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Sample Complexity of Asynchronous Q-Learning:
Sharper Analysis and Variance Reduction

Gen Li, Student Member, IEEE, Yuting Wei™, Member, IEEE, Yuejie Chi™, Senior Member, IEEE,

Yuantao Gu

Abstract— Asynchronous Q-learning aims to learn the optimal
action-value function (or Q-function) of a Markov decision
process (MDP), based on a single trajectory of Markovian
samples induced by a behavior policy. Focusing on a y-discounted
MDP with state space S and action space .A, we demonstrate
that the £..-based sample complexity of classical asynchronous
Q-learning — namely, the number of samples needed to yield an
entrywise e-accurate estimate of the Q-function — is at most on
the order of proe (1i-y)552 “mi:g{x_v) up to some logarithmic
factor, provided that a proper constant learning rate is adopted.
Here, tmix and pmin denote respectively the mixing time and
the minimum state-action occupancy probability of the sample
trajectory. The first term of this bound matches the sample com-
plexity in the synchronous case with independent samples drawn
from the stationary distribution of the trajectory. The second
term reflects the cost taken for the empirical distribution of the
Markovian trajectory to reach a steady state, which is incurred
at the very beginning and becomes amortized as the algorithm
runs. Encouragingly, the above bound improves upon the state-
of-the-art result by a factor of at least |S||.A| for all scenarios,
and by a factor of at least ¢mix|S||.A| for any sufficiently small
accuracy level . Further, we demonstrate that the scaling on
the effective horizon ﬁ can be improved by means of variance
reduction.
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I. INTRODUCTION

ODEL-FREE algorithms such as Q-learning [3] play a

central role in recent breakthroughs of reinforcement
learning (RL) [4]. In contrast to model-based algorithms
that decouple model estimation and planning, model-free
algorithms attempt to directly interact with the environment
— in the form of a policy that selects actions based on
perceived states of the environment — from the collected
data samples, without modeling the environment explicitly.
Therefore, model-free algorithms are able to process data in an
online fashion and are often memory-efficient. Understanding
and improving the sample efficiency of model-free algorithms
lie at the core of recent research activity [S], whose importance
is particularly evident for the class of RL applications in which
data collection is costly and time-consuming (such as clinical
trials, online advertisements, and so on).

The current paper concentrates on Q-learning, an off-
policy model-free algorithm that seeks to learn the optimal
action-value function by observing what happens under a
behavior policy. The off-policy feature makes it appealing in
various RL applications where it is infeasible to change the
policy under evaluation on the fly. There are two basic update
models in Q-learning. The first one is termed a synchronous
setting, which hypothesizes on the existence of a simulator
(also called a generative model); at each time, the simulator
generates an independent sample for every state-action pair,
and the estimates are updated simultaneously across all state-
action pairs. The second model concerns an asynchronous
setting, where only a single sample trajectory following a
behavior policy is accessible; at each time, the algorithm
updates its estimate of a single state-action pair using one state
transition from the trajectory. Obviously, understanding the
asynchronous setting is considerably more challenging than
the synchronous model, due to the Markovian (and hence non-
i.i.d.) nature of its sampling process.

Focusing on an infinite-horizon Markov decision
process (MDP) with state space S and action space A,
this work investigates asynchronous Q-learning on a single
Markovian trajectory induced by a behavior policy. We ask a
fundamental question:
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How many samples are needed for asynchronous
Q-learning to learn the optimal Q-function?

Despite a considerable number of prior works analyzing this
algorithm (ranging from the classical works [6], [7] to the
very recent paper [2]), it remains unclear whether existing
sample complexity analysis of asynchronous Q-learning is
tight. As we shall elucidate momentarily, there exists a large
gap — at least as large as |S||.A| — between the state-of-the-
art sample complexity bound for asynchronous Q-learning [2]
and the one derived for the synchronous counterpart [8]. This
raises a natural desire to examine whether there is any bot-
tleneck intrinsic to the asynchronous setting that significantly
limits its performance.

A. Main Contributions

This paper develops a refined analysis framework that sharp-
ens our understanding about the sample efficiency of classical
asynchronous Q-learning on a single sample trajectory. Setting
the stage, consider an infinite-horizon MDP with state space
S, action space A, and a discount factor v € (0,1). What we
have access to is a sample trajectory of the MDP induced by a
stationary behavior policy. In contrast to the synchronous set-
ting with i.i.d. samples, we single out two parameters intrinsic
to the Markovian sample trajectory: (i) the mixing time i,
which characterizes how fast the trajectory disentangles itself
from the initial state; (ii) the smallest state-action occupancy
probability pimi, of the stationary distribution of the trajectory,
which captures how frequent each state-action pair has been
at least visited.

With these parameters in place, our findings unveil that:
the sample complexity required for asynchronous Q-learning
to yield an e-optimal Q-function estimate — in a strong fo
sense — is at most!

