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A B S T R A C T

Training a Deep Neural Network (DNN) is a significant computing task since it places high demands on
computing resources and memory bandwidth. Many approaches have been proposed to compress the network,
while maintaining high model accuracy, reducing the computational demands associated with large-scale
DNN training. One attractive approach is to leverage Block Circulant Matrices (BCM), compressing the linear
transformation layers, e.g., convolutional and fully-connected layers, that heavily rely on performing General
Matrix Multiplications (GEMM). By using BCMs, we can reduce the weight storage for a linear transformation
layer from 𝑂(𝑁2) to 𝑂(𝑁). BCMs are also more efficient in terms of computational complexity, improving
algorithmic complexity from 𝑂(𝑁2) to 𝑂(𝑁 log(𝑁)).

Previous work has only evaluated DNNs using BCMs targeting FPGAs for inference. There has been little
prior work that considers the potential benefits of using BCMs for accelerating DNN training on GPUs. In
this paper, we explore acceleration of DNNs using BCM on a state-of-the-art GPU. First, we identify the
challenges posed by using BCMs. Next, we perform both general and GPU-specific optimizations that impact:
(i) the decomposition and interaction of individual operations, and (ii) the overall GPU kernel design. We
modify the algorithmic steps to remove redundant computations, while maintaining mathematical integrity.
We also leverage multiple GPU kernel optimizations, considering performance factors, such as occupancy, data
sharing/reuse patterns, and memory coalescing. We evaluate the performance of DNN training on an NVIDIA
Tesla V100, providing insights into the benefits of our proposed kernel optimizations on a state-of-the-art GPU.
Based on our results, we can achieve average speedups of 1.31× and 2.79× for the convolutional layers and
fully-connected layers, respectively for AlexNet. We can also achieve average speedups of 1.33× and 3.66× for
the convolutional layers and fully-connected layers, respectively for VGGNet-16.
1. Introduction

Deep Neural Networks (DNNs) have been found to deliver re-
markable inference accuracy in many application domains, including
computer vision, speech recognition, and natural language process-
ing [1]. DNNs have been widely deployed to support a broad range of
AI applications. Emerging platforms, such as self-driving vehicles [2]
and virtual assistants [3], have successfully exploited DNNs to change
our daily lives. The fundamental building blocks of DNN are Ar-
tificial Neural Networks (ANNs), first introduced around 1960 [4].
Their recent popularity is a product of advances in parallel comput-
ing hardware (i.e., GPUs). These platforms can provide significant
speedups for matrix-based computations, which dominate execution in
DNNs [5]. However, the current trend in DNN models (e.g., VGG [6],
Googlenet [7], and Resnet [8]) is to keep adding additional parameters
and layers, deepening, and widening the model to achieve better
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accuracy. As a result, the current computing platforms are facing
growing demands on computing resources, memory and interconnect
bandwidth, and storage resources.

Researchers have been pursuing new methods to improve the effi-
ciency of DNN execution to overcome these challenges. Compressing
the network model is one popular method. One way to compress the
model is to use structured weight matrices, such as circulant matri-
ces [9,10]. FPGAs and ASICs have been the primary target in these
studies [9–12]. The main motivation for using structured matrices
has been to improve energy efficiency, while also reducing execution
time (especially in embedded applications for IoT products) during
inference. However, training is also an integral part of deep learning.
Structured matrices based weight compression techniques can benefit
training as well, reducing the number of computations and the storage
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space for weights. FPGAs/ASICs are limited in their ability to be used
effectively during DNN training.

GPUs, on the other hand, are a natural fit for accelerating the
training of DNNs, especially when working with tremendous amounts
of data (e.g., image classification with data from ImageNet [13]). GPUs
have a large number of parallel arithmetic units, allowing thousands
of threads to be launched concurrently, while also hiding memory
access latency. For this reason, GPUs have been widely deployed to
perform training of DNNs. In some settings, DNN training leverages
multiple GPUs in a distributed manner [14]. However, naively applying
a weight compression technique to DNN training on a GPU can be
highly inefficient, even causing a significant slowdown.

In this paper, we explore DNN training acceleration on a GPU, using
Block Circulant Matrices (BCMs) [15] for weight compression. BCMs
can be used to replace the weight matrices in layers leveraging GEMM
(e.g., convolutional and fully-connected layers). As a result, we replace
GEMM computation with the BCM algorithm.

A BCM consists of many square circulant matrix blocks, as shown
in Fig. 1. The block size determines the compression ratio, which
presents a tradeoff between the performance and model accuracy when
approximating the desired matrices. The circulant matrices enable
the transformation of regular matrix multiplications to circulant con-
volutions, reducing computing complexity by employing Fast Fourier
Transforms (FFTs) and Inverse Fast Fourier Transforms (IFFTs).

To study the BCM algorithm for DNN training on a GPU, we first an-
alyze the algorithmic steps in the BCM algorithm. We characterize three
different scenarios, considering forward and backward propagation.
We analyze the algorithmic complexity of each stage for the different
scenarios, highlighting some of the challenges when leveraging BCMs
on a GPU.

The contributions of this paper include:

• we extend the BCM algorithm for batched DNN training on a GPU.
• We propose a set of optimizations for BCM algorithm for DNN

training, reducing the number of redundant computations during
both forward and backward propagation, taking advantage of the
mathematical properties of an FFT/IFFT, and modifying selected
steps in the algorithm.

• We discuss a series of GPU kernel tuning principles, considering
three factors that influence performance: (i) device occupancy,
(ii) data reuse, and (iii) memory coalescing for both reads and
writes. We define two new metrics that can characterize data
reuse and memory coalescing patterns present in BCM-based
DNNs. Equipped with these metrics, as well a measure of device
occupancy, we can guide our optimizations to accelerate DNN
execution effectively.

• We evaluate the execution of both forward and backward propa-
gation on an NVIDIA Tesla V100, employing performance coun-
ters to profile the resulting execution. We report on the instruc-
tion per cycle (IPC), static/dynamic instruction count, the mem-
ory intensity (the total number of memory transactions issued
across all GPU kernels), and device occupancy.

• We show that by applying our optimizations with BCM, we can
achieve an average speedup of 1.31× and 2.79× for the convolu-
tional layers and fully-connected layers of AlexNet, respectively,
and a speedup of 1.33× and 3.66× for the convolutional layers
and fully-connected layers of VGGNet-16, respectively. When we
leverage BCM during the DNN training process, the model ex-
periences a minimal loss in terms of both convergence rate and
inference accuracy. We also show that there can be significant
benefits when using BCM to reduce the amount of communication
required during a multi-GPU training using two NVIDIA Tesla
V100’s.

Our proposed methods can benefit all types of DNNs leveraging
EMM. The computation involved in the fully-connected layer is a
EMM operation. The convolutional layer can use GEMM with an
2

additional im2col operation [10]. The computations in an LSTM unit
are also GEMM operations. In practice, our proposed methods can sig-
nificantly reduce the time needed to deploy BCM-based DNNs on edge
devices for inference. Previous studies have described the potential of
BCM-based DNNs in terms of both performance and energy efficiency
on edge devices, with only a minor loss in inference accuracy [9,10,16].

To the best of our knowledge, this is the first work that explores
DNN training using the BCM algorithm on a GPU. Note that our goal is
not to replace GEMM-based DNNs with BCM-based DNNs completely.
Our proposed method serves as an option for DNN training, providing
significant performance and weight storage benefits with only a minor
loss in the training convergence rate and inference accuracy.

