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1. INTRODUCTION

Kalman filtering (Kalman, 1960; Kalman and Bucy, 1961) and
smoothing methods form a broad category of computational
algorithms used for inference on noisy dynamical systems. The
classic linear Gaussian model is as follows:

x1 ∼ N(x0,Q1),
xk = Gkxk−1 +wk k = 2, . . . ,N,
zk = Hkxk + vk k = 1, . . . ,N ,

(1)

where x0 is known, xk,wk ∈ Rn, zk,vk ∈ Rm(k), Gk ∈ Rn×n

and Hk ∈ Rm(k)×n, and wk, vk are mutually independent zero-
mean Gaussian random variables with known positive definite
covariance matrices Qk and Rk, respectively.

Rauch-Tung-Striebel (RTS) and the Mayne-Fraser (MF) algo-
rithm are used to obtain the minimum variance estimates of the
states given {z1, . . . ,zN}. RTS (Rauch et al., 1965; Ansley and
Kohn, 1982) computes the state estimates running forward and
then back through the data, while MF (Mayne, 1966; Fraser and
Potter, 1969; Wall et al., 1981) uses combination of two inde-
pendent filters. A third algorithm proposed by Mayne (Mayne,
1966), hereby called the M procedure, is first run backward
and then forward. We analyze the numerical stability of these
smoothers from a single unified perspective.

The structure of linear systems in the classic linear case are
pervasive in generalized Kalman smoothing (Aravkin et al.,
2017), and apply to smoothing systems with sparse innova-
tions, constraints, and outliers (Aravkin et al., 2014). The same
structure appears in systems with singular covariance (Jonker
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et al., 2019), nonlinear systems (Bell et al., 2009; Aravkin et al.,
2011) and systems with unknown parameters. Results derived
here are applicable to all of these settings. We concentrate on
the least squares case to make the ideas maximally clear.

The paper proceeds as follows. In Section 2 we formulate
Kalman smoothing as a least squares problem where the system
is symmetric block tridiagonal (SBT). In Section 3 we obtain
bounds on the eigenvalues of SBT systems in terms of the
behavior of the individual blocks, and show how these bounds
are related to the stability of Kalman smoothing formulations.
In Sections 4, 5, and 6, we characterize the RTS, M, and
MF smoothers as solvers for SBT systems, and analyze their
numerical stability. We conclude with a discussion of these
results and their consequences.

2. LEAST SQUARES KS AND SBT SYSTEMS

Obtaining the maximum a posteriori (MAP) estimate for lin-
ear systems with Gaussian process and measurement noise is
equivalent to solving the weighted least squares problem

min
{xk}

f ({xk}) :=
N

∑
k=1
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k (xk −Gkxk−1)

(2)

where G1 = I captures the initial condition. Given a sequence
of column vectors {vk} and matrices {Tk} we use the notation

vec({vk}) =




v1
v2
...

vN
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1. INTRODUCTION

Kalman filtering (Kalman, 1960; Kalman and Bucy, 1961) and
smoothing methods form a broad category of computational
algorithms used for inference on noisy dynamical systems. The
classic linear Gaussian model is as follows:

x1 ∼ N(x0,Q1),
xk = Gkxk−1 +wk k = 2, . . . ,N,
zk = Hkxk + vk k = 1, . . . ,N ,

(1)

where x0 is known, xk,wk ∈ Rn, zk,vk ∈ Rm(k), Gk ∈ Rn×n

and Hk ∈ Rm(k)×n, and wk, vk are mutually independent zero-
mean Gaussian random variables with known positive definite
covariance matrices Qk and Rk, respectively.

Rauch-Tung-Striebel (RTS) and the Mayne-Fraser (MF) algo-
rithm are used to obtain the minimum variance estimates of the
states given {z1, . . . ,zN}. RTS (Rauch et al., 1965; Ansley and
Kohn, 1982) computes the state estimates running forward and
then back through the data, while MF (Mayne, 1966; Fraser and
Potter, 1969; Wall et al., 1981) uses combination of two inde-
pendent filters. A third algorithm proposed by Mayne (Mayne,
1966), hereby called the M procedure, is first run backward
and then forward. We analyze the numerical stability of these
smoothers from a single unified perspective.

The structure of linear systems in the classic linear case are
pervasive in generalized Kalman smoothing (Aravkin et al.,
2017), and apply to smoothing systems with sparse innova-
tions, constraints, and outliers (Aravkin et al., 2014). The same
structure appears in systems with singular covariance (Jonker
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et al., 2019), nonlinear systems (Bell et al., 2009; Aravkin et al.,
2011) and systems with unknown parameters. Results derived
here are applicable to all of these settings. We concentrate on
the least squares case to make the ideas maximally clear.

The paper proceeds as follows. In Section 2 we formulate
Kalman smoothing as a least squares problem where the system
is symmetric block tridiagonal (SBT). In Section 3 we obtain
bounds on the eigenvalues of SBT systems in terms of the
behavior of the individual blocks, and show how these bounds
are related to the stability of Kalman smoothing formulations.
In Sections 4, 5, and 6, we characterize the RTS, M, and
MF smoothers as solvers for SBT systems, and analyze their
numerical stability. We conclude with a discussion of these
results and their consequences.

