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Abstract

We consider a one-dimensional variational problem arising in connection with a model for cholesteric
liquid crystals. The principal feature of our study is the assumption that the twist deformation of the nematic
director incurs much higher energy penalty than other modes of deformation. The appropriate ratio of the
elastic constants then gives a small parameter ¢ entering an Allen-Cahn-type energy functional augmented
by a twist term. We consider the behavior of the energy as ¢ tends to zero. We demonstrate existence of the
local energy minimizers classified by their overall twist, find the I'-limit of the relaxed energies and show
that it consists of the twist and jump terms. Further, we extend our results to include the situation when the
cholesteric pitch vanishes along with €.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

We seek an understanding of the energy landscape for the one-dimensional variational prob-
lem
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%ES(M)’ (1.1)

where u : [0, 1] — R? so that u = (u], up) with

1

e 1 L
Eo(uy,up) = / 5 |u’|2 + E(|u|2 — D>+ S G uh —upuy — 2w N)* dx, (1.2)
0
and
Ay :={ue H'((0,1):R*): u(0) =1, u(l) =€}, (1.3)

for some positive integer N and some « € [0, 27). When convenient, as above, we will view
u = (u,uz) as a map into C. We should note that the choice of N as an integer is made purely
for convenience. One could work with any real number N but as we shall see, the key issue is
simply how close the pure N twist state ¢!V is to satisfying the boundary conditions at x = 1.

Our purpose in this article is to continue the analysis of a family of models with disparate elas-
tic constants arising in the mathematics of liquid crystals [5-8]. In particular, the problem (1.1)
can be viewed as a highly simplified, relaxed version of the Oseen-Frank model for cholesteric
liquid crystals, [2,12,19-22] based on the elastic deformations of an S!- or S2-valued director n,
cf. [23]. Other models, of course, exist for nematic liquid crystals, including the Q-tensor based
Landau-de Gennes model, whose energy density consists of a bulk potential favoring either a
uniaxial nematic state, an isotropic state, or both, depending on temperature, cf. [15]. We refer
the reader to the recent literature [5,11] that establishes a precise asymptotic relationship between
the Oseen-Frank and the Landau-de Gennes models.

We recall now the form of the Oseen-Frank energy,

P . Ki ., K 2, K3 2
or(n) = T(dlvn) +7((curln)~n+q) +7|(curln)xn|
Q

+#(u (Vn)? — (divn)z)) dx, (1.4)

where Q C R3 represents the sample domain and the director n maps  to S?. The material
constants K, K>, K3 and K4 are the elastic coefficients associated with the deformations of
splay, twist, bend and saddle-splay, respectively [23]. Most important for this article is the second
term, the twist, where g = 27” with p being the pitch of the cholesteric helix. The distinction
between nematic and cholesteric liquid crystals is manifested by the value of ¢. The liquid crystal
is in a nematic state when ¢ = 0 and, absent boundary conditions, a global minimizer of Fpr
is a constant director field. On the other hand, a liquid crystal is in a cholesteric state whenever
g # 0 and global minimizers of For in R are rigid rotations of a uniformly twisted director
field n = (ny.ny, 0) = 7 .

In [8] we propose and analyze a model problem for nematic liquid crystals carrying a large
energetic cost for splay. The model couples the Ginzburg-Landau potential to an elastic energy

density with large elastic disparity, namely
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i l 2 ) l 232
inf e|lVul|*+ L{divu) 4+ —(1 — |u|*)” ) dx. (1.5)
ueH (%R?) 2 &

Q

Here one should view L as playing a role analogous to K in (1.4). The minimization is taken
over competitors satisfying an S'-valued Dirichlet condition on <2 so as to avoid a trivial mini-
mizer. This choice of potential clearly favors S 1_valued states, which are a stand-in in our models
for uniaxial nematic states. Analysis of (1.5) in the ¢ — 0 limit involves a ‘wall energy’ along
a jump set J, penalizing jumps of any S!-valued competitor u, and bulk elastic energy favoring
low divergence. The conjectured I"-limit of (1.5) is

L ) 1 3 a1
) (divu)“dx + ¢ lugy —u_|"dH", (1.6)
Q JuNQ

where u4 and u_ are the one-sided traces of u# along J, which exhibit a jump discontinuity in
their tangential components.

The model considered in this paper is a cholesteric analog of the problem in [8]. Just as the
functional considered in [8] can be viewed as a Ginzburg-Landau-type relaxation of the splay
Ki-term in (1.4), the problem (1.1) can be understood as a similar relaxation of the twist K»-
term in the same energy. For example, in 2D this relaxation may take the form

iglegD(u), (1.7)
where u : Q — R3 with

1 L
EXP(u) = / VU + —(ul? =12+ Z - curlu — 27 N)2 dx, (1.8)

2 4¢ 2

Q
and

Ai={ue H'(Q R : ulsa =uo}, (1.9)

for some domain © C R?, some positive integer N and boundary condition uq : 92 — S?. Re-
sults of simulations for the gradient flow dynamics associated with the problem (1.7) lead to
intricate textures, such as that shown in Fig. 1, resembling cholesteric fingerprint textures ob-
served in experiments [16].

While attempting to tackle the problem (1.7), we found that the energy landscape in (1.1) is
already rich enough to merit a separate investigation in one dimension that we undertake in this
paper. Even though the features of minimizers in one dimension will not be exactly the same as
those in Fig. 1, they are motivated by a high penalty imposed on twist in both cases. We note
that existence and stability of minimizers for the three-component cholesteric director within
the framework of the Oseen-Frank model in one dimension was considered in [1] and [4] under
the assumption that all elastic constants have comparable values. In addition, in [4], the energy
functional included the effects of an electric field. However, these studies are not carried out in
the present context of extreme disparity between the elastic constants.

Here we further assume that the component of u along the axis of the twist vanishes so that the
target space for the director is two-dimensional. Thus, though we will write u = (u1(x), u2(x))
what we really have in mind is u = (0, u2(x), u3(x)). The thought experiment that allows us to
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Fig. 1. Numerical solution for the gradient flow associated with (1.7) obtained in COMSOL [3]. The arrows represent the
director u, the blue and the red curves are level sets u3 = —0.92 and u3 = 0.92, respectively. The simulation was started
from the initial condition u = (sin (77y/2), 0, cos (7wy/2)) with the axis y of the twist oriented in a vertical direction
and y € [—1, 1]. The director is assumed to be oriented to the right and to the left on the top and the bottom boundaries,
respectively. Periodic boundary conditions are imposed on vertical components of the boundary. Here N =10, L =1,
and ¢ = 0.005. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

impose this condition assumes that an electric field is applied along the axis of the twist and that
the cholesteric has negative dielectric anisotropy that forces its molecules to orient perpendicular
to the field, [10]. In the one-dimensional setting for highly disparate elastic constants, it turns out
that if one includes a third x-dependent component, so that u(x) = (u1 (x), ur(x), us (x)), it leads
to an energy where distinguishing textures are lost for ¢ < 1 and the energy landscape becomes
highly degenerate, see Remark 3.3. On the other hand, we find that the one-dimensional, two-
component model (1.2) leads to stable states more reminiscent of those described above for the
two-dimensional problem.

The richness of the energy landscape is first revealed in Theorem 1.1 below, showing that local
minimizers of E, exist for every positive integer value of twist—essentially for every winding
number. More precisely, through a constrained minimization procedure keeping the modulus of
competitors away from zero, we establish:

Theorem 1.1. For every positive integer M and every a € [0, 21), there exists an g9 > 0 such
that for all ¢ < g there is an H'-local minimizer Ug M = ,og’Me“QE-M of E. within the class Ay
such that

Jim sup | oe,11 = 1”L°°(O,1) -

e—0 &

00, (1.10)

lin})@é m =27 M + o uniformly in x € [0, 1], (1.11)
e— ’

and

L
n%@mMDZEQmM—NHwﬂ. (1.12)
£—
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This is proven in Section 2. Through Corollary 3.5 which readily follows from the I'-
convergence result below, we will ultimately find that in some parameter regimes, corresponding
to o small and M = N, the local minimizers of Theorem 1.1 turn out in fact to be global mini-
mizers. However, when M # N or when M = N but « exceeds a critical value, they will not.

Section 3 contains our principal result of this investigation, namely the identification of the I'-
limit of E,. The key feature of this analysis is that in the ¢ — 0 limit, energy bounded sequences
may exhibit a jump in phase. In order to gain or release twist in an energetically expedient
manner, the modulus of such a sequence may plunge towards zero on a small set, effecting a
Modica-Mortola type transition from modulus =~ 1 down to O and then back. Over this small
interval where the modulus = 0, the phase is ‘free’ to jump any amount at minimal cost.

