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Abstract: Block tridiagonal systems appear in classic Kalman smoothing problems, as well in general-
ized Kalman smoothing, where problems may have nonsmooth terms, singular covariance, constraints,
nonlinear models, and unknown parameters. In this paper, first we interpret all the classic smoothing
algorithms as different approaches to solve positive definite block tridiagonal linear systems. Then, we
obtain new results on their numerical stability. Our outcomes apply to all systems with dynamic structure,
informing both classic and modern inference for generalized Kalman smoothing.
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1. INTRODUCTION

Kalman filtering (Kalman, 1960; Kalman and Bucy, 1961) and
smoothing methods form a broad category of computational
algorithms used for inference on noisy dynamical systems. The
classic linear Gaussian model is as follows:

X1~ N(XO7Q1)7

X = Gpxp_1+wr k=2,...,N, (D)

Ze = Hixp + vy k=1,...,N,

where xo is known, x¢,wy € R”, z, vy € R"®_ G, € R
and H), € Rm(k)X”, and wy, v, are mutually independent zero-
mean Gaussian random variables with known positive definite
covariance matrices Oy and Ry, respectively.

Rauch-Tung-Striebel (RTS) and the Mayne-Fraser (MF) algo-
rithm are used to obtain the minimum variance estimates of the
states given {zy,...,zy }. RTS (Rauch et al., 1965; Ansley and
Kohn, 1982) computes the state estimates running forward and
then back through the data, while MF (Mayne, 1966; Fraser and
Potter, 1969; Wall et al., 1981) uses combination of two inde-
pendent filters. A third algorithm proposed by Mayne (Mayne,
1966), hereby called the M procedure, is first run backward
and then forward. We analyze the numerical stability of these
smoothers from a single unified perspective.

The structure of linear systems in the classic linear case are
pervasive in generalized Kalman smoothing (Aravkin et al.,
2017), and apply to smoothing systems with sparse innova-
tions, constraints, and outliers (Aravkin et al., 2014). The same
structure appears in systems with singular covariance (Jonker
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et al., 2019), nonlinear systems (Bell et al., 2009; Aravkin et al.,
2011) and systems with unknown parameters. Results derived
here are applicable to all of these settings. We concentrate on
the least squares case to make the ideas maximally clear.

The paper proceeds as follows. In Section 2 we formulate
Kalman smoothing as a least squares problem where the system
is symmetric block tridiagonal (SBT). In Section 3 we obtain
bounds on the eigenvalues of SBT systems in terms of the
behavior of the individual blocks, and show how these bounds
are related to the stability of Kalman smoothing formulations.
In Sections 4, 5, and 6, we characterize the RTS, M, and
MF smoothers as solvers for SBT systems, and analyze their
numerical stability. We conclude with a discussion of these
results and their consequences.

2. LEAST SQUARES KS AND SBT SYSTEMS

Obtaining the maximum a posteriori (MAP) estimate for lin-
ear systems with Gaussian process and measurement noise is
equivalent to solving the weighted least squares problem

mlﬂf {x}) Z — Hix) 'Ry (2 — Hexy) ,
k=1 (2)

1 _
+ 5 (= Grxi—1) ' Q' (o — G

2 (
where G| = I captures the initial condition. Given a sequence
of column vectors {v;} and matrices {7} } we use the notation

. 7, 0 -~ 0
. 05
vee({ve}) =  diag({Ti}) = | 7
‘ D0
VN 0 -~ 0 Ty
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We make the following definitions:
R = diag({R¢}) x = vec({xc})
0=ding{Q})  {=vee({x0,0.....0) 3
H = diag({H,}) z=vec({z1,22,---,2N})

I 0
G=| ¢ 1 &)
. .0
-Gy I
With definitions in (3) and (4), problem (2) can be written
minf(x) = 3 [Hx =21 +516x—ClE . )

where ||a||3; = a" Ma. Minimizing (5) is equivalent to solving
(H'R'H+G'Q'G)x=H'R '2+G"07'¢. (6)
The linear system in (6) is a symmetric positive definite SBT

system. Let ® denote a generic SBT matrix, with &g denoting
the Kalman smoothing case. We have

BiCI 0 -0

G B C;r
®s:=H'RIH+G'OTIG=| . O
0 --- C}\T/
0 --- 0 Cy By
with C, € R and By, € R"*" defined as follows:
Ci= -0 'Ge., ®)
Bi= 0. + G110\ Gt +HY R 'Hy
where
Gyy1=0 and Gy Oyt Gni1 =0. )

This SBT structure was noted early on by Wright (1990);
Fahrmeir and Kaufmann (1991); Wright (1993). SBT linear
systems arise in all extensions to inference for dynamic sys-
tems, and are solved repeatedly by iterative algorithms in these
settings. For detailed examples, please see Aravkin et al. (2017)
for a survey both methods and types of smoothing problems.
That survey also previews some of the results presented here
without proofs or stability results, citing an older unpublished
preprint (Aravkin et al., 2013).

