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Abstract

We consider a one-dimensional variational problem arising in connection with a model for cholesteric 
liquid crystals. The principal feature of our study is the assumption that the twist deformation of the nematic 
director incurs much higher energy penalty than other modes of deformation. The appropriate ratio of the 
elastic constants then gives a small parameter ε entering an Allen-Cahn-type energy functional augmented 
by a twist term. We consider the behavior of the energy as ε tends to zero. We demonstrate existence of the 
local energy minimizers classified by their overall twist, find the �-limit of the relaxed energies and show 
that it consists of the twist and jump terms. Further, we extend our results to include the situation when the 
cholesteric pitch vanishes along with ε.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

We seek an understanding of the energy landscape for the one-dimensional variational prob-
lem
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inf
Aα

Eε(u), (1.1)

where u : [0, 1] → R2 so that u = (u1, u2) with

Eε(u1, u2) =
1∫

0

ε

2

∣∣u′∣∣2 + 1

4ε
(|u|2 − 1)2 + L

2
(u1 u′

2 − u2 u′
1 − 2πN)2 dx, (1.2)

and

Aα := {u ∈ H 1((0,1);R2) : u(0) = 1, u(1) = eiα}, (1.3)

for some positive integer N and some α ∈ [0, 2π). When convenient, as above, we will view 
u = (u1, u2) as a map into C. We should note that the choice of N as an integer is made purely 
for convenience. One could work with any real number N but as we shall see, the key issue is 
simply how close the pure N twist state ei2πNx is to satisfying the boundary conditions at x = 1.

Our purpose in this article is to continue the analysis of a family of models with disparate elas-
tic constants arising in the mathematics of liquid crystals [5–8]. In particular, the problem (1.1)
can be viewed as a highly simplified, relaxed version of the Oseen-Frank model for cholesteric 
liquid crystals, [2,12,19–22] based on the elastic deformations of an S1- or S2-valued director n, 
cf. [23]. Other models, of course, exist for nematic liquid crystals, including the Q-tensor based 
Landau-de Gennes model, whose energy density consists of a bulk potential favoring either a 
uniaxial nematic state, an isotropic state, or both, depending on temperature, cf. [15]. We refer 
the reader to the recent literature [5,11] that establishes a precise asymptotic relationship between 
the Oseen-Frank and the Landau-de Gennes models.

We recall now the form of the Oseen-Frank energy,

FOF (n) :=
∫
�

(
K1

2
(divn)2 + K2

2
((curln) · n + q)2 + K3

2
|(curln) × n|2

+K2 + K4

2
(tr (∇n)2 − (divn)2)

)
dx, (1.4)

where � ⊂ R3 represents the sample domain and the director n maps � to S2. The material 
constants K1, K2, K3 and K4 are the elastic coefficients associated with the deformations of 
splay, twist, bend and saddle-splay, respectively [23]. Most important for this article is the second 
term, the twist, where q = 2π

p
with p being the pitch of the cholesteric helix. The distinction 

between nematic and cholesteric liquid crystals is manifested by the value of q . The liquid crystal 
is in a nematic state when q = 0 and, absent boundary conditions, a global minimizer of FOF

is a constant director field. On the other hand, a liquid crystal is in a cholesteric state whenever 
q �= 0 and global minimizers of FOF in R3 are rigid rotations of a uniformly twisted director 

field n = (nx, ny, 0) = e
2πiz

p .
In [8] we propose and analyze a model problem for nematic liquid crystals carrying a large 

energetic cost for splay. The model couples the Ginzburg-Landau potential to an elastic energy 
density with large elastic disparity, namely
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inf
u∈H 1(�;R2)

1

2

∫
�

(
ε|∇u|2 + L(divu)2 + 1

ε
(1 − |u|2)2

)
dx. (1.5)

Here one should view L as playing a role analogous to K1 in (1.4). The minimization is taken 
over competitors satisfying an S1-valued Dirichlet condition on ∂� so as to avoid a trivial mini-
mizer. This choice of potential clearly favors S1-valued states, which are a stand-in in our models 
for uniaxial nematic states. Analysis of (1.5) in the ε → 0 limit involves a ‘wall energy’ along 
a jump set Ju penalizing jumps of any S1-valued competitor u, and bulk elastic energy favoring 
low divergence. The conjectured �-limit of (1.5) is

L

2

∫
�

(divu)2 dx + 1

6

∫
Ju∩�

|u+ − u−|3 dH1, (1.6)

where u+ and u− are the one-sided traces of u along Ju which exhibit a jump discontinuity in 
their tangential components.

The model considered in this paper is a cholesteric analog of the problem in [8]. Just as the 
functional considered in [8] can be viewed as a Ginzburg-Landau-type relaxation of the splay 
K1-term in (1.4), the problem (1.1) can be understood as a similar relaxation of the twist K2-
term in the same energy. For example, in 2D this relaxation may take the form

inf
A

E2D
ε (u), (1.7)

where u : � →R3 with

E2D
ε (u) =

∫
�

ε

2
|∇u|2 + 1

4ε
(|u|2 − 1)2 + L

2
(u · curlu − 2πN)2 dx, (1.8)

and

A := {u ∈ H 1(�;R3) : u|∂� = u0}, (1.9)

for some domain � ⊂ R2, some positive integer N and boundary condition u0 : ∂� → S2. Re-
sults of simulations for the gradient flow dynamics associated with the problem (1.7) lead to 
intricate textures, such as that shown in Fig. 1, resembling cholesteric fingerprint textures ob-
served in experiments [16].

While attempting to tackle the problem (1.7), we found that the energy landscape in (1.1) is 
already rich enough to merit a separate investigation in one dimension that we undertake in this 
paper. Even though the features of minimizers in one dimension will not be exactly the same as 
those in Fig. 1, they are motivated by a high penalty imposed on twist in both cases. We note 
that existence and stability of minimizers for the three-component cholesteric director within 
the framework of the Oseen-Frank model in one dimension was considered in [1] and [4] under 
the assumption that all elastic constants have comparable values. In addition, in [4], the energy 
functional included the effects of an electric field. However, these studies are not carried out in 
the present context of extreme disparity between the elastic constants.

Here we further assume that the component of u along the axis of the twist vanishes so that the 
target space for the director is two-dimensional. Thus, though we will write u = (u1(x), u2(x))

what we really have in mind is u = (0, u2(x), u3(x)). The thought experiment that allows us to 
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Fig. 1. Numerical solution for the gradient flow associated with (1.7) obtained in COMSOL [3]. The arrows represent the 
director u, the blue and the red curves are level sets u3 = −0.92 and u3 = 0.92, respectively. The simulation was started 
from the initial condition u = (sin (7πy/2), 0, cos (7πy/2)) with the axis y of the twist oriented in a vertical direction 
and y ∈ [−1, 1]. The director is assumed to be oriented to the right and to the left on the top and the bottom boundaries, 
respectively. Periodic boundary conditions are imposed on vertical components of the boundary. Here N = 10, L = 1, 
and ε = 0.005. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

impose this condition assumes that an electric field is applied along the axis of the twist and that 
the cholesteric has negative dielectric anisotropy that forces its molecules to orient perpendicular 
to the field, [10]. In the one-dimensional setting for highly disparate elastic constants, it turns out 
that if one includes a third x-dependent component, so that u(x) = (u1(x), u2(x), u3(x)

)
, it leads 

to an energy where distinguishing textures are lost for ε 
 1 and the energy landscape becomes 
highly degenerate, see Remark 3.3. On the other hand, we find that the one-dimensional, two-
component model (1.2) leads to stable states more reminiscent of those described above for the 
two-dimensional problem.

The richness of the energy landscape is first revealed in Theorem 1.1 below, showing that local 
minimizers of Eε exist for every positive integer value of twist–essentially for every winding 
number. More precisely, through a constrained minimization procedure keeping the modulus of 
competitors away from zero, we establish:

Theorem 1.1. For every positive integer M and every α ∈ [0, 2π), there exists an ε0 > 0 such 
that for all ε < ε0 there is an H 1-local minimizer uε,M = ρε,Meiθε,M of Eε within the class Aα

such that

lim sup
ε→0

∥∥ρε,M − 1
∥∥

L∞(0,1)

ε
< ∞, (1.10)

lim
ε→0

θ ′
ε,M = 2πM + α uniformly in x ∈ [0,1], (1.11)

and

lim Eε(uε,M) = L
(2π(M − N) + α)2 . (1.12)
ε→0 2
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This is proven in Section 2. Through Corollary 3.5 which readily follows from the �-
convergence result below, we will ultimately find that in some parameter regimes, corresponding 
to α small and M = N , the local minimizers of Theorem 1.1 turn out in fact to be global mini-
mizers. However, when M �= N or when M = N but α exceeds a critical value, they will not.

Section 3 contains our principal result of this investigation, namely the identification of the �-
limit of Eε . The key feature of this analysis is that in the ε → 0 limit, energy bounded sequences 
may exhibit a jump in phase. In order to gain or release twist in an energetically expedient 
manner, the modulus of such a sequence may plunge towards zero on a small set, effecting a 
Modica-Mortola type transition from modulus ≈ 1 down to 0 and then back. Over this small 
interval where the modulus ≈ 0, the phase is ‘free’ to jump any amount at minimal cost.

In light of this mechanism, our candidate for a limiting functional will be finite for u ∈
H 1((0, 1) \ J ; S1) where J is a jump set consisting of a finite collection of points, say 0 <
x1 < x2 < . . . < xk < 1 for some non-negative integer k, along with perhaps x = 0 and/or x = 1
depending on whether or not the traces of u satisfy the desired boundary conditions inherited 
from Eε; that is, we include x = 0 in J only if u(0+) �= 1 and we include x = 1 in J only if 
u(1−) �= eiα . For such a u we will assume J is the minimal such set of points, meaning that if 
any point in J ∩ (0, 1) were eliminated, the function u would no longer represent an H 1 function 
in the compliment of the smaller set of points. In particular, if u ∈ H 1((0, 1)) and has the proper 
traces, then J = ∅.

Then we define E0 : L2
(
(0, 1); R2

)→ R via

E0(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L

2

1∫
0

(u1 u′
2 − u2 u′

1 − 2πN)2 dx + 2
√

2

3
H0(J ) if u ∈ H 1((0,1) \ J ;S1)

+∞ otherwise.
(1.13)

Here H0 refers to zero-dimensional Hausdorff measure, i.e. counting measure.
We will establish:

Theorem 1.2. {Eε} �-converges to E0 in L2
(
(0, 1); R2

)
.