We organize the rest of this paper as follows. In Section 2, we
provide an overview of the BCM algorithm and review the targeted
GPU architecture and programming model. In Sections 3 and 4, we
describe our proposed optimizations and kernel tuning principles used
to optimize the BCM algorithm. In Sections 5 and 6, we present our
test environment, evaluation results, and reflect on the benefits of our
proposed optimizations. In Section 7, we discuss previous studies on
weight compression methods, as well as the acceleration of DNN exe-
cution on many hardware platforms (including GPUs), and in Section 8,
we conclude the paper and outline plans for future work.

2. Background

2.1. Deep neural networks

A deep neural network consists of different types of layers, used
to extract features at different levels of abstraction. GEMM operations
play a fundamental role in the linear transformation layers of a DNN
(i.e., the fully-connected (FC) and convolutional layers). For example,
the FC layer is modeled by connecting each input 𝑋𝑗 with numerous
artificial neurons [17]. Each connection has an associated learnable
weight 𝑊𝑗 . The 𝑖𝑡ℎ output is computed as follows:

𝑎𝑖 =
𝑛
∑

𝑗=1
𝑊𝑗 ∗ 𝑋𝑗 + 𝑏𝑖𝑎𝑠𝑖 (1)

where 𝑏𝑖𝑎𝑠𝑖 stands for a learnable bias.
From the above equation, the computation of the FC layer is a

matrix–vector multiplication, and it becomes GEMM with multiple sets
of inputs. The convolutional layer can also use GEMM after transform-
ing the inputs using an im2col operation [18]. The LSTM unit consists
of multiple GEMM operations [19]. Other than the linear transfor-
mation layers, a mature DNN model may also include layers such as
pooling, normalization, activation, and softmax. Many representative
DNNs are basically built upon multiple linear transformation layers
stacked together with other types of layers. In this paper, we focus on
investigating the benefits of using BCMs for the weight matrices in the
linear transformation layers, replacing GEMM with the BCM algorithm.

Training deep neural networks is an iterative and time consuming
task. The ultimate goal is to learn a set of weights for the neural
network model so that it can recognize images, sounds or texts with
high accuracy. The detailed mechanism for training can be further
divided into a forward and a backward propagation. The purpose for
performing forward propagation during training is to calculate the
loss of the overall network based on the current weights. The goal of
backward propagation is to compute the derivatives of the loss function
with respect to the weights, which are then used to update the weights.

2.2. Block circulant weight representation

It has been formally proven that some structured matrices have
the universal approximation property [20,21]. Among them, circulant
matrices can be used in constructing neural networks given their prop-
erties to reduce both the amount of storage and computing complexity
through FFTs/IFFTs [15]. Block circulant weight matrices have been
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Fig. 1. An example of a Block Circulant Matrix (BCM).

proposed [9,10,16] to address the two limitations of a circulant matrix:
(1) it must be square, and (2) the compression ratio is invariant,
resulting in a high degree of information loss for large matrices.

A BCM is composed of an array of equally-sized square circu-
lant matrices (i.e., blocks), whose size is configurable. This method
carefully considers the tradeoff between compression ratio and model
performance by selecting the best block size (i.e., a larger block size
corresponds to a larger compression ratio and improved computation
speed, though a smaller block size corresponds to a higher accuracy).

The convention to describe a BCM is as follows: 𝐖 represents the
block circulant weight matrix, 𝐗 the input, and 𝐚 the output. Within
𝐖, 𝑝 denotes the number of blocks row-wise, 𝑞 the number of blocks
column-wise, and 𝑘 the block size, which is the number of free elements
in one circulant matrix block (i.e., 𝐖𝑖𝑗 , with a total of 𝑘2 elements). A
block size of 𝑘 represents the compression ratio for the weight matrix.
Weight compression using BCM leads to information loss in the weights.
Therefore, a larger block size results a more loss in terms of inference
accuracy. Fig. 1 shows an example of 𝐖 ∗ 𝐗, a circulant matrix block
𝐖𝑖𝑗 , and one corresponding input vector 𝐗𝑗 , in which 𝑖 = {1...𝑝} and
𝑗 = {1...𝑞}. Using a BCM, the number of weights needed for each linear
transformation layer reduces from 𝑝 ∗ 𝑞 ∗ 𝑘2 to 𝑝 ∗ 𝑞 ∗ 𝑘.

2.2.1. Training with BCM algorithm
As mentioned in Section 2.1, the training process involves forward

and backward propagations. The computation of the forward propa-
gation is 𝐖 ∗ 𝐗. As the weight matrix is now block circulant, the
computation involves two steps that reduce the overall computational
complexity. First, within each block, GEMMs are transformed into an
‘‘FFT → element-wise multiplication → IFFT’’, according to the circulant
convolution theorem [22,23]. Second, the results over index 𝑗 can be
summed to produce the final result.

Backward propagation involves two operations both using 𝜕𝐋
𝜕𝐚 . The

first computes the derivative for the inputs 𝜕𝐋
𝜕𝐗 and the second operation

computes the derivative for the weights 𝜕𝐋
𝜕𝐖 .

In the context of the BCM algorithm, 𝜕𝐚
𝜕𝐖 and 𝜕𝐚

𝜕𝐗 are both BCMs
[15]. Within the scope of each block, 𝜕𝐚𝑖

𝜕𝐖𝑖𝑗
is a circulant matrix defined

by vector 𝐗′
𝑗 ∶ {𝑋𝑗1, 𝑋𝑗𝑘, 𝑋𝑗,𝑘−1,… , 𝑋𝑗2} and 𝜕𝐚𝑖

𝜕𝐗𝑗
is a circulant matrix

defined by 𝐰′
𝑖𝑗 ∶ {𝑤𝑖𝑗1, 𝑤𝑖𝑗𝑘, 𝑤𝑖𝑗,𝑘−1,… , 𝑤𝑖𝑗2}.

Usually, every training iteration should consume one batch of input
data, producing one batch of outputs. In this paper, we consider train-
ing in batches and develop a set of equations to describe batched DNN
training. To characterize the underlying data format, we use index 𝑏
to indicate the position of data within each batch and 𝑛 to denote the
number of input data elements in one batch. Equations for the forward
and backward propagations are shown below:

𝐚𝑏𝑖 =
𝑞
∑

𝑗=1
𝐼𝐹𝐹𝑇 (𝐹𝐹𝑇 (𝐰𝑖𝑗 )◦𝐹𝐹𝑇 (𝐗𝑏𝑗 )) (2)

𝜕𝐋
𝜕𝐖𝑖𝑗

=
𝑛
∑

𝑏=1
𝐼𝐹𝐹𝑇 (𝐹𝐹𝑇 ( 𝜕𝐋

𝜕𝐚𝑏𝑖
)◦𝐹𝐹𝑇 (𝐗′

𝑏𝑗 )) (3)

𝜕𝐋 =
𝑝
∑

𝐼𝐹𝐹𝑇 (𝐹𝐹𝑇 ( 𝜕𝐋 )◦𝐹𝐹𝑇 (𝐰′
𝑖𝑗 )) (4)
3

𝜕𝐗𝑏𝑗 𝑖=1 𝜕𝐚𝑏𝑖
For simplicity, we set the row height and column width of the
weight matrices to power of 2. If dimensions of the linear transfor-
mation layers are not power of 2, zero padding can be used both on
the feature maps and weight matrices. Note that zero padding does not
effect computation complexity and is used for regularizing the formats
only.