3. CHARACTERIZING SBT SYSTEMS

Consider systems of form
(10)

where
10
I -
g=|% :
.0
gn 1

q= diag{ql,...qN},

gqi are positive definite, and g; are square.

Let Amin, Amax, and Omin, Omax denote the minimum and maxi-
mum eigenvalues and singular values, respectively. Simple up-
per bounds on the lower and upper eigenvalues of g'g~'g are
derived in the following theorem.

Theorem 3.1. Consider matrix (10). Then, one has

Gr%nn(g) T 1 T 1 Omax (8)
2o (@) < min(87¢ &) < Amax(g g™ '8) < 2on(d) (1)

This gives the following simple bound on the condition number
K of (10):

Amax (8T 'g) < Amax(‘])c’%ax(g) ' (12)

T 1.\ _
K(g q g)* /’Lmin(gTq*Ig) o Aqnin(CI)Gmin(g)

Since we typically have bounds on the eigenvalues of ¢, all that
remains is to characterize the singular values of g in terms of
the individual gg. This is done in the next result which uses the
relation

I+glgy g8 0
T
Jlg=| & It (13)
- ngTv
0 gn I+gyn 18n+1

where we define gy := 0, so that the bottom right entry is the
identity matrix.

Theorem 3.2. The following bounds hold for the singular val-
ues of g:
max (O,mkin {1+ 0in(8ks1) — Omax (8k) — Omax (k1) } )

< Gélin (g) < Gr%]ax (g) <
ml?x{l + O-r%mx(gk+1) + Gmax(gk) + Gmax(gk+1)}
(14)

Corollary 3.1. Let v™" be the eigenvector corresponding to
Amin(gTg), and suppose that N is the index of the subvector of

v™in with the largest norm. Then the lower bound is given by

max {0, 1 — Omax(gn)} < Omin(8) - (15)

4. FORWARD BLOCK TRIDIAGONAL (FBT)
ALGORITHM AND THE RTS SMOOTHER

We now present the FBT algorithm. Suppose for k =1,...,N,
b € R e € R rp e R and for k= 2,...,N, ¢ €
R™", We define the corresponding SBT system of equations

bl C; 0 0 el r
¢ by () rn

= . 16
: 0 : (16)
0 cn—1 byn_1 C% eN—1 IN—1
0o-- 0 cy by eN N

Let @ denotes the generic SBT matrix in this system. For
positive definite systems, the FBT algorithm is defined in Al-
gorithm 1 (Bell, 2000, algorithm 4). We now show that the
RTS smoother is an implementation of FBT when @ is set to
the matrix ®g in (7). We use r to denote the column vector
[rIT . ..r{,]T on the rhs of (16). The proof is in (Aravkin, 2010,
Chapter 1), and the result is also noted in Aravkin et al. (2017).
Theorem 4.1. When applied to ®g in (7) with r = H'R 'z +
G"Q7'¢, Algorithm 1 is equivalent to the RTS Rauch et al.
(1965) smoother.

We now relate stability of the forward block tridiagonal algo-
rithm to the stability of the system (10).
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Algorithm 1 Forward Block Tridiagonal (FBT)

Algorithm 2 Backward Block Tridiagonal (BBT)

The inputs to this algorithm are {cx}_,, {bx}}_,, and {r}Y_,
where, for each k, ¢, € R™", by € R™", and ry € R"™!, The
output is the sequence {e}Y_, that solves equation (16), with
each ¢, € R,

(1) Set df =by and s] = ry.
Fork 2To N :
e Set d,{:bk—ck(d,il)_lcz.
e Set S{ :rk—ck(d,{_l)*lsk,l.
(2) Set ey = (df)~!
Fork=N—-1Tol:
e Set e, = (d,{)’l(si — Cly1€kt1)-

Theorem 4.2. Consider any SBT system ® € RV" of form (16).
Suppose we are given a lower bound ¢y and an upper bound
oy on the eigenvalues of this system:

0 < o < Apin(P) < Anax (P) < 0y - (17)
If we apply the FBT iteration
df = by —ci(df )7,
then
0< 0 < Amin(d]) < Amax(d) <0y VK. (18)

In other words, the FBT iteration preserves eigenvalue bounds
(and hence the condition number) for each block, and hence
will be stable when the full system is well conditioned.