In light of this mechanism, our candidate for a limiting functional will be finite for u €
H'((0,1) \ J; S') where J is a jump set consisting of a finite collection of points, say 0 <
X1 <x3 <...<xk < 1 for some non-negative integer k, along with perhaps x =0 and/or x = 1
depending on whether or not the traces of u satisfy the desired boundary conditions inherited
from E.; that is, we include x =0 in J only if u(07) # 1 and we include x =1 in J only if
u(17) # €' For such a u we will assume J is the minimal such set of points, meaning that if
any point in J N (0, 1) were eliminated, the function u would no longer represent an H' function
in the compliment of the smaller set of points. In particular, if u € H'((0, 1)) and has the proper
traces, then J = (/.

Then we define Ej : Lz((O, 1); Rz) — R via

1
L 2V2
—/(ulu/z—uzu/l —271N)2dx+i7-lO(J) ifue HY((0,1)\ J; S1)
: 2 3
Eo(u) := 0

+00 otherwise.
(1.13)

Here H' refers to zero-dimensional Hausdorff measure, i.e. counting measure.
We will establish:

Theorem 1.2. {E.} I"-converges to Eg in Lz((O, 1); RZ).

We also establish a compactness result for energy bounded sequences in Theorem 3.1.

Here we wish to emphasize the parallels between the present problem of high cost twist and
the previous study [8] of high cost splay. Comparing the I'-limits (1.6) and (1.13) we see that
the former consists of bulk splay plus jump cost while the latter takes the form of bulk twist plus
jump cost. One distinction, however, is that in the high twist model, the size of the phase jump
does not affect the energetic cost.

As a consequence of Theorem 1.2, we demonstrate in Theorem 3.4 and Corollary 3.5 that
in certain parameter regimes depending on L and «, global energy minimizers with jumps are
energetically favorable. Indeed, this is the most dramatic effect of the assumption of disparate
elastic constants present in our model. The relatively expensive cost of twist leads the global
minimizer of (1.1), which of course is necessarily smooth, to rapidly change its phase, a process
that can only be achieved with finite energetic cost by having the modulus simultaneously plunge
towards zero.
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In Section 4 we establish an energy barrier between the local minimizers of different winding
numbers exposed in Theorem 1.1, cf. Theorem 4.1. This readily leads to the existence of saddle
points in Theorem 4.2 via the Mountain Pass Theorem, thus filling out the energy landscape for
E..

Finally, in Section 5 we investigate the energy (5.1) motivated by studies of so-called twist
bend nematics, where twisting of the director occurs at much shorter scales than in cholesterics
[17]. Here we model this situation by tying the pitch (or the period of the twist) 1/N to the
Ginzburg-Landau parameter ¢ so that twisting “averages out” in the limit ¢ — 0. We show in
Theorem 5.2 that, in fact, the weak limit of uniformly energy bounded director fields is equal to
zero but we are nonetheless able to recover some information about fine scale behavior of these
fields. Then in Theorems 5.3 and 5.4 we establish I"-convergence in this setting.

2. Global and local minimizers that stay bounded away from zero

We begin with the observation for problem (1.2)-(1.3) that a global minimizer exists for fixed
e>0.

Theorem 2.1. For each fixed & > 0 there exists a minimizer of E. within the class Ay.

Proof. Existence follows readily from the direct method as follows. Suppressing the &-
dependence, let {u’} = {(u], u3)} denote a minimizing sequence:

Eg(u'{, ué) —m:={infE;(u): u € Ay}.

Compactness of a minimizing sequence follows from the immediate energy bounds

1
[l
0

So, in particular we have a uniform H '-bound on {u/}. Thus, up to subsequences, we get uniform
(in fact Holder) convergence of u/ — it = (ii1, it2), and u/’ — it’ weakly in L?((0, 1)) for some
e A,.

Turning to the issue of lower-semicontinuity, we note that verification for the first two terms
in E, is standard. For the third term we observe that

1 1
4 o
dx < C, /‘uj‘ dx < C, / u u2 éu'{/)zdx<C.
0 0

wiuy —ujul’ —iyiin” — iipit " weakly in L?,

through the pairing of weak L? and uniform convergence.
Then we have

/(u u2 —u2u1 27rN) dx =

1
f(u u2 —u2 )de—471N/ u’l u2 —u2 )dx+47r2N2
0
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The middle term is continuous given the strong convergence of u/ to i. For the first term, we
appeal to the lower-semicontinuity of the L? norm under weak L? convergence. Thus, E (it) =
m. 0O

It turns out that characterization of the global minimizer in the case where o = 0, so that the
boundary conditions are simply #(0) = u(1) = 1, is much simpler than when o € (0, 2r). In

particular, we have the following result.

Theorem 2.2. Let u, denote a global minimizer of E. within the admissible class Ag. Then
Pe(x) := |ue(x)| converges to 1 uniformly on [0, 1] as ¢ — 0.

Proof. We proceed by contradiction and assume that for some § > O there exists a sequence
€; — 0 and values x; € [0, 1] such that

pé‘j(xj) = 1-34.

The case where pg; (x;) > 1 + 4 is handled similarly.
We begin with the observation that

Ee(ue) < E(e""N%) =2(n N)?e. 2.1)

It then follows that for some C¢ > 0 independent of ¢ one has

1
f%f+éw<%
0

which in turn implies a bound of the form
loell 10,1y < C1=C1(Cop). Hence, |lpellcoirzg 1y < Ci.
Then invoking the Holder bound above, we have
|06 () = pe(xj)] < Ci [x — x| 2
and so for |x — xj| < (2‘%1)2 one would have

1/2 )
pe(x) = peep) + Cr fx —x; [P <1 = 2.

This in turn would imply

1
1 2 2 1 2 2
E.(uy) > E/('OS —D%dx > 1 / (p; — Ddx
0 IR C
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64
64C2e’

=

This cannot hold in light of (2.1) for & < &9 where

82

= ———.
842C1TN

Next we turn to the construction of local minimizers of E, within the class A, fora € [0, 27),
namely the proof of Theorem 1.1. Like the global minimizers constructed for the case « =0 in
Theorem 2.2, the modulus of these local minimizers will converge uniformly to 1 as ¢ — 0.

Proof of Theorem 1.1. To capture these local minimizers we will rephrase our problem by
switching to polar coordinates via the substitution

uy=pcosd, up;=psind.
The boundary conditions corresponding to (1.3) are
p0)=1=p(), 6(0)=0,0(1)=2rM +« for some integer M > 0. 2.2)

We find that in these variables,

1
€ 1 L
Ec=Ec(p,6) = f ()2 407O0) + (07 = 1)? + S (00 — 27 N) dx.
0

We will minimize E.(p, ) subject to (2.2) via a constrained minimization procedure. To this
end, for any number pg € (0, 1) we introduce the admissible class

Hpy:=1p € H'(0,1): p(0) =1=p(1), p(x) = py on [0, 1]} (2.3)

and for any positive integer M and any « € [0, 27) we denote

Hpo =10 €H(©0,1): 000)=0, 6(1) =27M +a}. 2.4)

We note that for each fixed ¢ > 0 and pg € (0, 1), the direct method provides for a minimizing
pair (o¢ M, B¢, m) to the constrained problem:

= inf E.(p,0). 2.5
MHe,M Pt 0Har0 «(p,0) (2.5)

The only point to be made here is that the lower bound p; > pg on a minimizing sequence
{pj,0;} allows for H I control of {6 ;1. Also the H I control on {p i} yields uniform convergence

of a subsequence so that the constraint is satisfied by the limiting p¢ /.
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We remark for later use that pi p is bounded independent of & since

tenr < Ee(1, QT M + a)x) = % Qa(M — N) +a)? + 0(e) (2.6)

We will now argue that for any integer M > 0 and any pp € (0, 1), these solutions to the
constrained problem in fact satisfy p. pr(x) > po for all x € [0, 1] when ¢ is sufficiently small.
Hence, they correspond to H'-local minimizers of E(u) subject to the boundary conditions
(1.3) since the representation u, y = p, peifem ig global.