2. LEAST SQUARES KS AND SBT SYSTEMS

Obtaining the maximum a posteriori (MAP) estimate for lin-
ear systems with Gaussian process and measurement noise is
equivalent to solving the weighted least squares problem
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We make the following definitions:
R = diag({Rk})
Q = diag({Qk})
H = diag({Hk})

x = vec({xk})
ζ = vec({x0,0, . . . ,0})
z = vec({z1,z2, . . . ,zN})

(3)

G =




I 0

−G2 I
. . .

. . . . . . 0
−GN I


 . (4)

With definitions in (3) and (4), problem (2) can be written

min
x

f (x) =
1
2
‖Hx− z‖2

R−1 +
1
2
‖Gx−ζ‖2

Q−1 , (5)

where ‖a‖2
M = a�Ma. Minimizing (5) is equivalent to solving

(H�R−1H +G�Q−1G)x = H�R−1z+G�Q−1ζ . (6)

The linear system in (6) is a symmetric positive definite SBT
system. Let Φ denote a generic SBT matrix, with ΦS denoting
the Kalman smoothing case. We have

ΦS :=H�R−1H +G�Q−1G =




B1 CT
2 0 · · · 0

C2 B2 CT
3 · · ·

...
...

. . . . . . . . .
...

0 · · · CT
N

0 · · · 0 CN BN



, (7)

with Ck ∈ Rn×n and Bk ∈ Rn×n defined as follows:

Ck =−Q−1
k Gk ,

Bk = Q−1
k +G�

k+1Q−1
k+1Gk+1 +H�

k R−1
k Hk

(8)

where
GN+1 = 0 and G�

N+1Q−1
N+1GN+1 = 0 . (9)

This SBT structure was noted early on by Wright (1990);
Fahrmeir and Kaufmann (1991); Wright (1993). SBT linear
systems arise in all extensions to inference for dynamic sys-
tems, and are solved repeatedly by iterative algorithms in these
settings. For detailed examples, please see Aravkin et al. (2017)
for a survey both methods and types of smoothing problems.
That survey also previews some of the results presented here
without proofs or stability results, citing an older unpublished
preprint (Aravkin et al., 2013).

3. CHARACTERIZING SBT SYSTEMS

Consider systems of form

gTq−1g (10)
where

q = diag{q1, . . .qN}, g =




I 0

g2 I
. . .

. . . . . . 0
gN I


 ,

qi are positive definite, and gi are square.

Let λmin, λmax, and σmin, σmax denote the minimum and maxi-
mum eigenvalues and singular values, respectively. Simple up-
per bounds on the lower and upper eigenvalues of gTq−1g are
derived in the following theorem.

Theorem 3.1. Consider matrix (10). Then, one has

σ 2
min(g)

λmax(q)
≤ λmin(gTq−1g)≤ λmax(gTq−1g)≤ σ2

max(g)
λmin(q)

. (11)

This gives the following simple bound on the condition number
κ of (10):

κ(gTq−1g) =
λmax(gTq−1g)
λmin(gTq−1g)

≤ λmax(q)σ2
max(g)

λmin(q)σ2
min(g)

. (12)

Since we typically have bounds on the eigenvalues of q, all that
remains is to characterize the singular values of g in terms of
the individual gk. This is done in the next result which uses the
relation

gTg =




I +gT
2 g2 gT

2 0 · · ·

g2 I +gT
3 g3

...
...

. . . gT
N

0 gN I +gT
N+1gN+1




(13)

where we define gN+1 := 0, so that the bottom right entry is the
identity matrix.
Theorem 3.2. The following bounds hold for the singular val-
ues of g:

max
(
0,min

k

{
1+σ2

min(gk+1)−σmax(gk)−σmax(gk+1)
})

≤ σ2
min(g) ≤ σ2

max(g) ≤
max

k

{
1+σ2

max(gk+1)+σmax(gk)+σmax(gk+1)
}

(14)
Corollary 3.1. Let vmin be the eigenvector corresponding to
λmin(gTg), and suppose that N is the index of the subvector of
vmin with the largest norm. Then the lower bound is given by

max{0,1−σmax(gN)} ≤ σ2
min(g) . (15)

4. FORWARD BLOCK TRIDIAGONAL (FBT)
ALGORITHM AND THE RTS SMOOTHER

We now present the FBT algorithm. Suppose for k = 1, . . . ,N,
bk ∈ Rn×n, ek ∈ Rn×�, rk ∈ Rn×�, and for k = 2, . . . ,N, ck ∈
Rn×n. We define the corresponding SBT system of equations



b1 cT
2 0 · · · 0

c2 b2
...