5. BACKWARD BLOCK TRIDIAGONAL ALGORITHM
AND THE M SMOOTHER

In this section, we discuss the backward block tridiagonal
(BBT) algorithm, and show it is equivalent to the M smoother
(Mayne, 1966) when applied to the Kalman smoothing setting.

Let us again begin with a generic SBT system ® € RV of
form (16). Now, starting at the lower right corner, we subtract

c{,b;,l times row N from row N — 1, and iterate this procedure
up until we reach the first row of the matrix, using dj to denote
the resulting diagonal blocks, and s; the corresponding right
hand side of the equations:

d}l\7/ =bn, d,f = by *C;crﬂ(dl]?ﬂ)_

b b T b \—1
Sy =N S =Tk = Cry1(diy1) Skt
We now have a lower triangular system:

(k=N—1,--,1)
(k=N—1,---,1).

1
Ck+1

b
db Ob 0 o 5
ad 0 ... 0|, 5
: S (19)
eN—1 SN—-1

CN—1 dlli/—l 0 ¢ N
0 oy dy) NN N
Next, we solve for the first block vector and then proceed

back down, doing back substitution. The entire procedure is
summarized in Algorithm 2. We have the following results.

Theorem 5.1. When applied to ®g in (7) with r = H R !z +
G"Q7'¢, BBT is equivalent to the M smoother, i.e. (Mayne,
1966, Algorithm A).

Next, we show that the BBT algorithm has the same stability
result as the FBT algorithm.

Theorem 5.2. Consider any SBT system @ € RN of form (16)
and suppose we are given the bounds ¢y, and o for the lower

The inputs to this algorithm are {c;}, {b}, and {ri}. The
output is a sequence {e;} that solves equation (16).
(1) Set d% = by and sj'v =ry.
Fork=N—-1,...,1,
e Setdl = bk ckH(d,lgH)’lckH.
o Setsh =1, — Ck+1 (d,fﬂ)’]skﬂ.
(2) Sete; = (db)’ sb
For k=2,.

e Set ek—(db) (s? — cpex—1).

and upper bounds of the eigenvalues of this system, so (17) is
satisfied. If we apply the BBT iteration

/ T (b -1
dp =br—cr1(di1)” crn
then

0 < 0L < Amin(d?) < Amax(d?) < 0y Vk .

Theorems 4.2 and 5.2 show that both forward and backward
tridiagonal algorithms are stable when the SBT systems they
are applied to are well conditioned.

6. TWO FILTER BLOCK TRIDIAGONAL ALGORITHM
AND THE MF SMOOTHER

In this section, we discuss the MF (Mayne, 1966; Fraser and
Potter, 1969) smoother for (16) and characterize its stability.
Let d,{ , s{ denote the forward matrix and vector terms obtained
after step 1 of Algorithm 1, and d? 7sk denote the terms obtained
after step 1 of Algorithm 2, and let by, ry refer to the diagonal
terms and right hand side of system (16). Algorithm 3 uses
elements of both forward and backward algorithms.

Algorithm 3 Two Filter Block Tridiagonal

The inputs to this algorithm are {cx}, {br}, and {r;}. The
output is a sequence {e;} (that is shown to solve equation (16)
in Theorem 6.1).
(1) Set df by, s1 =r.
For k 2To N :
e Set d,{ =by —Ck(d]{_l) lcz
e Set s{ = rk—ck(d,il)_lsk,l.
(2) Set d} = by and 5% = ry.
Fork=N—-1,...,1,
o Setd) =br—cpy(d} )"
e Set si =r,—
(3) Fork=1,...,.N
e Set e = (d,{-l-d]lg —bk)fl

1
Ck+1-
T b —1

i1 (1) Skt

(s{ +s—rp).

Theorem 6.1. The solution e to (16) is given by Algorithm 3.
Furthermore, when applied to the Kalman smoothing sys-
tem (6), i.e. when @ = dg, Algorithm 3 is equivalent to the
Mayne-Fraser smoother. In particular, the MF update can be
written

S = (d] +df = b)) (s] 5, =) (20)
We now discuss the numerical stability of Algorithm 3, and of
the MF scheme, see (20).
Theorem 6.2. Consider any SBT system ® € RV of form (16)
and suppose we are given the bounds oy, and oy for the lower
and upper bounds of the eigenvalues of this system, so that (17)
is satisfied. Then we also have
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0 < 0 < Amin(d] +dP —bp) < A (d + a0 —bi) < oy VK.