CLAIM: For any positive integer M, any « € [0, 2r), and any pg € (0, 1) we have

pe.m(x) > po forall x € [0, 1] provided ¢ is sufficiently small. 2.7

To pursue this claim, we first observe that since the constraint falls only on p, s, this minimizing
pair (og M, B¢, ) must satisfy

E, (ps,M + tf, OS,M) —E; (/Oe,Mv Qs,M)

li >0, 2.8
[_1>I(I)1+ t — ( )

forall f € HJ(0,1) such that f(x) >0 on [0, 1], and
Ee (pe,ms 0o m +19) =0 forally € Hy (0, 1). (2.9)

dt =0

Computing these quantities we find that (2.8) takes the form

1

1
/&Q;Mf/ + (5;08,M(0£,M) + g (pgz,M - 1) Pe,M
0

2L (2N = 02 301 ) PemOipg) fdx 20 (2.10)
for all nonnegative f € HO1 (0, 1), and (2.9) takes the form
/ 2 g 2 7
[(s@S,M L (27TN - pgﬁMQS’M>) p&M] ~0. @.11)
Thus,
(0, 4y —LQ27N — pf,Meg,M))pf,M =C, for some constant Cy, (2.12)
allowing us to solve for 0;’ y to find

2aNLpZ y + Ce

L S (2.13)
LP:},M + gpgz,M

98,M =
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Integrating (2.13) over the interval [0, 1] and using the boundary conditions on 6, 5 we obtain a
formula for C,:

2nrM +a —27LN [y (L +e)” ldx
Ce = Jo (e (2.14)
fo (Lps M +8'08 w)”tdx

Now by (2.6),

1 1
e 1
/(pf’M =D |p::,M| dx < “/E/ E(PQ,M)Z + E(,OSZ’M —1)2dx <V2pem.
0 0

Since pg p(0) = 1, it then follows from (2.6) and this total variation bound that p, s is bounded
above uniformly in ¢. Thus, by (2.14), the same is true of |C¢|.
Next we use (2.13) to find that

) <2nNL+c€>_2nNLp§,M+Cg <2nNL+C€>
M L+e - L,og’M~|—£,082’M L+e

<27rNL2,082’M G [L(l + P20+ e]

(1= p2 ) =1 A= p2 3
P Loz y + )L+ e) ) P e

where |A;| < C =C(N, M, L) independent of ¢ by the uniform bounds on C, and p; . Hence,

1 1
2rNL +C
[ () e -
0 0
1 172

L+e¢
1
<2Ce / (= plwdx | <20l we. (2.15)

0

Since

1
2rNL+C 2nNL+C
ot va= [ (o - (L))ot P
0

we can then invoke (2.15) to conclude that
Ce=2nL(M — N)+ La + O(/¢). (2.16)
Substituting this back into (2.13) we find

2mLM + La+ 27w LN(p} ), — 1)
LP?,M +8P§,M

+ 0(Ve). (2.17)

9£,M =
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With these estimates we can now establish Claim (2.7).

In light of the boundary conditions, we need only consider x € (0, 1). First, suppose by con-
tradiction, that {x : p. p = po} contains an isolated point xo € (0, 1). Since the obstacle in (2.5)
is smooth, it follows from standard regularity theory of obstacle problems (see e.g. [18]) that
pe.m makes C L1 contact with the obstacle y(x) = 1. However, we also have that p. ps satisfies
the Euler-Lagrange equation on either side of xo, that is,

1
&0y = Pem O )"+~ (0% py = Dpemt —2LQAN = p2 30, y)pembiy  (218)

cf. (2.10). Consequently the limits x — x(‘; and x — x, agree for pg (X)) so we find that in fact
Pe.M € C? in a neighborhood of xo with

1
P 4 (x0) = &(0] 5 (x0))* + g(pé — 1)po — 2LQ21N — 0] 4 (x0))6;. 3 (x0).
Invoking (2.17) evaluated at x = x, we see

2rM +a+27N(pg — 1)

o

1
eM

+ 0(Ve) (2.19)
so that
1
Y 4y (x0) ~ g(pé — Dpo+ 0(1) (2.20)

But since p¢ 3 has a minimum at xo, this contradicts the requirement that ,0;’ y(x0) = 0 when ¢
is sufficiently small.

Next we suppose by way of contradiction that {x : p. » = po} contains an interval / C [0, 1].
Fix a smooth non-negative function f compactly supported in /. Then by (2.10) we must have

1
/ (8(6’§,M)2 + g(pé —1Dpo—2LQ27N — GQ,M)OQ,M> fdx =0,
1

again leading to a contradiction for ¢ small. Claim (2.7) is established and the local minimality
of ug pr follows.

We remark in passing that for the case M < N, one can establish the stronger statement that
in fact pg pr(x) > 1 for all x € (0, 1) by choosing pg = 1 in the definition of the constrained set
(2.3). Then the same contradiction argument works with (2.19) replaced by

Op pp ~ 27 M + a4 O(Ve)
and (2.20) replaced by
Py (x0) ~ —2L (27 (N — M) — ) (21 M + &) 4+ O (Ve).

Finally, in light of the uniform in & bound on 9; » provided by (2.17), we observe that for any
fixed values of M and N, the minimizing o, p must satisfy (1.10), since otherwise, a presumed
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maximum of pg s at xo that is bigger than 1 or a presumed minimum that is less than 1 would
violate (2.18). Then applying (1.10) to (2.17), we obtain (1.11) as well. We then may conclude
that

1
L
liminf E¢ (pe.pr, 0.pr) > liminf = /(ngeg = 2mN)?dx
e—0 e—=0 2 ’ ?
0

L 2
= E(Zﬂ(M—N)—i—a) ,
and so (1.12) follows, in view of (2.6). O
3. T'-convergence of E.

As we shall see, the local minimizers described in Theorem 1.1 and established in the previous
section are also global minimizers only in certain parameter regimes. In order to fill out the
characterization of global minimizers in all parameter regimes, we will turn to the machinery of
I"'-convergence and establish Theorem 1.2.

In this section we will also prove the following compactness result.

Theorem 3.1. If {u.}.~¢ satisfies
Eg(us) < Co < 00, 3.1

then there exists a function u € H'((0, 1)\ J'; S') where J' is a finite, perhaps empty, set of
points in (0, 1) such that along a subsequence ¢; — 0 one has

ug, — uin L*((0, 1); R?). (3.2)

Furthermore, writing u(x) = €™ for & € H'((0,1) \ J'), we have that for every compact set
K cc (0, 1)\ J', there exists an £9(K) > 0 such that for every ¢; < &y one has |u8[| >0on K

and there is a lifting whereby u,(x) = pe, (x)eief'li @ on K, with
0, — 0 weakly in H.,.((0, 1)\ J'). (3.3)

Remark 3.2. It is not necessarily the case that J’ is minimal for u; that is, it can happen that
ue H'((0,1)\ J; SY) for some proper subset J C J’ and in that case it is the minimal such set
J which one uses to evaluate the I"-limit Ey at u. However, one cannot guarantee the validity of
(3.3) with J’ replaced by such a minimal J. For example, in a neighborhood of, say, x = 1/2
whose size shrinks with ¢, an energy-bounded sequence {u.} could undergo a rapid jump in
phase by 27 while the modulus of u, plunges to zero—or even stays positive but very small- in
this neighborhood. Then the limiting u could have well-behaved lifting across x = 1/2 while for
all & > 0, the function u, would not.

Remark 3.3. The appearance of a jump set contribution to the I'-limit Ey is associated with
the cost of a Modica-Mortola type transition layer for the modulus from value 1 down to 0 and
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back, accompanied by a rapid shift in the phase. If one instead considers a three-component
model for u = (1 (x), ua(x), uz(x)) then such a phase shift can be achieved with asymptotically
vanishing cost by plunging u2(x)> + u3(x)* to zero while compensating with u(x) to keep
|u] =~ 1. In this way, twist can be smoothly added or subtracted while decreasing energy—in,
particular, without the cost of a Modica-Mortola type transition. In the absence of such an energy
barrier, we believe this leads to an absence of local minimizers with states eventually ‘melting’
under a gradient flow to global minimizers given asymptotically by (3.31) of Theorem 3.4 below.
In fact, the degeneracy in such a three-component model is worse than just this: If one introduces
cylindrical coordinates so that (11, uz, u3) = (pcos6, psin6, u3) and then one writes p = cos ¢
and u3 = sin ¢ for some angle ¢ (x), a three-component version of E, would take the form

1
% /s¢’(x)2 +66'(x)? + L(cos® ¢ (x)0' (x) — 271N)2dx.
0

Note then that for & small there is no control on ¢’, nor is there control on 8’ when ¢ ~ 7 /2.

We now present the proofs of Theorem 1.2 and Theorem 3.1. We will begin with the proof of
Theorem 3.1 since elements of it will be called upon in the proof of Theorem 1.2.