~ 1 tmix
O(Nmin(1_7)552 * fmin (1 _7)). M

The first component of (1) is consistent with the sample
complexity derived for the setting with independent samples
drawn from the stationary distribution of the trajectory [8].
In comparison, the second term of (1) — which is unaffected
by the accuracy level ¢ — is intrinsic to the Markovian
nature of the trajectory; in essence, this term reflects the cost
taken for the empirical distribution of the sample trajectory
to converge to a steady state, and becomes amortized as the
algorithm runs. In other words, the behavior of asynchronous
Q-learning would resemble what happens in the setting with
independent samples, as long as the algorithm has been run for
reasonably long. In addition, our analysis framework readily
yields another sample complexity bound

~ tcover
0(7), 2
- @
where tcover Stands for the cover time — namely, the time

taken for the trajectory to visit all state-action pairs at least

Let X = (|S], 4], ﬁ, 1). The notation f(X) = O(g(X)) means
there exists a universal constant C1 > 0 such that f < C7 g. The notation
O(+) is defined analogously except that it hides any logarithmic factor.
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once. This facilitates comparisons with several prior results
based on the cover time.

Furthermore, we leverage the idea of variance reduction
to improve the scaling with the discount complexity ﬁ
We demonstrate that a variance-reduced variant of asynchro-
nous Q-learning attains e-accuracy using at most
( 1 + tmix )

fmin(1 —7)? min{1,&2} * fumin(1 — )
samples, matching the complexity of its synchronous counter-
par't if ¢ < min {1, Wf} [12]. Moreover, l?y taking the
action space to be a singleton set, the aforementioned results
immediately lead to ¢,.-based sample complexity guarantees
for temporal difference (TD) learning [13] on Markovian
samples.

Comparisons with past results. A large fraction of the
classical literature focused on asymptotic convergence analysis
of asynchronous Q-learning (e.g. [6], [7], [14]); these results,
however, did not lead to non-asymptotic sample complexity
bounds. The state-of-the-art sample complexity analysis was
due to the recent work [2], which derived a sample complex-
ity bound O(%) Given the obvious lower bound
1/ ftmin > |S||A]. our result (1) improves upon that of [2] by
a factor at least on the order of |S||A|min {tmix, 77 }-
In particular, for sufficiently small accuracy level e, our
improvement exceeds a factor of at least

tmix|S||AJ.

@)

3)

In addition, we note that several prior works [9], [10]
developed sample complexity bounds in terms of the cover
time tcover Of the sample trajectory; our result strengthens these
bounds by a factor of at least

teover|SIM| > [SPPAP.

The interested reader is referred to Table I for more precise
comparisons, and to Section V for a discussion of further
related works.

B. Paper Organization, Notation, and Basic Concept

The remainder of the paper is organized as follows.
Section II formulates the problem and introduces some basic
quantities and assumptions. Section III presents the asynchro-
nous Q-learning algorithm along with its theoretical guar-
antees, whereas Section IV accommodates the extension:
asynchronous variance-reduced Q-learning. A more detailed
account of related works is given in Section V. The analy-
ses of our main theorems are described in Sections VI-IX.
We conclude this paper with a summary of our results and a
list of future directions in Section X. Several preliminary facts
about Markov chains and the proofs of technical lemmas are
postponed to the appendix.

Next, we introduce a set of notation that will be used
throughout the paper. Denote by A(S) (resp. A(A)) the
probability simplex over the set S (resp. .A). For any vector
z = [zili<i<n € R™, we overload the notation /- and | - |
to denote entry-wise operations, such that \/z := [\/Z;]1<i<n
and |z| := [|z|]i<i<n. For any vectors z = [a;]1<i<n and
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TABLE I

SAMPLE COMPLEXITY OF ASYNCHRONOUS Q-LEARNING AND ITS VARIANTS TO COMPUTE AN £-OPTIMAL Q-FUNCTION IN THE oo NORM, WHERE WE
HIDE ALL LOGARITHMIC FACTORS. WITH REGARDS TO THE MARKOVIAN TRAJECTORY INDUCED BY THE BEHAVIOR POLICY, WE DENOTE BY
tcovers tmixs AND fimin THE COVER TIME, MIXING TIME, AND MINIMUM STATE-ACTION OCCUPANCY PROBABILITY OF THE ASSOCIATED
STATIONARY DISTRIBUTION, RESPECTIVELY

Algorithm Sample complexity Learning rate
- i 1
Asynchronous Q-learning (teover) T=7 linear: 1
Even-Dar and Mansour, 2003 [9] (1—7)%e2 t
Asynchronous Q-learning (148w 1 .
(%) C°"e') = polynomial: t“’ ,wE (%, 1)

Even-Dar and Mansour, 2003 [9]

Asynchronous Q-learning IS||Al (1—~)%e?