21

Thus, when considered in the Kalman smoothing setting, the
above result shows that the MF smoother has the same stability
guarantees as the RTS smoother for well-conditioned systems.

7. CONCLUSIONS

We have characterized the numerical stability of SBT systems
that arise in Kalman smoothing, see Theorems 3.1 and 3.2.
We then showed that any well-conditioned symmetric SBT
system can be solved in a stable manner with the FBT, which
is equivalent to RTS in the Kalman smoothing context, and
derived analogous results for M smoother, i.e. Algorithm A
in Mayne (1966), and for the MF scheme. These results apply
to both classic algorithms and newer optimization routines used
in all generalized Kalman smoothing applications.

8. APPENDIX
8.1 Proof of Theorem 3.1

For the upper bound, note that for any vector v,

VT g0 < ol < S
Applying this inequality to a unit eigenvector for the maximum
eigenvalue of gTg'g gives the result. The lower bound is
obtained analogously:

Ve v > Amn(g v > ,;E i

Applying this inequality to a unit eigenvector for the minimum
eigenvalue of gT¢g~'g completes the proof.

8.2 Proof of Theorem 3.2

Let v = vec({vy,...,vy}) be any eigenvector of g'g, so that

glgv=2Av. (22)

Without loss of generality, let & denote the index such that

subvector vy has largest norm, i.e. [|vi|| = max;c; . v {[[vill}-
Then from the kth block of (22), we get

8ivk—1 + (I + 818kt 1)V + &g Vi1 = lvk , o (23)

where we take vo = 0, and g; = 0. Let u = T Multiply-

HV
ing (23) on the left by vz, 2, and rearranging

terms, we get

T Vk+l

1+MkTgE+1gk+1uk—7L kgk H ” kgk+1m

(24)
< Omax(&k) + o-mzzlx(ngrl> :
This relationships in (24) yield the upper bound
A<+ Gr%qax (8k+1) + Omax(gk) + Omax (8k+1)
and the lower bound
A>1+ ukgz+lgk+luk - Gmax(gk) - Gmax(gk+])
> 1+ Gmm(ngrl) - Gmax(gk) - Gmax(gk+1) .

Taking the minimum over all indices, we obtain a lower bound
that does not depend on a particular index:

(25)

(26)

: 2
]e{nll,mN} [1 + Gmin(gj+1) - Gmax(gj) - O_max(gj+1)]
<1+ Gmm(ngrl) - Gmax(gk) - Gmax(gk+1)~

Note this follows immediately because the particular index k
on the right is a member of the set over which the minimum
is taken. By an analogous argument, we also obtain an index-
independent upper bound:

1+61%1ax (8k+1) + Omax (&) + Omax (8k+1)

<  max }[1Jrcriax(gjﬂ)JFGmaX(gj)JFGmaX(ng)]~

je{l,.,.N

The expression max (0, - -
values are nonnegative.

-) in (14) arises since the singular

Applying the computation to a generic index k, we have s£ =

P/:|k1xk|k' From these results, it immediately follows that ey

computed in step 2 of Algorithm 1 is the Kalman filter estimate
(and the RTS smoother estimate) for time point N:

—1
(df) SN = (PM;,*FO) P]\7|11VXN|N :xN‘N . (27)

We now establish the iteration in step 2 of Algorithm 1. First,
following (Rauch et al., 1965, (3.29)), we define

Cr= Pk\kaJrl k+1|k (28)
fork=1,...,N—1.
To save space, we also use shorthand
Bei=Pye,  F=xpk - (29)
At the first step, we obtain
en—1 = (d_) " (sh_, —chew)
(PN11+G QNIGN) 1( 11xN I—GNQN )
(P7 1+GNQN GN) I.XN I_CN I_XN (30)

=in-1—Cn-1(Gpxn—1 *XN)

=xy_1n—1 +Cn-1(nn — GNIN-_1N-1) 5
where the Sherman-Morrison-Woodbury (SMW) formula was
used to get from line 3 to line 4. Comparing this to (Rauch
et al., 1965, (3.28)), we find that ey_| = XN_1|N> i.e. the RTS
smoothed estimate. The computations above, when applied to
the general tuple (k,k+ 1) instead of (N —1,N), show that every
ey is equivalent to xyy, which completes the proof.