We also establish a compactness result for energy bounded sequences in Theorem 3.1.
Here we wish to emphasize the parallels between the present problem of high cost twist and 

the previous study [8] of high cost splay. Comparing the �-limits (1.6) and (1.13) we see that 
the former consists of bulk splay plus jump cost while the latter takes the form of bulk twist plus 
jump cost. One distinction, however, is that in the high twist model, the size of the phase jump 
does not affect the energetic cost.

As a consequence of Theorem 1.2, we demonstrate in Theorem 3.4 and Corollary 3.5 that 
in certain parameter regimes depending on L and α, global energy minimizers with jumps are 
energetically favorable. Indeed, this is the most dramatic effect of the assumption of disparate 
elastic constants present in our model. The relatively expensive cost of twist leads the global 
minimizer of (1.1), which of course is necessarily smooth, to rapidly change its phase, a process 
that can only be achieved with finite energetic cost by having the modulus simultaneously plunge 
towards zero.
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In Section 4 we establish an energy barrier between the local minimizers of different winding 
numbers exposed in Theorem 1.1, cf. Theorem 4.1. This readily leads to the existence of saddle 
points in Theorem 4.2 via the Mountain Pass Theorem, thus filling out the energy landscape for 
Eε .

Finally, in Section 5 we investigate the energy (5.1) motivated by studies of so-called twist 
bend nematics, where twisting of the director occurs at much shorter scales than in cholesterics 
[17]. Here we model this situation by tying the pitch (or the period of the twist) 1/N to the 
Ginzburg-Landau parameter ε so that twisting “averages out” in the limit ε → 0. We show in 
Theorem 5.2 that, in fact, the weak limit of uniformly energy bounded director fields is equal to 
zero but we are nonetheless able to recover some information about fine scale behavior of these 
fields. Then in Theorems 5.3 and 5.4 we establish �-convergence in this setting.

2. Global and local minimizers that stay bounded away from zero

We begin with the observation for problem (1.2)-(1.3) that a global minimizer exists for fixed 
ε > 0.

Theorem 2.1. For each fixed ε > 0 there exists a minimizer of Eε within the class Aα .

Proof. Existence follows readily from the direct method as follows. Suppressing the ε-
dependence, let {uj } = {(uj

1, u
j
2)} denote a minimizing sequence:

Eε(u
j
1, u

j
2) → m := {infEε(u) : u ∈Aα}.

Compactness of a minimizing sequence follows from the immediate energy bounds

1∫
0

∣∣∣uj ′
∣∣∣2 dx < C,

1∫
0

∣∣∣uj
∣∣∣4 dx < C,

1∫
0

(
u

j

1u
j

2
′ − u

j

2u
j

1
′)2 dx < C.

So, in particular we have a uniform H 1-bound on {uj }. Thus, up to subsequences, we get uniform 
(in fact Holder) convergence of uj → ū = (ū1, ū2), and uj ′ ⇀ ū′ weakly in L2((0, 1)) for some 
ū ∈ Aα .

Turning to the issue of lower-semicontinuity, we note that verification for the first two terms 
in Eε is standard. For the third term we observe that

u
j

1u
j

2
′ − u

j

2u
j

1
′ ⇀ ū1ū2

′ − ū2ū1
′ weakly in L2,

through the pairing of weak L2 and uniform convergence.
Then we have

1∫
0

(u
j

1 u
j

2
′ − u

j

2 u
j

1
′ − 2πN)2 dx =

1∫
(u

j

1 u
j

2
′ − u

j

2 u
j

1
′)2 dx − 4πN

1∫ (
u

j

1 u
j

2
′ − u

j

2 u
j

1
′)dx + 4π2N2.
0 0
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The middle term is continuous given the strong convergence of uj to ū. For the first term, we 
appeal to the lower-semicontinuity of the L2 norm under weak L2 convergence. Thus, Eε(ū) =
m. �

It turns out that characterization of the global minimizer in the case where α = 0, so that the 
boundary conditions are simply u(0) = u(1) = 1, is much simpler than when α ∈ (0, 2π). In 
particular, we have the following result.

Theorem 2.2. Let uε denote a global minimizer of Eε within the admissible class A0. Then 
ρε(x) := |uε(x)| converges to 1 uniformly on [0, 1] as ε → 0.

Proof. We proceed by contradiction and assume that for some δ > 0 there exists a sequence 
εj → 0 and values xj ∈ [0, 1] such that

ρεj
(xj ) ≤ 1 − δ.

The case where ρεj
(xj ) ≥ 1 + δ is handled similarly.

We begin with the observation that

Eε(uε) ≤ Eε(e
i2πNx) = 2(πN)2ε. (2.1)

It then follows that for some C0 > 0 independent of ε one has

1∫
0

(ρ′
ε)

2 + ρ4
ε dx < C0,

which in turn implies a bound of the form

‖ρε‖H 1(0,1) < C1 = C1(C0). Hence, ‖ρε‖C0,1/2(0,1) < C1.

Then invoking the Hölder bound above, we have

∣∣ρε(x) − ρε(xj )
∣∣≤ C1

∣∣x − xj

∣∣1/2

and so for 
∣∣x − xj

∣∣≤ ( δ
2C1

)2 one would have

ρε(x) ≤ ρε(xj ) + C1
∣∣x − xj

∣∣1/2 ≤ 1 − δ

2
.

This in turn would imply

Eε(uε) ≥ 1

4ε

1∫
0

(ρ2
ε − 1)2 dx ≥ 1

4ε

∫
{
x: ∣∣x−xj

∣∣≤( δ
2C

)2}
(ρ2

ε − 1)2 dx
1
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≥ δ4

64C2
1ε

.

This cannot hold in light of (2.1) for ε < ε0 where

ε0 = δ2

8
√

2C1πN
. �

Next we turn to the construction of local minimizers of Eε within the class Aα for α ∈ [0, 2π), 
namely the proof of Theorem 1.1. Like the global minimizers constructed for the case α = 0 in 
Theorem 2.2, the modulus of these local minimizers will converge uniformly to 1 as ε → 0.

Proof of Theorem 1.1. To capture these local minimizers we will rephrase our problem by 
switching to polar coordinates via the substitution

u1 = ρ cos θ, u2 = ρ sin θ.

The boundary conditions corresponding to (1.3) are

ρ(0) = 1 = ρ(1), θ(0) = 0, θ(1) = 2πM + α for some integer M > 0. (2.2)

We find that in these variables,

Eε = Eε(ρ, θ) =
1∫

0

ε

2

(
(ρ′)2 + ρ2(θ ′)2)+ 1

4ε
(ρ2 − 1)2 + L

2
(ρ2θ ′ − 2πN)2 dx.

We will minimize Eε(ρ, θ) subject to (2.2) via a constrained minimization procedure. To this 
end, for any number ρ0 ∈ (0, 1) we introduce the admissible class

Hρ0 := {ρ ∈ H 1(0,1) : ρ(0) = 1 = ρ(1), ρ(x) ≥ ρ0 on [0,1]} (2.3)

and for any positive integer M and any α ∈ [0, 2π) we denote

HM,α := {θ ∈ H 1(0,1) : θ(0) = 0, θ(1) = 2πM + α}. (2.4)

We note that for each fixed ε > 0 and ρ0 ∈ (0, 1), the direct method provides for a minimizing 
pair (ρε,M, θε,M) to the constrained problem:

με,M := inf
ρ∈Hρ0 , θ∈HM,α

Eε(ρ, θ). (2.5)

The only point to be made here is that the lower bound ρj ≥ ρ0 on a minimizing sequence 
{ρj , θj } allows for H 1 control of {θj }. Also the H 1 control on {ρj } yields uniform convergence 
of a subsequence so that the constraint is satisfied by the limiting ρε,M .
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We remark for later use that με,M is bounded independent of ε since

με,M ≤ Eε(1, (2πM + α)x) = L

2
(2π(M − N) + α)2 + O(ε) (2.6)

We will now argue that for any integer M > 0 and any ρ0 ∈ (0, 1), these solutions to the 
constrained problem in fact satisfy ρε,M(x) > ρ0 for all x ∈ [0, 1] when ε is sufficiently small. 
Hence, they correspond to H 1-local minimizers of Eε(u) subject to the boundary conditions 
(1.3) since the representation uε,M = ρε,Meiθε,M is global.

CLAIM: For any positive integer M , any α ∈ [0, 2π), and any ρ0 ∈ (0, 1) we have

ρε,M(x) > ρ0 for all x ∈ [0,1] provided ε is sufficiently small. (2.7)

To pursue this claim, we first observe that since the constraint falls only on ρε,M , this minimizing 
pair (ρε,M, θε,M) must satisfy

lim
t→0+

Eε

(
ρε,M + tf, θε,M

)− Eε

(
ρε,M, θε,M

)
t

≥ 0, (2.8)

for all f ∈ H 1
0 (0, 1) such that f (x) ≥ 0 on [0, 1], and

d

dt t=0
Eε

(
ρε,M, θε,M + tψ

)= 0 for all ψ ∈ H 1
0 (0,1). (2.9)

Computing these quantities we find that (2.8) takes the form

1∫
0

ερ′
ε,Mf ′ +

(
ερε,M

(
θ ′
ε,M

)2 + 1

ε

(
ρ2

ε,M − 1
)

ρε,M

−2L
(

2πN − ρ2
ε,Mθ ′

ε,M

)
ρε,Mθ ′

ε,M

)
f dx ≥ 0 (2.10)

for all nonnegative f ∈ H 1
0 (0, 1), and (2.9) takes the form

[(
εθ ′

ε,M − L
(

2πN − ρ2
ε,Mθ ′

ε,M

))
ρ2

ε,M

]′ = 0. (2.11)

Thus,

(
εθ ′

ε,M − L(2πN − ρ2
ε,Mθ ′

ε,M)
)
ρ2

ε,M = Cε for some constant Cε, (2.12)

allowing us to solve for θ ′
ε,M to find

θ ′
ε,M = 2πNLρ2

ε,M + Cε

Lρ4 + ερ2 . (2.13)

ε,M ε,M
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Integrating (2.13) over the interval [0, 1] and using the boundary conditions on θε,M we obtain a 
formula for Cε:

Cε = 2πM + α − 2πLN
∫ 1

0 (Lρ2
ε,M + ε)−1 dx∫ 1

0 (Lρ4
ε,M + ερ2

ε,M)−1 dx
. (2.14)

Now by (2.6),

1∫
0

(ρ2
ε,M − 1)

∣∣ρ′
ε,M

∣∣ dx ≤ √
2

1∫
0

ε

2
(ρ′

ε,M)2 + 1

4ε
(ρ2

ε,M − 1)2 dx ≤ √
2με,M.