. % constant: +=r—tie—

Beck and Srikant, 2012 [10] -7 ST AT Cover
Asynchronous Q-learnin, s
4 Q & Lmix rescaled linear: Lmin (1 =7)

Qu and Wierman, 2020 [2]

uZ (1—y)%e2

ey i}

Speedy Q-learning

teover

__teover : L1
Azar et al., 2011 [11] (1—v)1c? rescaled linear: o1
Asynchronous Q-learning 1 i tmix constant: min { (1—y)%? 1 }
This work (Theorem 1) Hmin(1=7)5eZ T Limin(1—7) : Y2 tmix
A h -1 i 42
synchronous Q-learning 7(13%&5 ) constant: min {7(1 32) =1}

This work (Theorem 2)

Asynchronous Q-learning

tmix

1
+
This work (Theorem 3) Hamin (1=71)%

(=) piecewise constant rescaled linear: (23)
min

Variance-reduced Q-learning 1

tmix

(lv) 1}

+
This work (Theorem 4) Hamin (1=7)3<*

constant: min {

) R
tmix

Homin (1—)

w = [w;]1<i<n, the notation z > w (resp. z < w) means
zi > w; (resp. z; < w;) for all 1 < ¢ < n. Additionally,
we denote by 1 the all-one vector, I the identity matrix,
and 1{-} the indicator function. For any matrix P = [P;;],
we denote || Py := max; >_; |F;;|. Throughout this paper,
we use ¢, cg,c1,- - to denote universal constants that do not
depend either on the parameters of the MDP or the target
levels (e,d), and their exact values may change from line to
line.

Finally, let us introduce the concept of uniform ergod-
icity for Markov chains. Consider any Markov chain
(Xo, X1, Xo,---) with transition kernel P, finite state space
X and stationary distribution y, and denote by P!(-|z) the
distribution of X; conditioned on Xy = = € X. This Markov
chain is said to be uniformly ergodic if, for some p < 1 and
M < oo, one has

sup drv (u, P'(-|x)) < Mp', “4)

zeX

where drv (11, V) stands for the total variation distance between
two distributions p and v [15]:

5> )

xeX

drv(p, v

()] = sup |u(A)—v(4)]. (5)
ACX

II. MODELS AND BACKGROUND

This paper studies an infinite-horizon MDP with discounted
rewards, as represented by a quintuple M = (S, A, P,r,v).
Here, S and A denote respectively the (finite) state space
and action space, whereas v € (0, 1) indicates the discount

factor. Particular emphasis is placed on the scenario with
large state/action space and long effective horizon, namely,
and the effective horizon ﬁ can all be quite large.
We use P : S x A — A(S) to represent the probability
transition kernel of the MDP, where for each state-action pair
(s,a) € SxA, P(s'|s,a) denotes the probability of transiting
to state s’ from state s when action a is executed. The reward
function is represented by r : S x A — [0, 1], such that (s, a)
denotes the immediate reward from state s when action a is
taken; for simplicity, we assume throughout that all rewards
lie within [0, 1]. We focus on the tabular setting which, despite
its basic form, has not yet been well understood. See [16] for
an in-depth introduction of this model.

A. Q-Function and Bellman Operator

An action selection rule is termed a policy and represented
by a mapping 7 : S — A(A), which maps a state to a
distribution over the set of actions. A policy is said to be
stationary if it is time-invariant. We denote by {s¢, at, ¢ }52,
a sample trajectory, where s; (resp. a;) denotes the state
(resp. the action taken) at time ¢, and r; = r(s¢, a;) denotes
the reward received at time ¢. It is assumed throughout that the
rewards are deterministic and depend solely upon the current
state-action pair. We denote by V™ : § — R the value function
of a policy 7, namely,

o0
VseS: V7™(s) Z'ytr(st, ar) | so = s/,
t=0
which is the expected discounted cumulative reward received
when (i) the initial state is sg = s, (ii) the actions are taken
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based on the policy 7 (namely, a; ~ w(s¢) for all ¢ > 0)
and the trajectory is generated based on the transition kernel
(namely, s;11 ~ P(:|st,ar)). It can be easily verified that
0<VT(s) < ﬁ for any 7. The action-value function (also
Q-function) Q™ : § x A — R of a policy 7 is defined for all
(s,a) € S x Aby

Q" (s,a) :=E nytr(st,at) | S0 = Ss,a0 = a ,
t=0
where the actions are taken according to the policy 7 except
the initial action (i.e. a; ~ 7(s¢) for all ¢ > 1). As is well-
known, there exists an optimal policy — denoted by 7* — that
simultaneously maximizes V™ (s) and Q™ (s, a) uniformly over
all state-action pairs (s,a) € (S x A). Here and throughout,
we shall denote by V* := V™ and Q* := Q™ the optimal
value function and the optimal Q-function, respectively.
In addition, the Bellman operator 7, which is a mapping
from RISIXIAl o itself, is defined such that the (s, a)-th entry
of T(Q) is given by

T(Q)(s,0):=1(s,0)+7 B |maxQ(sa)|. 6

s'~P(-|s,a) La’€A
It is well known that the optimal Q-function Q* is the
unique fixed point of the Bellman operator.