2.3. GPU architecture

The architecture of a Graphic Processing Unit (GPU) is designed
to improve instruction throughput rather than reduce the latency of
a single instruction. The memory subsystem of a GPU is optimized
to deliver high memory bandwidth, providing shared memory and
memory coalescing units to support GPU memory demands.

In order to support general-purpose GPU programming, GPU ven-
dors have developed a number of software platforms, along with sup-
porting libraries and programming interfaces. Among the many options,
CUDA is aimed for programming NVIDIA GPUs. The programming
model of CUDA provides an intuitive abstraction of the GPU compute
resources for the programmer. Multiple threads are grouped together
into thread blocks, and multiple thread blocks are combined together
into a grid. Programmers can define the shape of a thread block and
a grid using two CUDA-specific identifiers, BlockDim and GridDim. In
addition, threadIdx and blockIdx (also CUDA-specific identifiers) are
used to specify the thread ID and block ID in a multi-dimensional fash-
ion. For example, threadIdx.x represents the thread ID for dimension
x, threadIdx.y for y, and threadIdx.z for z. When developing a CUDA
kernel, the programmer needs to carefully map the layout of the data
in their kernel to a group of threads, specifying the kernel dimension.

3. Implementing BCM based DNN training on a GPU

Next, we take a deep dive into the operations performed when
training a linear transformation layer using BCMs. First, we consider
how to map the BCM algorithm when targeting a GPU. Then, we
consider some of the performance challenges present in our baseline
GPU implementation.

3.1. Decomposing forward and backward propagation

Considering Eqs. (2), (3), and (4), the computations associated with
forward and backward propagation can be further broken down into
multiple stages. Fig. 2(a) shows the stages required during forward and
backward propagations, where each block represents the operations
in the equations and the arrows represent data dependencies between
two blocks. For instance, the multiply block depends on the results
computed by the two FFTs blocks. Whenever there is a dependency,
synchronization between the two operations is required.

3.1.1. Managing data
All the data, including the intermediate results from each stage, are

stored as tensors (multi-dimensional arrays) in GPU memory. The data
layout in our baseline implementation uses a conventional tensor data
layout. A tensor has 𝑁 dimensions, denoted as 𝐷𝑖, where 𝑖 can take on
values 0,… , 𝑁 − 1. Each dimension has an associated size value 𝑀𝑖,
specifying the number of data chunks for the specific dimension. For
example, for a tensor-based data that has dimensions of 𝑛×𝑝×𝑞×𝑘, we
can know that this tensor has four dimensions (𝐷3, 𝐷2, 𝐷1, and 𝐷0),
each of which has an associated size value of (𝑀3, 𝑀2, 𝑀1, and 𝑀0),
corresponding to 𝑛, 𝑝, 𝑞, and 𝑘, respectively.

The format of each input and output involved in the BCM algorithm
is indicated in Table 1. The values 𝑛, 𝑝, 𝑞 and 𝑘 are described in
Section 2.
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Fig. 2. (a) The flow of operations performed during a complete training. (b) An
optimized implementation of the same operations.

Fig. 3. (a) Operational overview of element-wise multiplications performed during
forward propagation. (b) Reduction summations performed during forward propagation.

Table 1
Dimensions of the input and output data.

Type Name Format

Inputs, Outputs
𝑊 , 𝜕𝐿

𝜕𝑊
𝑝 × 𝑞 × 𝑘

𝑋, 𝜕𝐿
𝜕𝑋

𝑛 × 𝑞 × 𝑘

𝑎, 𝜕𝐿
𝜕𝑎

𝑛 × 𝑝 × 𝑘

3.2. Kernels of the operations

Inspecting the algorithm decomposition in the forward and back-
ward propagation, we see four primary operations: (1) FFTs, (2) IFFTs,
(3) element-wise multiplications, and (4) summations. The reorder
kernel is already efficient, so we exclude it from this discussion.

To compute the FFT/IFFT efficiently, we select the cuFFT [24]
library, a highly optimized FFT/IFFT library specifically designed for
NVIDIA GPUs. In our implementation, we use the 1D FFT/IFFT,
launched in batches over the inner-most dimension 𝐷0.

Figs. 3(a) and 3(b) show two simple examples illustrating the op-
rations involved in the element-wise multiplications and summations
uring forward propagation, together with the indexing pattern associ-
ted with the memory layout. We omit the two operations performed
4

l

Table 2
Kernel dimensions for element-wise multiplications and summations (Forward
Propagation).

Kernels Dimension variables Forward

Multiplication blockDim (𝑘, 1, 1)
gridDim (𝑞, 𝑝, 𝑛)

Summation blockDim (𝑘, 1, 1)
gridDim (𝑝, 𝑛, 1)

during backward propagation as they share a similar pattern. The major
differences are: (1) the format of the input, and (2) the locations read
from the inputs.

Fig. 3(a) illustrates the operational details for the element-wise
multiplications during forward propagation. From the figure, we can
see that element-wise multiplications are performed over 𝑘-sized data
hunks. The chunks are read from 𝐹𝐹𝑇 (𝑊 ) and 𝐹𝐹𝑇 (𝑋), with shapes
f 3×1×𝑘 and 2×1×𝑘, respectively. In the example presented in the fig-
re, the labels 1⃝– 3⃝ correspond to 3 different k-sized data chunks read
rom 𝐹𝐹𝑇 (𝑊 ), and the labels A⃝– B⃝ stand for the 2 different k-sized
ata chunks read from 𝐹𝐹𝑇 (𝑋). Data chunks are read for element-wise
ultiplication on a k-sized chunk basis. The labels on the write path

e.g., 1⃝ × A⃝) identify the results from the element-wise multiplications
for data chunks 1⃝ and A⃝ in this example). Likewise, the other labels
n the write path are the result of element-wise multiplications for their
espective data chunks.

Fig. 3(b) shows the reductions (i.e., summations) performed during
orward propagation. Given the input, which is the output shown
n Fig. 3(a), the summation operations are performed over different
imensions, 𝑞 for the forward propagation, 𝑛 for the backward prop-
gation (for the weights), and 𝑝 for the backward propagation (for the
ata).

For the element-wise multiplications and summations, we design
nd implement GPU kernel functions. The basic elements required
or a GPU kernel include: (i) mapping the data layout to the kernel
imensions (i.e., the shape of the cooperative thread array, defined
y blockDim and gridDim [25]), (ii) specifying the operations to be
erformed in the kernel, and (iii) managing the kernel input data,
tored in GPU memory while the kernel is active.

According to the data layout in the BCM algorithm, the data unit
nvolved in the computations is a 𝑘-sized data chunk (i.e., the size of
he inner-most dimension). Therefore, the most straightforward scheme
ould be to directly map both element-wise multiplications and sum-
ations to a space where the kernel parameters (i.e., blockDim.x,

ridDim.x, gridDim.y, and gridDim.z) are determined by the tensor
ata dimensions. With this mapping mechanism, each thread block
as 𝑘 threads simultaneously running on a GPU. Given this mapping
hilosophy, the kernel becomes significantly simplified. Table 2 shows
he mapping details.

.3. Challenges

First, our flow of operator shows that there are at least five op-
rators for both forward and backward propagation. When executing
his multi-stage application on a GPU, we need to launch multiple
ernels sequentially due to the constraints of the dependencies between
perators, adding the overhead of kernel launch and associated syn-
hronizations to the overall execution time. As such, the benefits of
arallelism on a GPU are limited to each kernel.