Since ρε,M(0) = 1, it then follows from (2.6) and this total variation bound that ρε,M is bounded 
above uniformly in ε. Thus, by (2.14), the same is true of |Cε|.

Next we use (2.13) to find that

θ ′
ε,M −

(
2πNL + Cε

L + ε

)
= 2πNLρ2

ε,M + Cε

Lρ4
ε,M + ερ2

ε,M

−
(

2πNL + Cε

L + ε

)

=
(2πNL2ρ2

ε,M + Cε

[
L(1 + ρ2

ε,M) + ε
]

ρ2
ε,M(Lρ2

ε,M + ε)(L + ε)

)
(1 − ρ2

ε,M) =: 
ε(1 − ρ2
ε,M)

where |
ε| ≤ C = C(N, M, L) independent of ε by the uniform bounds on Cε and ρε,M . Hence,

1∫
0

∣∣∣∣θ ′
ε,M −

(
2πNL + Cε

L + ε

)∣∣∣∣≤ C

1∫
0

(1 − ρ2
ε,M)dx

≤ 2C
√

ε

⎛
⎝ 1∫

0

1

4ε
(1 − ρ2

ε,M)2 dx

⎞
⎠

1/2

≤ 2C
√

με,M

√
ε. (2.15)

Since

2πM + α =
1∫

0

(
θ ′
ε,M −

(
2πNL + Cε

L + ε

))
dx + 2πNL + Cε

L + ε

we can then invoke (2.15) to conclude that

Cε = 2πL(M − N) + Lα + O(
√

ε). (2.16)

Substituting this back into (2.13) we find

θ ′
ε,M = 2πLM + Lα + 2πLN(ρ2

ε,M − 1)

Lρ4 + ερ2 + O(
√

ε). (2.17)

ε,M ε,M
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With these estimates we can now establish Claim (2.7).
In light of the boundary conditions, we need only consider x ∈ (0, 1). First, suppose by con-

tradiction, that {x : ρε,M = ρ0} contains an isolated point x0 ∈ (0, 1). Since the obstacle in (2.5)
is smooth, it follows from standard regularity theory of obstacle problems (see e.g. [18]) that 
ρε,M makes C1,1 contact with the obstacle y(x) ≡ 1. However, we also have that ρε,M satisfies 
the Euler-Lagrange equation on either side of x0, that is,

ερ′′
ε,M = ερε,M(θ ′

ε,M)2 + 1

ε
(ρ2

ε,M − 1)ρε,M − 2L(2πN − ρ2
ε,Mθ ′

ε,M)ρε,Mθ ′
ε,M (2.18)

cf. (2.10). Consequently the limits x → x+
0 and x → x−

0 agree for ρ′′
ε,M(x) so we find that in fact 

ρε,M ∈ C2 in a neighborhood of x0 with

ρ′′
ε,M(x0) = ε(θ ′

ε,M(x0))
2 + 1

ε
(ρ2

0 − 1)ρ0 − 2L(2πN − θ ′
ε,M(x0))θ

′
ε,M(x0).

Invoking (2.17) evaluated at x = x0, we see

θ ′
ε,M ∼ 2πM + α + 2πN(ρ2

0 − 1)

ρ4
0

+ O(
√

ε) (2.19)

so that

ρ′′
ε,M(x0) ∼ 1

ε
(ρ2

0 − 1)ρ0 + O(1) (2.20)

But since ρε,M has a minimum at x0, this contradicts the requirement that ρ′′
ε,M(x0) ≥ 0 when ε

is sufficiently small.
Next we suppose by way of contradiction that {x : ρε,M = ρ0} contains an interval I ⊂ [0, 1]. 

Fix a smooth non-negative function f compactly supported in I . Then by (2.10) we must have

∫
I

(
ε(θ ′

ε,M)2 + 1

ε
(ρ2

0 − 1)ρ0 − 2L(2πN − θ ′
ε,M)θ ′

ε,M

)
f dx ≥ 0,

again leading to a contradiction for ε small. Claim (2.7) is established and the local minimality 
of uε,M follows.

We remark in passing that for the case M < N , one can establish the stronger statement that 
in fact ρε,M(x) > 1 for all x ∈ (0, 1) by choosing ρ0 = 1 in the definition of the constrained set 
(2.3). Then the same contradiction argument works with (2.19) replaced by

θ ′
ε,M ∼ 2πM + α + O(

√
ε)

and (2.20) replaced by

ρ′′
ε,M(x0) ∼ −2L

(
2π(N − M) − α

)(
2πM + α

)+ O(
√

ε).

Finally, in light of the uniform in ε bound on θ ′
ε,M provided by (2.17), we observe that for any 

fixed values of M and N , the minimizing ρε,M must satisfy (1.10), since otherwise, a presumed 
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maximum of ρε,M at x0 that is bigger than 1 or a presumed minimum that is less than 1 would 
violate (2.18). Then applying (1.10) to (2.17), we obtain (1.11) as well. We then may conclude 
that

lim inf
ε→0

Eε(ρε,M, θε,M) ≥ lim inf
ε→0

L

2

1∫
0

(ρ2
ε,Mθ ′

ε,M − 2πN)2 dx

= L

2
(2π(M − N) + α)2 ,

and so (1.12) follows, in view of (2.6). �
3. �-convergence of Eε

As we shall see, the local minimizers described in Theorem 1.1 and established in the previous 
section are also global minimizers only in certain parameter regimes. In order to fill out the 
characterization of global minimizers in all parameter regimes, we will turn to the machinery of 
�-convergence and establish Theorem 1.2.

In this section we will also prove the following compactness result.

Theorem 3.1. If {uε}ε>0 satisfies

Eε(uε) ≤ C0 < ∞, (3.1)

then there exists a function u ∈ H 1((0, 1) \ J ′; S1) where J ′ is a finite, perhaps empty, set of 
points in (0, 1) such that along a subsequence ε� → 0 one has

uε�
→ u in L2((0,1);R2). (3.2)

Furthermore, writing u(x) = eiθ(x) for θ ∈ H 1((0, 1) \ J ′), we have that for every compact set 
K ⊂⊂ (0, 1) \ J ′, there exists an ε0(K) > 0 such that for every ε� < ε0 one has 

∣∣uε�

∣∣> 0 on K
and there is a lifting whereby uε�

(x) = ρε�
(x)eiθε�

(x) on K , with

θε�
⇀ θ weakly in H 1

loc

(
(0,1) \ J ′). (3.3)

Remark 3.2. It is not necessarily the case that J ′ is minimal for u; that is, it can happen that 
u ∈ H 1((0, 1) \ J ; S1) for some proper subset J ⊂ J ′ and in that case it is the minimal such set 
J which one uses to evaluate the �-limit E0 at u. However, one cannot guarantee the validity of 
(3.3) with J ′ replaced by such a minimal J . For example, in a neighborhood of, say, x = 1/2
whose size shrinks with ε, an energy-bounded sequence {uε} could undergo a rapid jump in 
phase by 2π while the modulus of uε plunges to zero–or even stays positive but very small– in 
this neighborhood. Then the limiting u could have well-behaved lifting across x = 1/2 while for 
all ε > 0, the function uε would not.

Remark 3.3. The appearance of a jump set contribution to the �-limit E0 is associated with 
the cost of a Modica-Mortola type transition layer for the modulus from value 1 down to 0 and 
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back, accompanied by a rapid shift in the phase. If one instead considers a three-component 
model for u = (u1(x), u2(x), u3(x)) then such a phase shift can be achieved with asymptotically 
vanishing cost by plunging u2(x)2 + u3(x)2 to zero while compensating with u1(x) to keep 
|u| ≈ 1. In this way, twist can be smoothly added or subtracted while decreasing energy–in, 
particular, without the cost of a Modica-Mortola type transition. In the absence of such an energy 
barrier, we believe this leads to an absence of local minimizers with states eventually ‘melting’ 
under a gradient flow to global minimizers given asymptotically by (3.31) of Theorem 3.4 below. 
In fact, the degeneracy in such a three-component model is worse than just this: If one introduces 
cylindrical coordinates so that (u1, u2, u3) = (ρ cos θ, ρ sin θ, u3) and then one writes ρ = cosφ

and u3 = sinφ for some angle φ(x), a three-component version of Eε would take the form

1

2

1∫
0

εφ′(x)2 + εθ ′(x)2 + L
(

cos2 φ(x)θ ′(x) − 2πN
)2

dx.

Note then that for ε small there is no control on φ′, nor is there control on θ ′ when φ ≈ π/2.

We now present the proofs of Theorem 1.2 and Theorem 3.1. We will begin with the proof of 
Theorem 3.1 since elements of it will be called upon in the proof of Theorem 1.2.

Proof of Theorem 3.1. We fix an integer q ≥ 2 and consider a sequence satisfying (3.1). De-
noting ρε := |uε|, since uε is H 1, we have that ρε is continuous and we may define the open 
sets

Iε := {y ∈ [0,1] : ρε(y) > 1 − 2−q}.
As open sets on the real line, each is a countable disjoint union of open intervals

Iε = ∪∞
m=1Iε

m = ∪∞
m=1(a

ε
m, bε

m),

with

ρε(a
ε
m) = ρε(b

ε
m) = 1 − 2−q .

Note that by the energy bound (3.1),

1Iε
→ 1(0,1) in L1((0,1)). (3.4)

Now we consider the open sets

(0,1) \ Iε = I̊c
ε ,

and similarly decompose I̊c
ε into a countable union of intervals

∪∞
m=1(b

ε
m, aε

m+1).

Now some of the intervals (bε
m, aε ) could contain a point cε

m such that
m+1

797



D. Golovaty, M. Novack and P. Sternberg Journal of Differential Equations 286 (2021) 785–820
ρ(cε
m) = 2−q,

and we collect those intervals and label them (bε
mj

, aε
mj +1), where j belongs to an index set Sε . 

