

VI. CONCLUDING REMARKS

There are several recent results discussing the nature of the
solution set to the robust phase retrieval problem minx f2(x)
with sparse noise under weaker distributional hypotheses than
employed here ([18], [28], [39], [19]). The focus of these
works are algorithmic. Their goal is to show their methods are
robust to outliers, and, in addition, some establish the sharp-
ness of f2 in order to prove rates of convergence ([18], [28]).
Although these works use weaker distributional hypotheses,
the probability of successful recovery is an average over all
possible subsets T ⊆ [m] with |T | = sm for some s ∈ (0, 1

2 ).
Consequently, the value of s in their results is larger than
ours. The reason for this difference is that, in our result,
successful recovery is valid for all possible subsets T ⊆ [m]
with |T | = sm for some s ∈ (0, 1), with uniformly high
probability. A more precise description of difference between
these results follows.

In [18] and [28], the random matrix A and the random
index set T ⊆ [m], with |T | = sm for s ∈ (0, 1

2 ), are drawn
independently of each other. Let w ∈ {0, 1}m denote the
random indicator vector of T , that is, wi = 1 if i ∈ T and
wi = 0 otherwise. Let z ∈ Rm be an arbitrary vector. The
noisy model in [18] and [28] has the form

min
x
f̃2(x) :=

∥∥∥|Ax|2 − (~1− w)� b− w � z
∥∥∥

1
,

where b = |Ax∗|2, ~1 represents the vector with 1 in each
entry and � represents the elementwise product of vectors.
The authors in [18] and [28] prove sharpness of f̃2 with respect
to x∗ with high probability. Due to the independence of A and
T , these results show that the probability

P(f̃2 is sharp) =
1(
m
sm

) ∑
T0:|T0|=sm

P(f̃T0
2 is sharp)

is high, where f̃T0
2 (x) :=

∥∥∥|Ax|2 − (~1− w0)� b− w0 � z
∥∥∥

1
and w0 is the indicator vector for a fixed index set T0. On the

other hand, we show that with high probability, f̃T0
2 is sharp

for all possible T0 with |T0| = sm. However, this stronger
implication comes at the expense of a smaller value for s. By
design, our stronge result closely parallels the result in [16]
for compressed sensing.

VII. APPENDIX

The proofs for Lemmas IV.3, IV.4, IV.5, and IV.6 are given
below. These proofs make use of a Hoeffding-type inequality
[36] explained below. A random variable X is said to be sub-
gaussian [36, Definition 5.7] if

‖X‖ψ2
:= sup

p≥1
p−1/2(E|X|p)1/p (VII.1)

is finite, and is said to be centered if it has zero expectation.
By [36, Proposition 5.10], there is a universal constant c > 0
such that if X1, ..., XN are independent centered sub-Gaussian
random variables, then, for every a = {a1, ..., aN} ∈ RN and
t ≥ 0, we have

P

(
|
N∑
i=1

aiXi| ≥ t

)
≤ e · exp

(
− ct2

K2 ‖a‖2

)
, (VII.2)

where K := maxi ‖Xi‖ψ2
.

Proof of Lemma IV.3: First observe that the inequality (IV.4)
is trivially true for h = 0. Next, let h ∈ Rn \ {0} and 0 <

ε <
√

2− 1. Observe that |Aih|
‖h‖ are independent sub-gaussian

random variables with mean
√

2
π . Therefore, |Aih|

‖h‖ −
√

2
π is

a centered sub-gaussian random variable. Hence, (VII.2) tells
us that there are universal constants Ĉ > 0 and ĉ > 0 such
that

P

(∣∣∣∣∣
m∑
i=1

(
|Aih|
‖h‖

−
√

2

π

)∣∣∣∣∣ > m

√
2

π
ε

)
≤ Ĉ exp(−ĉmε2).

