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Abstract—Maintaining confidential information control in soft-
ware is a persistent security problem where failure means
secrets can be revealed via program behaviors. Information flow
control techniques traditionally have been based on static or
symbolic analyses — limited in scalability and specialized to
particular languages. When programs do leak secrets there are no
approaches to automatically repair them unless the leak causes
a functional test to fail. We present our vision for HyperGI,
a genetic improvement framework that detects, localizes and
repairs information leakage. Key elements of HyperGI include
(1) the use of two orthogonal test suites, (2) a dynamic leak
detection approach which estimates and localizes potential leaks,
and (3) a repair component that produces a candidate patch
using genetic improvement. We demonstrate the successful use
of HyperGI on several programs with no failing functional test
cases. We manually examine the resulting patches and identify
trade-offs and future directions for fully realizing our vision.

Index Terms—information flow leakage, genetic improvement

I. INTRODUCTION

The problem of software accidentally leaking confidential

information is longstanding [1], much researched [2], and

remains an ongoing problem [3]. Its ubiquity and problematic

nature has led to high profile security failures such as the

famous Heartbleed Bug [4]. The verification research com-

munity has extensively studied ensuring Information Flow

Control (IFC) as part of the programming process over many

decades [5], [6]. IFC is the problem of guaranteeing that a

software and a security policy pair satisfy a security property.

As security properties are safety properties most research

into IFC has been via verification tools and static or symbolic

analyses [7], [8]. While dynamic approaches are not un-

known [9], [10] they have been comparatively neglected until

recent years. Contemporary software is often large and getting

larger [11] and the recent rapid development in the ability

of fuzzers to detect security related problems in software is

causing a rethink about the value of dynamic approaches and

their big advantages in scalability and flexibility [12]. IFC has

lacked significant uptake in industry, a significant exception

being the SEL4 microkernel [13]. Rather, the emphasis has

been on discovering and patching exploitable security vulner-

abilities. However, detecting information leaks can not only

detect errors in code’s flow logic but also functional errors that

lead to leaks, such as memory leaks and buffer overflows [14].

In recent work, Mechtaev et al. demonstrated that they could

automatically repair the Heartbleed Bug [15]. However, we

caution that this is a special case of IFC, where the program

can be made to crash when the safety property is violated. We

cannot expect this to hold in general as we demonstrate later.

In this paper we take a fresh look at IFC and ask if we

can use a dynamic approach to both detect and repair this

important type of security bug. First, we cannot assume an

IFC error will cause the program to fail. Second, we realize

that there could be a trade-off between maintaining the original

program semantics and removing the information flow leak-

age. We propose an end-to-end framework called HyperGI.

HyperGI, takes a program and a security policy and tests

(technically, hypertests) the program for evidence that it leaks

and, if it does, estimates the size of the leak. Then HyperGI

uses Genetic Improvement [16] to automatically repair the

leak while attempting to minimise changes to the program

semantics. While the concept of hypertesting programs has

been around at least since Kinder’s work [17], it has been little

explored in the software engineering community. One recent

effort is CT-Fuzz where the hypertest oracle is observing

timing and control flow path differences [18]. The strong

novelty in our approach is the use of quantified information

flow estimates in leak repair, combined with more traditional

test cases to ensure functionality invariance.

We have implemented a prototype of HyperGI and apply

it to three programs (two reported security vulnerabilities in

prior research). We can reduce leakage while retaining most

program functionality. However, we identify the need for a

multi-objective approach and note several key directions for

future work needed to fully realize HyperGI, such as building

quality test suites for IFC.

The contributions of this work are:

• A framework for dynamically detecting, quantifying and

repairing information leakage;

• A prototype implementation and first case study to

demonstrate its potential.

II. HYPERGI

Figure 1 shows a high-level overview of HyperGI. We

start with a program (possibly) containing a leak and first

generate two types of test sets, Hypertests and Functional tests.

We then use a dynamic analysis with just the Hypertest test

suite to localize the area of leakage in the program. We then

use genetic improvement, using both test suites to iteratively

improve the program. We describe each step in more detail
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Fig. 1. Overview of HyperGI which consists of three stages

next, but first we provide an overview of noninterference and

hyperproperties which are fundamental to realizing HyperGI.

