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ABSTRACT

We present a novel adversarial detector for the anomalous se-
quence when there are only one-class training samples. The
detector is developed by finding the best detector that can
discriminate against the worst-case, which statistically mim-
ics the training sequences. We explicitly capture the depen-
dence in sequential events using the marked point process
with a deep Fourier kernel. The detector evaluates a test se-
quence and compares it with an optimal time-varying thresh-
old, which is also learned from data. Using numerical experi-
ments on simulations and real-world datasets, we demonstrate
the superior performance of our proposed method.

Index Terms— sequential anomaly detection, adversarial
learning, Fourier kernel

1. INTRODUCTION
Spatio-temporal event data are ubiquitous in our daily lives,
ranging from electronic transaction records, earthquake ac-
tivities recorded by seismic sensors, and police reports. Such
data consist of sequences of discrete events that indicate when
and where each event occurred and other additional descrip-
tions, such as its category or volume. In many scenarios,
when an anomalous incident occurs, it may be followed by
a series of anomalous events related to the incident.

Consider a motivating example of detecting credit card
fraudulence at a department store. The events in this setting
correspond to a sequence of unauthorized transactions. Each
transaction record typically includes information on time, lo-
cation, and transaction amount of the purchase. To stop frauds
and prevent further losses for both consumers and retailers,
identifying whether a sequence is an anomaly as early as
possible has become an urgent need for the merchants. To
protect consumer privacy, the merchants can not provide nor-
mal transaction data from customers, which creates a situa-
tion where only anomalous transaction data are available for
developing algorithms. Such a “one-class” problem makes
the task of building a fraud detector even more challenging.

There has been much research effort in machine learning
and statistics for sequential anomaly detection [1–4]. How-
ever, most of the existing methods cannot be directly applied
here for the following reasons. (1) Many existing works con-
sider detecting anomalous sequences “as a whole” rather than
detect in an online fashion, and decisions can not be made
until the sequence has been fully observed. (2) The one-class

data situation requires an unsupervised approach for anomaly
detection. However, most sequential anomaly detection algo-
rithms are based on supervised learning.

This paper presents an adversarial anomaly detection
algorithm for one-class sequential detection, where only
anomalous data are available. On a high-level, our adversar-
ial anomaly detector is formulated as a minimax problem: the
detector is optimized to detect the “worst-case” counterfeit
sequences from a generator that maximally mimics the pro-
vided anomalous sequence data. The minimax formulation is
inspired by imitation learning [5], which can be explained as
minimizing the maximum mean discrepancy [6] (MMD). Our
algorithm’s notable feature is that our detector uses a time-
varying threshold that is learned from data (also solved from
the minimax problem), which provides a “tightest” control of
the false-alarms. Such a time-varying threshold is hard to ob-
tain precisely in theory. Here, we provide a data-driven com-
putational approach crucial to achieving good performance
as validated by our numerical experiments. The time-varying
threshold learned sequentially from data is a drastic depar-
ture from prior approaches in sequential anomaly detection.
In particular, we parametrize the detector as the likelihood
function of marked Hawkes processes and present a novel
deep Fourier kernel in the model. The resulted likelihood
function is computationally efficient to carry out the online
detection, and at the same time, allows the capture of com-
plex dependence between events in anomalous sequences.
We demonstrate the proposed method’s superior performance
on synthetic and real data for sequential anomaly detection
by comparing state-of-the-art methods.