(VII.3)
Therefore (IV.4) holds for each fixed h ∈ Rn \ {0} with
probability 1− Ĉ exp(−ĉmε2). We now show that there exist
a universal event with large probability, in which (IV.4) holds
for every h. On the unit sphere S := {x| ‖x‖ = 1} ⊂ Rn
construct an ε-net Nε with |Nε| ≤ (1 + 2

ε )n [36, Lemma
5.2], i.e., for any h ∈ S, there exists h0 ∈ Nε ⊆ S such
that ‖h− h0‖ ≤ ε. Taking the probability of the union of the
events in (VII.3) for all the points h0 ∈ Nε, we obtain the
bound Ĉ(1 + 2

ε )n exp(−ĉmε2). Hence, (IV.4) holds for each
h0 ∈ Nε with probability at least 1− Ĉ(1+ 2

ε )n exp(−ĉmε2).
Let h0 ∈ Nε and h ∈ S be such that ‖h− h0‖ ≤ ε, and
let c0, c1, and C be the universal constants from Lemma
IV.1. If m ≥ c0nε

−2 log( 1
ε ), then, with probability at least
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1− C exp(−c1mε2),

1

m
|
m∑
i=1

|Aih| −
m∑
i=1

|Aih0|| ≤
1

m

m∑
i=1

||Aih| − |Aih0||

≤ 1

m

m∑
i=1

||Aih|2 − |Aih0|2|
1
2

≤ (
1

m

m∑
i=1

||Aih|2 − |Aih0|2|)
1
2

≤ 21/4(1 + ε)1/2
∥∥hhT − h0h

T
0

∥∥ 1
2

F

≤ 21/4(1 + ε)1/2(‖h− h0‖ ‖h‖+ ‖h− h0‖ ‖h0‖)
1
2

≤ 2ε1/2,
(VII.4)

where the second inequality follows since ||a|− |b||2 ≤ (|a|+
|b|)||a|− |b||, the third from the concavity of (·)1/2, the fourth
is by Lemma IV.1, the fifth is by triangle inequality and the
last inequality is from ‖h‖ = ‖h0‖ = 1 and ‖h− h0‖ ≤ ε.
Therefore, on the intersection of these events we deduce that
if m ≥ c0nε−2 log( 1

ε ), then

(1−(ε+
√

2πε))
√

2/π≤ 1

m

m∑
i=1

|Aih|≤(1+(ε+
√

2πε))
√

2/π

holds for all h ∈ S with probability at least 1 − Ĉ(1 +
2
ε )n exp(−ĉmε2) − C exp(−c1mε2) for m ≥ c1nε

−2 log( 1
ε ).

Since 0 < ε <
√

2−1, we have ε2+2ε−1 ≤ 0, or equivalently,
log(1 + 2

ε ) ≤ 2 log(1/ε). Let c̄0 > max{c0, 2/ĉ} and set
ĉ1 := ĉ − 2/c̄0 (which is positive because c̄0 > 2/ĉ, or
equivalently, ĉ > 2/c̄0). Then, for m ≥ c̄0nε

−2 log( 1
ε ), or

equivalently, mε2/c̄0 ≥ n log(1/ε),

1− Ĉ(1 + 2/ε)n exp(−ĉmε2)− C exp(−c1mε2)

= 1− Ĉ exp(−ĉmε2 + n log(1 + 2/ε))− C exp(−c1mε2)

≥ 1− Ĉ exp(−ĉmε2 + 2n log(
1

ε
))− C exp(−c1mε2)

≥ 1− Ĉ exp(−ĉmε2 + 2mε2/c̄0)− C exp(−c1mε2)

= 1− C exp(−c1mε2)− Ĉ exp(−(ĉ− 2

c̄0
)mε2)

= 1− C exp(−c1mε2)− Ĉ exp(−ĉ1mε2)

≥ 1− C̃ exp(−c̄1mε2),
(VII.5)

where C̃ = 2 max{C, Ĉ} and c̄1 := min{c1, ĉ1}. Define ε̃ :=
(1 +

√
2π)ε1/2 so that ε = (1 +

√
2π)−2ε̃2 and

(1+
√

2π)−1ε̃2 = (1+
√

2π)ε ≤ (ε+
√

2πε) ≤ (1+
√

2π)ε1/2 = ε̃.