Proof of Theorem 3.1. We fix an integer ¢ > 2 and consider a sequence satisfying (3.1). De-

noting p, := |ug|, since ug is H 1 we have that pe 1s continuous and we may define the open
sets

Ze:={y€l0,1]: pe(y) > 1 —277}.
As open sets on the real line, each is a countable disjoint union of open intervals
Lo = Uyl Ly = Uiy b)),
with
pelag,) = pe(bfy) =1—274,
Note that by the energy bound (3.1),
17, — 1.1y in L1((0, 1)). (3.4)

Now we consider the open sets

0, D\Z, =1,
and similarly decompose Ig into a countable union of intervals

U= By afn+1)-
Now some of the intervals (b;,,, a;, 1) could contain a point cs,, such that
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plcy) =271,

and we collect those intervals and label them (b7, ;;"1 +1)»> Where j belongs to an index set S,.

A priori S, could be finite or infinite. Let B, be the umon of these “bad intervals.” These are the
intervals over which it is possible that a limit of u, exhibits a jump discontinuity. We first prove
that the number of these intervals is finite and bounded uniformly in . We observe that

e 2 1
Coz [ 5 hucf + ool - 2dx

By
mj 1 aii’tj#»l 1
€ 2 2 2 € 12 2 2
> Z —(p? — 1)%d - —(p? —1)%d
=Y [ L@ @t Pare [ S -1
J€Seps, ch
J J
m aril*+1
|p||p A
Ly [y [ e,
]ES‘;‘bg Cfn/
1-274
> V2 / 12— 1)dz. (3.5)
JESe 254
Rearranging (3.5) yields an estimate on the size of S;:
1-274 -1
HO(Se) < ﬁ/ 122 —1ldz | Co. (3.6)
2—4q

Next, on (0, 1) \ B,, we observe that p, > 279, which allows us define a lifting of u, as pse"eﬁ
and to find a positive constant C; such that

0)*dy < Ci +C / ~(p26, — 2 N)*dy
0,D\B; (0,D\B;
<Ci1+CiE;(us) <C1+C1Cpy < o0. 3.7
On each of the (finitely many) intervals comprising (0, 1) \ B we may choose our lifting such
that the value of 6, at, say, the left endpoint of the interval lies in [0, 2;7) and from the fundamen-
tal theorem of calculus and Cauchy-Schwarz it then follows from (3.7) that [|0¢ [l (0, 1)\ ) 18

bounded uniformly in & by a constant depending on C¢y and C;. Consequently, we have a bound
of the form

161l 271 0,1\ B,) < C2, (3.8)
for some constant C, independent of e.
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Now we are going to obtain a subsequence of ¢ approaching zero along which the bad intervals
converge to a finite set of points. To this end, we start with the sequence of all the endpoints of
the left-most subinterval in B, and extract a subsequential limit, calling it x;. Then, along this
subsequence of ¢’s, we move on to the left endpoints of the second subinterval of B, and passing
to a further subsequence, arrive at a limit point x,, etc. In light of (3.6), this procedure generates
a finite number of points x1 < x2... < xg in [0, 1]. (If this procedure ever yields x; = x; 1 then
we drop x ;41 from this list.) In this manner, we arrive at a subsequence, &, — 0 such that:

’HO(SSZ) is independent of ¢ and equal to some fixed k € N,
and, in light of (3.4), the subintervals of B, collapse to these k points as ¢, — 0; that is
By, > J'i={x1,x2,...,xx}as g — 0. (3.9)
If we then fix any finite union of closed intervals K; cC [0, 1]\ J/, it follows from (3.9) that
KiNBg, =0 (3.10)
for & < 9 with g9 = £9(K1) small enough. Therefore, u,, has a lifting on the various intervals

comprising Kj N B, and invoking (3.8), we have, after passing to a further subsequence, (with
notation suppressed) that

6, — 6 in H'(K}), 6, > 6 inL*(K)) (3.11)
for some @ € H' (K1) such that

101 1 (k) = Coa. (3.12)

Repeating this procedure on a nested sequence of sets

KiCCK,CC---CCKpCC---[0, 1]\ J’ (3.13)

which exhaust [0, 1]\ J’, and passing to further subsequences via a diagonalization procedure
we arrive at a subsequence (still denoted here by ¢ — 0) such that (3.3) holds for some 6 €
H'((0, )\ J).

Finally, we define u € H'((0,1) \ J'; ') via u(x) := ¢!’ and verify (3.2). The uniform
bound (3.1) implies that p, — 1 in L?((0, 1)) and also that

1 y
cozf)1—|pg|2\!p;\dxz f(l—p?)p;dx (3.14)

0 Xe
for any y € (0, 1) where x, € (0, 1) is any point selected such that, say, p(x;) < 2. It follows
that || p¢l oo 0,1y < M for some M = M (Cp) independent of ¢. Hence, for any n > 0 if we select

acompact set K C [0, 1]\ J' such that |[0, 1]\ K| < n, we can appeal to (3.11) to conclude (3.2)
since
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1
limsup/ |ug, —u|2 dx < limsup/ }ug, —u|2 dx—Himsup/ ’Me, —u‘z dx
[—o0 e

[—>o0 [—00
KC

§limsup/|u81—u| dx<2/(M2 +1dx <2(M*>+1)n. O
-0 P fe

Proof of Theorem 1.2. We will first assume that u, — u in L?((0, 1); R?) and establish the
inequality

liminf Eg (ug) > Eo(u). (3.15)
To this end, we may certainly assume that
liminf E,(u,) < Cyp < oo for some Cy > 0,
since otherwise (3.15) is immediate. Let {u,, } be a subsequence which achieves the limit inferior.

As in (3.5) in the proof of Theorem 3.1, we can then assert that for any integer ¢ > 2 and up to a
further subsequence for which we suppress the notation, one has the lower bound

1-271
li[minf/ yu€e| + \uwy —1%dx > fz/ 122 = 11dz | H°(J9) (3.16)
—00
le 24
along with
0e, — 0 in Hy ((0, 1)\ J9). (3.17)

Here we have emphasized the g dependence to write J¢ for the finite set of points in [0, 1] and
Bgz for the set of ‘bad intervals’ collapsing to J4 over which ‘uez | dips from values of 1 —277 to
274 Next, we note that for any two positive integers ¢ < ¢ one has the containment B> C B{'
and so, for any sequence gy — 0, the finite set of points arising as the limit of ng must be a
subset of the corresponding limit of the finite collection of collapsing intervals comprising B¢;
Also, since the limiting phase 6 of u will be in Hlloc of the complement of any such limit of bad
intervals, and since J is assumed to be the minimal one, we have

1) <H°(J?) <C; for any g < 00,

for some C; = C1(Cp) in light of (3.6). Thus, passing to the limit g — oo in (3.16) gives

%EHO(J). (3.18)

1
1
/?Z 8/|2+E<|use|2—1>2dxz
0

Turning to the lower-semi-continuity of the twist term, we can repeat the argument of Theo-
rem 3.1 to obtain that, again up to a further subsequence which we do not notate,
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0, — 6 in H.((0,1)\ J9), (3.19)

where fq is the finite set of points in [0, 1] which is the limit of bad intervals légf[ where |ug, | <
1—2-9-1and dips from 1 — 2-4=1 1o 1 —279. Of course, it could turn out that Jq = #, in which
case the convergence of 0, to & occurs weakly in H, OC((O 1)) We also note that

p? — 1in L?((0, 1)), (3.20)

which combined with (3.19) implies that for any K CC (0, 1) \ J¢

llm /:05@9/ dx—/e/dx. (3.21)

For convenience, we now introduce the following notation for the twist term:
T(u) :=ujuhy —upul.

Then, using (3.21), the weak convergence of Oé , to @', and the fact that pg, =1 —279 0on K for
large ¢, we can estimate

1
liminf / (T (ue,) — 2t N)* dx > liminf / s, (0L)* — 4T NpZ 6/, + 47> N* dx
£—00 {—o00
K

> liminf / (1—2"9%0,,)* —4m Np},0), + 4m>N* dx
{— 00

> /(1 — 27402 — 4x NO' + 4> N2 dx. (3.22)
K

Choosing larger and larger K and using that 7°(J9) < oo, we find
%gf/(ﬂuw) —27N)?dx > /(1 —27D*0")? — 4 NO' + 4> N? dx.
Finally, sending ¢ — oo yields
lim inf / (T (ue,) — 27 N)* dx > / (T (u) — 27 N)?dx. (3.23)
0

Combining (3.18) with (3.23) completes the proof of lower semi-continuity.

Moving on now to the construction of the recovery sequence for any u € L2((O, 1); ]Rz),
ifug¢ H'((0,1)\ J; SY) for any finite set J, then Eo(u) = co and taking the trivial recovery
sequence v, = u will suffice.