A. Preliminaries

A property of program executions can be associated with a

partition of the set of all executions into those that have the

property and those that do not. Some properties cannot be ex-

pressed using an individual execution; rather they require two

or more. An example is the noninterference property which

states in any software system in which users are divided into
groups with different information security access privileges,
low security users should not be aware of the actions of high
security users [19]. We focus on input/output noninterference

for imperative, deterministic programs [2]. There are two

groups of users, high security and low security. The states of

the program are partitioned between high and low users and

low users cannot control inputs to or read from high users’

variables. A program contains the input/output noninterference
property iff, for every pair of initial states with the same values

of all low variables, but different values for high variables, the

post execution states also have the same observable values, i.e.,

no information about the high variables is leaked. In practice,

leaks occur when data from memory is revealed as in a buffer

overflow and/or when there is data dependency in control flow.

We have created an exemplar Triangle program to demon-

strate. It accepts 3 integers representing the length of each side

of a triangle. The first side (high) is a secret value. It returns

the type of triangle (isosceles, scalene or equilateral).

TriangleType typeOf(int high, int low1, int low2){
if (high == low1 && low1 == low2)
return EQUILATERAL;

else if (high==low1 || high==low2 || low1==low2)
return ISOSCELES;

else
return SCALENE; }

Due to the if statements comparing the secret side, any

return value potentially reveals some information about the

secret. The input {(high=?, low1=3, low2=4)} re-

turning SCALENE indicates that the secret value high was

neither 3 nor 4, but is only observable if a second test

using a different secret returns a different value. If the input

{(high=?, low1=3, low2=4)} returned ISOSCELES,

then the user can deduce that the secret is either 3 or 4.

Observing different outputs for the same low inputs but

different secret is a violation of the noninterference property.

To detect this type we need to use hypertests. Each hypertest

is a set of inputs that satisfy the initial states specification

of noninterference: the low part of the initial states are the

same and the high parts are different. We use the notion of

Quantified Information Flow (or QIF) to measure leakage.

B. Stage 1: Test Generation and Leak Detection

In the Triangle program there are two (possibly competing)

notions of correctness, functional and noninterference. This

program is functionally correct (assuming it accepts only valid

triangle inputs); program repair techniques cannot help since

there are no failing tests. A set of hypertests may expose the

leakage, but fixing the leak can impact functional correctness.

A key feature of HyperGI is the use of two independent

test suites, one used to test correct program semantics and

a hypertest suite used to measure information leakage.

Generating hypertests is challenging since the input space

for finding inputs that expose noninterference may be enor-

mous. HyperGI uses a binary search-like algorithm to solve

this problem. It simultaneously detects noninterference viola-

tions and generates tests to maximize the information leakage.

It starts by halving the input space and selects a number

(parameter) of low inputs from each half. It then runs the

program with a number of executions (another parameter)

which alters only the high input(s). Last it checks the resulting

output (or data in memory, depending on the security policy)

and measures if the same/different values are returned. It builds

a priority queue to store hypertests that detect leakage. At each

iteration, HyperGI chooses the half of the input space with the

largest overall leakage (across all inputs) and repeats on that

half. When complete, if it detected a leak, it also has a set of

hypertests that reveal it.

1) Quantified Information Flow (QIF): Based on Denning

[1], Clark et al. constructed the first program analysis using an

information theoretic framework to measure the size of leaks

[20]; when a leak is of size zero, noninterference holds. Both

the program language security and machine learning com-

munities have extensively researched estimating information

quantities [21], [22]. Bounding QIF can be expressed as a

hyperproperty [7], [23] and has been shown to be PSPACE-

hard to verify for exact values [24]. HyperGI uses comparative

estimations of entropy aiming to reduce the size of the leak

to 0. We briefly sketch the mathematical framework.

Given a random variable, the entropy of the random variable

is a statistic of its underlying probability distribution that

captures the quantity of disorder in the distribution.

Definition 1: Let X be a random variable, let x range over

the events of X , and let p(x) be the probability distribution

of X . The entropy of X , H(X), is defined as follows:

H(X) = −
∑

x∈X

p(x) log p(x)

where logs are usually base 2 to retrieve a value in bits.

From Clark et al. we give a definition of the leak size [20].

Definition 2: Let 〈H,L〉 be the joint random variable in

the initial states of a program with a security policy L �
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H , where H represents high security variable values and L
the low security variable values. Similarly, 〈H ′, L′〉 represents

the joint random variable in the final states. The quantity of

leakage from H to L′, L(L′), is:

L(L′) = H(L′|L)
The intuition here is that the only source of information in

the program executions is the input state, represented by the

random variable 〈H,L〉. The entropy in L′ can only exist as a

result of the program executions on the initial states, so after

factoring out entropy due to L, any remaining entropy in L′

must be due to H . It can be shown that, for non-deterministic

programs, this is equivalent to the mutual information between

H and L′ given knowledge of L, I(H;L′|L) [20].

Conditional entropy calculation is cumbersome, the follow-

ing chain rule can streamline it for joint random variables [25].