...
. . . 0

0 cN−1 bN−1 cT
N

0 · · · 0 cN bN







e1

e2
...

eN−1
eN




=




r1

r2
...

rN−1
rN




(16)

Let Φ denotes the generic SBT matrix in this system. For
positive definite systems, the FBT algorithm is defined in Al-
gorithm 1 (Bell, 2000, algorithm 4). We now show that the
RTS smoother is an implementation of FBT when Φ is set to
the matrix ΦS in (7). We use r to denote the column vector
[rT

1 . . .rT
N ]

T on the rhs of (16). The proof is in (Aravkin, 2010,
Chapter 1), and the result is also noted in Aravkin et al. (2017).
Theorem 4.1. When applied to ΦS in (7) with r = H�R−1z+
G�Q−1ζ , Algorithm 1 is equivalent to the RTS Rauch et al.
(1965) smoother.

We now relate stability of the forward block tridiagonal algo-
rithm to the stability of the system (10).
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gorithm 1 (Bell, 2000, algorithm 4). We now show that the
RTS smoother is an implementation of FBT when Φ is set to
the matrix ΦS in (7). We use r to denote the column vector
[rT

1 . . .rT
N ]

T on the rhs of (16). The proof is in (Aravkin, 2010,
Chapter 1), and the result is also noted in Aravkin et al. (2017).
Theorem 4.1. When applied to ΦS in (7) with r = H�R−1z+
G�Q−1ζ , Algorithm 1 is equivalent to the RTS Rauch et al.
(1965) smoother.

We now relate stability of the forward block tridiagonal algo-
rithm to the stability of the system (10).

Algorithm 1 Forward Block Tridiagonal (FBT)
The inputs to this algorithm are {ck}N

k=2, {bk}N
k=1, and {rk}N

k=1
where, for each k, ck ∈ Rn×n, bk ∈ Rn×n, and rk ∈ Rn×�. The
output is the sequence {ek}N

k=1 that solves equation (16), with
each ek ∈ Rn×�.
(1) Set d f

1 = b1 and s f
1 = r1.

For k = 2 To N :
• Set d f

k = bk − ck(d
f
k−1)

−1cT
k .

• Set s f
k = rk − ck(d

f
k−1)

−1sk−1.
(2) Set eN = (d f

N)
−1sN .

For k = N −1 To 1 :
• Set ek = (d f

k )
−1(s f

k − cT
k+1ek+1).

Theorem 4.2. Consider any SBT system Φ ∈ RNn of form (16).
Suppose we are given a lower bound αL and an upper bound
αU on the eigenvalues of this system:

0 < αL ≤ λmin(Φ)≤ λmax(Φ)≤ αU . (17)
If we apply the FBT iteration

d f
k = bk − ck(d

f
k−1)

−1cT
k ,

then
0 < αL ≤ λmin(d

f
k )≤ λmax(d

f
k )≤ αU ∀k . (18)

In other words, the FBT iteration preserves eigenvalue bounds
(and hence the condition number) for each block, and hence
will be stable when the full system is well conditioned.

5. BACKWARD BLOCK TRIDIAGONAL ALGORITHM
AND THE M SMOOTHER

In this section, we discuss the backward block tridiagonal
(BBT) algorithm, and show it is equivalent to the M smoother
(Mayne, 1966) when applied to the Kalman smoothing setting.

Let us again begin with a generic SBT system Φ ∈ RNn of
form (16). Now, starting at the lower right corner, we subtract
cT

Nb−1
N times row N from row N − 1, and iterate this procedure

up until we reach the first row of the matrix, using dk to denote
the resulting diagonal blocks, and sk the corresponding right
hand side of the equations:

db
N = bN , db

k = bk − cT
k+1(d

b
k+1)

−1ck+1 (k = N −1, · · · ,1)
sb

N = eN , sb
k = rk − cT

k+1(d
b
k+1)

−1sk+1 (k = N −1, · · · ,1) .
We now have a lower triangular system:



db
1 0 · · · 0

c2 db
2 0 . . . 0

. . .
...

... cN−1 db
N−1 0

0 cN db
N







e1
e2
...

eN−1
eN




=




s1
s2
...

sN−1
rN




(19)

Next, we solve for the first block vector and then proceed
back down, doing back substitution. The entire procedure is
summarized in Algorithm 2. We have the following results.
Theorem 5.1. When applied to ΦS in (7) with r = H�R−1z+
G�Q−1ζ , BBT is equivalent to the M smoother, i.e. (Mayne,
1966, Algorithm A).

Next, we show that the BBT algorithm has the same stability
result as the FBT algorithm.
Theorem 5.2. Consider any SBT system Φ ∈ RNn of form (16)
and suppose we are given the bounds αL and αU for the lower

Algorithm 2 Backward Block Tridiagonal (BBT)
The inputs to this algorithm are {ck}, {bk}, and {rk}. The
output is a sequence {ek} that solves equation (16).
(1) Set db

N = bN and sb
N = rN .

For k = N −1, . . . ,1,
• Set db

k = bk − cT
k+1(d

b
k+1)

−1ck+1.
• Setsb

k = rk − cT
k+1(d

b
k+1)

−1sk+1.
(2) Set e1 = (db

1)
−1sb

1.
For k = 2, . . . ,N,
• Set ek = (db

k )
−1(sb

k − ckek−1).

and upper bounds of the eigenvalues of this system, so (17) is
satisfied. If we apply the BBT iteration

db
k = bk − cT

k+1(d
b
k+1)

−1ck+1

then
0 < αL ≤ λmin(db

k )≤ λmax(db
k )≤ αU ∀k .