801



D. Golovaty, M. Novack and P. Sternberg Journal of Differential Equations 286 (2021) 785-820

Thus we may assume u € H'((0,1) \J; S1) for a finite set J and our task is to construct a
sequence {v:} C H'((0, 1); R?) such that

ve — uin L*((0,1); R?) and 1111(1) E.(v.) = Eo(u). (3.24)
&e—

In case the traces of u satisfy the desired boundary conditions for admissibility in E,, that is,
incase u(01) =1 and u(1~) = ¢/® so that x =0 and x = 1 do not lie in J, our construction will
take the form v, = p.u for a sequence {p.} C H 1 ((O, 1); [0, 1]) to be described below. We first
describe the construction for this case and then discuss how it is slightly altered in case 0 or 1
lie in J. Denoting J by {x1, x2, ..., x;} with then J C (0, 1) by assumption, we then take o, to
satisfy the following conditions:

(i) p. is smooth on [0, 1].
(ii) o =0o0n (x; — 82,Xj +&2).
(iii)) p. makes a standard Modica-Mortola style transition from 1 to 0 on / ]1 an interval of size
say O(4/¢) with right endpoint x; — 2, and makes a transition from 0 back to 1 on an
interval of size O ({/¢) with left endpoint x; + &2 that we denote by I}, cf. [14].

(iv) pe=1on (0, 1)\ U;(I} U (x; — e x; +82)u1]2).

In case either u(07) # 1 or u(17) # €' so that 0 and/or 1 lies in J, this procedure must be
slightly altered near the endpoints. For example, if u(07) # 1 then one requires p, to make a
Modica-Mortola style transition from 1 down to 0 on the interval [0, /€], pe =0 on [/¢, 4/ +
£2] and a Modica-Mortola transition from 0 back up to 1 on [\/e + g2, 2+ £2]. Then we define

6.(x) 0 ifxe[0,c+¢%/2)
S I if x > /e +£2/2,

where u = ¢!, and take v, = p.e'%. A similar recipe is taken in a neighborhood of x = 1 in case

u(17) #£ e,
Computing the transition energy of such a construction is classical and can be found in e.g.
[13,14]. One finds from conditions (ii)-(iv), that

1 1 232
N 2 2 0
— +—(p2 -1 — =ZHW).
/2(‘)5) e (og ) dx 3 @)
0

Furthermore, since 6 € H' ((0, 1)\ J),and p, — 1 in Lz((O, 1)) it is easily seen that

1 1
. & . L L
815%/ 5pg(eg)zdx =0 and  lim - T (ve)dx = ET(u)dx.
0 0

The proof of (3.24) is complete. O
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We observe that for u € H'((0, 1) \J; S1), one has

1

Eo(u) = %/(9’ —27N)*dx + %ﬁHO(J), (3.25)
0

where u = ¢'? for 6 € H'((0, 1) \ J). Using this formulation, it is then straight-forward to iden-

tify the global minimizers of the I'-limit, and consequently the limits of global minimizers of E,
as well:

Theorem 3.4.

(i) When

) 4v2
La“ < and a € [0, ] (3.26)

the global minimizer of Ey is given by the function
u(x) = ei(27TN+(x)x (3.27)

which has constant twist and no jumps.
(ii) When

442
LQr —a)? < \Tf and o € [, 27) (3.28)

the global minimizer of Ey is given by the function

u(x) = ei(ZN(Nfl)ﬁ*O()x (329)
which again has constant twist and no jumps.
(iii) When
4:/2 44/2
Lo’ > T\/_ and LQ2mw — a)2 > Tf (3.30)

the global minimizers of Eq are given by the one-parameter set of functions

ezZan

ifx < xo,
u(x) = {ei(Zan+a)

ifx > xo. (3.31)
for any xo € (0, 1). These have one jump and twist 2 N away from the jump.
Since any limit of global minimizers of a I'-converging sequence must itself be a global min-
imizer of the I"-limit, one immediately concludes the following result based on Theorem 3.4 and
the compactness result Theorem 3.1:
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Corollary 3.5. Let {u.} denote a family of minimizers of E. subject to the boundary conditions
(1.3). Then if (3.30) holds, we have u, — u in L* for some u in the one-parameter family given

by (3.31), while if (3.26) or (3.28) holds, there will be a subsequence Ug; = U in L* with u =

ei(2nN+a)x oru= ei(271(N—1)+ot)x

, respectively.

Remark 3.6. It is in the case where La? > M and L(27 — a)? > 4*/— that one really sees the
most dramatic effect of the assumption of dlsparate elastic constants present in our model. The
relatively expensive cost of twist leads the global minimizer of E, which of course is necessarily
smooth, to rapidly change its phase, a process that can only be achieved with small energetic cost
by having the modulus simultaneously plunge towards zero.

Remark 3.7. We have not attempted to determine the optimal location of the jump location xp
for minimizers of E, in scenario (3.31). We suspect this might entail much higher order energetic
considerations—perhaps even at an exponentially small order—but we are not sure.

Proof of Theorem 3.4. When o = 0 then clearly the global minimizer is uniquely given by u =
¢!?™N* since it has zero energy. Consider then the case « € (0,2r). By selecting any point
xo € (0, 1), and taking u to be given by (3.31), we see that there is always a competitor with
one jump having energy given simply by %ﬁ Any competitor jumping more than once has
energy no lower than twice that value. On the other hand, minimization of E( among competitors
with J = @ is standard, since criticality implies 6’ is constant. Given the boundary conditions,
this requires u = ¢/ @"M+0x for some M € Z to be determined. The energy of such a u is
L(27r(M N) + a)2. Since « € (0, 277), the minimum over M is 5 LQn(N-N)+a)? = L o?
if o« <27 — o and 2(271(N —1=-N)+a)?= L(27l’ —a)?if2r —a < a. Comparing these
two energies to that of the one-jump competitors in (3.31), the theorem follows. We note that if
o = 1 in this regime, there are two global minimizers. O

Next we state a result on local minimizers of the I'-limit. These functions are the ¢ — 0 limit
of the non-vanishing local minimizers captured in Theorem 1.1.

iR M+a)x

Theorem 3.8. For any positive integer M the function u = e is an isolated L*-local

minimizer of Ey.

By invoking Theorem 4.1 of [9], one can conclude from Theorem 3.8 and Theorem 1.2 that
there exist local minimizers of E, for ¢ small that converge to this isolated local minimizer of Ey.
This provides for an alternative proof of existence for these local minimizers to the one given in
Proposition 1.1. However, the approach in Theorem 1.1 yields much more detailed information
on the structure of these functions via (1.10), (1.11) and (1.12).

Proof of Theorem 3.8. We fix a positive integer M and a number « € [0, 277). We will consider
the case M < N. The case M > N is similar. Of course, in case M = N and (3.26) holds,
then in fact u = ! @"N+x ig the global minimizer, as was already addressed in Theorem 3.4.
Let us denote 6y := 27 Mx + ax. In light of (3.25), our goal is to show that for some § > 0,
one has Eg(0) > Eg(fp) whenever 6 € Hl((O, D\ J; Sl) for some finite set J provided 0 <
10 —OmllL20,1) < 3.

We begin with the easiest case where J = (J and where 6(0) = 637(0), (1) = 0)7(1). Writing
v:=6 — 0y, we calculate
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1 1
L L
EO(Q)—EO(GM)=E/(9M+U —27N)? —5/ 0}y — 27 N)’ dx
0 0

1 1

=2nL(M — N+a/2n)/v dx + — /(v )de— > /(v )de >0,

0 0

since in the case under consideration, v(0) =0 =v(1).

Now we turn to the general case where J # (. To this end, consider a competitor 0 €
H! (U/]Z.:1 (aj, bj)) where then J = (0, 1) \U§'=1(aj’ b;), along with perhaps x = 0 and/or x =1,
depending upon whether a competitor satisfies the boundary conditions. Thus, depending upon
the boundary conditions of a competitor, we note that

HO)efe—1,¢,0+1}. (3.32)

Again we introduce v := 6 — 6y and after a rearrangement of the indices, we suppose that for
j=1,2...,¢, one has the condition

2
kji:=v(b;)—v(a;) < 6\/1_\7 = ko, (3.33)

while for j =¢'+1, ..., £, the opposite inequality holds. We allow for the possibility that either
U!=0o0r¥ =¢.