Proposition 1: Chain Rule for Entropy

H(A,B) = H(A|B) +H(B)

We then have QIF. H(L′|L) = H(L′, L)−H(L).

C. Stage 2: Leak Localization

HyperGI uses a dynamic algorithm that iteratively removes

each line of the program and calculates the change in QIF of

the program with that line removed. Non-compilable programs

have a change of zero. It normalizes all of the QIFs (dividing

all by the maximum change) and partitions the resulting

statements into equivalence classes. Probabilities are assigned

to each class which guides the repair towards those statements

which are likely to reduce information flow the most.

D. Stage 3: Repair

We implemented genetic programming (GP) [26] search on

top of an existing genetic improvement framework, PyGGI

[27]. Chromosomes are patches to the AST. We use the

standard, delete, replace, insert operators, as well as two new

operators. Since information flow leakage is highly control

flow dependent we added operators to insert new control flow.

One creates new |if|statements (using variables from the

program) and the other creates a new |for|loop. State-

ments within the if/for blocks are created by copying existing

statements from the target program, or by creating simple

assignments between existing program variables. Fitness is one

of the essential parts of GI and it guides the search process

by measuring how fit the patches are. The HyperGI fitness

function combines both the QIF and functional correctness.

The fail rate of mutant k is

frk = (#failing functional tests)/(#functional tests).
And, lo is the initial program leakage and lk/lo is the normal-

ized leakage of mutant k (defined if mutant k compiles and

runs). Then, the fitness of mutant k can be defined as:

fk = 0.5 ∗ lk/lo + 0.5 ∗ frk.

III. EVALUATION

We conducted a feasibility study to understand the potential

for HyperGI. We answer the following research questions:

RQ1 How does HyperGI compare with fuzzing in terms of
leak detection?

TABLE I
STUDY SUBJECTS. FOR EACH WE GIVE THE REFERENCE, THE CVE

NUMBER, THE NUMBER OF FUNCTIONAL TESTS AND THE NUMBER OF

HYPERTESTS IN OUR TEST SUITES.

Subject Ref CVE-# # Funct # Hyper
Tests Tests

Triangle (triangle) – – 234 194
Apple Talk (atalk) [7] CVE-2009-3002 297 255
Underflow (underflow) [7] CVE-2007-2875 186 100

RQ2 How well does HyperGI remove information flow leakage
while maintaining software functionality?

To answer these questions we conducted a pilot study: we

first run fuzzers to gather functional tests; next, we run our

binary search to generate hypertests; then, we run GP-based

repair to try to decrease leakage; and, finally, we manually

analyse generated patches.

We use three C subjects, two of which were used in prior

work on statically finding information flow leakage [7] and

which are simplified versions of the original programs from

the CVE vulnerability database [28], [29]. The third program

is one that we wrote to demonstrate the second type of leakage

described in this paper, a control-flow based privacy leak. We

generate functional and leakage test suites, as described below.

We show details of the subjects in Table I, and present security

policies for the two new subjects:

atalk:
static int atalk_getname(struct socket *sock, struct sockaddr *uaddr, int peer);
Low Input: sock and peer
Low Output: uaddr and the return from the function
High (secret): Information in memory not available to the user

underflow:
int underflow(int h, ll ppos);
Low Input: ppos
Low Output: function result;
High (secret) function output: h // original program leaks machine information

For comparison with existing dynamic approaches, we ran

two state-of-the-art fuzzers AFL [12] and LibFuzzer [30] on

all subjects to see if we could detect the leakage. Information

leaks due to buffer overflows can often be found with fuzzers

as memory leaks or buffer overflows (such as Heartbleed)

can be interpreted as crashes via tools such as AddressSan-

itizer [31]. We ran 5 runs of each (with different random

starting seeds) for 24 hours for each program. To increase test

input diversity, we also ran each fuzzer 20 times for 2 hours

with randomly generated input seeds. For functional testing

we used all tests from all 50 runs (= 25 x 2 fuzzers) for

each program with duplicates removed (see Table I for final

counts). To generate hypertests, we ran our binary search on

each subject, as described in Section II-B.

To fix detected leaks, we ran GP for 25 epochs (or ex-

periments), each with 50 generations and a population of 32.

The target fitness was 0.0 (the program ends if it reaches this

fitness) and we examined the best solution (or the stopping

solution in case the program ended before 50 generations).

We examined all 75 patches (= 25 x 3 programs) for their

quality and categorized them based on how well they fix the

leak and/or retain the functional correctness of the program.