Theorems 4.2 and 5.2 show that both forward and backward
tridiagonal algorithms are stable when the SBT systems they
are applied to are well conditioned.

6. TWO FILTER BLOCK TRIDIAGONAL ALGORITHM
AND THE MF SMOOTHER

In this section, we discuss the MF (Mayne, 1966; Fraser and
Potter, 1969) smoother for (16) and characterize its stability.
Let d f

k ,s
f
k denote the forward matrix and vector terms obtained

after step 1 of Algorithm 1, and db
k ,s

b
k denote the terms obtained

after step 1 of Algorithm 2, and let bk,rk refer to the diagonal
terms and right hand side of system (16). Algorithm 3 uses
elements of both forward and backward algorithms.

Algorithm 3 Two Filter Block Tridiagonal
The inputs to this algorithm are {ck}, {bk}, and {rk}. The
output is a sequence {ek} (that is shown to solve equation (16)
in Theorem 6.1).
(1) Set d f

1 = b1, s f
1 = r1.

For k = 2 To N :
• Set d f

k = bk − ck(d
f
k−1)

−1cT
k .

• Set s f
k = rk − ck(d

f
k−1)

−1sk−1.
(2) Set db

N = bN and sb
N = rN .

For k = N −1, . . . ,1,
• Set db

k = bk − cT
k+1(d

b
k+1)

−1ck+1.
• Set sb

k = rk − cT
k+1(d

b
k+1)

−1sk+1.
(3) For k = 1, . . . ,N

• Set ek = (d f
k +db

k −bk)
−1(s f

k + sb
k − rk).

Theorem 6.1. The solution e to (16) is given by Algorithm 3.
Furthermore, when applied to the Kalman smoothing sys-
tem (6), i.e. when Φ = ΦS, Algorithm 3 is equivalent to the
Mayne-Fraser smoother. In particular, the MF update can be
written

x̂k = (d f
k +db

k −bk)
−1(s f

k + sb
k − rk) . (20)

We now discuss the numerical stability of Algorithm 3, and of
the MF scheme, see (20).
Theorem 6.2. Consider any SBT system Φ ∈ RNn of form (16)
and suppose we are given the bounds αL and αU for the lower
and upper bounds of the eigenvalues of this system, so that (17)
is satisfied. Then we also have
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0 < αL ≤ λmin(d
f
k +db

k −bk)≤ λmax(d
f
k +db

k −bk)≤ αU ∀k .
(21)

Thus, when considered in the Kalman smoothing setting, the
above result shows that the MF smoother has the same stability
guarantees as the RTS smoother for well-conditioned systems.

7. CONCLUSIONS

We have characterized the numerical stability of SBT systems
that arise in Kalman smoothing, see Theorems 3.1 and 3.2.
We then showed that any well-conditioned symmetric SBT
system can be solved in a stable manner with the FBT, which
is equivalent to RTS in the Kalman smoothing context, and
derived analogous results for M smoother, i.e. Algorithm A
in Mayne (1966), and for the MF scheme. These results apply
to both classic algorithms and newer optimization routines used
in all generalized Kalman smoothing applications.

8. APPENDIX

8.1 Proof of Theorem 3.1

For the upper bound, note that for any vector v,

vTgTq−1gv ≤ λmax(q−1)‖gv‖2 ≤ σ2
max(g)

λmin(q)
‖v‖2.

Applying this inequality to a unit eigenvector for the maximum
eigenvalue of gTq−1g gives the result. The lower bound is
obtained analogously:

vTgTq−1gv ≥ λmin(q−1)‖gv‖2 ≥
σ2

min(g)
λmax(q)

‖v‖2.

Applying this inequality to a unit eigenvector for the minimum
eigenvalue of gTq−1g completes the proof.

8.2 Proof of Theorem 3.2

Let v = vec({v1, . . . ,vN}) be any eigenvector of gTg, so that

gTgv = λv . (22)
Without loss of generality, let k denote the index such that
subvector vk has largest norm, i.e. ‖vk‖ = maxi∈[1,...,N]{‖vi‖}.
Then from the kth block of (22), we get

gkvk−1 +(I +gT
k+1gk+1)vk +gT

k+1vk+1 = λvk , (23)
where we take v0 = 0, and g1 = 0. Let uk = vk

‖vk‖
. Multiply-

ing (23) on the left by vT
k , dividing by ‖vk‖2, and rearranging

terms, we get

1+uk
T gT

k+1gk+1uk −λ =−ukgk
vk−1

‖vk‖
−ukgT

k+1
vk+1

‖vk‖
≤ σmax(gk)+σmax(gk+1) .

(24)

This relationships in (24) yield the upper bound
λ ≤ 1+σ 2

max(gk+1)+σmax(gk)+σmax(gk+1) (25)
and the lower bound

λ ≥ 1+ukgT
k+1gk+1uk −σmax(gk)−σmax(gk+1)

≥ 1+σ2
min(gk+1)−σmax(gk)−σmax(gk+1) .