B. Sample Trajectory and Behavior Policy

Imagine we have access to a sample trajectory
{st,at,m:}$2, generated by the MDP M under a given
stationary policy 7, — called a behavior policy. The behavior
policy is deployed to help one learn the “behavior” of the
MDP under consideration, which often differs from the
optimal policy being sought. Given the stationarity of 7,
the sample trajectory can be viewed as a sample path of a
time-homogeneous Markov chain over the set of state-action
pairs {(s,a) | s € S,a € A}. Throughout this paper,
we impose the following uniform ergodicity assumption [17]
(see the definition of uniform ergodicity in Section I-B).

Assumption 1: The Markov chain induced by the stationary
behavior policy 7, is uniformly ergodic.

There are several properties concerning the behavior policy
and its resulting Markov chain that play a crucial role in
learning the optimal Q-function. Specifically, denote by jir,
the stationary distribution (over all state-action pairs) of the
aforementioned behavior Markov chain, and define

i, (5, @). Q)

min

Hmin == (s,a)eSx.A

Intuitively, pmin reflects an information bottleneck; that is,
the smaller fimi, 1S, the more samples are needed in order to
ensure all state-action pairs are visited sufficiently many times.
In addition, we define the associated mixing time of the chain
as

max

1
drv (Pt(- , i) < _}7
(s0,a0)ESXA TV( ( |50 ao) Hw b) =7

®)

where P!(+|so, ag) denotes the distribution of (s;,a;) condi-
tional on the initial state-action pair (so, ap), and drv(u, V) is

tmix := min {t ‘
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the total variation distance between p and v (see (5)). In words,
the mixing time ¢mix captures how fast the sample trajectory
decorrelates from its initial state. Moreover, we define the
cover time associated with this Markov chain as follows

1
B(Bi|s0,00) = 5}, (9)

min
(50,a0)ESX.A
where B, denotes the event such that all (s,a) € S x A have
been visited at least once between time O and time ¢, and
P(B: | s0,a0) denotes the probability of B; conditional on the
initial state (s, ao).

teover := min {t |

Remark 1: It is known that for a finite-state Markov chain,
having a finite mixing time ¢nyix implies uniform ergodicity
of the chain [17, Page 4]. Thus, our uniform ergodicity
assumption is equivalent to the assumption imposed in [2]
(which assumes ergodicity in addition to a finite tix).

C. Goal

Given a single sample trajectory {s;,a;,r:}i2, generated
by the behavior policy 7,, we aim to compute/approximate
the optimal Q-function @Q* in an /., sense. This setting —
in which a state-action pair can be updated only when the
Markovian trajectory reaches it — is commonly referred to as
asynchronous Q-learning [2], [6] in tabular RL. The current
paper focuses on characterizing, in a non-asymptotic manner,
the sample efficiency of classical Q-learning and its variance-
reduced variant.

III. ASYNCHRONOUS Q-LEARNING ON A SINGLE
MARKOVIAN TRAJECTORY

A. Algorithm

The Q-learning algorithm [3] is arguably one of the most
famous off-policy algorithms aimed at learning the optimal
Q-function. Given the Markovian trajectory {st,as,7:}52,
generated by the behavior policy 7, the asynchronous
Q-learning algorithm maintains a Q-function estimate @; :
S x A — R at each time ¢t and adopts the following iterative
update rule

Qi(si—1,a-1) = (1 =11)Qi—1(5¢-1,a¢-1)
+ 0T (Qi—1)(51-1,a¢-1)
Qi(s,a) = Qi-1(s,a), Y(s,a) # (si—1,ai—1) (10)
for any ¢ > 0, whereas 7, denotes the learning rate or the

stepsize. Here, 7; denotes the empirical Bellman operator
w.r.t. the ¢-th sample, that is,

T(Q) (se-1,a0-1) i=7(s1-1,00-1) + Y max Q(s;, @),

(1D

It is worth emphasizing that at each time ¢, only a single
entry — the one corresponding to the sampled state-action
pair (s;—1,a¢—1) — is updated, with all remaining entries
unaltered. While the estimate () can be initialized to arbitrary
values, we shall set Qo(s,a) = 0 for all (s, a) unless otherwise
noted. The corresponding value function estimate V; : S — R
at time ¢ is thus given by

VseS: Vi(s) := I(tlﬂeaicQt(s,a). (12)

The complete algorithm is described in Algorithm 1.
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Algorithm 1: Asynchronous Q-Learning

1 input parameters: learning rates {7}, number of
iterations 7.