Also, for ε < e−1, log(ε−1) = log( (1+
√

2π)2

ε̃2 ) ≤ (1 + log(1 +√
2π)2) log(ε̃−2) (here we use the fact that if α > 1, β < e−1,

then ln(α/β) ≤ (1 + ln(α)) ln(1/β)). If we now set c̃1 :=
(1 +
√

2π)−4c̄1 and c̃0 := c̄0(1 +
√

2π)4(1 + log(1 +
√

2π)2),
we obtain the result. �

Proof of Lemma IV.4: We begin by showing that for all rank-
2 matrix M

1

m

m∑
i=1

∣∣AiMATi
∣∣ 12 ≥ 0.77(1− ε) ‖M‖

1
2

F (VII.6)

with high probability for all ε sufficiently small. Let ε ∈
(0, 1/9). Clearly inequality (VII.6) holds when M = 0
regardless of the value of ε ∈ (0, 1/9). Assume M 6= 0.
Since we can divide (VII.6) by the square-root of the spectral
norm ‖M‖

1
2 , we can assume ‖M‖ = 1. Using the eigenvalue

decomposition of M , we can assume that M = z1z
T
1 −sz2z

T
2

where zT1 z2 = 0, ‖z1‖ = ‖z2‖ = 1 and s ∈ [−1, 1]. Since
for each i, Aiz1 and Aiz2 are independent standard Gaussians
and

∣∣AiMATi
∣∣ 12 =

∣∣(Aiz1)2 − s(Aiz2)2
∣∣ 12

≤
(
(Aiz1)2 + (Aiz2)2

) 1
2 ≤ |Aiz1|+ |Aiz2|,

(VII.7)

the random variables
∣∣AiMATi

∣∣ 12 are sub-Gaussian. Set

e(s) := E
∣∣AiMATi

∣∣ 12 = E
∣∣Z2

1 − sZ2
2

∣∣ 12 where Z1 and Z2

are independent standard Gaussian scalar random variables.
Notice ‖M‖F =

∥∥z1z
T
1 − sz2z

T
2

∥∥
F

=
√

1 + s2 and

e(s) = E
∣∣Z2

1 − sZ2
2

∣∣ 12
=

1

2π

∫ ∞
0

r2e−
r2

2 dr

∫ 2π

0

∣∣cos2 θ − s sin2 θ
∣∣− 1

2 dθ

=
1

2
√

2π

∫ 2π

0

∣∣cos2 θ − s sin2 θ
∣∣ 12 dθ .

(VII.8)
In Figure 1, we plot

e(s)

‖M‖1/2F

=

∫ 2π

0

∣∣cos2 θ − s sin2 θ
∣∣ 12 dθ/(2√2π(1 + s2)1/4)

for s ∈ [−1, 1].

Fig. 1: Values of e(s)

‖M‖1/2F

when s ∈ [−1, 1].

Numerically we find that e(s)

‖M‖1/2F

≥ 0.77 for all s ∈ [−1, 1].

Note that for each i = 1, . . . ,m, Yi :=
|AiMAT

i |
1
2

e(s) − 1 is a
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centered sub-Gaussian random variable, since, by (VII.1) and
(VII.7),

‖Yi‖ψ2
≤ sup

p≥1
p−

1
2 (

2(E|Z|p)
1
p

e(s)
+ 1)

≤ 2

0.77 ‖M‖1/2F

‖Z‖ψ2
+ 1 < +∞,

(VII.9)

where Z is a standard Gaussian variable. Hence, (VII.2) tells
us that there exist universal constants Ĉ > 0 and ĉ1 > 0 such
that

P

∣∣∣∣∣∣
m∑
i=1

∣∣AiMATi
∣∣ 12

e(s)
− 1

∣∣∣∣∣∣ > mt

 ≤ Ĉ exp(−ĉ1mt2)

∀ t ≥ 0.
(VII.10)

Consequently, for fixed M and t = ε,

1

m

m∑
i=1

∣∣AiMATi
∣∣ 12 ≥ (1− ε)e(s) ≥ 0.77(1− ε) ‖M‖1/2F

(VII.11)
holds with probability at least 1− Ĉ exp(−ĉ1mε2).

Next we generalize (VII.11) to all rank-2 matrices
M . Again, by scale invariance, we assume ‖M‖F = 1.
Consequently, we only need to prove (VII.11) holds with high
probability for all M ∈ M := {βuuT + γvvT | ‖u‖ = ‖v‖ =
1, uT v = 0 and β2 + γ2 = 1}. Set Sε2 := Tε2 ×Nε2 ×Nε2
where Tε2 is an ε2-net of [−1, 1] and Nε2 is an ε2-net of
the unit sphere {x ∈ Rn| ‖x‖ = 1}. Since |Tε2 | ≤ 2

ε2 and
|Nε2 | ≤

(
3
ε2

)n
, we know |Sε2 | ≤

(
3
ε2

)2n+1 ≤
(

3
ε2

)4n+2
.