(26)

Taking the minimum over all indices, we obtain a lower bound
that does not depend on a particular index:

min
j∈{1,...,N}

[
1+σ2

min(g j+1)−σmax(g j)−σmax(g j+1)
]

≤ 1+σ2
min(gk+1)−σmax(gk)−σmax(gk+1).

Note this follows immediately because the particular index k
on the right is a member of the set over which the minimum
is taken. By an analogous argument, we also obtain an index-
independent upper bound:

1+σ2
max(gk+1)+σmax(gk)+σmax(gk+1)

≤ max
j∈{1,...,N}

[
1+σ2

max(g j+1)+σmax(g j)+σmax(g j+1)
]
.

The expression max(0, · · ·) in (14) arises since the singular
values are nonnegative.

Applying the computation to a generic index k, we have s f
k =

P−1
k|k xk|k. From these results, it immediately follows that eN

computed in step 2 of Algorithm 1 is the Kalman filter estimate
(and the RTS smoother estimate) for time point N:

eN = (d f
N)

−1s f
N =

(
P−1

N|N +0
)−1

P−1
N|NxN|N = xN|N . (27)

We now establish the iteration in step 2 of Algorithm 1. First,
following (Rauch et al., 1965, (3.29)), we define

Ck = Pk|kGT
k+1P−1

k+1|k (28)

for k = 1, . . . ,N −1.

To save space, we also use shorthand
P̂k := Pk|k, x̂k := xk|k . (29)

At the first step, we obtain

eN−1 = (d f
N−1)

−1(s f
N−1 − cT

NeN)

= (P̂−1
N−1 +GT

NQ−1
N GN)

−1(P̂−1
N−1x̂N−1 −GT

NQ−1
N x̂N)

= (P̂−1
N−1 +GT

NQ−1
N GN)

−1P̂−1
N−1x̂N−1 −CN−1x̂N

= x̂N−1 −CN−1(GnxN−1 − x̂N)

= xN−1|N−1 +CN−1(xN|N −GNxN−1|N−1) ,

(30)

where the Sherman-Morrison-Woodbury (SMW) formula was
used to get from line 3 to line 4. Comparing this to (Rauch
et al., 1965, (3.28)), we find that eN−1 = xN−1|N , i.e. the RTS
smoothed estimate. The computations above, when applied to
the general tuple (k,k+1) instead of (N−1,N), show that every
ek is equivalent to xk|N , which completes the proof.

8.3 Proof of Theorem 4.1

Looking at the very first block, we plug (8) into step 1 of
Algorithm 1, obtaining

d f
2 =b2 − cT

2 (d
f
1 )

−1c2

=Q−1
2 −

(
Q−1

2 G2
)�(

Q−1
1 +H�

1 R−1
1 H1 +G�

2 Q−1
2 G2

)−1

×
(
Q−1

2 G2
)
+H�

2 R−1
2 H2 +G�

3 Q−1
3 G3

=Q−1
2 −

(
Q−1

2 G2
)�(

P−1
1|1 +G�

2 Q−1
2 G2

)−1 (
Q−1

2 G2
)

+H�
2 R−1

2 H2 +G�
3 Q−1

3 G3

=P−1
2|1 +H�

2 R−1
2 H2 +G�

3 Q−1
3 G3 = P−1

2|2 +G�
3 Q−1

3 G3,

(31)

where P1|0 = Q1, Pk|k :=
(

P−1
k|k−1 +H�

k R−1
k Hk

)−1
for k =

1, . . . ,N, and (Pk+1|k)
−1 is given by

Q−1
k+1 −

(
Q−1

k+1Gk+1
)�(

P−1
k|k +G�

k+1Q−1
k+1Gk+1

)−1 (
Q−1

k+1Gk+1
)



	 Aleksandr Y. Aravkin  et al. / IFAC PapersOnLine 54-7 (2021) 821–826	 825

0 < αL ≤ λmin(d
f
k +db

k −bk)≤ λmax(d
f
k +db

k −bk)≤ αU ∀k .
(21)

Thus, when considered in the Kalman smoothing setting, the
above result shows that the MF smoother has the same stability
guarantees as the RTS smoother for well-conditioned systems.

7. CONCLUSIONS

We have characterized the numerical stability of SBT systems
that arise in Kalman smoothing, see Theorems 3.1 and 3.2.
We then showed that any well-conditioned symmetric SBT
system can be solved in a stable manner with the FBT, which
is equivalent to RTS in the Kalman smoothing context, and
derived analogous results for M smoother, i.e. Algorithm A
in Mayne (1966), and for the MF scheme. These results apply
to both classic algorithms and newer optimization routines used
in all generalized Kalman smoothing applications.

8. APPENDIX

8.1 Proof of Theorem 3.1

For the upper bound, note that for any vector v,

vTgTq−1gv ≤ λmax(q−1)‖gv‖2 ≤ σ2
max(g)

λmin(q)
‖v‖2.