Then we again calculate the energy difference Eg(6) — E(0y) by splitting up the sum as
follows:

272 d bj
Eo(0) — Eo(Oy) = —HO(J) +27L(M —N+a/2m) ) [ v

1
j= aj

+27L(M — N +a/27) Z /vdx—i— Z/(v)dx

j= Z/'Ha,

“/—HO(J) 27 LNkt

—27LN Z k,—l—— /(v )*dx

j=t'+1 Jj= Z+la1
¢ L bj
> Z (—2nLNkj+§/(v’)2dx), (3.34)

j=t+l aj
in light of (3.33) and (3.32).
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If ¢/ = ¢ then the last sum is vacuous and the proof is complete. If not, then we now fix any
je{l' +1,...,¢} for which the reverse inequality to (3.33) holds, and observe that

bj
k>
87 ::/v2dxz f vzdxzl—j6meas((aj,bj)ﬂ{|v|>kj/4}). (3.35)
aj (aj,bj)n{lv|>k;/4}
Also,
kj

= < / |v/| dx
4
(aj,bj)N{lv|>k;/4}

< meas ((a;, b)) N {Jv] > k;/4})"*( / w)2dx)'"?.
(aj,bjp)N{lvl>k;/4}
Combining this with (3.35) yields the inequality

bj 4

K
v/zdx> J
/( ) —25655

aj

which we now substitute into (3.34) to conclude that

¢ Lk*
Eo() — Eo(By) > Z (W—znwkj). (3.36)
U+1 J

Choosing § (which we recall denotes (||v|| £2(0,1 )) such that

3
2 kO
10247 N’

and using that §; < 6 while k; > ko for all j, we obtain positivity of the right-hand side of
(3.36). O

4. An energy barrier leading to saddle points

The local minimizers provided by Theorem 1.1 can be viewed as the least energy critical
points of E, within a given degree or winding number class given by the amount of twist. One
might anticipate then that to pass continuously from one of these classes to another requires both
the emergence of a zero in the order parameter and the expenditure of a certain amount of energy.
What is more, one might expect the presence of saddle points in some sense interspersed between
the distinct degree classes. That is the content of the two results in this section.

In the first theorem we demonstrate that the energy barrier between any two local minimizers

ug, M, and ug p, with My # M> is at least 23& when ¢ is sufficiently small. To this end, given a

A > 0, we define the energy sublevel set
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E;‘ ={ueAy:E.(u) <A}.
We have the following:

Theorem 4.1. Let M1, M> € N be such that My # M» and assume that ug p, and ug y, are local
minimizers of E¢ as obtained in Theorem 1.1. Suppose that

e 00,11 > Ay withy®(0) = ue pm, and y® (1) = ue m, 4.1)

is a continuous path in Ay that connects ug p, and ug y,. Fix an h > 0 and set Ay :=
27'[2L(N — M — 05/271)2 + 23ﬁ — h. There exists an €, > 0 such that the curve y¢ leaves the

A
set E;'" whenever & < ¢),.

Proof. Fix any & € (0, 1) and any curve ¢ satisfying (4.1). Denote

yo@) =uj (=uj(x))and |uf|:=p;

for every ¢ € [0, 1]. The non-vanishing functions e/~ ug, pm, and eiox ug, M, have winding num-
bers M and M, respectively on [0, 1] and so uf(x) has to vanish for some x € (0, 1) and
t € (0, 1). Since y? is continuous and u?(-) is a continuous function for every ¢ € [0, 1], it fol-

lows that, given any & € (0, 1/2), we can find #§ € (0, 1) such that min,¢ (g, 1) ,o% (x) = 68 and the
winding number for e"”‘xufg is still equal to M.

Now suppose by way of contradiction that y¢([0, 1]) C Eé\ " We would like to estimate
E, (”fg)' First, by minimizing E, (pfg ¢'?) over 6 € Hm, - (cf. (2.4)), note that the same approach
that led to (2.17) can be followed to show that there exists a 6, € Hu, o such that

_ 2wLMi+La+ 2nLN((pf§~)2 -1
9 J—

= +0 42
¢ L(pfg)“ + 8(/),})2 e “-2)

on (0, 1), and necessarily
Ex (™) < e ). “3)

Using the standard Modica-Mortola arguments, we now have
1
P+ = (0 = 1) dx = c(®)
20 4 15 -
0
where limg_, g c(8) = %ﬁ Further, we can appeal to (4.2)-(4.3) and the assumption that y°(z5) €

EX to show that
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N~

1
_\2
/ (2nN—(pf§)29;) dx
0

N B~

| , 27 LMi + Lo+ 2w LN ((0f)? — 1) 2d oE
aN — X+ g
O/ L7 ve (ve)

1

2
ZZJTZL/<N—M1—01/2JT~I—(8/L)N> ix 4 0SB
0

(o:)* +¢/L
=272L(N — M) — a/27)> + O(J/e). 4.4)
It then follows from (4.3) that

E(ufe) = 27° LN — My — @/27)* + ¢(8) + O(Ve).

£
8

It is clear, however, that one can select a positive § sufficiently small, and then an &, > 0 such
that the last expression exceeds A, whenever € < g;. O

The energy threshold provided by Theorem 4.1 leads to a straight-forward application of the
Mountain Pass Theorem to establish saddle points for E,.

Theorem 4.2. For every positive integer M and « € [0, 21) there exists a critical point v, of E,

within the class Ay. Furthermore, the corresponding critical value E(v,) satisfies the asymp-
totic condition

272
Es(vs)—>2n2L(N—M—a/2n)2+T\/_ ase — 0. (4.5)

Proof. First, we note that the arguments in Theorem 4.1 can easily be adapted with the same
energy threshold to a curve that connects the states Uy := ¢! ZTM+@)x apnd U M, = ¢! CrMita)x
for any two positive integers M and M. Fixing ¢ > 0, one defines the potential critical value ¢,
via

ce ;= inf max E.(y(t)),
yele 1e[0,1]

where I'; is the set of continuous curves y such that
y:[0,1]1 > Ay withy(0) =Up and y (1) = Upr41. 4.6)
Beginning with the case M < N we have that
Ee(Up) ~27*L(N — M — a/27)?
while
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Ee(Up41) ~27°L(N — M — 1 —a/27)>,

so that, in particular, E.(Up+1) < E¢(Ups). Then the implication of Theorem 4.1 is that E,
exhibits the requisite mountain pass structure since for any 2 > 0 one has

5 NG
max E:(y()>27’L(N — M —a/27)> + =5 - h>E.(Uy)>E:(Uys1)  (47)
tel0,

for any y € I'g, provided ¢ is sufficiently small.

Subtracting off the boundary conditions by writing any competitor u € A, as u = i + £(x)
where £(x) := 1 + x(e’® — 1), we can work in the space Hj((0, 1)). It remains to verify the
Palais-Smale condition. Under assumptions

E.(uy+€) <Co and |[6E (ux +£)||—0 ask— 0, 4.8)

for {iix} C H(} ((O, 1)), it immediately follows from the uniform energy bound that after passing
to a subsequence (with notation suppressed), one has

Uy — ilg, p weakly in H' and iy — ilg, m uniformly ask — oo, 4.9)

for some i,y € H&. Then one writes E, as the sum of the Allen-Cahn energy and the twist
energy, say E, = I} + I, with

1 1
- €. I . - L .
Il(u):/§|u/+€/|2+£(|u+€|2—1)2 and IL(u) :ZE/T(M—FE)dx.
0 0

In light of (4.8), we know, in particular, that
SEe(uk +€; ug) = 81y (ig; ug) + 8o (g ) — 0
and
SEe(up + €; i m) =811 (ig; the i) + 82 (tig; the ) — 0
as k — oo. Since for any v = (v(l), v(z)) e H(} (0, 1) we can compute that

1
5[2(121{, v) = L/(ﬁ](cz)/ —’—6(2)/)0(1) _ (ﬁ]((l)/ +£(1)/)U(2) d.x,
0

it follows from (4.9) that as k — oo one has

81p (ks ug) — 8Ip (s ite, m) =
1
~(2) 2\ (D _ =) ~ (1) DN (2 _ ~(2)
L[ G @)@~ ) = @+ ) - %) dx o
0
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Thus,

0= lim 8E.(itx + €; itx) — S Ec (g + £; lig ) =
k— 00
lim 817 (g + €; ux) — 811 (g + €3 lie ) =
k—o00
: 1
/ e +¢)( ﬁ;’M)+g(|ﬁk+€|2—1)(ﬂk+£)(ﬁk—ﬂg,M)dx
0
Since the second term in the last integral vanishes in the limit due to (4.9), the first must as

2
ﬁ/s M‘ dx. Hence, the weak H 1-convergence

well, from which it follows that fol \ﬁ;( |2 dx — fol

of {i1;} has been upgraded to strong convergence, completing the verification of the Palais-Smale
condition.

We conclude from the Mountain Pass Theorem that a critical point ve p := iz p + £ exists
with E¢ (Ve m) = ce.