For atalk and underflow we have developer patches from

github for reference.
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TABLE II
THE STARTING QIF, FINAL QIF (NOT NORMALIZED), THE TEST FAILURE

RATIO AND TOTAL FITNESS (WITH NORMALIZED QIF) BY SUBJECT

(TR=TRIANGLE, AT=ATALK,UF=UNDERFLOW). MEDIAN (MED),
AVERAGE (AVG) AND STANDARD DEVIATION (STD)

Init. Post Patch Functional Fail
QIF QIF Ratio Fitness

Med Avg Std Med Avg Std Avg Std
TR 0.8 0.0 0.3 0.5 0.3 0.3 0.2 0.3 0.4
AT 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
UF 5.4 0.0 2.1 2.7 1.0 0.6 0.5 0.5 0.0

TABLE III
RESULTS OF MANUAL INSPECTION OF GENERATED PATCHES, WITH

RESPECT TO DEVELOPER FIXES. SHOWS PERCENTAGE OF PATCHES.

Patch Quality triangle atalk underflow
Semantically-equivalent fix – 76% 28%
Leakage reduction, no functionality loss 0% 24% 0%
No leakage, but functionality loss 64% 0% 28%
Leakage reduction, loss of functionality 24% 0% 4%
No improvement over the original program 8% 0% 24%
Introduced indeterministic behavior 4% 0% 16%

IV. RESULTS

Both fuzzers ran to time limits without finding any crashes

or leakage. In contrast, our binary search approach generated

hypertests which were able to detect information flow leakage

in all three programs. This indicates that these types of leakage

cannot always be found by conventional fuzzing. After 320

hours they were unsuccessful while the binary search detected

each leak in less than two hours. In answer to RQ1: Our
proposed binary search strategy was able to detect leaks for
all three programs, in contrast to traditional fuzzing.

Table II shows the results of applying HyperGI. The first

column shows the initial detected information flow leakage

(i.e., lo). As we can see, all three programs have a leak

with QIF ranging from 13.00 in atalk to 0.83 bits in the

triangle program. For each subject we show the median,

average and standard deviation of the raw (not normalized)

QIF (i.e., lk), the test failure ratio, (i.e., frk), and the overall

program fitness (where 0 is the optimal fitness). For atalk we

were able to reduce the QIF to zero while maintaining program

functionality (0 failed tests). For the other two subjects we see

a trade-off. In fact, in the triangle case we can never create

a semantically equivalent and non-leaking program.

We now turn to Figure 2. This shows the normalized QIF

(over the pre-patch QIF) versus the functional test failure ratio.

We plot all 25 epochs for each program. For atalk (black),

all 25 data have the same value thus showing a single point (all

tests pass and QIF=0). For underflow (blue) we have two

general patterns: either the leakage is 0 and 97% of functional

tests are failing; or the leakage is 1 (no improvement), but

the functionality is retained. This suggests the need for multi-

objective optimization. For the triangle program (red dots)

we see a wider range of points. Noticeably, there are no points

which have retained all of the program functionality.

We manually verified the quality of generated patches. For

triangle we don’t have a developer patch, but for the other

Fig. 2. Scatter plot of Normalized QIF vs. test failure ratio. Lighter dots
contain fewer points. QIF of 1 corresponds to leakage of the original program.

two we used that as a baseline. Table III shows this data. For

two programs we find patches that are semantically-equivalent

to the developer one (for 76% of epochs for atalk and

28% of epochs for underflow). We also reduce leaks in the

remaining 24% of atalk runs, without loss of functionality.

For 84% of cases for triangle and 32% of cases for

underflow we improve leakage at the cost of functionality.

A patch that reduces leakage, but breaks some pro-

gram functionality can still be acceptable. The semantically-

equivalent patches for underflow indeed fail our functional

tests — that is because to remove leakage the developers had

to amend functionality of the program. This trade-off was not

necessary for atalk.

We found that some patches introduced nondeterministic

behavior. In those cases our tests became flaky, and the QIF

could potentially increase, as in the case of triangle in

Figure 2. Another example, from the underflow experiment,

is a patch that removes a return statement, hence the program’s

output became undefined and thus returned different results

each time it was run. In answer to RQ2: HyperGI was able
to find patches semantically-equivalent to developer fixes. It
found patches reducing leakage in all three programs.

V. CONCLUSIONS AND FUTURE WORK

We propose HyperGI, a framework for dynamically de-

tecting, quantifying and fixing information flow leaks using

lightweight dynamic analysis, hypertesting, and genetic im-

provement. HyperGI was able to reduce information leakage

in three programs, producing fixes semantically-equivalent

to developer patches. We see a trade-off between quantified

information flow and program functionality. Future work could

explore multi-objective HyperGI, finding a good set of hyper-

tests, and experiments on more subjects.
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