2 initialization: Qo = 0.

sfort=1,2,---,T do

4 | Draw action a;_q ~ m(s;—1), observe reward
r(st—1,a;—1), and draw next state
St ~ P( | St—1, Clt_l).

5 | Update Q; according to (10).

B. Theoretical Guarantees for Asynchronous Q-Learning

We are in a position to present our main theory regard-
ing the non-asymptotic sample complexity of asynchronous
Q-learning, for which the key parameters fimi, and tpix defined
respectively in (7) and (8) play a vital role. The proof of this
result is provided in Section VI.

Theorem 1 (Asynchronous Q-Learning): For the asynchro-
nous Q-learning algorithm detailed in Algorithm 1, there exist
some universal constants cg, ¢; > 0 such that for any 0 < § <

1and0<5§ﬁ,onehas
V(S,G)GSXAZ |QT(5,G)—Q*(S,(I)| S&

with probability at least 1 — §, provided that the iteration
number 7T and the learning rates 7; = n obey

Co 1 tmix
T>
" Hmin {(1—7)552 ’ 1—7}

S| AT 1
log ( : )bg((l_w%), (13a)
1 (=) 1 }
_ _ L-ve . (13b
" log (IEAT) mn{ U5

Remark 2: The careful reader might immediately remark
that the learning rate n studied in Theorem 1 relies on prior
knowledge of £, 6 and 7. This is more stringent than the
learning rates in [2], which do not require pre-determining
these parameters. To address this issue, we will explore a
more adaptive learning rate schedule shortly in Section III-D,
which achieves the same sample complexity without the need
of knowing these parameters a priori.

Theorem 1 delivers a finite-sample/finite-time analysis of
asynchronous Q-learning, given that a fixed learning rate
is adopted and chosen appropriately. The /..-based sample
complexity required for Algorithm 1 to attain € accuracy is at

most
~ 1 tmix
O<,Umin(1 - 7)532 N ,umin(1 - 'Y))

A few implications are in order.

1) Dependency on the Minimum State-Action Occupancy
Probability pimin: Our sample complexity bound (14) scales
linearly in 1/ jimin, which is in general unimprovable. Consider,
for instance, the ideal scenario where state-action occupancy
is nearly uniform across all state-action pairs, in which
case 1/pimin is on the order of |S||A|. In such a “near-
uniform” case, the sample complexity scales linearly with

(14)

|S||A|, and this dependency matches the known minimax
lower bound [18] derived for the setting with independent
samples. In comparison, [2, Theorem 7] depends at least
quadratically on 1/fimin, which is at least |S||.A| times larger
than our result (14).

2) Dependency on the Effective Horizon ﬁ The sample
size bound (14) scales as W, which coincides with
both [8], [19] (for the synchronous setting) and [2], [10]
(for the asynchronous setting) with either a rescaled linear
learning rate or a constant learning rate. This turns out to be
the sharpest scaling known to date for the classical form of
Q-learning.

3) Dependency on the Mixing Time tnix: The second addi-
tive term of our sample complexity (14) depends linearly
on the mixing time ¢« and is (almost) independent of the
target accuracy . The influence of this mixing term is a
consequence of the expense taken for the Markovian trajectory
to reach a steady state, which is a one-time cost that can
be amortized over later iterations if the algorithm is run for
reasonably long. Put another way, if the behavior chain mixes
not too slowly with respect to € (in the sense that tnix <
W), then the algorithm behaves as if the samples were
independently drawn from the stationary distribution of the
trajectory. In comparison, the influences of ¢ and ﬁ
in [2] (cf. Table I) are multiplicative regardless of the value
of ¢, thus resulting in a much higher sample complexity. For
instance, if € = O( L \/T) then the sample complexity

T (1—v)2
result therein is at least

tmix

> tmix|S|[ A

min

times larger than our result (modulo some log factor).

4) Schedule of Learning Rates: An interesting aspect of
our analysis lies in the adoption of a time-invariant learning
rate, under which the /., error decays linearly — down to
some error floor whose value is dictated by the learning
rate. Therefore, a desired statistical accuracy can be achieved
by properly setting the learning rate based on the target
accuracy level € and then determining the sample complex-
ity accordingly. In comparison, classical analyses typically
adopted a (rescaled) linear or a polynomial learning rule [2],
[9]. While the work [10] studied Q-learning with a constant
learning rate, their bounds were conservative and fell short
of revealing the optimal scaling. Furthermore, we note that
adopting time-invariant learning rates is not the only option
that enables the advertised sample complexity; as we shall elu-
cidate in Section III-D, one can also adopt carefully designed
diminishing learning rates to achieve the same performance
guarantees.