A priori Sε could be finite or infinite. Let Bε be the union of these “bad intervals.” These are the 
intervals over which it is possible that a limit of uε exhibits a jump discontinuity. We first prove 
that the number of these intervals is finite and bounded uniformly in ε. We observe that

C0 ≥
∫
Bε

ε

2

∣∣u′
ε

∣∣2 + 1

4ε
(|uε|2 − 1)2 dx

≥
∑
j∈Sε

cε
mj∫

bε
mj

ε

2
(ρ′

ε)
2 + 1

4ε
(ρ2

ε − 1)2 dy +
aε
mj +1∫

cε
mj

ε

2
(ρ′

ε)
2 + 1

4ε
(ρ2

ε − 1)2 dy

≥
∑
j∈Sε

cε
mj∫

bε
mj

|ρ′
ε||ρ2

ε − 1|√
2

dy +
aε
mj +1∫

cε
mj

|ρ′
ε||ρ2

ε − 1|√
2

dy

≥
∑
j∈Sε

√
2

1−2−q∫
2−q

|z2 − 1|dz. (3.5)

Rearranging (3.5) yields an estimate on the size of Sε:

H0(Sε) ≤
⎛
⎜⎝√

2

1−2−q∫
2−q

|z2 − 1|dz

⎞
⎟⎠

−1

C0. (3.6)

Next, on (0, 1) \ Bε , we observe that ρε ≥ 2−q , which allows us define a lifting of uε as ρεe
iθε

and to find a positive constant C1 such that

∫
(0,1)\Bε

(θ ′
ε)

2 dy ≤ C1 + C1

∫
(0,1)\Bε

L

2
(ρ2

ε θ ′
ε − 2πN)2 dy

≤ C1 + C1Eε(uε) ≤ C1 + C1C0 < ∞. (3.7)

On each of the (finitely many) intervals comprising (0, 1) \ Bε we may choose our lifting such 
that the value of θε at, say, the left endpoint of the interval lies in [0, 2π) and from the fundamen-
tal theorem of calculus and Cauchy-Schwarz it then follows from (3.7) that ‖θε‖L∞((0,1)\Bε) is 
bounded uniformly in ε by a constant depending on C0 and C1. Consequently, we have a bound 
of the form

‖θε‖H 1((0,1)\Bε)
< C2, (3.8)

for some constant C2 independent of ε.
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Now we are going to obtain a subsequence of ε approaching zero along which the bad intervals 
converge to a finite set of points. To this end, we start with the sequence of all the endpoints of 
the left-most subinterval in Bε and extract a subsequential limit, calling it x1. Then, along this 
subsequence of ε′s, we move on to the left endpoints of the second subinterval of Bε, and passing 
to a further subsequence, arrive at a limit point x2, etc. In light of (3.6), this procedure generates 
a finite number of points x1 < x2 . . . < xk in [0, 1]. (If this procedure ever yields xj = xj+1 then 
we drop xj+1 from this list.) In this manner, we arrive at a subsequence, ε� → 0 such that:

H0(Sε�
) is independent of � and equal to some fixed k ∈N,

and, in light of (3.4), the subintervals of Bε�
collapse to these k points as ε� → 0; that is

Bε�
→ J ′ := {x1, x2, . . . , xk} as ε� → 0. (3.9)

If we then fix any finite union of closed intervals K1 ⊂⊂ [0, 1] \ J ′, it follows from (3.9) that

K1 ∩ Bε�
= ∅ (3.10)

for ε < ε0 with ε0 = ε0(K1) small enough. Therefore, uε�
has a lifting on the various intervals 

comprising K1 ∩ Bε�
and invoking (3.8), we have, after passing to a further subsequence, (with 

notation suppressed) that

θε�
⇀ θ in H 1(K1), θε�

→ θ in L2(K1) (3.11)

for some θ ∈ H 1(K1) such that

‖θ‖H 1(K1)
≤ C2. (3.12)

Repeating this procedure on a nested sequence of sets

K1 ⊂⊂ K2 ⊂⊂ · · · ⊂⊂ Kp ⊂⊂ · · · [0,1] \ J ′ (3.13)

which exhaust [0, 1] \ J ′, and passing to further subsequences via a diagonalization procedure 
we arrive at a subsequence (still denoted here by ε� → 0) such that (3.3) holds for some θ ∈
H 1
(
(0, 1) \ J ′).

Finally, we define u ∈ H 1
(
(0, 1) \ J ′; S1

)
via u(x) := eiθ(x) and verify (3.2). The uniform 

bound (3.1) implies that ρε → 1 in L2((0, 1)) and also that

C0 ≥
1∫

0

∣∣∣1 − |ρε|2
∣∣∣ ∣∣ρ′

ε

∣∣ dx ≥
∣∣∣∣∣∣

y∫
xε

(1 − ρ2
ε )ρ′

ε dx

∣∣∣∣∣∣ (3.14)

for any y ∈ (0, 1) where xε ∈ (0, 1) is any point selected such that, say, ρε(xε) ≤ 2. It follows 
that ‖ρε‖L∞(0,1) < M for some M = M(C0) independent of ε. Hence, for any η > 0 if we select 
a compact set K ⊂ [0, 1] \J ′ such that |[0,1] \ K| < η, we can appeal to (3.11) to conclude (3.2)
since
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lim sup
l→∞

1∫
0

∣∣uεl
− u
∣∣2 dx ≤ lim sup

l→∞

∫
K

∣∣uεl
− u
∣∣2 dx + lim sup

l→∞

∫
Kc

∣∣uεl
− u
∣∣2 dx

≤ lim sup
l→∞

∫
Kc

∣∣uεl
− u
∣∣2 dx ≤ 2

∫
Kc

(M2 + 1) dx < 2(M2 + 1)η. �

Proof of Theorem 1.2. We will first assume that uε → u in L2
(
(0, 1); R2

)
and establish the 

inequality

lim infEε(uε) ≥ E0(u). (3.15)

To this end, we may certainly assume that

lim infEε(uε) ≤ C0 < ∞ for some C0 > 0,

since otherwise (3.15) is immediate. Let {uε�
} be a subsequence which achieves the limit inferior. 

As in (3.5) in the proof of Theorem 3.1, we can then assert that for any integer q ≥ 2 and up to a 
further subsequence for which we suppress the notation, one has the lower bound

lim inf
�→∞

∫
B

q
ε�

ε�

2

∣∣uε�

′∣∣2 + 1

4ε�

(
∣∣uε�

∣∣2 − 1)2 dx ≥
⎛
⎜⎝√

2

1−2−q∫
2−q

|z2 − 1|dz

⎞
⎟⎠H0(J q) (3.16)

along with

θε�
⇀ θ in H 1

loc

(
(0,1) \ J q

)
. (3.17)

Here we have emphasized the q dependence to write J q for the finite set of points in [0, 1] and 
B

q
ε�

for the set of ‘bad intervals’ collapsing to J q over which 
∣∣uε�

∣∣ dips from values of 1 −2−q to 
2−q . Next, we note that for any two positive integers q1 < q2 one has the containment Bq2

ε ⊂ B
q1
ε

and so, for any sequence ε� → 0, the finite set of points arising as the limit of Bq2
ε�

must be a 
subset of the corresponding limit of the finite collection of collapsing intervals comprising Bq1

ε�
. 

Also, since the limiting phase θ of u will be in H 1
loc of the complement of any such limit of bad 

intervals, and since J is assumed to be the minimal one, we have

H0(J ) ≤ H0(J q) < C1 for any q < ∞,

for some C1 = C1(C0) in light of (3.6). Thus, passing to the limit q → ∞ in (3.16) gives

lim
�→∞

1∫
0

ε�

2

∣∣uε�

′∣∣2 + 1

4ε�

(
∣∣uε�

∣∣2 − 1)2 dx ≥ 2
√

2

3
H0(J ). (3.18)

Turning to the lower-semi-continuity of the twist term, we can repeat the argument of Theo-
rem 3.1 to obtain that, again up to a further subsequence which we do not notate,
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θε�
⇀ θ in H 1

loc

(
(0,1) \ J̃ q

)
, (3.19)

where J̃q is the finite set of points in [0, 1] which is the limit of bad intervals B̃q
ε�

where |uε�
| ≤

1 −2−q−1 and dips from 1 −2−q−1 to 1 −2−q . Of course, it could turn out that J̃ q = ∅, in which 
case the convergence of θε�

to θ occurs weakly in H 1
loc

(
(0, 1)

)
. We also note that

ρ2
ε → 1 in L2((0,1)), (3.20)

which combined with (3.19) implies that for any K ⊂⊂ (0, 1) \ J q

lim
�→∞

∫
K

ρ2
ε�

θ ′
ε�

dx =
∫
K

θ ′ dx. (3.21)

For convenience, we now introduce the following notation for the twist term:

T (u) := u1 u′
2 − u2 u′

1.

Then, using (3.21), the weak convergence of θ ′
ε�

to θ ′, and the fact that ρε�
≥ 1 − 2−q on K for 

large �, we can estimate

lim inf
�→∞

1∫
0

(T (uε�
) − 2πN)2 dx ≥ lim inf

�→∞

∫
K

ρ4
ε�

(θ ′
ε�

)2 − 4πNρ2
ε�

θ ′
ε�

+ 4π2N2 dx

≥ lim inf
�→∞

∫
K

(1 − 2−q)4(θ ′
ε�

)2 − 4πNρ2
ε�

θ ′
ε�

+ 4π2N2 dx

≥
∫
K

(1 − 2−q)4(θ ′)2 − 4πNθ ′ + 4π2N2 dx. (3.22)

Choosing larger and larger K and using that H0(J q) < ∞, we find

lim inf
�→∞

1∫
0

(T (uε�
) − 2πN)2 dx ≥

1∫
0

(1 − 2−q)4(θ ′)2 − 4πNθ ′ + 4π2N2 dx.

Finally, sending q → ∞ yields

lim inf
�→∞

1∫
0

(T (uε�
) − 2πN)2 dx ≥

1∫
0

(T (u) − 2πN)2 dx. (3.23)

Combining (3.18) with (3.23) completes the proof of lower semi-continuity.
Moving on now to the construction of the recovery sequence for any u ∈ L2

(
(0, 1); R2

)
, 

if u /∈ H 1((0, 1) \ J ; S1) for any finite set J , then E0(u) = ∞ and taking the trivial recovery 
sequence vε ≡ u will suffice.
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Thus we may assume u ∈ H 1((0, 1) \ J ; S1) for a finite set J and our task is to construct a 
sequence {vε} ⊂ H 1

(
(0, 1); R2

)
such that

vε → u in L2((0,1);R2) and lim
ε→0

Eε(vε) = E0(u). (3.24)

In case the traces of u satisfy the desired boundary conditions for admissibility in Eε , that is, 
in case u(0+) = 1 and u(1−) = eiα so that x = 0 and x = 1 do not lie in J , our construction will 
take the form vε = ρεu for a sequence {ρε} ⊂ H 1

(
(0, 1); [0, 1]) to be described below. We first 

describe the construction for this case and then discuss how it is slightly altered in case 0 or 1
lie in J . Denoting J by {x1, x2, . . . , xk} with then J ⊂ (0, 1) by assumption, we then take ρε to 
satisfy the following conditions:

(i) ρε is smooth on [0, 1].
(ii) ρε ≡ 0 on (xj − ε2, xj + ε2).