2. PROPOSED DETECTION FRAMEWORK

Now we focus on a setting where only anomalous sequences
are available. We aim to develop a detector that can detect
the anomalous sequence in an online fashion and raise the
alarm as soon as possible. Denote such a detector as ` with
parameter ✓. At each time t, the detector evaluates a statis-
tic and compares it with a threshold. For a length-N se-
quence x1:i := [x1, . . . , xi]>, i = 1, 2, . . . , N , the detector
is a stopping rule: it stops and raises an alarm the first time
that the detection statistic exceeds the threshold: T = inf{t :
`(x1:i; ✓) > ⌘i, ti  t < ti+1}. Once an alarm is raised, the
sequence is flagged as an anomaly. If there is no alarm raised
till the end of the time horizon, the sequence is considered
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normal.
Adversarial anomaly detection. Since normal sequences
are not available, we introduce an adversarial generator,
which produces “normal” sequences that are statistically sim-
ilar to the real anomalous sequences. The detector has to
discriminate the true anomalous sequence from the counter-
feit “normal” sequences. We introduce competition between
the anomaly detector, and the generator drives both models
to improve their performances until anomalies can be dis-
tinguishable from counterfeits in the worst-case scenarios.
Assume a set of anomalous sequences drawn from an empir-
ical distribution ⇡. Formally, we formulate this as a minimax
problem as follows:

min
'2G

max
✓2⇥

J(✓,') := Ex⇠⇡ `(x; ✓)�Ez⇠Gz(') `(z; ✓), (1)

where Gz is an adversarial generator specified by parameter
' 2 G and G is a family of candidate generators. The adver-
sarial generator is built upon the Long Short-Term Memory
(LSTM) [7]; the output of our LSTM specifies the distribu-
tion rather than the exact occurrence (time and location) of the
next event, which is expressive enough to simulate sequential
data (see our arXiv paper1). Here the detection statistic cor-
responds to `(✓), the log-likelihood function of the sequence
specified by ✓ 2 ⇥ and ⇥ is its parameter space. The choices
of the adversarial generator and the detector will be further
discussed in Section 3. The detector compares the detection
statistic to a threshold. We define the following:

Definition 1 (Adversarial sequential anomaly detector). De-
note the solution to the minimax problem (1) as (✓⇤,'⇤). A
sequential adversarial detector raises an alarm at the time i
if

`(x1:i; ✓
⇤) > ⌘⇤i , (2)

where the time-varying threshold ⌘⇤i / Ez⇠Gz('⇤) `(z1:i; ✓⇤).

Time-varying threshold. Now we explain the choice of the
time-varying threshold. Since the value of log-likelihood
function `(x1:i; ✓⇤) for partial sequence observation x1:i may
vary over the time step i (the i-the event is occurred), we
need to adjust the threshold accordingly for making decisions
as a function of i. Note that our time-varying threshold ⌘⇤i
is drastically different from statistical sequential analysis,
where the threshold for performing detection is usually con-
stant or pre-set (not adaptive to data) based on the known
distributions of the data sequence. For instance, we can set
the threshold growing over time as

p
t [8]). The rationale

behind the design of the threshold ⌘⇤i is as follows. At any
given time step, the log-likelihood of the data sequence is
larger than that of the generated adversarial sequence; there-
fore, ⌘⇤i provides the tight lower bound for the likelihood of
anomalous sequences `(x; ✓⇤) due to the minimization in (1).
Formally, for any ' 2 G, 0  Ex⇠⇡ `(x1:i; ✓⇤) � ⌘⇤i 

1arXiv version is at https://arxiv.org/abs/1910.09161.

Ex⇠⇡ `(x1:i; ✓⇤) � Ez⇠Gz(') `(z1:i; ✓⇤). The adversarial
sequences drawn from Gz('⇤) can be viewed as the nor-
mal sequences that are statistically “closest” to anomalous
sequences. Therefore, the log-likelihood of such sequences
in the “worst-case” scenario defines the “border region” for
detection. In practice, the threshold ⌘⇤i can be estimated by
1/n0 Pn0