8.3 Proof of Theorem 4.1

Looking at the very first block, we plug (8) into step 1 of
Algorithm 1, obtaining

df =by —c3(al)!
=0y~ (0:'G2) " (o1 + AR H + 6T 0;'Ga)
x (03'G2) +Hy Ry 'Hy + G 03 Gs
' (') (Bl +61es'G)  (03'6)
+HJR;‘H2+G3TQ;'G3

=P, +Hy R;'Hy + G} 03 'G5 =

1 T
201 Py +0G3 0503,

(€29
1
where Pyjg = Q1, Py = ( —|—HTR 1Hk) for k =

1,...,N, and (Pk+]|k)_

-1 _ (ol g TP—1 Gl 0l G -1 -1
Qi1 — (Qe1Gin)  (Pp +Gir1 Q1 Gint ) (Qict1Gir)

klk—1
1'is given by
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fork=1,...,N—1. The matrices Py, Py are represent co-
variances of x| (the state at time k given the the measurements
{z1,--,z}), and xg_y (the state estimate at time k given mea-
surements {z1,...,2;_1}). Using the same computation for the
generic tuple (k,k+ 1) establishes d,{ = PI(TkI + G;H Q,;:leH .
We now perform a similar computation for the right hand side
of (6),r=H R 'z+G Q7 '¢. We have
sg =r)— cg(d{)_lrl
_ T (e _ -1 - _
=(0:'62) (P +6G10:'G2)  (HIR "2+ Gl Py )
+H, Ry '
—1 T p—1 ~1
:PZ\I XQ“ +H2 R2 2= P2\2x2‘2'
(32)

8.4 Proof of Theorem 4.2

For simplicity, we will focus only on the lower bound, since the
same arguments apply for the upper bound. Note that b = d{ ,
and the eigenvalues of d{ must satisfy oy < lmin(d{ ) since
otherwise we can produce a unit-norm eigenvector v; € R” of
d{ with de{ v1 < 0y, and then form the augmented unit vector

v1 € RY with v; in the first block, and every other entry 0. Then
we have v ®v; < oL , which violates (17). Next, define the
elementary block row operation matrx S to satisfy

by 0 0 --- 0

T 0 dg C:g :
S19S; = c3 b (33)

0---0 CN bN

where d] = by —c3(d])~'cI. Suppose now that ¢ has an
eigenvalue that is less than og. Then we can produce a unit

eigenvector v, of d{ with vgdg v < 0, and create an aug-
. . T .. .

mented unit vector v, = [01 xn vg (U n(N—Z)] which satisfies

MOy < oy . (34)

: T
Next, note that ﬁg = VgSl = {7‘}"2%2(03{)—1 vg O1xnv—2)|

so in particular ||2]| > 1. From (34), we now have

\'%A\?z <op < (XL||V2H2 ,
which violates (17). To complete the proof, note that the lower
n(N —1) x n(N — 1) block of SjAS] is identical to that of
A, with (17) holding for this modified system. The reduction
technique can now be repeatedly applied.

8.5 Proof of Theorem 5.1

First, it is useful to state the following linear algebraic result.
Lemma 8.1. Let P, Q and Q' + P be invertible matrices. Then
P—P(@'+P)"'P=0'—07 (0" +P) 0", (39)
Proof: Starting with the left hand side, write P = P + Q‘1 —
Q. Then we have
P—P(Q'+P) 'P=P-P(Q ' +P)(P+Q -0
=P '+P)"'Q"
=P+ -0 o '+p) 0!
=0 '-0'(e'+P) 0!

825

End of proof

The recursion in (Mayne, 1966, Algorithm A), translated to our
notation, is

Je =Gl [I = Jkr1Ces1 A1 Gl | Tkt Gt + HE Ry Hy
~1
Ac=[14+ T T Ty (36)
O = —H{ R "%+ Gl [ =i Tk kT ] G 37
where Q; = I'tI';”. Note that in Mayne (1966), the quantities

I’y and J; are denoted Cy and P, respectively. The recursion is
initialized by setting

Jv=HLIRy'Hy and ¢y=—HIRy'z..  (38)

We show that d,f in Algorithm 2 corresponds to Ji + Q,:l,

while sZ in Algorithm 2 is precisely —¢ in recursion (36)—

(37). Recall that ¢, and by in Algorithm 2 correspond to Cy, and

By in (8). Using this relationship, the correspondence claimed

in the theorem is seen immediately to hold for step N. We show
the next step of the recursion. From (36), we have

Jv-1=Hy_ Ry Hy + Gy ®sGy
D5 = Jy — In(TnANTNT )y
=Jv—JIn(Qy = On(n~" +Oy') T ON )N
= JIn—IN(Qy' +In) N
=0y —Oy'(dy) "oy
where the SMW formula was used twice to get from line 2 to

line 4, and Lemma 8.1 together with the definition of df{, was
used to get from line 4 to line 5.