Second, the kernels executed after FFT and before IFFT, in the BCM
perator sequence, suffer from an occupancy issue. Given that we are
sing the NVIDIA cuFFT library kernels for FFT/IFFT execution, the size
f 𝑘 (the thread block size after kernel dimension mapping) changes to
∕2 + 1 after the FFT, due to a memory-saving feature of the cuFFT

ibrary [24]. As a result, the thread block size is not always a multiple
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of 32 (warp size). This new value for 𝑘, denoted as 𝑘′ in this paper,
results in lower occupancy and underutilization of the device.

Last but not least, a regular kernel mapping function cannot gen-
erally employ the full capabilities of a GPU, primarily due to ineffi-
cient use of hardware components, such as memory coalescing units
and shared memory. The former coalesces multiple memory trans-
actions issued from the same thread block, and the latter enables
fast access to data that is frequently reused by multiple threads in a
thread block [25]. There are many opportunities to optimize the two
customized kernel. First, the nature of the two kernels results in a
complicated memory access pattern (due to tensor data indexing). As
such, optimizing memory coalescing efficiency can lead to performance
improvements. Second, our implementation produces some predictable
(and cacheable) data reuse patterns. For example, in Fig. 3(a), A⃝ and
B⃝ are reused when writing the results.

4. Optimizations

4.1. Improving the flow of operations

In this section, we describe the set of optimizations we
evelop/apply to reduce the number of redundant operations in the
CM algorithm. Our optimizations preserve the mathematical integrity
f all steps. As shown in Fig. 2(b), our optimizations consist of 3
nhancements identified in purple, green and blue, and numbered 1,
, and 3, respectively. These enhancements include: (1) swapping the
osition of the IFFT and summation operations, (2) removing the re-
rder operation and modifying the associated multiplication to guarantee
athematical correctness, and (3) reusing results after computing the

FT for backward propagations for weights and data. In the following
aragraphs, we provide details of these steps and show how their use
an simplify computations.

Step 1 does not impact the mathematical integrity of the compu-
ation, given that an IFFT is a linear transformation. The IFFT can be
erformed on A and B as individual components or combined in a sum,
iven that 𝐼𝐹𝐹𝑇 (𝐴+𝐵) = 𝐼𝐹𝐹𝑇 (𝐴)+𝐼𝐹𝐹𝑇 (𝐵). Therefore, we can swap
he position of the sum and IFFT in the BCM algorithm. The benefit of
hese simple changes results in a significant reduction in terms of the
umber of computations needed for computing the IFFT. Similarly, the
ame optimizations can be applied to the backward propagation as well.

For step 2, the 𝐰′ and 𝐗′ are in fact the same vectors for 𝐰 and 𝐗, but
hifted by 𝑘 − 1 elements. Based on the fundamental characteristics of
n FFT [26], the magnitude of 𝐹𝐹𝑇 (𝐰′) and the magnitude of 𝐹𝐹𝑇 (𝐰)

are the same, with only the sign of the imaginary part flipped. Based
on this property, we can remove the reorder operation entirely and
only modify the associated element-wise multiplications, considering
the flipped sign in the imaginary part of the 𝐹𝐹𝑇 (𝐰) and 𝐹𝐹𝑇 (𝐗).
Applying step 2 leads directly to step 3. Removing the reorder operation
adds some redundancy that we can exploit for further optimizations,
specifically during backward propagation. In the blue shaded area 3⃝
of Fig. 2(b), the data reuse paths are indicated using dashed arrows.

For the computation of 𝐹𝐹𝑇 (𝐗) and the 𝐹𝐹𝑇 (𝐰) during backward
propagation, we can reuse the corresponding results produced during
forward propagation. In addition, the results from the 𝐹𝐹𝑇 ( 𝜕𝐋𝜕𝐚 ) com-
utation can also be reused during backward propagation. In all, we
an eliminate two reorder operations and three major FFT operations
uring backward propagations, significantly reducing the number of
perations.

.2. Kernel customizations

In this section, we present a number of kernel-specific optimizations
or the two customized kernels, based on their execution performance
haracteristics. To guide these optimizations, we consider three differ-
nt performance-related factors: (1) occupancy, (2) data reuse pattern,
nd (2) memory coalescing for both reads and writes. We develop a set
f principles that are focused on these three factors. We provide a brief
escription of each of them.
5

• Principle I: To achieve high occupancy, the thread block size
should be a multiple of 32 (the warp size).

• Principle II: Each thread block should include threads that exhibit
temporal locality in their data access pattern.

• Principle III: Given a thread block design based on principles I and
II, the memory access distance (defined later) within one thread
block exploits memory coalescing.

Given the lack of control over thread scheduling on the actual
ardware, tuning the mapping function (Section 3.2) and reorganizing
the memory layout are the keys to applying our principles. To quan-
titatively evaluate the benefits of principles II and III, we define two
metrics: (i) the degree of data reuse (DR), and (ii) the memory access
distance (MD) for both reads and writes. Both metrics are measured
within a single thread block. We define the DR and MD metric as below:

• DR: The maximum number of threads that reuse the same data.
• MD: The range of addresses accessed across all memory accesses,

divided by the number of threads per thread block.

The DR metric reflects the data reuse pattern in one thread block.
The MD metric is used to assess spatial locality. An ideal MD value
would equal to 1 storage unit (a float or double), meaning that the
memory accesses within one thread block are entirely regular and
consecutive, leading to an ideal spatial locality. Any MD value larger
than 1 storage unit implies some degree of irregular access. A more
significant value for MD translates to a lower spatial locality. In this
paper, we focus on reducing the MD value by reorganizing the memory
layout. Both metrics are a function of the kernel design. We can easily
obtain DR and MD for a given mapping function and memory layout
of the input and output data. Note that tuning the DR and MD metrics
is a tradeoff, in that increasing DR can increase MD while introducing
irregular memory accesses.

4.2.1. Element-wise multiplications
The element-wise multiplication kernel suffers from occupancy is-

sues, such that data reuse and memory coalescing are heavily underex-
ploited. To address these issues, we propose two optimizations (labeled
O1 and O2), which both consider principles I and II, but in different
priority orders. We also transform the memory layout to decrease MD,
as is the goal with principle III.

The O1 optimization is aimed at addressing the occupancy issue
first, then additionally leveraging the data reuse pattern to support
better shared memory usage. We achieve this by directly increasing
the size of a thread block, including more threads from a second
dimension rather than the innermost dimension. More specifically, with
the mapping functions indicated in Table 2, given a multiple of 32 for
𝑁 , we can change the mapping of gridDim.x to (𝑞 − 𝑁 + 1)∕𝑁 , while
keeping the gridDim.y and gridDim.z dimensions unchanged. Fig. 4
illustrates this change in the kernel dimension mapping. However, this
can produce an undesirable MD value during backward propagation,
resulting in long-strided memory accesses because the two inputs for
the multiplication do not share the same innermost dimensions. To
address this issue, we reorganize the memory layout, leading to a
better chance of memory coalescing. For example, during backward
propagation for weights, the dimensions for the two inputs for the
multiplication are 𝑛 × 𝑝 × 𝑘 and 𝑛 × 𝑞 × 𝑘. We reorganize them so that
their dimensions become 𝑝 × 𝑛 × 𝑘 and 𝑞 × 𝑛 × 𝑘.

Likewise, the memory layout of their outputs need to be reorganized
as well, in order to avoid large MD values for the writes.