Let E denote the event that (VII.11) holds for every
(β0, u0.v0) ∈ Sε2 . Consequently,

P(E) ≥ 1− Ĉ(3/ε)4n+2 exp(−ĉmε2)

= 1− Ĉ exp(−ĉmε2 + (4n+ 2) ln(3/ε)).

Since ε ≤ 1/9, 3n log(1/ε) ≥ (4n+ 2) log(3/ε), and so

P(E) ≥ 1− Ĉ exp(−ĉmε2 + 3n log(1/ε)). (VII.12)

For M ∈ M, we want to approximate M = βuuT + γvvT

by an element M0 = β0u0u
T
0 + γ0v0v

T
0 ∈ M with

(β0, u0, v0) ∈ Sε2 . More precisely, let (β0, u0, v0) ∈ Sε2 and
M0 = β0u0u

T
0 +sgn(γ)

√
1− β2

0v0v
T
0 be such that |β−β0| ≤

ε2, ‖u− u0‖ ≤ ε2 and ‖v − v0‖ ≤ ε2. Consequently, we have

|γ − sgn(γ)
√

1− β2
0 | = |

√
1− β2 −

√
1− β2

0 |

≤
∣∣β2 − β2

0

∣∣ 12 ≤√2 |β − β0|
1
2 ≤
√

2ε.

Also note that

‖βuuT − β0u0u
T
0 ‖F ≤|β − β0|

∥∥uuT∥∥
F

+
∥∥β0u(u− u0)T

∥∥
F

+
∥∥β0(u− u0)uT0

∥∥
F

= |β − β0| ‖u‖2 + |β0| ‖u− u0‖ (‖u‖+ ‖u0‖)
≤ 3ε2 < 4ε

(VII.13)
Similarly

∥∥∥γvvT − sgn(γ)
√

1− β2
0v0v

T
0

∥∥∥ ≤ 2ε2 + 2ε < 4ε.
Let C, c0, and c1 be the universal constants from Lemma IV.1.

Then, on the intersection of events where (IV.1) holds and E
we have∣∣∣∣∣ 1

m

m∑
i=1

|AiMATi |
1
2 − 1

m

m∑
i=1

|AiM0A
T
i |

1
2

∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣∣∣∣AiMATi
∣∣ 12 − ∣∣AiM0A

T
i

∣∣ 12 ∣∣∣
≤ 1

m

m∑
i=1

∣∣∣∣AiMATi
∣∣− ∣∣AiM0A

T
i

∣∣∣∣ 12
≤

(
1

m

m∑
i=1

∣∣∣∣AiMATi
∣∣− ∣∣AiM0A

T
i

∣∣∣∣) 1
2

≤

(
1

m

m∑
i=1

∣∣Ai(M −M0)ATi
∣∣) 1

2

≤

(
1

m

m∑
i=1

∣∣Ai(βuuT−β0u0u
T
0 )ATi

∣∣+∣∣Ai(γvvT−γ0v0v
T
0 )ATi

∣∣) 1
2

≤

(
1

m

m∑
i=1

∣∣Ai(βuuT− β0u0u
T
0 )ATi

∣∣) 1
2

+

(
1

m

m∑
i=1

∣∣Ai(γvvT − γ0v0v
T
0 )ATi

∣∣) 1
2

≤ 2
1
4 (1 + ε)

1
2

∥∥βuuT− β0u0u
T
0

∥∥ 1
2

F

+ 2
1
4 (1 + ε)

1
2

∥∥γvvT − γ0v0v
T
0

∥∥ 1
2

F

≤ 2
9
4 (1 + ε)

1
2 ε

1
2

≤ 23ε
1
2 ,

where the second inequality is by ||a| − |b||2 ≤ |a2 − b2| for
any a, b ∈ R, the third inequality is by concavity of (·)1/2, the
fourth and the fifth inequalities are by triangle inequality, the
sixth inequality is by (a+b)1/2 ≤ a1/2+b1/2 for all a, b ∈ R+

and the seventh inequality follows from the right hand side of
equation (IV.1) when m > c0nε