l=1 `(z
l
1:i; ✓

⇤), where {zl
}l=1,...,n0 are adversarial

sequences sampled from Gz(') and n0 is the number of the
sequences.
Connection to imitation learning. Our framework can be
viewed as an instance of imitation learning [9]. The prob-
lem formulation (1) resembles the minimax formulation in
inverse reinforcement learning (IRL) proposed by seminal
works [9,10]. We regard anomalous samples x ⇠ ⇡ as expert
demonstrations sampled from the expert policy ⇡. Each event
xi, i = 1, . . . , N of the sequence is analogous to the i-th
action made by the expert given the history of past events
{x1, x2, . . . , xi�1} as the corresponding state. Accordingly,
the generator can be regarded as a learner that generates
convincing counterfeit trajectories. The log-likelihood of ob-
served sequences can be interpreted as undiscounted return,
i.e., the accumulated sum of rewards evaluated at past actions.
The ultimate goal of the proposed framework (1) is to close
the gap between the expert and the learner’s returns so that
the counterfeit trajectories can meet the lower bound of the
real demonstrations.
Connection to MMD-like distance. The proposed approach
can also be viewed as minimizing a maximum mean discrep-
ancy (MMD)-like distance metric [6] as illustrated in Fig. 1.
More specifically, the maximization in (1) is analogous to an
MMD metric in a reduced function class specified by ⇥, i.e.,
sup✓2⇥ Ex⇠⇡ `(x; ✓)�Ez⇠g `(z; ✓), where ⇥ may not nec-
essarily be a space of continuous, bounded functions on sam-
ple space. As shown in [6], if ⇥ is sufficiently expressive (uni-
versal), e.g., the function class on reproducing kernel Hilbert
space (RKHS), then maximization over such ⇥ is equivalent
to the original definition. Based on this, we select a function
class that serves our purpose for anomaly detection (charac-
terizing the sequence’s log-likelihood), which has enough ex-
pressive power for our purposes. Therefore, the problem de-
fined in (1) can be regarded as minimizing such an MMD-
like metric between the empirical distribution of anomalous
sequences and the distribution of adversarial sequences. The
minimal MMD distance corresponds to the best “detection ra-

!"
Empirical
distribution

#

#∗
MMD[Θ

, &, ']

Adversarial sequenceAnomalous sequence

Fig. 1: The empirical distribution of anomalous sequences
is ⇡. The assumed family of candidate generators is G. Our
proposed framework aims to minimize the MMD in a reduced
function class ⇥ between ⇡ and ' 2 G.
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dius” (threshold) that we can find without observing normal
sequences.

3. POINT PROCESS VIA DEEP FOURIER KERNEL
Now we present a marked Hawkes process model for the dis-
crete events, which will lead to the detection statistic (i.e., the
form of the likelihood function `(x; ✓)).
Hawkes processes with deep Fourier kernel. We repre-
sent the triggering function of the Hawkes process via a deep
Fourier kernel. The spectrum for the Fourier features is pa-
rameterized by a deep neural network, as shown in Fig. 2.
Assume each observation is a marked spatio-temporal tuple
which consists of time, location, and marks: (ti,mi), where
ti 2 [0, T ) is the time of occurrence of the ith event, and
mi 2 M ✓ Rd is the d-dimensional mark (here we treat
location as one of the mark). For notational simplicity, de-
note x := (t,m) 2 X as the most recent event and x0 :=
(t0,m0) 2 X , t0 < t as an occurred event in the past, where
X := [0, T ] ⇥ M ⇢ Rd+1 is the space for time and mark.
Define the conditional intensity function as

�(x|Ht; ✓) = µ+ ↵
X

t0<t
K(x, x0), (3)

where ↵ represents the magnitude of the influence from the
past, µ � 0 is the constant background intensity of events,
which can be estimated from data. The kernel function mea-
sures the influence of the past event on the current event x, x0.

The formulation of deep Fourier kernel function relies on
Bochner’s Theorem [11], which states that any bounded, con-
tinuous, and shift-invariant kernel is a Fourier transform of a
bounded non-negative measure. Assume such shift-invariant
kernel is positive semi-definite and scaled such that g(0) = 1,
Bochner’s theorem ensures that its Fourier transform p! can
be viewed as a probability distribution function since it nor-
malize to 1 and is non-negative. In this sense, the spectrum
p! can be viewed as the distribution of r-dimensional Fourier
features indexed by ! 2 ⌦ ⇢ Rr. Hence, we may obtain a
triggering function in (3) which satisfies the “kernel embed-
ding”:

Proposition 1. Let the triggering function K be a continuous
real-valued shift-invariant kernel and p! a probability distri-
bution function. Then

K(x, x0) := E!⇠p!