5) Mean Estimation Error: The high-probability bound in
Theorem 1 readily translates to a mean estimation error
guarantee. To see this, let us first make note of the following
basic crude bound (see e.g. [10], [20])

\Qd&aﬂéﬁ, ‘Qt(saa)_Q*(Saa)‘Sﬁ (15)
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for all ¢ > 0 and all (s,a) € S x A. By taking 6 = (1 — 7)
in Theorem 1, we immediately reach

E[HSI%X |QT(s,a) — Q*(s,a)ﬂ <e(l-9)+ 5% < 2e,
(16)

provided that 7" obeys (13a). As a result, the sample com-
plexity remains unchanged (up to some logarithmic fac-
tor) when the goal is to achieve the mean error bound
E[max&a ‘QT(s,a) - Q*(s,a)H < 2e.

In addition, our analysis framework immediately leads to
another sample complexity guarantee stated in terms of the
cover time teover (cf. (9)), which facilitates comparisons with
several past work [9], [10]. The proof follows essentially that
of Theorem 1, with a sketch provided in Section VII.

Theorem 2: For the asynchronous Q-learning algorithm
detailed in Algorithm 1, there exist some universal constants
co,c1 > 0 such that forany 0 < d < land 0 < e < ﬁ one
has

V(s,a) € S x A: |Qr(s,a) — Q*(s,a)| <e

with probability at least 1 — §, provided that the iteration
number 7" and the learning rates 7, = n obey

Coteorer ISIIAIT 1
(1 —~)e2 log® (= )1°g((1_7)2g)’ (172)

1 (1 —y)te? }
n= min , 1o
log (ISIAL) { %

Remark 3: The main difference between the cover-time-
based analysis and the mixing-time-based analysis lies in the
number of visits to each state-action pair (s, a) in every time
frame. Owing to the measure concentration of Markov chains,
we can see that the number of visits to each (s, a) concentrates
around its expected value in each time frame, which in
turn ensures that all state-action pairs have been visited at
least once as long as the time frame is sufficiently long.
This important property allows one to establish an intimate
connection between the analysis of Theorem 1 and that of
Theorem 2.

T>

(17b)

In a nutshell, this theorem tells us that the /,-based sample
complexity of classical asynchronous Q-learning is bounded

above by
~ 4
O ( cover ) ,
(1 —7)°e?

which scales linearly with the cover time. This improves upon
the prior result [9] (resp. [10]) by an order of at least

tevur = |SIP2JAP2 (resp. 12, |SIM| > [SIPJA]).

cover —

See Table I for detailed comparisons. We shall further
make note of some connections between tcover and tmix/ Limin
to help compare Theorem 1 and Theorem 2: (i) in gen-
eral, tcover = O(tmix/ptmin) for uniformly ergodic chains;
(ii) one can find some cases where tmix/timin = O(tcover)-
Consequently, while Theorem 1 does not strictly dominate
Theorem 2 in all instances, the aforementioned connections
reveal that Theorem 1 is tighter for the worst-case scenarios.
The interested reader is referred to Section B for details.

(18)
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C. A Special Case: TD Learning

In the special circumstance that the set of allowable actions
A is a singleton, the corresponding MDP reduces to a Markov
reward process (MRP), where the state transition kernel P :
S — A(S) describes the probability of transitioning between
different states, and r : S — [0, 1] denotes the reward function
(so that r(s) is the immediate reward in state s). The goal
is to estimate the value function V' : & — R from the
trajectory {s¢,7¢};2,, which arises commonly in the task of
policy evaluation for a given deterministic policy.

The Q-learning procedure in this special setting reduces to
the well-known TD learning algorithm, which maintains an
estimate V; : & — R at each time ¢ and proceeds according
to the following iterative update?

Vi(se—1) = (1 —=ne)Vici(se—1) +me (1(se—1) +7Vie1(se))
Vi(s) =Vici(s), Vs #si1. (19)

As usual, 7, denotes the learning rate at time ¢, and Vj is
taken to be 0. Consequently, our analysis for asynchronous
Q-learning with a Markovian trajectory immediately leads to
non-asymptotic ¢, guarantees for TD learning, stated below
as a corollary of Theorem 1. A similar result can be stated in
terms of the cover time as a corollary to Theorem 2, which
we omit for brevity.

Corollary 1 (Asynchronous TD learning): Consider the TD
learning algorithm (19). There exist some universal constants
co,c1 > 0 such that forany 0 < § < 1 and 0 < ¢ < ﬁ, one
has

VseS: [Vr(s) =V(s)| <e

with probability at least 1 — §, provided that the iteration
number 7" and the learning rates 7; = 1 obey

Co 1 tmix
T >
" fmin {(1 —y)’e? 1 —7}

1S|T 1
log (5 log (7(1 - wzg)v (202)

1 (=) 1 }
- g Love . 20b
" log (BIT) mm{ 7?7 tmic (00

The above result reveals that the ¢,,-sample complexity for
TD learning is at most

0O 1 tmix

(/imin(l —7)e? - Fomin (1 — 7))7

provided that an appropriate constant learning rate is adopted.
We note that prior finite-sample analysis on asynchronous
TD learning typically focused on (weighted) f5 estimation
errors with linear function approximation [21], [22], and it is
hence difficult to make fair comparisons. The recent paper [23]
developed /., guarantees for TD learning, focusing on the
synchronous settings with i.i.d. samples rather than Markovian
samples.