To leverage any temporal reuse pattern in the data, we manipulate
the mapping function as well. We keep the blockDim.x unchanged as
𝑁 , and map DR to the blockDim.y dimension, increasing the number
of threads that share data. When mapping the DR to BlockDim.y, we
specify the number of lower dimension chunks that can reuse one
chunk of data. As a result, a number of lower dimension chunks that
reuse one chunk of data can be loaded into a single thread block. For
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Fig. 4. Kernel dimension mapping with a new thread block size.

Algorithm 1 Kernel Mapping Function of O1

1: Inputs: n, p, q, k, 𝐹𝐹𝑇 ( 𝜕𝐿𝜕𝑎 ), 𝐹𝐹𝑇 (𝑊 ), 𝐹𝐹𝑇 (𝑋), propagation_type
2: Outputs: blockDim, gridDim
3: if propagation_type == BACKWARD_WEIGHT then
4: MemoryReorganize(𝐹𝐹𝑇 ( 𝜕𝐿𝜕𝑎 )) → 𝑝 × 𝑛 × 𝑘
5: MemoryReorganize(𝐹𝐹𝑇 (𝑋)) → 𝑞 × 𝑛 × 𝑘
6: 𝑀_1,𝑀_2,𝑀_3 = n, q, p
7: else if propagation_type == BACKWARD_DATA then
8: MemoryReorganize(𝐹𝐹𝑇 (𝑊 )) → 𝑞 × 𝑝 × 𝑘
9: 𝑀_1,𝑀_2,𝑀_3 = p, q, n
0: else if propagation_type == FORWARD then
1: 𝑀_1,𝑀_2,𝑀_3 = q, p, n
2: end if
3: N = k < 32 ? 32 : k
4: blockDim.x = N
5: gridDim.x = (𝑀_1 −𝑁 + 1)∕𝑁
6: DR = 1024

𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥
7: blockDim.y = DR
8: gridDim.y = 𝑀_2−𝐷𝑅+1

𝐷𝑅
9: gridDim.z = 𝑀_3

example, chunk A and chunk B reuse the data of chunk C, so we set the
BlockDim.y to 2 so one thread block can load both chunk A and chunk
B. Threads reading data from chunk A and chunk B can read data from
chunk C, stored in shared memory. Given the constraint that a single
thread block can only contain 1024 threads [25], DR can be calculated
using Eq. (5). This optimization approach considers a tradeoff. A larger
DR value can make better use of the shared memory, but results in
a smaller blockDim.x dimension, potentially leading to lower spatial
locality within a single thread block. From our experimental results,
we found that the blockDim.x can be selected using the following rule
of thumb: if 𝑘′ is less than 32, then we set the blockDim.x to 32.

therwise, we set blockDim.x to 𝑘.
Algorithm 1 describes the steps required to map kernel O1, and

ncludes reorganization of the memory layout and initialization of
ernel parameters.

𝑅 = 1024
𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥

(5)

𝐷𝑅 = 1024
𝑘

(6)

The O2 optimization, on the other hand, focuses on leveraging the
data reuse pattern first. We calculate DR using Eq. (6). Note that the
blockDim.x is 𝑘′ in O2, computed as 𝑘∕2+1. Eq. (6) is, in fact, derived
from a different process. Given that 𝑘′ is not a multiple of 32, we need
to find a DR value using two constraints: (1) the DR value has to be
a power of 2, and (2) 𝐷𝑅 ∗ (𝑘∕2 + 1) <= 1024. The DR value should
be the largest power of 2 which satisfies 𝐷𝑅 <= 2048

𝑘+2 < 2048
𝑘 , leading

to Eq. (6).
After adopting this approach, we find that there is no need to

increase the thread block size to improve occupancy, as the thread
block size equals to 1024

𝑘 ∗ (𝑘∕2 + 1), which can be further expanded
s 512+ 1024 . Assuming that we only select a power of 2 for 𝑘, the new
6

𝑘

Algorithm 2 Kernel Mapping Function of O2

1: Inputs: n, p, q, k, 𝐹𝐹𝑇 ( 𝜕𝐿𝜕𝑎 ), 𝐹𝐹𝑇 (𝑊 ), 𝐹𝐹𝑇 (𝑋), propagation_type
2: Outputs: blockDim, gridDim
3: if propagation_type == BACKWARD_WEIGHT then
4: 𝑀_1,𝑀_2,𝑀_3 = n, q, p
5: else if propagation_type == BACKWARD_DATA then
6: 𝑀_1,𝑀_2,𝑀_3 = p, q, n
7: else if propagation_type == FORWARD then
8: MemoryReorganize(𝐹𝐹𝑇 (𝑊 )) → 𝑝 × 𝑘 × 𝑞
9: 𝑀_1,𝑀_2,𝑀_3 = q, p, n
0: end if
1: k’ = k / 2 + 1
2: blockDim.x = k’
3: gridDim.x = 𝑀_1
4: DR = 1024

𝑘
15: blockDim.y = DR
16: gridDim.y = 𝑀_2−𝐷𝑅+1

𝐷𝑅
17: gridDim.z = 𝑀_3

thread block size is a multiple of 32 when 𝑘 <= 32. Even when 𝑘’s value
is greater than 32, the impact is negligible, thanks to the constant term
(512) for the thread block size.

The backward propagations have smaller MD values when applying
O2, versus forward propagation. The MD value for the former is 1,
which is ideal, whereas the latter is 𝑞 ∗ 𝑘′∕𝑁 approximately. When
𝑁 < 𝑞 ∗ 𝑘′ (a common scenario), so the MD is larger than 1. As such,
we reorganize the memory layout of 𝑊 from 𝑝 × 𝑞 × 𝑘 to 𝑝 × 𝑘 × 𝑞 for
forward propagation.

Algorithm 2 describes the steps required to map kernel O2, includ-
ing reorganization of the memory layout and initialization of kernel
parameters.

Comparing with O1, O2 has both advantages and disadvantages. In
terms of advantages, first, O2 only needs one memory reorganization
operation, while O1 needs three. Second, O2 has a smaller MD value for
reads because of the same reason described in the previous paragraph.
In terms of disadvantages, O2 has a larger MD value for writes (we need
to reorganize the output for the reduction summation). The occupancy
issues for O1 and O2 are no longer existing. Achieving a better DR value
is a bit tricky for these two optimizations, as the value for DR depends
on the size of 𝑘. When 𝑘 < 32, O2 achieves a better DR value, whereas,
O1 and O2 have similar data reuse behaviors when 𝑘 >= 32.

4.2.2. Reduce summation
Based on the execution patterns and memory access patterns illus-

trated in Fig. 3(b), the kernels only perform a simple summation of the
data along a single dimension, resulting in no data reuse. Therefore, we
only focus on optimizing the occupancy and MD value for the summa-
tion. The baseline mapping function results in undesirable MD values
for backward propagations. To improve spatial locality, we reorganize
the memory layout of the outputs of the previous kernels (i.e., the
element-wise multiplications) so that the specific dimension for per-
forming the summation becomes the second innermost dimension.
To address the occupancy issue, we can also use the same approach
illustrated in Fig. 4 to increase the thread block size. However, our
experimental results show that this can lead to irregular memory access
patterns, impacting spatial locality. Therefore, we only apply memory
layout reorganization to improve MD on reads for the summations.