⇥
�!(x) · �!(x

0)
⇤
, (4)

! − !′ $

%!&(!, !")

!

!′

*
triggering

Fourier
feature

Inverse Fourier transform

events

random
noise

$ ∼ %! , ∼ %#

DNN

density

Fig. 2: An illustration for the Fourier kernel function K(x, x0)
and its Fourier representation; the spectrum of Fourier fea-
tures are represented by a deep neural network.

x � x�

K

t

�

Noise prior Optimal spectrum Triggering function Intensity function

!!!"

DNN IFT Hawkes

Fig. 3: An instance of calculating the conditional intensity �
through performing inverse Fourier transform.

where �!(x) :=
p
2 cos(!>Wx + u) and W 2 Rr⇥(d+1)

is a weight matrix These Fourier features ! 2 ⌦ ⇢ Rr are
sampled from p! and u is drawn uniformly from [0, 2⇡].

In practice, the expression (4) can be approximated em-
pirically, i.e., eK(x, x0) = 1

D

PD
k=1 �!k(x) · �!k(x

0) =
�(x)>�(x0), where !k, k = 1, . . . , D are D Fourier
features sampled from the distribution p! . The vector
�(x) := [�!1(x), . . . ,�!D (x)]

> can be viewed as the ap-
proximation of the kernel-induced feature mapping. In the
experiments, we substitute exp{iw>(x � x0)} with a real-
valued feature mapping, such that the probability distribution
p! and the kernel K are real [12].
Fourier feature generator. To represent the distribution p! ,
we assume it is a transformation of random noise ⇣ ⇠ p⇣
through a non-linear mapping  0 : Rq

! Rr, as shown in
Fig. 2, where  0 is differentiable, and it is represented by
a deep neural network, and q is the dimension of the noise.
Roughly speaking, p! is the probability density function of
 0(⇣), ⇣ ⇠ p⇣ . Note that the triggering kernel is jointly con-
trolled by the deep network parameters and the weight matrix
W ; we denote all of these parameters as ✓ 2 ⇥. Fig. 3 gives
an illustrative example of representing the conditional inten-
sity given sequence history using our approach. The optimal
spectrum learned from data uniquely specifies a kernel func-
tion capable of capturing various non-linear triggering effects.
Efficient computation of log-likelihood. Given a sequence
of events x, the log-likelihood function of our model is writ-
ten by substituting the conditional intensity function with (3),
and thus we need to evaluate

R
X �(x|Ht; ✓)dx. In many ex-

isting works, this term is carried out by some numerical in-
tegration techniques. Here we present a way to simplify the
computation by deriving closed-form expression for the in-
tegral as the following proposition as a benefit given by the
Fourier kernel.

Proposition 2 (Integral of conditional intensity function). Let
tNT+1 = T and t0 = 0. Given ordered events {x1, . . . , xNT }

in the time horizon [0, T ]. The integral term in the log-
likelihood function can be written as
Z

X
�(x|Ht; ✓)dx = µT (b � a)d +

1

D

XD

k=1

XNT

i=0

X
tj<ti

cos
�
�!>

k Wxj

�
cos

✓
ti+1 + ti

2

◆
sin

✓
ti+1 � ti

2

◆

cosd
✓
b+ a

2

◆
sind

✓
b � a

2

◆Yd+1

`=1

2e!
>
k w`

!>
k w`

,
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where w`, ` = 1, . . . , d is the `-th column vector in the matrix
W , and [a, b] are the range for each dimension of the mark
space M.