(iii) ρε makes a standard Modica-Mortola style transition from 1 to 0 on I 1
j , an interval of size 

say O(
√

ε) with right endpoint xj − ε2, and makes a transition from 0 back to 1 on an 
interval of size O(

√
ε) with left endpoint xj + ε2 that we denote by I 2

j , cf. [14].

(iv) ρε ≡ 1 on (0, 1) \ ∪j (I
1
j ∪ (xj − ε2, xj + ε2) ∪ I 2

j ).

In case either u(0+) �= 1 or u(1−) �= eiα so that 0 and/or 1 lies in J , this procedure must be 
slightly altered near the endpoints. For example, if u(0+) �= 1 then one requires ρε to make a 
Modica-Mortola style transition from 1 down to 0 on the interval [0, 

√
ε], ρε ≡ 0 on [√ε, 

√
ε +

ε2] and a Modica-Mortola transition from 0 back up to 1 on [√ε+ε2, 2
√

ε+ε2]. Then we define

θε(x) =
{

0 if x ∈ [0,
√

ε + ε2/2)

θ if x >
√

ε + ε2/2,

where u = eiθ , and take vε = ρεe
iθε . A similar recipe is taken in a neighborhood of x = 1 in case 

u(1−) �= eiα .
Computing the transition energy of such a construction is classical and can be found in e.g. 

[13,14]. One finds from conditions (ii)-(iv), that

1∫
0

ε

2
(ρ′

ε)
2 + 1

4ε
(ρ2

ε − 1)2 dx → 2
√

2

3
H0(J ).

Furthermore, since θ ∈ H 1
(
(0, 1) \ J ), and ρε → 1 in L2

(
(0, 1)

)
it is easily seen that

lim
ε→0

1∫
0

ε

2
ρ2

ε (θ ′
ε)

2 dx = 0 and lim
ε→0

L

2

1∫
0

T (vε) dx = L

2
T (u) dx.

The proof of (3.24) is complete. �
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We observe that for u ∈ H 1((0, 1) \ J ; S1), one has

E0(u) = L

2

1∫
0

(θ ′ − 2πN)2 dx + 2
√

2

3
H0(J ), (3.25)

where u = eiθ for θ ∈ H 1((0, 1) \ J ). Using this formulation, it is then straight-forward to iden-
tify the global minimizers of the �-limit, and consequently the limits of global minimizers of Eε

as well:

Theorem 3.4.

(i) When

Lα2 <
4
√

2

3
and α ∈ [0,π] (3.26)

the global minimizer of E0 is given by the function

u(x) = ei(2πN+α)x (3.27)

which has constant twist and no jumps.
(ii) When

L(2π − α)2 <
4
√

2

3
and α ∈ [π,2π) (3.28)

the global minimizer of E0 is given by the function

u(x) = ei(2π(N−1)+α)x (3.29)

which again has constant twist and no jumps.
(iii) When

Lα2 >
4
√

2

3
and L(2π − α)2 >

4
√

2

3
(3.30)

the global minimizers of E0 are given by the one-parameter set of functions

u(x) =
{

ei2πNx if x < x0,

ei(2πNx+α) if x > x0,
(3.31)

for any x0 ∈ (0, 1). These have one jump and twist 2πN away from the jump.

Since any limit of global minimizers of a �-converging sequence must itself be a global min-
imizer of the �-limit, one immediately concludes the following result based on Theorem 3.4 and 
the compactness result Theorem 3.1:
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Corollary 3.5. Let {uε} denote a family of minimizers of Eε subject to the boundary conditions 
(1.3). Then if (3.30) holds, we have uε → u in L2 for some u in the one-parameter family given 
by (3.31), while if (3.26) or (3.28) holds, there will be a subsequence uεj

→ u in L2 with u =
ei(2πN+α)x or u = ei(2π(N−1)+α)x , respectively.

Remark 3.6. It is in the case where Lα2 > 4
√

2
3 and L(2π − α)2 > 4

√
2

3 that one really sees the 
most dramatic effect of the assumption of disparate elastic constants present in our model. The 
relatively expensive cost of twist leads the global minimizer of Eε, which of course is necessarily 
smooth, to rapidly change its phase, a process that can only be achieved with small energetic cost 
by having the modulus simultaneously plunge towards zero.

Remark 3.7. We have not attempted to determine the optimal location of the jump location x0
for minimizers of Eε in scenario (3.31). We suspect this might entail much higher order energetic 
considerations–perhaps even at an exponentially small order–but we are not sure.

Proof of Theorem 3.4. When α = 0 then clearly the global minimizer is uniquely given by u =
ei2πNx since it has zero energy. Consider then the case α ∈ (0, 2π). By selecting any point 
x0 ∈ (0, 1), and taking u to be given by (3.31), we see that there is always a competitor with 
one jump having energy given simply by 2

√
2

3 . Any competitor jumping more than once has 
energy no lower than twice that value. On the other hand, minimization of E0 among competitors 
with J = ∅ is standard, since criticality implies θ ′ is constant. Given the boundary conditions, 
this requires u = ei(2πM+α)x for some M ∈ Z to be determined. The energy of such a u is 
L
2 (2π(M − N) + α)2. Since α ∈ (0, 2π), the minimum over M is L

2 (2π(N − N) + α)2 = L
2 α2

if α < 2π − α and L
2 (2π(N − 1 − N) + α)2 = L

2 (2π − α)2 if 2π − α < α. Comparing these 
two energies to that of the one-jump competitors in (3.31), the theorem follows. We note that if 
α = π in this regime, there are two global minimizers. �

Next we state a result on local minimizers of the �-limit. These functions are the ε → 0 limit 
of the non-vanishing local minimizers captured in Theorem 1.1.

Theorem 3.8. For any positive integer M the function u = ei(2πM+α)x is an isolated L2-local 
minimizer of E0.

By invoking Theorem 4.1 of [9], one can conclude from Theorem 3.8 and Theorem 1.2 that 
there exist local minimizers of Eε for ε small that converge to this isolated local minimizer of E0. 
This provides for an alternative proof of existence for these local minimizers to the one given in 
Proposition 1.1. However, the approach in Theorem 1.1 yields much more detailed information 
on the structure of these functions via (1.10), (1.11) and (1.12).

Proof of Theorem 3.8. We fix a positive integer M and a number α ∈ [0, 2π). We will consider 
the case M < N . The case M ≥ N is similar. Of course, in case M = N and (3.26) holds, 
then in fact u = ei(2πN+α)x is the global minimizer, as was already addressed in Theorem 3.4. 
Let us denote θM := 2πMx + αx. In light of (3.25), our goal is to show that for some δ > 0, 
one has E0(θ) > E0(θM) whenever θ ∈ H 1

(
(0, 1) \ J ; S1

)
for some finite set J provided 0 <

‖θ − θM‖L2(0,1) < δ.
We begin with the easiest case where J = ∅ and where θ(0) = θM(0), θ(1) = θM(1). Writing 

v := θ − θM , we calculate
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E0(θ) − E0(θM) = L

2

1∫
0

(
θ ′
M + v′ − 2πN

)2
dx − L

2

1∫
0

(
θ ′
M − 2πN

)2
dx

= 2πL(M − N + α/2π)

1∫
0

v′ dx + L

2

1∫
0

(v′)2 dx = L

2

1∫
0

(v′)2 dx > 0,

since in the case under consideration, v(0) = 0 = v(1).
Now we turn to the general case where J �= ∅. To this end, consider a competitor θ ∈

H 1
(∪�

j=1 (aj , bj )
)

where then J = (0, 1) \∪�
j=1(aj , bj ), along with perhaps x = 0 and/or x = 1, 

depending upon whether a competitor satisfies the boundary conditions. Thus, depending upon 
the boundary conditions of a competitor, we note that

H0(J ) ∈ {� − 1, �, � + 1}. (3.32)

Again we introduce v := θ − θM and after a rearrangement of the indices, we suppose that for 
j = 1, 2 . . . , �′, one has the condition

kj := v(bj ) − v(aj ) <

√
2

6πN
:= k0, (3.33)

while for j = �′ + 1, . . . , �, the opposite inequality holds. We allow for the possibility that either 
�′ = 0 or �′ = �.

Then we again calculate the energy difference E0(θ) − E0(θM) by splitting up the sum as 
follows:

E0(θ) − E0(θM) = 2
√

2

3
H0(J ) + 2πL(M − N + α/2π)

�′∑
j=1

bj∫
aj

v′ dx

+2πL(M − N + α/2π)

�∑
j=�′+1

bj∫
aj

v′ dx + L

2

�∑
j=1

bj∫
aj

(v′)2 dx

>
2
√

2

3
H0(J ) − 2πLNk0�

′

−2πLN

�∑
j=�′+1

kj + L

2

�∑
j=�′+1

bj∫
aj

(v′)2 dx

>

�∑
j=�′+1

(− 2πLNkj + L

2

bj∫
aj

(v′)2 dx
)
, (3.34)

in light of (3.33) and (3.32).
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If �′ = � then the last sum is vacuous and the proof is complete. If not, then we now fix any 
j ∈ {�′ + 1, . . . , �} for which the reverse inequality to (3.33) holds, and observe that

δ2
j :=

bj∫
aj

v2 dx ≥
∫

(aj ,bj )∩{|v|>kj /4}
v2 dx ≥ k2

j

16
meas

(
(aj , bj ) ∩ {|v| > kj/4}). (3.35)

Also,

kj

4
<

∫
(aj ,bj )∩{|v|>kj /4}

∣∣v′∣∣ dx

≤ meas
(
(aj , bj ) ∩ {|v| > kj/4})1/2( ∫

(aj ,bj )∩{|v|>kj /4}
(v′)2 dx

)1/2
.