Applying this inequality to a unit eigenvector for the maximum
eigenvalue of gTq−1g gives the result. The lower bound is
obtained analogously:

vTgTq−1gv ≥ λmin(q−1)‖gv‖2 ≥
σ2

min(g)
λmax(q)

‖v‖2.

Applying this inequality to a unit eigenvector for the minimum
eigenvalue of gTq−1g completes the proof.

8.2 Proof of Theorem 3.2

Let v = vec({v1, . . . ,vN}) be any eigenvector of gTg, so that

gTgv = λv . (22)
Without loss of generality, let k denote the index such that
subvector vk has largest norm, i.e. ‖vk‖ = maxi∈[1,...,N]{‖vi‖}.
Then from the kth block of (22), we get

gkvk−1 +(I +gT
k+1gk+1)vk +gT

k+1vk+1 = λvk , (23)
where we take v0 = 0, and g1 = 0. Let uk = vk

‖vk‖
. Multiply-

ing (23) on the left by vT
k , dividing by ‖vk‖2, and rearranging

terms, we get

1+uk
T gT

k+1gk+1uk −λ =−ukgk
vk−1

‖vk‖
−ukgT

k+1
vk+1

‖vk‖
≤ σmax(gk)+σmax(gk+1) .

(24)

This relationships in (24) yield the upper bound
λ ≤ 1+σ 2

max(gk+1)+σmax(gk)+σmax(gk+1) (25)
and the lower bound

λ ≥ 1+ukgT
k+1gk+1uk −σmax(gk)−σmax(gk+1)

≥ 1+σ2
min(gk+1)−σmax(gk)−σmax(gk+1) .

(26)

Taking the minimum over all indices, we obtain a lower bound
that does not depend on a particular index:

min
j∈{1,...,N}

[
1+σ2

min(g j+1)−σmax(g j)−σmax(g j+1)
]

≤ 1+σ2
min(gk+1)−σmax(gk)−σmax(gk+1).

Note this follows immediately because the particular index k
on the right is a member of the set over which the minimum
is taken. By an analogous argument, we also obtain an index-
independent upper bound:

1+σ2
max(gk+1)+σmax(gk)+σmax(gk+1)

≤ max
j∈{1,...,N}

[
1+σ2

max(g j+1)+σmax(g j)+σmax(g j+1)
]
.

The expression max(0, · · ·) in (14) arises since the singular
values are nonnegative.

Applying the computation to a generic index k, we have s f
k =

P−1
k|k xk|k. From these results, it immediately follows that eN

computed in step 2 of Algorithm 1 is the Kalman filter estimate
(and the RTS smoother estimate) for time point N:

eN = (d f
N)

−1s f
N =

(
P−1

N|N +0
)−1

P−1
N|NxN|N = xN|N . (27)

We now establish the iteration in step 2 of Algorithm 1. First,
following (Rauch et al., 1965, (3.29)), we define

Ck = Pk|kGT
k+1P−1

k+1|k (28)

for k = 1, . . . ,N −1.

To save space, we also use shorthand
P̂k := Pk|k, x̂k := xk|k . (29)

At the first step, we obtain

eN−1 = (d f
N−1)

−1(s f
N−1 − cT

NeN)

= (P̂−1
N−1 +GT

NQ−1
N GN)

−1(P̂−1
N−1x̂N−1 −GT

NQ−1
N x̂N)

= (P̂−1
N−1 +GT

NQ−1
N GN)

−1P̂−1
N−1x̂N−1 −CN−1x̂N

= x̂N−1 −CN−1(GnxN−1 − x̂N)

= xN−1|N−1 +CN−1(xN|N −GNxN−1|N−1) ,

(30)

where the Sherman-Morrison-Woodbury (SMW) formula was
used to get from line 3 to line 4. Comparing this to (Rauch
et al., 1965, (3.28)), we find that eN−1 = xN−1|N , i.e. the RTS
smoothed estimate. The computations above, when applied to
the general tuple (k,k+1) instead of (N−1,N), show that every
ek is equivalent to xk|N , which completes the proof.

8.3 Proof of Theorem 4.1

Looking at the very first block, we plug (8) into step 1 of
Algorithm 1, obtaining

d f
2 =b2 − cT

2 (d
f
1 )

−1c2

=Q−1
2 −

(
Q−1

2 G2
)�(

Q−1
1 +H�

1 R−1
1 H1 +G�

2 Q−1
2 G2

)−1

×
(
Q−1

2 G2
)
+H�

2 R−1
2 H2 +G�

3 Q−1
3 G3

=Q−1
2 −

(
Q−1

2 G2
)�(

P−1
1|1 +G�

2 Q−1
2 G2

)−1 (
Q−1

2 G2
)

+H�
2 R−1

2 H2 +G�
3 Q−1

3 G3

=P−1
2|1 +H�

2 R−1
2 H2 +G�

3 Q−1
3 G3 = P−1

2|2 +G�
3 Q−1

3 G3,

(31)

where P1|0 = Q1, Pk|k :=
(

P−1
k|k−1 +H�

k R−1
k Hk

)−1
for k =

1, . . . ,N, and (Pk+1|k)
−1 is given by

Q−1
k+1 −

(
Q−1

k+1Gk+1
)�(

P−1
k|k +G�

k+1Q−1
k+1Gk+1

)−1 (
Q−1

k+1Gk+1
)

for k = 1, . . . ,N −1. The matrices Pk|k, Pk|k−1 are represent co-
variances of xk|k (the state at time k given the the measurements
{z1, . . . ,zk}), and xk|k−1 (the state estimate at time k given mea-
surements {z1, . . . ,zk−1}). Using the same computation for the
generic tuple (k,k+1) establishes d f

k = P−1
k|k +G�

k+1Q−1
k+1Gk+1 .