Therefore the log-likelihood `(x1:i; ✓⇤) can be computed
recursively as follows:

`(x1:1; ✓
⇤) = log f(x1|Ht1);

`(x1:i; ✓
⇤) = `(x1:i�1; ✓

⇤) + log f(xi|Hti ; ✓
⇤), 8i > 1,

where f(xi|Hti ; ✓) = �(xi|Hti ; ✓)e
�µ(ti�ti�1)(2⇡)

d

if we re-
scale the range of each coordinate of the mark to be [0, 2⇡],
i.e., b = 2⇡ and a = 0. This recursive expression makes it
convenient to evaluate the detection statistic sequentially and
perform online detection.

4. NUMERICAL EXPERIMENTS
We perform comprehensive numerical studies to compare the
performance of the proposed adversarial anomaly detector
with the state-of-the-art. Consider two synthetic and one
real data sets: (1) singleton synthetic data consists of 1,000
anomalous sequences with an average length of 32. Each se-
quence is simulated by a Hawkes process with an exponential
kernel; (2) composite synthetic data consists of 1,000 mixed
anomalous sequences with an average length of 29. Every
200 of the sequences are simulated by five Hawkes pro-
cesses with different exponential kernels; and a real dataset
(3) Macy’s fraudulent credit transaction data consists of
1,121 fraudulent credit transaction sequences with an average
length of 21. Each anomalous transaction in a sequence in-
cludes the occurrence location, time, and transaction amount
in the dollar. We then mix the above data sets, respectively,
with 5,000 random “normal” sequences simulated by multi-
ple Poisson processes. Detailed experimental settings can be
found in the arXiv paper1. We compare our method (referred
to as AIL) with three state-of-the-art approaches: one-class
support vector machines [13] (One-class SVM), the cu-
mulative sum of features extracted by principal component
analysis [14] (PCA+CUMCUM), local outlier factor [15] (LOF);
and a recent study on using IRL to attack sequential anomaly
detection [16] (IRL-AD).

We summarize the results of our method on three data sets
in Fig. 4 and confirm that the proposed time-varying threshold
can optimally separate the anomalies from normal sequences.
As we can see, the anomalous sequences attain a higher av-
erage log-likelihood than the normal sequences for all three
data sets. Their log-likelihoods fall into different value ranges
with rare overlap. Additionally, the time-varying threshold
indicated by blue dash lines lies between the value ranges of
anomalous and normal sequences, which produces an amica-
ble separation of these two types of sequences at any given
time. Colored cells of these heat-maps are calculated with
different constant thresholds ⌘ at each step i by performing
cross-validation. The brightest regions indicate the “ground
truth” of the optimal choices of the threshold. As shown in the
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Fig. 4: Results of our method (AIL) on three data sets (rows
from top to bottom correspond to synthetic, composite, and
Macy’s data, respectively). The blue lines in the third col-
umn indicate our time-varying thresholds. The fourth column
shows the step-wise detection statistics for both anomalous
and normal sequences.
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Fig. 5: Performance of our method (AIL) and other four base-
lines on three data sets (sub-figures from left to right corre-
spond to synthetic, composite, and Macy’s data, respectively).
third column, the time-varying thresholds (blue dash line) are
very close to the optimal choices found by cross-validation.
We also compare the step-wise F1 scores with the other four
baselines in Fig. 5. The results show that (1) from an overall
standpoint, our method outperforms other baselines with sig-
nificantly higher F1 scores, and (2) our approach allows for
easier and faster detection of anomalous sequences, which is
critically important in sequential scenarios for most of the ap-
plications.

5. CONCLUSION
We have presented a novel unsupervised anomaly detection
framework on sequential data based on adversarial learning.
A robust detector can be found by solving a minimax prob-
lem, and the optimal generator also helps in defining the time-
varying threshold for making decisions in an online fashion.
We model the sequential event data using a marked point
process model with a deep Fourier kernel. We believe the
proposed framework is a natural way to tackle the one-class
anomaly detection problem. This new formulation may pro-
vide a first step towards bridging adversarial learning and se-
quential anomaly detection.
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