Now we turn to the proof of condition (4.5). Again, we know from Theorem 4.1 that for any
h > 0, one has the inequality (4.7) for & small enough, so that

232
liminfc, > 272 L(N — M — a/27) + T‘/— (4.10)

On the other hand, we can build a continuous path y¢ : [0, 1] — A, as follows:

(1) 0 <t < 1/3. We write Uy = €' with 0 (x) := (2r M + a)x. Then as ¢ varies between 0
and say 1/3, the modulus gradually depresses towards 0 in a small interval of x-values about x =
1/2 via the standard Modica-Mortola construction, so that y¥(1/3) =0 for say 1/2 — &> <x <
1/2+ 2. For this interval of 7-values one leaves the phase 0, unchanged. Following the approach
used in the proof of Theorem 1.2 for the recovery sequence construction, such a procedure can
be executed with

E.(y*()) < 2712L(N - M — 0(/27'[)2 + %ﬁ + O(e) foreacht € [0, 1/3).

(2) 1/3 <t <2/3.Beginning at t = 1/3 we introduce a discontinuity in the phase 6y at x = 1/2.
Since x = 1/2 lies inside the x-interval where the modulus vanishes for the ¢-interval [1/3,2/3],
the map y¢ remains smooth. The process in this interval is that as ¢ increases from r = 1/3 to
t = 2/3, the phase gradually converges to 6741 and 8741 — 27 forx € [0, 1/2) and x € (1/2, 1],
respectively, while leaving the modulus unchanged. Since M < N, the O (1) energy contribution
of the twist will decrease under this process of increasing phase. As ¢ approaches 2/3, y¢(t) will
converge to Uy except for the small interval about x = 1/2 where the modulus is depressed.
Explicitly, we take the phase, say 67 (x), to be given by

(271[M+3(t—1/3)]+a>x forO0<x <1/2
0" (x) =
<2n[M+3(t—l/3)]+ot>x—6rr(t—l/3) for1/2 <x <1,
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forr €[1/3,2/3]. We note that the term 67 (t — 1/3) is needed to maintain the boundary condi-
tion that y*(¢) = ¢/* when x = 1 throughout the z-interval [1/3,2/3]. We observe also that the
jump discontinuity in the phase closes up once t =2/3.

(3) 2/3 <t < 1. In the time interval ¢ € [2/3, 1] one smoothly raises the modulus back up to 1
onl/2— 2<x<l /2 + &2 while leaving the phase unchanged, so that at # = 1 one indeed has
y€(1) = Upr41, as desired. Again, this process decreases energy so that throughout the interval
0 <t <1 one maintains the estimate

E(y8(t)) <27%L(N — M —a/27)* + 23£ + 0(e).

Hence, we conclude that
limsupc, <limsup Eg(y®) <27°L(N — M —a/27)> + 23£
and together with (4.10) we arrive at (4.5). O
5. The case of unbounded twist
Finally, we consider the situation of an energy that encourages more and more twist in the
& — 0 limit. To this end, we replace N in (1.2) by N, := 1/e# where B is a positive number

chosen less than 1/2 in order to retain an energy bound that is uniform in ¢. Thus, we study
global and local minimizers of an energy E, given by

1
~ e, ,2 1 L _
Eg(u):/§|u/| +E(|u|2—1)2+5(u1u/2—u2u/1 —2ne P dx, (5.1
0

again subject to the boundary conditions u(0) =1, u(1) = e’ for some « € [0, 27).
Of course existence of global minimizers for each ¢ > 0 follows as in Theorem 2.1. One also
can establish a version of the local minimizer result Theorem 1.1:

Theorem 5.1. Fix any positive integer m and any « € [0, 27). Then there exists an gy > 0 such
that for all & < gg there exist non-vanishing local minimizers ue + = ,og,ie’é’&i of E. within the

class Ay such that

”p&i - 1||L°°(0,1)

lim sup <ooase—>0 5.2)
I3

and (5.3)

Qe”i — 21 (Le_ﬁJ + m) + « as € — O uniformly in x € [0, 1]. 64

Proof. The proof follows along similar lines as the proof of Theorem 1.1. First define Mgc =

Ls“g J 4 m. Then one writes competitors for constrained minimization of E.=E.(p,0)in polar
form (p, 6) where p satisfies (2.3) and 6(0) =0, 6(1) = 27'[M§‘E + o. The requirement g < 1/2
assures that a version of the uniform energy bound (2.6) still holds. Similarly, a uniform bound
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on the constant of integration C, is achievable as in (2.16), with the bound now depending on m.
The rest of the argument is unchanged. O

Next we consider the asymptotic behavior as € — 0 of E,. Due to the fact that e # — oo as
& — 0, we expect that the elements of an energy bounded sequence will oscillate more and more
rapidly as ¢ — 0.

Theorem 5.2. Suppose that for some 0 < 8 < 1/2, {u.} C Ay satisfies the uniform energy bound
E¢(ue) < Co < 00. (5.5)

Then |ug|> — 1 in L0, 1) and there exists a finite set J' C (0,1) and a subsequence {us,}
such that for every compact set K CC (0, 1)\ J', there exists an y(K) > 0 such that for every

¢ < &9, one has |ug,| > 0 on K and there is a lifting whereby u., = pgeezml’gl /Sf, with
Ve, — x strongly in HY (0, 1)\ J'). (5.6)
In addition, we have
ug — 0 weakly in L*((0, 1); C), (5.7)
so that the entire sequence converges weakly to 0.

Proof of Theorem 5.2. By the same argument as the one leading up to (3.6), we can identify
finite unions of open intervals B, such that on (0, 1) \ B;, p. > 1/4. Also, by restricting to a
subsequence {e¢}, we can assume that the sets By, collapse to a finite set of points J'. We may
therefore define liftings 6, : (0, 1) \ B, — R such that on each of the finitely many intervals
comprising (0, 1) \ Bg,, the value of 6, at the left endpoint of an interval is greater than the value
of 6, at the right endpoint of the previous interval, with a difference of no more than 2. Also,
we can without loss of generality suppose that 0 is in the domain of 6, and set 0;,(0) = 0. If we
define

85955

= (5.8)

Vg, 1=

then due to the choice of ;, on each subinterval of (0, 1) \ Bg,, we see that from the right
endpoint of one subinterval to the left endpoint of the subsequent one,

the value of v, differs by no more than 85. 5.9

Furthermore, we may rewrite the twist term in terms of v,, and employ the uniform energy bound
to find that

1 L 2 7 2
5 5 (P20l 1) =co. (5.10)
O\,

Using (5.10), the fact that p;, > 1/4 on (0, 1) \ Bg,, and the energy bound, we estimate
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2 2
/ (v, — D*dx <2 / vé/—iz + %—1 dx
: P2 0%

(0.1)\Be, (0.1)\Be,
2 2
4 4 / 1 4 4 1
=2 Al \Vee = 5| T4 | 7 —1) dx
Pg, Psg,
(0.1)\Be,
2 2
<c / (o2 0r, =1) + (02 =1) ax
(0.1)\Be,
<Cce? (5.11)

We conclude from (5.11) that for any K cc [0, 1]\ J',
v, = 1in L*(K). (5.12)
From (5.9), (5.12), and the condition v, (0) = 0, we deduce that

Ve, = x in L°(K), (5.13)

which ends the proof of (5.6).
To prove (5.7), we must demonstrate that for any w € L>((0, 1); C),

1

/qudx — 0, (5.14)
0

where the bar denotes complex conjugation. By the density of step functions in L2, it is enough
to show that for any 1 > 0 and interval I,

lim sup /usdx <n. (5.15)

e—0

We first choose a subsequence u,, such that

e—0

lim sup /ugdx = lim /ug,Z dx|. (5.16)
{— 00
1

By restricting to a further subsequence, there exists a finite set J’ such that u,, = ¥V off
of finite unions of open intervals B, which collapse to J’ as described in (5.8)-(5.13). Since
lug,| — 1 in L2, {lug, 1} is uniformly integrable. Let § > O be such that |[M| < § implies that
f a lue,ldx < n. Thus there exist finitely many open intervals {B;} whose union has measure
less than § and contains J’ such that for all £,
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Ug, dx| <. (5.17)

J

-~

Since By, collapse to J', we may safely assume that B, C UB; for all £. Now
2tive, e,
Ug, dx = et dx
I\U;B; N\U; Bj

Qi pmie—0e? g (5.18)
I\U; B
We next show that
"eZm'(vge —x)g,

B
”Wl’]((()»l)\BsZ < C < oo, (519)

so that there is a subsequence converging strongly in L>(/ \ UB ). The pairing of weak and
strong convergence in (5.18) will then allow us to conclude the proof. Using (5.11), we have

f v, — e, P dx <&, 710, D\ Be,|V2|1v], — 1ll2 < CI(0, D)\ B, |2
(0,D\B,

In light of (5.9) and v, (0) = 0, the uniform L' bound on (vgl — 1)8;’3 implies that
e, =108, Pl <C
e ¢ llwtio,ms,) =6
so that (vg, — x)zs[’3 are uniformly bounded in W!-1(1 \ UB ;). By the compact embedding of

Whlinto L2, we may extract a subsequence {v;,, } and L? function v such that (vg,, — x)e,;ﬁ —
v in L*(1 \ UB 7). Due to the fact that e2mix ig Lipschitz, we have

. —-B .
2T Wem =)em™ . Q2T i [2(] \ UB)). (5.20)

. =B

Together with the weak L? convergence of ¢?™*¢» to 0 and the strong L’ convergence of
: —p .