We now perform a similar computation for the right hand side
of (6), r = H�R−1z+G�Q−1ζ . We have

s f
2 =r2 − cT

2 (d
f
1 )

−1r1

=
(
Q−1

2 G2
)�(

P−1
1|1 +G�

2 Q−1
2 G2

)−1(
H�

1 R−1
1 z1 +G�

1 P−1
1|0 x0

)

+H�
2 R−1

2 z2

=P−1
2|1 x2|1 +H�

2 R−1
2 z2 = P−1

2|2 x2|2.

(32)

8.4 Proof of Theorem 4.2

For simplicity, we will focus only on the lower bound, since the
same arguments apply for the upper bound. Note that b1 = d f

1 ,
and the eigenvalues of d f

1 must satisfy αL ≤ λmin(d
f
1 ) since

otherwise we can produce a unit-norm eigenvector v1 ∈ Rn of
d f

1 with vT
1 d f

1 v1 < αL, and then form the augmented unit vector
ṽ1 ∈ RN with v1 in the first block, and every other entry 0. Then
we have ṽT

1 Φṽ1 < αL , which violates (17). Next, define the
elementary block row operation matrx S1 to satisfy

S1ΦST
1 =




b1 0 0 · · · 0

0 d f
2 cT

3
...

c3 b3
...

. . . . . .
0 · · · 0 cN bN




(33)

where d f
2 = b2 − c2(d

f
1 )

−1cT
2 . Suppose now that d f

2 has an
eigenvalue that is less than αL. Then we can produce a unit
eigenvector v2 of d f

2 with vT
2 d f

2 v2 < αL, and create an aug-
mented unit vector ṽ2 =

[
01×n vT

2 01×n(N−2)
]T which satisfies

ṽT
2 S1ΦST

1 ṽ2 < αL . (34)

Next, note that v̂T
2 := ṽT

2 S1 =
[
−vT

2 c2(d
f
1 )

−1 vT
2 01×n(N−2)

]T
,

so in particular ‖v̂2‖ ≥ 1. From (34), we now have
v̂T

2 Av̂2 < αL ≤ αL‖v2‖2 ,

which violates (17). To complete the proof, note that the lower
n(N − 1)× n(N − 1) block of S1AST

1 is identical to that of
A, with (17) holding for this modified system. The reduction
technique can now be repeatedly applied.

8.5 Proof of Theorem 5.1

First, it is useful to state the following linear algebraic result.
Lemma 8.1. Let P, Q and Q−1 +P be invertible matrices. Then

P−P(Q−1 +P)−1P = Q−1 −Q−1(Q−1 +P)−1Q−1 . (35)

Proof: Starting with the left hand side, write P = P+Q−1 −
Q−1. Then we have

P−P(Q−1 +P)−1P = P−P(Q−1 +P)−1(P+Q−1 −Q−1)

= P(Q−1 +P)−1Q−1

= (P+Q−1 −Q−1)(Q−1 +P)−1Q−1

= Q−1 −Q−1(Q−1 +P)−1Q−1

End of proof

The recursion in (Mayne, 1966, Algorithm A), translated to our
notation, is

Jk = GT
k+1

[
I − Jk+1Ck+1∆k+1CT

k+1
]

Jk+1Gk+1 +HT
k R−1

k Hk

∆k =
[
I +Γk

T Jk+1Γk
]−1

(36)

φk =−HT
k R−1

k zk +GT
k+1

[
I − Jk+1Γk∆kΓk

T ]φk+1 (37)

where Qk = ΓkΓk
T . Note that in Mayne (1966), the quantities

Γk and Jk are denoted Ck and Pk, respectively. The recursion is
initialized by setting

JN = HT
N R−1

N HN and φN =−HT
N R−1

N zn . (38)

We show that db
k in Algorithm 2 corresponds to Jk + Q−1

k ,
while sb

k in Algorithm 2 is precisely −φk in recursion (36)—
(37). Recall that ck and bk in Algorithm 2 correspond to Ck and
Bk in (8). Using this relationship, the correspondence claimed
in the theorem is seen immediately to hold for step N. We show
the next step of the recursion. From (36), we have

JN−1 = HT
N−1R−1

N1
HN +GT

NΦSGN

ΦS = JN − JN(ΓN∆NΓN
T )JN

= JN − JN(QN −QN(JN
−1 +Q−1

N )−1QN)JN

= JN − JN(Q−1
N + JN)

−1JN

= Q−1
N −Q−1

N (db
N)

−1Q−1
N

(39)

where the SMW formula was used twice to get from line 2 to
line 4, and Lemma 8.1 together with the definition of db

N was
used to get from line 4 to line 5.