Combining this with (3.35) yields the inequality

bj∫
aj

(v′)2 dx ≥ k4
j

256δ2
j

which we now substitute into (3.34) to conclude that

E0(θ) − E0(θM) >

�∑
j=�′+1

( Lk4
j

512δ2
j

− 2πLNkj

)
. (3.36)

Choosing δ (which we recall denotes (‖v‖L2(0,1)) such that

δ2 <
k3

0

1024πN
,

and using that δj ≤ δ while kj ≥ k0 for all j , we obtain positivity of the right-hand side of 
(3.36). �
4. An energy barrier leading to saddle points

The local minimizers provided by Theorem 1.1 can be viewed as the least energy critical 
points of Eε within a given degree or winding number class given by the amount of twist. One 
might anticipate then that to pass continuously from one of these classes to another requires both 
the emergence of a zero in the order parameter and the expenditure of a certain amount of energy. 
What is more, one might expect the presence of saddle points in some sense interspersed between 
the distinct degree classes. That is the content of the two results in this section.

In the first theorem we demonstrate that the energy barrier between any two local minimizers 
uε,M1 and uε,M2 with M1 �= M2 is at least 2

√
2

3 when ε is sufficiently small. To this end, given a 

 > 0, we define the energy sublevel set
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E

ε := {u ∈ Aα : Eε(u) < 
} .

We have the following:

Theorem 4.1. Let M1, M2 ∈ N be such that M1 �= M2 and assume that uε,M1 and uε,M2 are local 
minimizers of Eε as obtained in Theorem 1.1. Suppose that

γ ε : [0,1] →Aα with γ ε(0) = uε,M1 and γ ε(1) = uε,M2 (4.1)

is a continuous path in Aα that connects uε,M1 and uε,M2 . Fix an h > 0 and set 
h :=
2π2L(N − M1 − α/2π)2 + 2

√
2

3 − h. There exists an εh > 0 such that the curve γ ε leaves the 

set E
h
ε whenever ε < εh.

Proof. Fix any h ∈ (0, 1) and any curve γ ε satisfying (4.1). Denote

γ ε(t) := uε
t (= uε

t (x) ) and
∣∣uε

t

∣∣ := ρε
t

for every t ∈ [0, 1]. The non-vanishing functions e−iαxuε,M1 and e−iαxuε,M2 have winding num-
bers M1 and M2 respectively on [0, 1] and so uε

t (x) has to vanish for some x ∈ (0, 1) and 
t ∈ (0, 1). Since γ ε is continuous and uε

t (·) is a continuous function for every t ∈ [0, 1], it fol-
lows that, given any δ ∈ (0, 1/2), we can find tεδ ∈ (0, 1) such that minx∈(0,1) ρ

ε
tεδ

(x) = δ and the 

winding number for e−iαxuε
tεδ

is still equal to M1.

Now suppose by way of contradiction that γ ε([0, 1]) ⊂ E

h
ε . We would like to estimate 

Eε(u
ε
tεδ

). First, by minimizing Eε(ρ
ε
tεδ

eiθ ) over θ ∈HM1,α , (cf. (2.4)), note that the same approach 

that led to (2.17) can be followed to show that there exists a θ̄ε ∈ HM1,α such that

θ̄ ′
ε =

2πLM1 + Lα + 2πLN((ρε
tεδ

)2 − 1)

L(ρε
tεδ

)4 + ε(ρε
tεδ

)2 + O(
√

ε) (4.2)

on (0, 1), and necessarily

Eε

(
ρε

tδ
eiθ̄ε

)
≤ Eε

(
uε

tδ

)
. (4.3)

Using the standard Modica-Mortola arguments, we now have

1∫
0

ε

2
((ρε

tεδ
)′)2 + 1

4ε

(
(ρε

tεδ
)2 − 1

)2
dx ≥ c(δ),

where limδ→0 c(δ) = 2
√

2
3 . Further, we can appeal to (4.2)-(4.3) and the assumption that γ ε(tεδ ) ∈

E

h
ε to show that
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L

2

1∫
0

(
2πN − (ρε

tεδ
)2θ̄ ′

ε

)2
dx

= L

2

1∫
0

(
2πN −

2πLM1 + Lα + 2πLN
(
(ρε

tεδ
)2 − 1

)
L(ρε

tεδ
)2 + ε

)2

dx + O(
√

ε)

= 2π2L

1∫
0

(
N − M1 − α/2π + (ε/L)N

(ρε
tεδ

)2 + ε/L

)2

dx + O(
√

ε)

= 2π2L(N − M1 − α/2π)2 + O(
√

ε). (4.4)

It then follows from (4.3) that

Eε(u
ε
tεδ

) ≥ 2π2L(N − M1 − α/2π)2 + c(δ) + O(
√

ε).

It is clear, however, that one can select a positive δ sufficiently small, and then an εh > 0 such 
that the last expression exceeds 
h whenever ε < εh. �

The energy threshold provided by Theorem 4.1 leads to a straight-forward application of the 
Mountain Pass Theorem to establish saddle points for Eε.

Theorem 4.2. For every positive integer M and α ∈ [0, 2π) there exists a critical point vε of Eε

within the class Aα . Furthermore, the corresponding critical value Eε(vε) satisfies the asymp-
totic condition

Eε(vε) → 2π2L(N − M − α/2π)2 + 2
√

2

3
as ε → 0. (4.5)

Proof. First, we note that the arguments in Theorem 4.1 can easily be adapted with the same 
energy threshold to a curve that connects the states UM := ei(2πM+α)x and UM1 := ei(2πM1+α)x

for any two positive integers M and M1. Fixing ε > 0, one defines the potential critical value cε

via

cε := inf
γ∈�ε

max
t∈[0,1] Eε(γ (t)),

where �ε is the set of continuous curves γ such that

γ : [0,1] →Aα with γ (0) = UM and γ (1) = UM+1. (4.6)

Beginning with the case M < N we have that

Eε(UM) ∼ 2π2L(N − M − α/2π)2

while
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Eε(UM+1) ∼ 2π2L(N − M − 1 − α/2π)2,

so that, in particular, Eε(UM+1) < Eε(UM). Then the implication of Theorem 4.1 is that Eε

exhibits the requisite mountain pass structure since for any h > 0 one has

max
t∈[0,1] Eε(γ (t)) ≥ 2π2L(N − M − α/2π)2 + 2

√
2

3
− h > Eε(UM) > Eε(UM+1) (4.7)

for any γ ∈ �ε , provided ε is sufficiently small.
Subtracting off the boundary conditions by writing any competitor u ∈ Aα as u = ũ + �(x)

where �(x) := 1 + x
(
eiα − 1

)
, we can work in the space H 1

0

(
(0, 1)

)
. It remains to verify the 

Palais-Smale condition. Under assumptions

Eε(ũk + �) < C0 and ‖δEε(ũk + �)‖ → 0 as k → 0, (4.8)

for {ũk} ⊂ H 1
0

(
(0, 1)

)
, it immediately follows from the uniform energy bound that after passing 

to a subsequence (with notation suppressed), one has

ũk ⇀ ũε,M weakly in H 1 and ũk → ũε,M uniformly as k → ∞, (4.9)

for some ũε,M ∈ H 1
0 . Then one writes Eε as the sum of the Allen-Cahn energy and the twist 

energy, say Eε = I1 + I2 with

I1(ũ) =
1∫

0

ε

2

∣∣ũ′ + �′∣∣2 + 1

4ε
(|ũ + �|2 − 1)2 and I2(ũ) := L

2

1∫
0

T (ũ + �) dx.

In light of (4.8), we know, in particular, that

δEε(ũk + �; ũk) = δI1(ũk; ũk) + δI2(ũk; ũk) → 0

and

δEε(ũk + �; ũε,M) = δI1(ũk; ũε,M) + δI2(ũk; ũε,M) → 0

as k → ∞. Since for any v = (v(1), v(2)) ∈ H 1
0 (0, 1) we can compute that

δI2(ũk;v) = L

1∫
0

(ũ
(2)′
k + �(2)′)v(1) − (ũ

(1)′
k + �(1)′)v(2) dx,

it follows from (4.9) that as k → ∞ one has

δI2(ũk; ũk) − δI2(ũk; ũε,M) =

L

1∫ (
ũ

(2)′
k + �(2)′)(ũ(1)

k − ũ
(1)
ε,M

)− (ũ(1)′
k + �(1)′)(ũ(2)

k − ũ
(2)
ε,M

)
dx → 0.
0
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Thus,

0 = lim
k→∞ δEε(ũk + �; ũk) − δEε(ũk + �; ũε,M) =

lim
k→∞ δI1(ũk + �; ũk) − δI1(ũk + �; ũε,M) =

lim
k→∞

1∫
0

ε
(
ũ′

k + �′)(ũ′
k − ũ′

ε,M

)+ 1

ε

( |ũk + �|2 − 1
)(

ũk + �
)(

ũk − ũε,M

)
dx

Since the second term in the last integral vanishes in the limit due to (4.9), the first must as 

well, from which it follows that 
∫ 1

0

∣∣ũ′
k

∣∣2 dx → ∫ 1
0

∣∣∣ũ′
ε,M

∣∣∣2 dx. Hence, the weak H 1-convergence 

of {ũk} has been upgraded to strong convergence, completing the verification of the Palais-Smale 
condition.

We conclude from the Mountain Pass Theorem that a critical point vε,M := ũε,M + � exists 
with Eε(vε,M) = cε .

Now we turn to the proof of condition (4.5). Again, we know from Theorem 4.1 that for any 
h > 0, one has the inequality (4.7) for ε small enough, so that

lim inf cε ≥ 2π2L(N − M − α/2π)2 + 2
√

2

3
(4.10)

On the other hand, we can build a continuous path γ ε : [0, 1] → Aα as follows:
(1) 0 ≤ t ≤ 1/3. We write UM = eiθM with θM(x) := (2πM + α

)
x. Then as t varies between 0

and say 1/3, the modulus gradually depresses towards 0 in a small interval of x-values about x =
1/2 via the standard Modica-Mortola construction, so that γ ε(1/3) ≡ 0 for say 1/2 − ε2 ≤ x ≤
1/2 +ε2. For this interval of t -values one leaves the phase θM unchanged. Following the approach 
used in the proof of Theorem 1.2 for the recovery sequence construction, such a procedure can 
be executed with

Eε(γ
ε(t)) ≤ 2π2L(N − M − α/2π)2 + 2

√
2

3
+ O(ε) for each t ∈ [0,1/3).