Algorithm 3 describes the steps required to map the Reduce Sum-
mation kernel. The reduce summation does not require changes to
the memory layout since the element-wise multiplication has already

remapped the memory layout to a desired format.
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Algorithm 3 Kernel Mapping Function of Reduce Summation
1: Inputs: n, p, q, k, propagation_type
2: Outputs: blockDim, gridDim
3: if propagation_type == BACKWARD_WEIGHT then
4: 𝑀_1,𝑀_2 = q, p
5: else if propagation_type == BACKWARD_DATA then
6: 𝑀_1,𝑀_2 = q, n
7: else if propagation_type == FORWARD then
8: 𝑀_1,𝑀_2 = p, n
9: end if
0: k’ = k / 2 + 1
1: blockDim.x = k’
2: gridDim.x = 𝑀_1
3: gridDim.y = 𝑀_2

Algorithm 4 Kernel Mapping Function of Kernel Fusion Method
1: Inputs: n, p, q, k, propagation_type
2: Outputs: blockDim, gridDim
3: if propagation_type == BACKWARD_WEIGHT then
4: 𝑀_1,𝑀_2 = q, p
5: else if propagation_type == BACKWARD_DATA then
6: 𝑀_1,𝑀_2 = q, n
7: else if propagation_type == FORWARD then
8: 𝑀_1,𝑀_2 = p, n
9: end if
0: k’ = k / 2 + 1
1: blockDim.x = k’
2: gridDim.x = 1
3: DR = 1024

𝑘
14: blockDim.y = DR
15: gridDim.y = 𝑀_1−𝐷𝑅+1

𝐷𝑅
6: gridDim.z = 𝑀_2

4.2.3. Kernel fusion
Returning to our optimized implementation for the BCM algorithm,

the first step swaps the position of the IFFT and the summation to
reduce the amount of computation required during the IFFT. The
optimized BCM algorithm provides us with an opportunity to fuse these
two kernels into one. We apply kernel fusion, considering the same
design principles just described, and leverage the same optimizations.
We implement a new mapping function for the fused kernels based on
O2. We chose O2 over O1 because O2 does a better job of improving
the locality of the reads. We omit the memory layout reorganization
operations as they are no longer necessary because the performance
gains from reorganizing memory layout are negligible after the kernel
fusion.

Algorithm 4 describes the steps required to map the Kernel Fusion
method.

The kernel fusion approach has the following potential benefits:

• It significantly reduces the number of memory transactions re-
quired.

• The memory layout reorganization operations are no longer
needed.

• It saves the overhead of launching one additional kernel.
• No intermediate data is produced between these two kernels.

5. Experiments

In this paper, we select the Intel Xeon CPU E5-2630 [27] as the
CPU platform, and the NVIDIA Tesla V100 [28] as the GPU plat-
form, to run our experiments. In terms of software, we use CUDA
7

10, and its associated SDKs and math libraries. We use cuBLAS to O
build GEMM as a baseline. We have extended the DNNMark bench-
mark framework [5] to implement the BCM algorithm, and leverage
DNNMark tools to benchmark our implementations. We use the default
compilation optimization level to build the executable.

To demonstrate the effectiveness of our optimization methods, we
evaluate a broad range of problem sizes using real-world models trained
with the ImageNet [13] and TIMIT [29] datasets. We only consider
GEMM-based layers (i.e., the convolutional and fully-connected layers)
in DNNs, CNNs, TDNNs, and LSTM models [6,30,31].

First, we evaluate the baseline implementation of the BCM algo-
rithm and our optimized versions versus traditional matrix multiplica-
tion (MM). For simplicity, we use three different representative layer
configurations, corresponding to the fully-connected and convolutional
layers in different models, using the ImageNet dataset (Layer A and B)
and fully-connected layer from models using the TIMIT dataset (Layer
C). To obtain these representative layer configurations, we calculate
the average number of weights across all corresponding layers and
select a layer configuration having the same number of weights as
close as possible to the average value. For example, we find that the
average number of weights across all fully-connected layers in three
ImageNet trained models (AlexNet, VGGNet, and ResNet [6,8,30]) is
approximately 30 million. As such, we select 4096 and 8192 as the
number of output nodes and input nodes, generating 33 million weight
parameters. Table 3 describes the layer configuration details of the
three representative layers.

Next, we evaluate the best performing optimization method across
all GEMM-based layer configurations using models trained with the
ImageNet and TIMIT datasets. For the ImageNet dataset, we select
AlexNet and VGGNet-16, because they provide good coverage of a wide
range of layer configurations in popular CNN models. For example,
ResNet and VGGNet share the same collection of layer configurations.
For the TIMIT dataset, we select the TDNN and LSTM models. For the
convolutional and fully-connected layers in AlexNet and VGGNet-16,
we use conv𝑥 and fc𝑦, where 𝑥 and 𝑦 are the index values for the
convolutional and fully-connected layers, respectively. Note that we
only present one layer configuration if multiple layers share the same
configuration. For example, conv6 and conv7 of VGGNet-16 share a
common layer configuration. For the fully-connected layer in TDNN
and LSTM models, we use fc𝑥-𝑦 to represent the layers, where the
𝑥 value corresponds to the layer configuration corresponding to the
number of nodes (i.e., 256, 512, 1024, and 2048), and the 𝑦 index
specifying the layer type (i.e., input layer, hidden layer, and output
layer) [31]. To capture the execution behavior, while varying the block
size, we select multiple commonly-used block sizes (16, 32, and 64).

Last, we collect a range of performance counters to analyze different
optimization, including: instructions per cycle, number of instructions
executed, number of memory transactions, and device occupancy. To
obtain the value of the performance counters, we leverage nvprof [25],
a tool that can collect the hardware performance counters on NVIDIA
GPUs.

6. Performance evaluation

6.1. Results

First, we present the performance evaluation results of our baseline
implementation of the BCM algorithm, denoted as BCM, and then our
optimized versions. We compare them against using a traditional matrix
multiplication (MM) based representation (cuBLAS [32]). We label our
optimized results using O1+Sum, O2+Sum, and Kernel Fusion, indicating
which of our three optimized versions was used. O1+Sum implements

ultiplication applying the O1 optimization, along with an optimized
ummation. Version O2+Sum implements multiplication using O2 and
he optimized summation. Kernel Fusion fuses the multiplication with

2 optimization and the summation, as described in Section 4.2.3.
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Table 3
Experimental setup of three representative layer configurations in our experiments.
Layer name Dataset Type of layer Number of outputs Number of inputs Filter size Number of weights Batch size

Layer A ImageNet Fully-Connected Layer 4096 8192 N/A 33 Million 128
Layer B ImageNet Convolutional Layer N/A 14 × 14 3 × 3 × 256 × 512 1.2 Million 64
Layer C TIMIT Fully-Connected Layer 1024 1024 N/A 1 Million 128
Table 4
Speedup of the Kernel Fusion approach over baseline BCM for Layer A, B, and C.

Block size 16 32 64

Layer A 43.3× 22.4× 11.3×
Layer B 27.3× 10.7× 4.6×
Layer C 14.7× 5.2× 2.6×

Fig. 5(a)–5(c) show the speedup of BCM and our optimized ver-
sions over MM, across Layers A, B, and C, as described in Section 5.
From the figures, MM outperforms BCM, our baseline implementation,
as described in Section 4. The O1+Sum and O2+Sum optimizations
produce substantial performance improvements over BCM. However,
they cannot outperform MM. The Kernel Fusion approach outperforms
the O1+Sum and O2+Sum optimizations. Each has a different impact
on performance, depending on the problem size (a function of the
number of weights, number of inputs, and batch size) when compared
against MM. For Layer A, the Kernel Fusion approach can achieve a
speedup of 1.12×, 2.1×, and 3.5× over MM across block sizes of 16,
32, and 64, respectively. For Layer B, the Kernel Fusion approach can
also achieve a speedup of 1.06×, 1.39×, and 1.64× over MM for block
sizes of 16, 32, and 64, respectively. For Layer C, the benefit of the
Kernel Fusion approach is limited. From our results, we find that our
proposed optimization approach can achieve better performance than
MM when the problem size is sufficiently large. Although our optimiza-
tion approach has limited benefits when problem sizes are small, it still
outperforms the baseline implementation (BCM), significantly reducing
the execution time needed for training a block-circulant DNN. Table 4
lists the speedup of the Kernel Fusion approach over the baseline
version. From the table, the Kernel Fusion approach can achieve an
average speedup of 25.7× for Layer A, 14.2× for Layer B, and 7.5× for
Layer C.