21

2When A = {a} is a singleton, the Q-learning update rule (10) reduces to
the TD update rule (19) by relating Q(s,a) = V (s).
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D. Adaptive and Implementable Learning Rates

As alluded to previously, the learning rates recommended
in (13b) depend on the mixing time tnix, a parameter that
might be either a priori unknown or difficult to estimate.
Fortunately, it is feasible to adopt a more adaptive learning rate
schedule, which does not rely on prior knowledge of ¢,ix while
still being capable of achieving the performance advertised in
Theorem 1.

1) Learning Rates: In order to describe our new learning
rate schedule, we need to keep track of the following quantities
for all (s,a) € S x A:

o Ki(s,a): the number of times that the sample trajectory

visits (s,a) during the first ¢ iterations.
In addition, we maintain an estimate fimin,¢ Of fimin, computed
recursively as follows

1 . . _ 0N
STAT if min, , K¢(s,a) = 0;

~ B ~ e 1 ming o K¢(s,a)/t .

Hmint = Hmin,t—1, if 3 < Tomin,t—1 <3

ming o K¢(s,a)/t, otherwise.
(22)

With the above quantities in place, we propose the following
learning rate schedule:

nt—min{l,cneprbng}, (23)

where ¢, > 0 is some universal constant independent of any
MDP parameter® and || denotes the nearest integer less than
or equal to x. If fimin, forms a reliable estimate of jimin, then
one can view (23) as a sort of “piecewise constant approxi-
mation” of the rescaled linear stepsizes m 'C”llfi)tvz i in fact,
this can be viewed as a sort of “doublingmtmnck” — reducing
the learning rate by a constant factor every once a while — to
approximate rescaled linear learning rates. Theorem 1 can then
be readily applied to analyze the performance for each constant
segment of this learning rate schedule (23). Noteworthily, such
learning rates are fully data-driven and do no rely on any prior
knowledge about the Markov chain (like tnix and fimin) or the
target accuracy level .

2) Performance Guarantees: Encouragingly, our theoreti-
cal framework can be readily extended without difficulty to
accommodate this adaptive learning rate choice. Specifically,
for the Q-function estimates

N Q\h
Qt B { Qtfla

where @, is provided by the Q-learning iterations (cf. (10)).
We can then establish the following theoretical guarantees,
whose proof is deferred to Section VIII.

Theorem 3: Consider asynchronous Q-learning with learn-
ing rates (23) and the output (24). There exists some universal
constant C' > 0 such that: for any 0 < § < 1 and 0 < ¢ <
one has

if 91 # M,

24
otherwise, (24

11—

V(s,a) € S x A: |@T(s,a) - Q*(s,a)‘ <e (25)

3More precisely, ¢, > 0 can be any universal constant obeying c, >
T4cocy and ¢,y > 11, with ¢o and ¢y being the universal constants stated in
Theorem 1.

with probability at least 1 — §, provided that

T> C { 1 tmix }
> — max ,
72 lffmin(]- - ’7)562 Mmin(]- - ’Y)

- log <|S||('SA|T) log ((1_%)

Remark 4: The interested reader might wonder whether
our sample complexity guarantees continue to hold under the
linear learning rate 7, = m — a learning rate schedule
that has been previously studied in [6], [9]. Nevertheless,
as discussed in [8, Section 3.3.1], this linear learning rate
can lead to a sample complexity that scales exponentially in
the effective horizon 1+ which is clearly outperformed by a
properly rescaled linear learning rate.

(26)

IV. EXTENSION: ASYNCHRONOUS VARIANCE-REDUCED
Q-LEARNING

As pointed out in prior literature, the classical form of
Q-learning (10) often suffers from sub-optimal dependence on
the effective horizon ﬁ For instance, in the synchronous
setting, the minimax lower bound is proportional to ﬁ
(see, [18]), while the sharpest known upper bound for vanilla
Q-learning scales as ﬁ; see detailed discussions in [8].
To remedy this issue, recent work proposed to leverage the
idea of variance reduction to develop accelerated RL algo-
rithms in the synchronous setting [12], [24], as inspired by
the seminal SVRG algorithm [25] that originates from the
stochastic optimization literature. In this section, we adapt this
idea to asynchronous Q-learning and characterize its sample

efficiency.