(2) 1/3 ≤ t ≤ 2/3. Beginning at t = 1/3 we introduce a discontinuity in the phase θM at x = 1/2. 
Since x = 1/2 lies inside the x-interval where the modulus vanishes for the t -interval [1/3, 2/3], 
the map γ ε remains smooth. The process in this interval is that as t increases from t = 1/3 to 
t = 2/3, the phase gradually converges to θM+1 and θM+1 −2π for x ∈ [0, 1/2) and x ∈ (1/2, 1], 
respectively, while leaving the modulus unchanged. Since M < N , the O(1) energy contribution 
of the twist will decrease under this process of increasing phase. As t approaches 2/3, γ ε(t) will 
converge to UM+1 except for the small interval about x = 1/2 where the modulus is depressed. 
Explicitly, we take the phase, say θ t (x), to be given by

θ t (x) =

⎧⎪⎪⎨
⎪⎪⎩

(
2π [M + 3(t − 1/3)] + α

)
x for 0 ≤ x < 1/2(

2π [M + 3(t − 1/3)] + α

)
x − 6π(t − 1/3) for 1/2 < x ≤ 1,
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for t ∈ [1/3, 2/3]. We note that the term 6π(t − 1/3) is needed to maintain the boundary condi-
tion that γ ε(t) = eiα when x = 1 throughout the t -interval [1/3, 2/3]. We observe also that the 
jump discontinuity in the phase closes up once t = 2/3.
(3) 2/3 ≤ t ≤ 1. In the time interval t ∈ [2/3, 1] one smoothly raises the modulus back up to 1
on 1/2 − ε2 ≤ x ≤ 1/2 + ε2 while leaving the phase unchanged, so that at t = 1 one indeed has 
γ ε(1) = UM+1, as desired. Again, this process decreases energy so that throughout the interval 
0 ≤ t ≤ 1 one maintains the estimate

Eε(γ
ε(t)) ≤ 2π2L(N − M − α/2π)2 + 2

√
2

3
+ O(ε).

Hence, we conclude that

lim sup cε ≤ lim supEε(γ
ε) ≤ 2π2L(N − M − α/2π)2 + 2

√
2

3

and together with (4.10) we arrive at (4.5). �
5. The case of unbounded twist

Finally, we consider the situation of an energy that encourages more and more twist in the 
ε → 0 limit. To this end, we replace N in (1.2) by Nε := 1/εβ where β is a positive number 
chosen less than 1/2 in order to retain an energy bound that is uniform in ε. Thus, we study 
global and local minimizers of an energy Ẽε given by

Ẽε(u) =
1∫

0

ε

2

∣∣u′∣∣2 + 1

4ε
(|u|2 − 1)2 + L

2
(u1 u′

2 − u2 u′
1 − 2πε−β)2 dx, (5.1)

again subject to the boundary conditions u(0) = 1, u(1) = eiα for some α ∈ [0, 2π).
Of course existence of global minimizers for each ε > 0 follows as in Theorem 2.1. One also 

can establish a version of the local minimizer result Theorem 1.1:

Theorem 5.1. Fix any positive integer m and any α ∈ [0, 2π). Then there exists an ε0 > 0 such 
that for all ε < ε0 there exist non-vanishing local minimizers uε,± = ρε,±eiθε,± of Ẽε within the 
class Aα such that

lim sup

∥∥ρε,± − 1
∥∥

L∞(0,1)

ε
< ∞ as ε → 0 (5.2)

and (5.3)

θ ′
ε,± → 2π

(⌊
ε−β
⌋± m

)+ α as ε → 0 uniformly in x ∈ [0,1]. (5.4)

Proof. The proof follows along similar lines as the proof of Theorem 1.1. First define M±
ε =⌊

ε−β
⌋±m. Then one writes competitors for constrained minimization of Ẽε = Ẽε(ρ, θ) in polar 

form (ρ, θ) where ρ satisfies (2.3) and θ(0) = 0, θ(1) = 2πM±
ε + α. The requirement β < 1/2

assures that a version of the uniform energy bound (2.6) still holds. Similarly, a uniform bound 
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on the constant of integration Cε is achievable as in (2.16), with the bound now depending on m. 
The rest of the argument is unchanged. �

Next we consider the asymptotic behavior as ε → 0 of Ẽε . Due to the fact that ε−β → ∞ as 
ε → 0, we expect that the elements of an energy bounded sequence will oscillate more and more 
rapidly as ε → 0.

Theorem 5.2. Suppose that for some 0 < β < 1/2, {uε} ⊂Aα satisfies the uniform energy bound

Ẽε(uε) ≤ C0 < ∞. (5.5)

Then |uε|2 → 1 in L2(0, 1) and there exists a finite set J ′ ⊂ (0, 1) and a subsequence {uε�
}

such that for every compact set K ⊂⊂ (0, 1) \ J ′, there exists an ε0(K) > 0 such that for every 

ε� < ε0, one has |uε�
| > 0 on K and there is a lifting whereby uε�

= ρε�
e2πivε�

/ε
β
� , with

vε�
→ x strongly in H 1

loc((0,1) \ J ′). (5.6)

In addition, we have

uε ⇀ 0 weakly in L2((0,1);C), (5.7)

so that the entire sequence converges weakly to 0.

Proof of Theorem 5.2. By the same argument as the one leading up to (3.6), we can identify 
finite unions of open intervals Bε such that on (0, 1) \ Bε , ρε ≥ 1/4. Also, by restricting to a 
subsequence {ε�}, we can assume that the sets Bε�

collapse to a finite set of points J ′. We may 
therefore define liftings θε�

: (0, 1) \ Bε�
→ R such that on each of the finitely many intervals 

comprising (0, 1) \Bε�
, the value of θε�

at the left endpoint of an interval is greater than the value 
of θε�

at the right endpoint of the previous interval, with a difference of no more than 2π . Also, 
we can without loss of generality suppose that 0 is in the domain of θε�

and set θε�
(0) = 0. If we 

define

vε�
:= ε

β
� θε�

2π
, (5.8)

then due to the choice of θε�
on each subinterval of (0, 1) \ Bε�

, we see that from the right 
endpoint of one subinterval to the left endpoint of the subsequent one,

the value of vε�
differs by no more than ε

β
� . (5.9)

Furthermore, we may rewrite the twist term in terms of vε�
and employ the uniform energy bound 

to find that

1

2

∫
(0,1)\Bε�

L

ε
2β
�

(
ρ2

ε�
v′
ε�

− 1
)2 ≤ C0. (5.10)

Using (5.10), the fact that ρε ≥ 1/4 on (0, 1) \ Bε , and the energy bound, we estimate

� �
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∫
(0,1)\Bε�

(v′
ε�

− 1)2 dx ≤ 2
∫

(0,1)\Bε�

(
v′
ε�

− 1

ρ2
ε�

)2

+
(

1

ρ2
ε�

− 1

)2

dx

≤ 2
∫

(0,1)\Bε�

44ρ4
ε�

(
v′
ε�

− 1

ρ2
ε�

)2

+ 44ρ4
ε�

(
1

ρ2
ε�

− 1

)2

dx

≤ C

∫
(0,1)\Bε�

(
ρ2

ε�
v′
ε�

− 1
)2 +

(
ρ2

ε�
− 1
)2

dx

≤ Cε2β (5.11)

We conclude from (5.11) that for any K ⊂⊂ [0, 1] \ J ′,

v′
ε�

→ 1 in L2(K). (5.12)

From (5.9), (5.12), and the condition vε�
(0) = 0, we deduce that

vε�
→ x in L∞(K), (5.13)

which ends the proof of (5.6).
To prove (5.7), we must demonstrate that for any w ∈ L2((0, 1); C),

1∫
0

uεw dx → 0, (5.14)

where the bar denotes complex conjugation. By the density of step functions in L2, it is enough 
to show that for any η > 0 and interval I ,

lim sup
ε→0

∣∣∣∣∣∣
∫
I

uε dx

∣∣∣∣∣∣≤ η. (5.15)

We first choose a subsequence uε�
such that

lim sup
ε→0

∣∣∣∣∣∣
∫
I

uε dx

∣∣∣∣∣∣= lim
�→∞

∣∣∣∣∣∣
∫
I

uε�
dx

∣∣∣∣∣∣ . (5.16)

By restricting to a further subsequence, there exists a finite set J ′ such that uε�
= e2πivε� off 

of finite unions of open intervals Bε�
which collapse to J ′ as described in (5.8)-(5.13). Since 

|uε�
| → 1 in L2, {|uε�

|} is uniformly integrable. Let δ > 0 be such that |M| < δ implies that ∫
M

|uε�
| dx < η. Thus there exist finitely many open intervals {Bj } whose union has measure 

less than δ and contains J ′ such that for all �,
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∣∣∣∣∣∣∣
∫

∪j Bj

uε�
dx

∣∣∣∣∣∣∣< η. (5.17)

Since Bε�
collapse to J ′, we may safely assume that Bε�

⊂ ∪Bj for all �. Now

∫
I\∪j Bj

uε�
dx =

∫
I\∪j Bj

e2πivε�
ε
−β
� dx

=
∫

I\∪j Bj

e2πixε
−β
� e2πi(vε�

−x)ε
−β
� dx (5.18)

We next show that

‖e2πi(vε�
−x)ε

−β
� ‖W 1,1((0,1)\Bε�

) ≤ C < ∞, (5.19)

so that there is a subsequence converging strongly in L2(I \ ∪Bj ). The pairing of weak and 
strong convergence in (5.18) will then allow us to conclude the proof. Using (5.11), we have

∫
(0,1)\Bε�

|v′
ε�

− 1|ε−β
� dx ≤ ε

−β
� |(0,1) \ Bε�

|1/2‖v′
ε�

− 1‖L2 ≤ C|(0,1) \ Bε�
|1/2.