Therefore, we immediately have
JN−1 = HT

N−1R−1
N1

HN +GT
N(Q

−1
N −Q−1

N d−1
N Q−1

N )GN

= db
N−1 −QN−1

as claimed. Next, by Lemma 8.1, we have
φN−1 =−HT

N−1R−1
N−1zN +GT

N(I − JN(ΓN∆NΓN
T ))qN

=−HT
N−1R−1

N−1zN −GT
N(I − JN(Q−1

N + JN)
−1)sN

=−HT
N−1R−1

N−1zN −GT
N(JN

−1 +QN)
−1JN

−1)sN

=−HT
N−1R−1

N−1zN −GT
N(Q

−1
N (JN +Q−1

N )−1)sN

=−sb
N−1 .

(40)

Finally, note that the smoothed estimate given in (Mayne, 1966,
(A.8)) (translated to our notation)

x̂1 =−(J1 +Q−1
1 )−1(−sb

1 −Q−1
1 x0)

is precisely (db
1)

−1r1, which is the estimate e1 in step 2 of Al-
gorithm 2. The reader can check that the forward recursion
in (Mayne, 1966, (A.9)) is equivalent to the recursion in step
2 of Algorithm 2.

8.6 Proof of Theorem 5.2

Note first that db
N = bN , and satisfies (21) by the same argument

as in the proof of Theorem 4.2. Define the elementary block
row operation matrix SN to satisfy

ST
NΦSN =




db
1 cT

2 · · · 0
c2 db

2 cT
3 . . . 0

0
. . . cT

N−1
...

... cN−1 db
N−1 0

0 · · · 0 db
N



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An analogous proof to that of Theorem 4.2 shows the upper
n(N − 1)× n(N − 1) block of ST

NΦSN satisfies (21). Applying
this reduction iteratively completes the proof.

8.7 Proof of Theorem 6.1

Given the linear system Φ in (16), let F denote the matrix whose
action is equivalent to step 1 of Algorithm 3, so that FΦ is upper
block triangular, and Fr recovers blocks {s f

k}. Let B denote the
matrix whose action is equivalent to steps 2 of Algorithm 3, so
that BΦ is lower block triangular, and Br recovers blocks {sb

k}.
The solution e returned by Algorithm 3 can be written as
follows:

e = ((F +B− I)Φ)−1(F +B− I)r . (41)
To see this, note that FΦ has the same blocks above the diag-
onal as Φ, and zero blocks below the diagonal. Analogously,
BΦ has the same blocks below the diagonal as Φ. Then FΦ+

BΦ−Φ is block diagonal, with diagonal blocks given by d f
k +

db
k − bk, which are invertible by Theorem (6.2). Since Φ is

invertible, and (F+B−I)Φ is invertible, we also have F+B−I
is invertible.
Applying the system F + B − I to r yields the blocks s f

k +

sb
k − rk. The fact that e solves (16) follows from the following

calculation:
Φe = Φ((F +B− I)Φ)−1(F +B− I)r

= ΦΦ−1(F +B− I)−1(F +B− I)r = r

The MF smoother given in (Mayne, 1966, (B.9)) is equivalent
to

x̂k =−(Pk +σ−1
k|k−1)

−1(qk +gk) ,

where, translating to our notation, qk = −sb
k , Pk = db

k −Q−1
k ,

gk := −σ−1
k|k−1xk|k−1 from (Mayne, 1966, (B.7)), and σ−1

k|k is

given by σ−1
k|k := d f

k −GT
k+1Q−1

k+1Gk+1. We now obtain

σ−1
k|k−1 = σ−1

k|k −HT
k R−1

k Hk (Aravkin, 2010, Chapter 2)

and therefore,
Pk +σ−1

k|k−1 = db
k +d f

k −Q−1
k −GT

k+1Q−1
k+1Gk+1 −HT

k R−1
k Hk

= db
k +d f

k −bk by (8) .
Finally, we have

gk =−σ−1
k|k−1xk|k−1 =−(s f

k +HT
k R−1

k zk)

=−(s f
k − rk) by (6) .

This gives −(qk +gk) = s f
k + sb

k − rk, and the lemma is proved.

8.8 Proof of Theorem 6.2

At every intermediate step, it is easy to see that

d f
k +db

k −bk = bk − ck(d
f
k−1)

−1cT
k +bk − cT

k+1(d
b
k+1)

−1ck+1 −bk

= bk − ck(d
f
k−1)

−1cT
k − cT

k+1(d
b
k+1)

−1ck+1

This corresponds exactly to isolating the middle block of the
three by three system


d f

k−1 cT
k 0

ck bk cT
k+1

0 ck+1 db
k+1


 .

By Theorems 4.2 and 5.2, the eigenvalues of this system are
bounded by the eigenvalues of the full system. Applying these
theorems to the middle block shows that the system in (20) also
satisfies such a bound.
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