(39)

Therefore, we immediately have
Iyv-1 =Hy_ Ry Hy+GR(Qy' — Oy'dy' Oy )Gy
=dy_ —On-1
as claimed. Next, by Lemma 8.1, we have
dv—1 = —Hy_|Ry" zv + Gl (I — In(CvANTNT ) )gn
= —Hj_ Ry an — GL (I —In(Qy" +Jn) Dy

(
=—Hj_ Ry av =GR +0n) Uy sy (40)
= —Hy Ry 1av — GR(Oy (Un+Oy") sy
= _Sf\/71 .

Finally, note that the smoothed estimate given in (Mayne, 1966,
(A.8)) (translated to our notation)

2= +07) 7 (=57~ 0 'x)
is precisely (d?)~'ry, which is the estimate e in step 2 of Al-
gorithm 2. The reader can check that the forward recursion

in (Mayne, 1966, (A.9)) is equivalent to the recursion in step
2 of Algorithm 2.

8.6 Proof of Theorem 5.2
Note first that df, = by, and satisfies (21) by the same argument

as in the proof of Theorem 4.2. Define the elementary block
row operation matrix Sy to satisfy

db cr o 0
o dé’ cg ... 0
Stdsy =10 cr
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An analogous proof to that of Theorem 4.2 shows the upper
n(N —1) x n(N — 1) block of ST®Sy satisfies (21). Applying
this reduction iteratively completes the proof.

8.7 Proof of Theorem 6.1

Given the linear system @ in (16), let F' denote the matrix whose
action is equivalent to step 1 of Algorithm 3, so that F® is upper

block triangular, and Fr recovers blocks {s{ }. Let B denote the
matrix whose action is equivalent to steps 2 of Algorithm 3, so
that B® is lower block triangular, and Br recovers blocks {sf}.
The solution e returned by Algorithm 3 can be written as
follows:

e=((F+B-1)®) ' (F+B-1I)r. (41)
To see this, note that F® has the same blocks above the diag-
onal as @, and zero blocks below the diagonal. Analogously,
B® has the same blocks below the diagonal as ®. Then F® +
B® — & is block diagonal, with diagonal blocks given by d,{ +
d,’j — by, which are invertible by Theorem (6.2). Since P is
invertible, and (F + B —1I)® is invertible, we also have F +B—1
is invertible.
Applying the system F + B — [ to r yields the blocks s{ +
sf — ry. The fact that e solves (16) follows from the following
calculation:

Ge=P(F+B—-1)®) ' (F+B—I)r
=@ (F+B—I)"Y(F+B-I)r=r

The MF smoother given in (Mayne, 1966, (B.9)) is equivalent
to

X = —(Pk+01(7‘;§,1)71(4k+gk) ,

where, tranilating to our notation, q; = —si, P, = d,f — Qlk_l,
g = _Gl:|k71xk\k*1 from (Mayne, 1966, (B.7)), and C)',:‘k is

given by G,;‘kl = d,{ — G,{HQ,:J:leH. We now obtain
Gk_\kl—l - c;k-‘,} —HIR;'H,  (Aravkin, 2010, Chapter 2)
and therefore,
Pt ogl = di+d] — 0" = GO} G — H{ R, ' H
=dl+dl — by by (8).
Finally, we have
— -1 _ S T p—1
8k = — Oy Xkk—1 = — (5 +Hi R "z)
=—(s,—r) by (©).
This gives —(gx +gx) = S']]: + 2 — ry, and the lemma is proved.
8.8 Proof of Theorem 6.2

At every intermediate step, it is easy to see that
dl +df — b= b —ex(d_) 7 ef +bi— oy (dPy) e — b
1.7 _ T (b \—I
=br— Ck(dzil) = 1 (1) Cr

This corresponds exactly to isolating the middle block of the
three by three system

S T
diy TO
Ck bk CIE;LI
0 crr diy,y

By Theorems 4.2 and 5.2, the eigenvalues of this system are
bounded by the eigenvalues of the full system. Applying these
theorems to the middle block shows that the system in (20) also
satisfies such a bound.
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