In light of (5.9) and vε�
(0) = 0, the uniform L1 bound on (v′

ε�
− 1)ε

−β
� implies that

‖(vε�
− x)ε

−β
� ‖W 1,1((0,1)\Bε�

) ≤ C,

so that (vε�
− x)ε

−β
� are uniformly bounded in W 1,1(I \ ∪Bj ). By the compact embedding of 

W 1,1 into L2, we may extract a subsequence {vεm} and L2 function v0 such that (vεm −x)ε
−β
m →

v0 in L2(I \ ∪Bj ). Due to the fact that e2πix is Lipschitz, we have

e2πi(vεm−x)ε
−β
m → e2πiv0 in L2(I \ ∪Bj ). (5.20)

Together with the weak L2 convergence of e2πixε
−β
m to 0 and the strong L2 convergence of 

e2πi(vεm−x)ε
−β
m , (5.16)-(5.18) give

lim sup
ε→0

∣∣∣∣∣∣
∫
I

uε dx

∣∣∣∣∣∣= lim
m→∞

∣∣∣∣∣∣
∫
I

uεm dx

∣∣∣∣∣∣
≤ lim sup

m→∞

∣∣∣∣∣∣∣
∫

I\∪ B

uεm dx

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫

∪ B

uεm dx

∣∣∣∣∣∣∣

j j j j
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≤ lim sup
m→∞

∣∣∣∣∣∣∣
∫

I\∪j Bj

e2πixε
−β
m e2πi(vεm−x)ε

−β
m dx

∣∣∣∣∣∣∣+ η

= η.

This is exactly (5.15), so the proof is complete. �
We would also like to describe the asymptotic behavior of minimizers in this regime by iden-

tifying a limiting problem. As demonstrated in the previous theorem, no meaningful limit can 
be extracted from simply looking at the sequence {uε}. Instead, we examine the “microscale” 
behavior of uε by eliminating the excess twist in the limit ε → 0, in the sense that we obtain a 
limiting asymptotic problem for the rescaled functions

w(x) := u(x)e−2πi�ε−β�x.

Here �ε−β� denotes the integer part of ε−β .
In terms of w, the energy Ẽε(u) is given by

Ẽε(u) = Fε(w) :=
1∫

0

ε

2

∣∣∣(we2πi�ε−β�x)′
∣∣∣2 + 1

4ε
(|w|2 − 1)2

+ L

2
(w1 w′

2 − w2 w′
1 + |w|22π�ε−β� − 2πε−β)2 dx.

The boundary conditions imposed on competitors for Fε are the same as those for Ẽε . The 
asymptotic behavior of minimizers of Ẽε can therefore be completely understood in terms of Fε, 
so we pursue an asymptotic limit for Fε. Let us define the limiting functional as in Section 3, 
with slightly altered notation to emphasize the dependence on preferred twist:

E0,A(w) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L

2

1∫
0

(w1 w′
2 − w2 w′

1 − 2πA)2 dx + 2
√

2

3
H0(J ) if w ∈ H 1((0,1) \ J ;S1)

+∞ otherwise.

We recall that 0 and/or 1 belongs to J depending on whether or not the traces of u satisfy the 
desired boundary conditions inherited from Eε; that is, we include x = 0 in J only if u(0+) �= 1
and we include x = 1 in J only if u(1−) �= eiα .

Theorem 5.3. Let 0 < β < 1/2 and suppose that for a subsequence {ε�} → 0 and some A ∈ [0, 1]
we have

ε
−β
� − �ε−β

� � → A.

Then {Fε } �-converges to E0,A in L2
(
(0,1);R2

)
.

�
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We also have the compactness result

Theorem 5.4. If {uε}ε>0 satisfies

Ẽε(uε) = Fε(wε) ≤ C0 < ∞, (5.21)

and

ε
−β
� − �ε−β

� � → A (5.22)

for some 0 < β < 1/2, then there exists a function w ∈ H 1((0, 1) \ J ′; S1) where J ′ is a finite, 
perhaps empty, set of points in (0, 1) such that along a subsequence ε� → 0 one has

uε�
e−2πi�ε−β

� �x = wε�
→ w in L2((0,1);C). (5.23)

Furthermore, writing w(x) = eiθ(x) for θ ∈ H 1((0, 1) \ J ′), we have that for every compact set 
K ⊂⊂ (0, 1) \J ′, there exists an ε0(K) > 0 such that for every ε� < ε0 one has 

∣∣uε�

∣∣= ∣∣wε�

∣∣> 0

on K and there is a lifting whereby uε�
(x)e−2πi�ε−β

� �x = wε�
(x) = ρε�

(x)eiθε�
(x) on K , with

θε�
⇀ θ weakly in H 1

loc

(
(0,1) \ J ′). (5.24)

Proof of Theorem 5.4. The proof is based on the proof of Theorem 3.1. First, we estimate that

1∫
0

ε

2

∣∣∣(wεe
2πi�ε−β�x)′

∣∣∣2 dx =
1∫

0

ε

2

∣∣w′
ε + 2πiw�ε−β�∣∣2 dx

=
1∫

0

ε

2

∣∣w′
ε

∣∣2 dx + O(ε1/2−β) dx (5.25)

for an energy bounded sequence {wε}. Therefore,

Fε(wε) =
1∫

0

ε

2

∣∣w′
ε

∣∣2 + 1

4ε
(|wε|2 − 1)2

+ L

2
(T (wε) + |wε|22π�ε−β� − 2πε−β)2 dx + O(ε1/2−β). (5.26)

The rest of the proof follows almost exactly as in Theorem 3.1. Indeed, the only difference be-
tween Eε in that theorem and the right hand side of (5.26) here is the preferred twist 2πN versus 
|wε|22π�ε−β� − 2πε−β , respectively. For the purpose of showing compactness, this distinction 
is immaterial, since it is only the uniform boundedness of the preferred twist 2πN in L2 that was 
used in (3.7) to obtain compactness. Using β < 1/2, we can estimate
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∥∥∥|wε|22π�ε−β� − 2πε−β
∥∥∥

L2
≤
∥∥∥(|wε|2 − 1)2π�ε−β�

∥∥∥
L2

+ ∥∥2π�ε−β� − 2πε−β
∥∥

L2 ,

≤ 2π
(∥∥∥(|wε|2 − 1)ε−1/2

∥∥∥
L2

+ 1
)

≤ 2π
(

2
√

C0 + 1
)

,

so we are done. �
Proof of Theorem 5.3. We begin with the lower-semicontinuity condition. Let wε → w in L2. 
We can assume that

lim inf
ε→0

Fε(wε) ≤ C0 < ∞, (5.27)

otherwise the lower-semicontinuity is trivial. The proof is similar to the proof of (3.15) in Theo-
rem 1.2. Also, due to (5.26), it is enough to show that

lim inf
ε→0

1∫
0

ε

2

∣∣w′
ε

∣∣2 + 1

4ε
(|wε|2 − 1)2 + L

2
(T (wε) + |wε|22π�ε−β� − 2πε−β)2 dx

≥ E0,A(w). (5.28)

First, for the twist term, it must be verified that under the assumption (5.27),

lim inf
ε→0

1∫
0

L

2
(T (wε) + |wε|22π�ε−β� − 2πε−β)2 dx

≥ L

2

1∫
0

(T (w) − 2πA)2 dx. (5.29)

In Theorem 1.2, after (3.19), we proved the inequality

∫
K

(1 − 2−q)4(θ ′
ε�

)2 − 4πN(ρε�
)2θ ′

ε�
+ 4π2N2 dx

≥
∫
K

(1 − 2−q)4(θ ′)2 − 4πNθ ′ + 4π2N2 dx,

where K is a compact set on which θ ′
ε�

⇀ θ ′ and ρε�
≥ 1 − 2−q , followed by an exhaustion 

argument in K and q to prove lower-semicontinuity of the twist in (3.23). The corresponding 
inequality to be verified in this case is
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∫
K

(1 − 2−q)4(θ ′
ε�

)2 + 4π
(
|we�

|2�ε−β
� � − ε

−β
�

)
|wε�

|2θ ′
ε�

+ 4π2
(
|we�

|2�ε−β
� � − ε

−β
�

)2
dx

≥
∫
K

(1 − 2−q)4(θ ′)2 − 4πAθ ′ + 4π2A2 dx, (5.30)

which is the left-hand side of (5.29) expanded out and estimated using |wε�
| ≥ 1 − 2−q on K , on 

which θ ′
ε�

⇀ θ ′. The desired inequality (5.30) would follow immediately from the weak conver-
gence of θ ′

ε�
and the two conditions

ε
−β
� − |wε�

|2�ε−β
� � → A in L2 (5.31)

and

|wε�
|2(ε−β

� − |wε�
|2�ε−β

� �) → A in L2, (5.32)

which we check in turn. First for (5.31), we estimate

∥∥∥ε−β
� − |wε�

|2�ε−β
� � − A

∥∥∥
L2

≤
∥∥∥ε−β

� − �ε−β
� � − A

∥∥∥
L2

+
∥∥∥(1 − |wε�

|2)�ε−β
� �
∥∥∥

L2
.

The first term goes to zero as ε → 0 due to (5.22), and the second vanishes due to the uniform 
energy bound (5.27), since β < 1/2. Moving on to (5.32), we can repeat the argument (3.14) to 
find that

‖wε�
‖L∞ ≤ M(C0).

The second condition (5.32) can be shown as consequence of this L∞ bound, (5.31), and (5.27)
after writing

|wε�
|2(ε−β

� − |wε�
|2�ε−β

� �) − A = |wε�
|2(ε−β

� − |wε�
|2�ε−β

� � − A) + (|wε�
|2 − 1)A.

Choosing larger and larger K which exhaust (0, 1) and letting q → ∞ as in Theorem 1.2, the 
proof of (5.29) is finished. The remainder of the lower-semicontinuity proof follows from the 
proof of Theorem 1.2 and (5.26). The recovery sequence is very similar to the proof of Theo-
rem 1.2, which is evident due to the similarity of (5.26) with Eε , so we omit the details. We only 
mention that on the set of size O(ε) where |wε| �= 1, the assumption β < 1/2 is needed to make 
sure the twist term vanishes in the limit ε → 0. �

Finally, we identify the minimizers of E0,A. As in Corollary 3.5, this provides a description 
of all subsequential limits of a family of minimizers {uε} for Fε and thus Ẽε . We omit the proof 
since it follows the same strategy as the proof of Corollary 3.5.

Theorem 5.5. Let N = N(A, α) be the closest integer to A − α
2π

, so that N ∈ {−1, 0, 1}. Then 
the global minimizer(s) of E0,A are given by
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(i) the function

u(x) = ei(2πN+α)x (5.33)

having constant twist and no jumps when

L(2π(N − A) + α)2 <
4
√

2

3
. (5.34)

(ii) the one-parameter set of functions given by

u(x) =
{

ei2πAx if x < x0,

ei(2πAx+α−2πA) if x > x0,
(5.35)

for any x0 ∈ (0, 1), that have one jump and twist 2πA away from the jump, when

L(2π(N − A) + α)2 >
4
√

2

3
. (5.36)
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