−2 log(1/ε). We now follow
the argument for (VII.5). Let c̄0 > max{c0, 3

ĉ} and set ĉ1 :=
ĉ− 3

c̄0
> 0. Consequently, by (VII.12), if m > c̄0nε

−2 log 1
ε ,

or equivalently, 3mε2

c̄0
> 3n log(1/ε), we have

1

m

m∑
i=1

∣∣AiMATi
∣∣ 12 ≥ 0.77(1− ε− 23ε1/2) (VII.14)

holds with probability at least

1− Ĉ exp(−ĉmε2 + 3n log(1/ε))− C exp(−c1ε2m)

≥ 1− Ĉ exp(−ĉmε2 +
3mε2

c̄0
)− C exp(−c1ε2m)

= 1− C exp(−c1ε2m)− Ĉ exp(−ĉ1mε2)

≥ 1− C̃ exp(−c̄1ε2m),

where C̃ = 2 max{C, Ĉ} and c̄1 := min{c1, ĉ1}. By repeating
the adjustments made to ε, c̄0, and c̄1 as described at the end
of the proof of Lemma IV.3, we obtain the result. �
Proof of Lemma IV.5: If x = 0 or y = 0 or x = y, the
inequality holds. Thus, in particular, by the symmetry of (IV.6)
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in x and y, we can assume that ‖x‖ ≥ ‖y‖ > 0. Dividing
(IV.6) by ‖x‖, tells us that we can assume ‖x‖ = 1 and ‖y‖ =

t for t ∈ [0, 1]. Set ρ := xT y
‖y‖ ∈ [0, 1], and define h(t, ρ) :=√

t2 − 2ρt+ 1+
√
t2 + 2ρt+ 1−1−t = ‖x+ y‖+‖x− y‖−

‖x‖ − ‖y‖. If x = y, we are done; otherwise, set q(t, ρ) :=
h(t,ρ)√
t2−2ρt+1

= ‖x+y‖+‖x−y‖−‖x‖−‖y‖
‖x−y‖ , for each (t, ρ) ∈ [0, 1]×

[0, 1]. We now show that the minimum value of q over [0, 1]×
[0, 1] is 2−

√
2. For fixed t ∈ [0, 1],

∂q(t, ρ)

∂ρ
=

t(t2 + 1)

(t2 − 2ρt+ 1)
3
2

[
2

(t2 + 2ρt+ 1)
1
2

− t+ 1

t2 + 1

]
≥ t(t2 + 1)

(t2 − 2ρt+ 1)
3
2

[
2

t+ 1
− t+ 1

t2 + 1

]
≥ 0,

where the first inequality follows since t2 +2ρt+1 ≤ (1+ t)2

as ρ ∈ [0, 1], and the last inequality follows since 2(t2 + 1) ≥
(t+ 1)2. That is, q(t, ρ) is increasing with respect to ρ when
ρ ∈ [0, 1] for each fixed t ∈ [0, 1]. Also

dq(t, 0)

dt
= − 1− t

(1 + t2)
3
2

≤ 0.

Hence q(t, 0) is decreasing for t ∈ [0, 1]. We know for each
t ∈ [0, 1], ρ ∈ [0, 1],

q(t, ρ) ≥ q(t, 0) ≥ q(1, 0) = 2−
√

2

Thus h(t, ρ) ≥ (2−
√

2) ‖x− y‖, which leads to the desired
result. �
Proof of Lemma IV.6: If x = y = 0, we are done. Next
assume at least one of x and y is non-zero. Since the result
is symmetric in x and y, we can assume that ‖x‖ ≥ ‖y‖ and
x 6= 0. In addition, we can assume ‖x‖ = 1 and ‖y‖ = t ∈
[0, 1] since we can divide (IV.7) by ‖x‖ on both sides. Setting
ρ := xT y

‖y‖ , We have

2
∥∥xxT − yyT∥∥2

F
=2

∑
i,j

(xixj − yiyj)2


=2

(
∑
i

x2
i )(
∑
j

x2
j )+(

∑
i

y2
i )(
∑
j

y2
j )


−4(

∑
i

xiyi)(
∑
j

xjyj)

=2(1 + t4)− 4ρ2t2

≥(1 + t2)2 − 4ρ2t2

=(1 + t2 + 2ρt)(1 + t2 − 2ρt)

=‖x+ y‖2 ‖x− y‖2 ,

where the inequality follows since (1+t2)2 = (1+t4)+2t2 ≤
2(1 + t4) for t ∈ [0, 1]. �
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