We find that problem size has an impact on the performance of our
optimization approach. Thus, we vary the batch size for Layers A, B,
and C and present the speedup for different problem sizes in Fig. 6(a)–
6(c). In this experiment, we evaluate the best performing optimization,
i.e., the Kernel Fusion approach, across different block sizes, labeled as
BCM16, BCM32, and BCM64. The baseline is MM. From the figures, we
can notice that the speedup increases with increased batch size. When
the batch size is sufficiently large, the trend becomes less obvious.

In Fig. 7(a)–7(c), we present the speedup of the Kernel Fusion
approach over MM, across all GEMM-based layer configurations from
AlexNet and VGGNet-16, trained with the ImageNet dataset, and the
TDNN and LSTM models, trained with the TIMIT dataset. From our re-
sults of using a block size of 64, we see that for AlexNet we can achieve
an average speedup of 1.31× for the convolutional layers and 2.79× for
the fully-connected layers. For VGGNet-16 with a block size of 64, we
can achieve an average speedup of 1.33× for the convolutional layers
and 3.66× for the fully-connected layers. Note that two fully-connected
layers in VGGNet-16 share the same layer configurations of fc2 and fc3
in AlexNet. For TDNN and LSTM, the performance gains are limited.
Only when the number of weights is larger than 1.9 million can we
achieve a speedup of 2.12×, given block size of 64.

6.2. Performance analysis

In this section, we select a number of hardware performance coun-
ters to compare performance. We capture the number of instructions
executed, the number of memory transactions, and the GPU occupancy.
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Fig. 5. Speedup of the BCM baseline and our optimized versions, as compared to a
matrix multiplication implementation for (a) Layer A, (b) Layer B, and (c) Layer C.

We use these metrics to evaluate the effectiveness of each optimization,
and discuss the reasons for the resulting performance.

We present the implications of using the customized kernels in
Figs. 8–12. For simplicity, we only discuss the results of Layer A, as
other layers exhibit similar trends.

In Fig. 8, we can see that the IPC is always higher for the optimized
versions. For different optimizations, while each provides a different
degree of performance improvement, we find that the trends in each
optimization are consistent. We conclude that the number of eligible
warps that can run per cycle has a strong impact on performance.
The O2+Sum implementation results in the lowest number of eligible
warps per cycle, as compared to the other optimized versions. We
found that the resulting performance of O2+Sum is heavily impacted
by the behavior of memory operations. As we explored the performance
achieved in each optimized version, we found that the blockDim.x in
the kernel mapping function in the multiplication kernels plays an
important role. Across our implementations, a larger blockDim.x can
launch more spatially local memory accesses, leading to a higher degree
of memory coalescing. This translates to fewer memory transactions.
O2+Sum uses 𝑘′ for its blockDim.x, whereas O1+Sum and Kernel
Fusion use 𝑁 and 𝑘′ × 𝑀𝑖, respectively (𝑘′ is the new block size after
the FFT operation, 𝑁 is the new blockDim.x, as shown in Fig. 4, and
𝑀𝑖 is the size of the dimension over which summation is performed).
Obviously, a blockDim.x of O2+Sum is smaller than the other two
values. Although we use O2, Kernel Fusion significantly improves the
memory efficiency by reducing the number of memory transactions
needed, leading to higher IPC.

From the same figure, we also see that the IPC of the O2+Sum
optimization using a block size of 16 results in comparable perfor-
mance compared to the other two schemes, This is because using a
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Fig. 6. Speedup of baseline BCM version and our optimized versions, as compared to a matrix multiplication implementation for (a) Layer A, (b) Layer B, and (c) Layer C.
Fig. 7. Speedup of the Kernel Fusion approach, as compared to a matrix multiplication
implementation, for all layer configurations in (a) AlexNet, (b) VGGNet-16, and (c)
TDNN and LSTM.

Fig. 8. IPC of the baseline and optimized versions.

Fig. 9. Dynamic instruction count of the baseline and optimized versions.
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Fig. 10. FLOP efficiency of the baseline and optimized versions.

Table 5
The static instruction count of the baseline and optimized versions.

BCM O1+Sum O2+Sum Kernel fusion

2003 2363 2693 4797

smaller block size leads to higher DR (as discussed in Section 4). The
O2+Sum optimization is making better utilization of shared memory,
thus compensating for lower memory coalescing, as described above.

Table 5 lists the static instruction count for different optimiza-
tion methods. The static instruction count reflects the programming
style used in each optimization, immutable in the executable. From
our results, we can see that the baseline version has a low static
instruction count, given that the implementation is straightforward.
The implementations of other optimizations (i.e., O1+Sum, O2+Sum,
and Kernel Fusion) result in higher static instruction counts, because
the implementations require more integer operations to calculate the
data indices and additional branch logic for avoiding out-of-bounds
data indexing. The level of program complexity determines the number
of static instructions.

Fig. 9 presents the dynamic instruction count (i.e., the number of
instructions executed) for different block sizes. Analyzing this metric
sheds light on the execution efficiency of each optimization. From the
figure, Kernel Fusion results in the highest execution efficiency (small-
est dynamic instruction count) as compared to the other optimizations.

To better quantify the execution efficiency, we use FLOP effi-
ciency, which is the achieved percentage of peak floating-point oper-
ations [25]. This metric captures the execution efficiency on a GPU.
As shown in Fig. 10, the O1+Sum and O2+Sum optimizations result
in higher FLOP efficiency versus the baseline version. Kernel Fusion
achieves the highest FLOP efficiency, outperforming the other optimiza-
tions and the baseline version. Kernel Fusion removes a large number of
memory transactions, reducing memory pressure more effectively than
the other codes.

Next, we present the number of memory transactions in Figs. 11(a)
and 11(b), reporting the number of memory reads and writes, respec-
tively. We can see that the Kernel Fusion optimization significantly
reduces the number of memory transactions for both reads and writes.
We can also see that the number of memory transactions drops as the
block size increases. This is because, as the block size grows, there
are fewer circulant matrix blocks. As such, the number of inter-block
memory accesses is reduced, leading to a more regular memory access

pattern, and hence, fewer memory transactions.
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Fig. 11. (a) Number of memory transactions (Reads) for the baseline and optimized
versions. (b) Number of memory transactions (Writes) for the baseline and optimized
versions.

Fig. 12. The occupancy achieved for the baseline and optimized versions.

Fig. 12 shows the effectiveness of each optimization in terms of GPU
occupancy, across different block sizes (16 and 32). However, as the
block size 𝑘 grows to 64, Kernel Fusion results in a lower occupancy
than that of other implementations. This is because its thread block size
decreases monotonically as a function of 𝑘, i.e., 512+ 1024

𝑘 . Unlike Kernel
Fusion, the O2+Sum optimization achieves an unexpected increase in
occupancy when using a block size of 64, even though it includes
similar optimizations as used in Kernel Fusion. This is due to the impact
of increased occupancy of the summation kernel. The multiplication
kernel in O2+Sum actually has reduced occupancy, for the same reason
as was experienced using Kernel Fusion.