21 Wen =X)em" (5 16)-(5.18) give

limsup /ugdx = lim /uem dx
e—0 m—00
1 1

< limsup / Ug, dx| + /uemdx

m-—00
\U; B i Bj
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. B . —B
< lim sup [ 327”)(8’" ezrn(vfm —X)&m dx + n
m—00
\Uj Bj

This is exactly (5.15), so the proof is complete. O

We would also like to describe the asymptotic behavior of minimizers in this regime by iden-
tifying a limiting problem. As demonstrated in the previous theorem, no meaningful limit can
be extracted from simply looking at the sequence {u.}. Instead, we examine the “microscale”
behavior of u, by eliminating the excess twist in the limit ¢ — 0, in the sense that we obtain a
limiting asymptotic problem for the rescaled functions

_omile=P
w(x) = u(x)e il lx,
Here |¢~# | denotes the integer part of ¢ 7.
In terms of w, the energy E.(u) is given by

1
~ £ - 21
Es([,{) = Fg('lU) Z/E ‘(weZJHI_S ﬁJX)/ + E(|w|2 _ 1)2
0

L
+ E(wl wh —wy w + w27 [e7P) — 2me )2 dx.

The boundary conditions imposed on competitors for F, are the same as those for E,. The
asymptotic behavior of minimizers of E_, can therefore be completely understood in terms of Fy,
so we pursue an asymptotic limit for F,. Let us define the limiting functional as in Section 3,
with slightly altered notation to emphasize the dependence on preferred twist:

1

L 2./2
E/(wl wh — wy w) —271A)2dx+?\/_7{0(]) ifwe H'((0,1)\ J; SY)
Eoa(w) = 0

+00 otherwise.

We recall that 0 and/or 1 belongs to J depending on whether or not the traces of u satisfy the
desired boundary conditions inherited from E; that is, we include x =0 in J only if u(0%) #1
and we include x =1 in J only if u(17) # €'“.

Theorem 5.3. Let 0 < 8 < 1/2 and suppose that for a subsequence {e;} — 0 and some A € [0, 1]
we have

8;13 - Lee_ﬂj — A.
Then {Fg,} I'-converges to Ey 4 in L? ((O, 1); Rz).
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We also have the compactness result
Theorem 5.4. If {u.}.~¢ satisfies
Ee(ue) = Fe(we) < Co < 00, (5.21)
and
ef — 171> A (5.22)

for some 0 < B < 1/2, then there exists a function w € H'((0, 1)\ J'; S') where J' is a finite,
perhaps empty, set of points in (0, 1) such that along a subsequence &, — 0 one has

2B
Uge eI =y — win L*((0, 1); C). (5.23)

Furthermore, writing w(x) = €™ for € H'((0, 1)\ J'), we have that for every compact set
K cc (0, 1)\ J', there exists an go(K) > 0 such that for every g; < £y one has |u€l| = |w5£| >0

=B .
on K and there is a lifting whereby u,, (x)e~2mile, " Ix = wg, (X) = pg, (x)e’eg( @ on K, with
0s, — 0 weakly in Hlloc ((O, 1\ J/). (5.24)

Proof of Theorem 5.4. The proof is based on the proof of Theorem 3.1. First, we estimate that

1 1
L 2
/%)(wgezmte ﬁp‘)’ dx:/§|w;+2niwL87’3J|2 dx
0 0

1
:/§|w;|2dx+0(el/2*5)dx (5.25)
0

for an energy bounded sequence {w;}. Therefore,
: 1
€ 2
Fetwo = [ 5 il + = 17
0

+ %(T(wg) +lwel?2m e P = 2P dx + 0(eV/*7F). (5.26)

The rest of the proof follows almost exactly as in Theorem 3.1. Indeed, the only difference be-
tween E, in that theorem and the right hand side of (5.26) here is the preferred twist 2w N versus
|we 227 [e 7P| — 2meP, respectively. For the purpose of showing compactness, this distinction
is immaterial, since it is only the uniform boundedness of the preferred twist 27z N in L? that was
used in (3.7) to obtain compactness. Using 8 < 1/2, we can estimate
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[welom (e~ ) —2me ™| | <|qual? = D216 |+ [2mlef ) —2me ™ 2,
<27 <H(|w5|2 — 112 H + 1)
L2

52n<2¢€7+1),

so we are done. O

Proof of Theorem 5.3. We begin with the lower-semicontinuity condition. Let wey — w in LZ.
We can assume that

liminf . (w,) < Cop < 00, (5.27)
e—0

otherwise the lower-semicontinuity is trivial. The proof is similar to the proof of (3.15) in Theo-
rem 1.2. Also, due to (5.20), it is enough to show that

1
€ 1 L
liminf/ 3 |wl|* + Eﬂwelz -7+ 5 (Twe) + lwel*2m e F | — 2me™F) 2 dx

e—0
0

> Eo a(w). (5.28)
First, for the twist term, it must be verified that under the assumption (5.27),

1
L
limi(r)lf/ E(T(wg) +wel?2m e P — 2meP)? dx
e—
0

% / (T (w) — 27 A)? dx. (5.29)

In Theorem 1.2, after (3.19), we proved the inequality

/(1 —27N*0},)* — 47 N (ps,)*0,, + 47> N* dx
K

> /(1 —271*0")? —4x NO' + 47> N%dx,

where K is a compact set on which 9 — @ and g, = 1 — 279, followed by an exhaustion
argument in K and g to prove lower- semlcontmulty of the twist in (3.23). The corresponding
inequality to be verified in this case is
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—a\d g \2 2 B _ B 2/ 2 2B _ B\’
(1-279 (95) +4m (|we,|"Le, "1 — &, 7 ) [we, | 95[ +am” (we,|"le, " | — ¢, dx
K

> /(1 —27D* 0 — 4w A0’ + 42 A% dx, (5.30)
K

which is the left-hand side of (5.29) expanded out and estimated using |wg,| >1—279 on K, on
which 6] , = 0’. The desired inequality (5.30) would follow immediately from the weak conver-
gence of 0, and the two conditions

e, —|we,1?le,’ | > Ain L2 (5.31)
and
we, 126, = Jwe, Ple;” ) > Ain L2, (5.32)
which we check in turn. First for (5.31), we estimate

lec? = lwe, PP - 4

<o’ - 11—

2y B
p L= Prie?)
The first term goes to zero as € — 0 due to (5.22), and the second vanishes due to the uniform
energy bound (5.27), since § < 1/2. Moving on to (5.32), we can repeat the argument (3.14) to

find that

lwe, [ < M(Co).

The second condition (5.32) can be shown as consequence of this L* bound, (5.31), and (5.27)
after writing

we, 26,7 — Jwe, PLe; P 1) — A = we 2] — lwe IPLe; P ] — A) + (Jwe, > — DA,

Choosing larger and larger K which exhaust (0, 1) and letting ¢ — oo as in Theorem 1.2, the
proof of (5.29) is finished. The remainder of the lower-semicontinuity proof follows from the
proof of Theorem 1.2 and (5.26). The recovery sequence is very similar to the proof of Theo-
rem 1.2, which is evident due to the similarity of (5.26) with E,, so we omit the details. We only
mention that on the set of size O(¢) where |w,| # 1, the assumption 8 < 1/2 is needed to make
sure the twist term vanishes in the limit e — 0. O

Finally, we identify the minimizers of Eo 4. As in Corollary 3.5, this provides a description
of all subsequential limits of a family of minimizers {u,} for F, and thus E.. We omit the proof
since it follows the same strategy as the proof of Corollary 3.5.

Theorem 5.5. Let N = N(A, ) be the closest integer to A — % so that N € {—1,0, 1}. Then
the global minimizer(s) of Eo 4 are given by
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(i) the function
u(x) = ei(2ﬂN+0{)x (533)
having constant twist and no jumps when

LQ27(N — A) +a)? < 4‘75. (5.34)

(ii) the one-parameter set of functions given by

ei27‘L’Ax ifx < X0,
u(x) = {ei(ZnAx+a—2nA) if x > xo, (5.35)
for any xo € (0, 1), that have one jump and twist 2w A away from the jump, when
42
LQr(N - A) +a)? > ‘Tf (5.36)
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