6.3. Compression rate v.s. training performance

To begin, we use the BCM algorithm to train a DNN model that has
4 convolutional layers, 3 fully connected layers and a softmax layer,
with the CIFAR-10 dataset [33]. We use block sizes of 16 (BCM16), 32
(BCM32) and 64 (BCM64). Figs. 13(a) and 13(b) compare the training
convergence rate and classification accuracy for GEMM versus our BCM
algorithm. From the figures, we can see that the BCM algorithm obtains
a similar convergence rate as compared with the GEMM approach.
We also find that the BCM algorithm achieves a similar classification
accuracy as using GEMM. In this experiment, the accuracy degrades
by 1.4% for BCM16. The accuracy degrades by 2.3% for BCM32, and
by 5.2% for BCM64. We find that the accuracy degradation is closely
correlated with the training convergence rate. The less the accuracy
degrades, the less training convergence suffers.

Next, to demonstrate the effectiveness of training using the BCM
algorithm, in Fig. 14(a) we show the compression rate of models trained
with different datasets, including MNIST [34], SHVN [35], CIFAR-
10 [33], ImageNet [13] and TIMIT [29]. We can achieve a significant
reduction in model size, as shown in the figure. We also report the
accuracy degradation of the same models in Fig. 14(b). For MNIST and
10
SVHN, the block size is 32. For CIFAR-10, ImageNet and TIMIT, the
block size is 16. For each model, the degradation is smaller than 4%,
as compared with the original models.

6.4. Multi-GPU DNN training

Multi-GPU DNN training has been widely deployed to shorten the
training time [36]. In multi-GPU training, the same DNN model is
duplicated on distributed GPU nodes and the forward and backward
propagation are executed independently with different batches of input
data. Only the gradients need to be collected from the different nodes
and aggregated to update the weights.

Using BCM also benefits multi-GPU training as it can significantly
reduce the amount of data transferred during the weight update stage.
The BCM algorithm reduces the weights in one layer by a factor of
𝑘 (i.e., the block size). Given a DNN model, we quantify the original
weight size and reduced weight size in Eqs. (7) and (8), respectively.
𝑊 is the original weight size. 𝑊𝑏𝑐𝑚 is the reduced weight size. 𝑁 is the
number of layers with learnable weights. 𝑊𝑖 is the number of weights of
the 𝑖𝑡ℎ layer. 𝑘𝑖 is the block size used for the 𝑖𝑡ℎ layer. The compression
ratio can be calculated using 𝑊 ∕𝑊𝑏𝑐𝑚. A higher compression ratio
results in more efficient data communications when using distributed
training, leading to better scalability. We use Caffe [37] to conduct
an experiment involving two PCIe-connected NVIDIA V100 GPUs and
perform training for a simple model. We replace one regular linear
transformation layer with a block circulant layer using the Kernel
Fusion optimization. When the block size is 64, we achieve a 6.25X
speedup over using a matrix multiplication.

𝑊 =
𝑁
∑

𝑖=1
𝑊𝑖 (7)

𝑊𝑏𝑐𝑚 =
𝑁
∑

𝑖=1

𝑊𝑖
𝑘𝑖

(8)

7. Related work

Prior work has explored improving scalability, performance, and
energy efficiency for deep learning applications. Two orthogonal trends
have dominated this prior research.

The first trend focuses on using custom hardware to accelerate DNNs.
Representative work include Google’s TPU [38,39] and IBM’s
TrueNorth [40–42]. There have been a number of optimizations pro-
posed, including dataflow designs [43], increasing the degree of paral-
lelism [44], improving the data mapping [45], reducing off-chip mem-
ory transfers [46], improved bit-representations and quantization [47],
zero skipping [48], and many others.

The second trend focuses on model compression. Several algorithm-
level techniques have been proposed to compress models and accelerate
DNNs, including weight quantization [49,50], connection pruning [51,
52], and low-rank approximation [53,54]. These approaches offer rea-
sonable parameter reductions (e.g., Han et al. reported a 9× to 13×
improvement [51,52]), with only a minor impact on accuracy.

In contrast to the above approaches, Cheng et al. studied parameter
redundancy in DNNs by using circulant matrices for weight represen-
tation of the fully-connected layers [15]. They proposed the corre-
sponding accelerated inference and training algorithms for the fully
connected layers. As a follow on work, Ding et al. evaluated the perfor-
mance versus accuracy tradeoff of using block-circulant weight matri-
ces [10]. They generalized the approach for both fully-connected lay-
ers and convolutional layers, and provided a cross-platform hardware
design and optimization solution for deep learning systems.

There have also been a number of previous studies focused on
accelerating DNNs on GPUs. Many deep learning frameworks, such as
Tensorflow [55], Caffe [37], and CNTK [56], leverage GPUs for accel-
eration. Eliuk et al. developed a distributed DNN library to accelerate
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Fig. 13. (a) Training convergence rate on CIFAR-10 dataset. (b) Test accuracy on CIFAR-10 dataset.
Fig. 14. (a) Compression rate and (b) Accuracy degradation of models trained with datasets, including MNIST, SHVN, CIFAR-10, ImageNet, and TIMIT.
DNN execution on a GPU cluster [57]. Awan et al. extended Caffe to
enable distributed training on a GPU cluster [36]. Dong et al. charac-
terized the microarchitectural implications of a convolutional neural
network execution on a single GPU and suggested optimizations for
acceleration [58]. However, all previous approaches did not consider
compression techniques, focusing primarily on lossless optimizations.

Each of the previous studies has their own merits and limitations.
First, most of the previous work was not focused on using general
purpose processors, such as CPUs and GPUs. Therefore, they tend to
be limited in terms of the size of the network model (i.e., based on
the limits of a FPGA) and the flexibility of the model. Second, most
of the previous work using GPUs did not consider weight compression
techniques, primarily focusing on lossless optimizations. Our work
addresses the challenges of optimizing one DNN weight compression
technique on a GPU, accelerating DNN execution with a tolerable
accuracy loss.

8. Conclusion and future work

In this paper, we present our work accelerating DNN training using
Block Circulant Matrices. Using BCMs can accelerate model training for
both forward and backward propagation. We redesigned the operations
used to perform backward propagation in the context of commonly-
used batch-based training. We identified the basic operations required
in the BCM algorithm and presented our GPU implementation. After
highlighting some of the challenges that the BCM algorithm encounters
on a GPU platform, we proposed a number of optimizations to improve
the performance. From our results, we can achieve an average speedup
of 1.31× and 2.79× for the convolutional layers and fully-connected
layers of AlexNet, respectively, and a speedup of 1.33× and 3.66×
for the convolutional layers and fully-connected layers of VGGNet-
16, respectively. We can achieve an improved compression ratio for
11
the weights, while experiencing only a minor loss in the training
convergence rate and model accuracy.

In our future work, we plan to explore the benefits of mapping
multiple stages of the BCM algorithm to different GPUs, and executing
them in a pipelined fashion [59]. We plan to further optimize memory
usage when deploying the BCM algorithm, especially since memory
usage becomes a growing concern as DNNs grow deeper and wider.
We also plan to explore other weight compression techniques on GPU,
such as leveraging Permuted Diagonal Matrices [60].
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