A. Algorithm

In order to accelerate the convergence, it is instrumental
to reduce the variability of the empirical Bellman operator
7, employed in the update rule (10) of classical Q-learning.
This can be achieved via the following means. Simply put,
assuming we have access to (i) a reference (Q-function esti-
mate, denoted by @, and (ii) an estimate of 7(Q), denoted by

7(Q), the variance-reduced Q-learning update rule is given
by

Qi(st—1,0i-1) = (1 = 0)Qr—1(S¢—1, ar—1)
+ (7@ ) -T@+T @) ) (511, a1-1),

Qt(s7a) = Qt—l(saa)7 V(S)a) 7& (St—laat—1)7
27
where 7; denotes the empirical Bellman operator at time ¢
(cf. (11)). The empirical estimate 7 (()) can be computed using
a set of samples; more specifically, by drawing N consecutive
sample transitions {(s;, ai, Si+1) fo<i<n from the observed
trajectory, we compute

T(Q)(s,a) = (s, a)
X (a0 = (5,0)} maxe Qsiga, o)
N—-1 :
Ei:o 1{(si,ai) = (s,a)}

(28)
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update variance-reduced

Q-learning
)-)-)-)-
epoch 1 epoch 2 epoch 3

Fig. 1. A pictorial illustration of variance-reduced Q-learning.

Compared with the classical form (10), the original update
term 7;(Q;_1) has been replaced by 7;(Q:—1)—7:(Q)+7 (Q),
in the hope of achieving reduced variance as long as @) (which
serves as a proxy to Q*) is chosen properly.

We now take a moment to elucidate the rationale behind the
variance-reduced update rule (27). In the vanilla Q-learning
update rule (10), the variability in each iteration (condi-
tional on the past) comes primarily from the stochastic term
7:(Q:—1). In order to accelerate convergence, it is advisable
to reduce the variability of this term. Suppose now that we
have access to a reference point () that is close to Qy_.
By replacing 7;(Q:—1) with

{TQ-1)-T@}+7@)

we see that the variability of the first term 7;(Q;—1) — 7:(Q)
can be~small if Qi1 ~ @, while the uncertainty of the second
term 7 (Q) can also be well controlled via the use of batch
data. Motivated by this simple idea, the variance-reduced
Q-learning rule attempts to operate in an epoch-based manner,
computing 7 (Q) once every epoch (so as not to increase
the overall sampling burden) and leveraging it to help reduce
variability.

For convenience of presentation, we introduce the following
notation

Q = VR-Q-RUN-EPOCH( Q, N, tepoch ) (29)
to represent the above-mentioned update rule, which starts
with a reference point () and operates upon a total number
of N + tepoch consecutive sample gansitions. The first NV
samples are employed to construct 7 (Q) via (28), with the
remaining samples employed in fepoch iterative updates (27);
see Algorithm 3. To achieve the desired acceleration, the proxy
Q needs to be periodically updated so as to better approximate
the truth @Q* and hence reduce the bias. It is thus natural
to run the algorithm in a multi-epoch manner. Specifically,
we divide the samples into contiguous subsets called epochs,
each containing fepoch iterations and using N +tepoch samples.
We then proceed as follows

QPN — VR-Q-RUN-EPOCH( Q*°P N, tepoch)  (30)
for m = 1,..., M, where M is the total number of epochs,

and QP°" denotes the output of the m-th epoch. The whole
procedure is summarized in Algorithm 2. Clearly, the total
number of samples used in this algorithm is given by M (N +
tepoch). We remark that the idea of performing variance
reduction in RL is certainly not new, and has been explored
in a number of recent works [12], [23], [24], [26]-[28].
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B. Theoretical Guarantees for Variance-Reduced Q-Learning

This subsection develops a non-asymptotic sample complex-
ity bound for asynchronous variance-reduced Q-learning on a
single trajectory. Before presenting our theoretical guarantees,
there are several algorithmic parameters that we shall specify;
for given target levels (g, d), choose

Ne=1nN= 0 min{(l_w2 L}
log (\SllAé\tepOCh) Y2 tmix )

(31a)

um,n (( v)3 mln{l e2} tmix)

e |S||A|tepoch) .
fepoch 2 /-;r:nin ((1 " 1trilx7)
log (ﬁ) log (%) Glo)

where cg > 0 is some sufficiently small constant, c1,co >
0 are some sufficiently large constants, and we recall the
definitions of pimin and tmix in (7) and (8), respectively. Note
that the learning rate (31a) chosen here could be larger than the
choice (13b) for the classical form by a factor of O(ﬁ)
(which happens if £,ix is not too large), allowing the algorithm
to progress more aggressively.

Theorem 4 (Asynchronous Variance-Reduced Q-Learning):
Let QS°" be the output of Algorithm 2 with parameters
chosen according to (31). There exists some constant c3 > 0
such that for any 0 < ¢ < 1 and 0 < & < =, one has

Q5" (s, >—Q*<s7a>| <e

with probability at least 1 — ¢, provided that the total number
of epochs exceeds

V(s,a) e S x A:

M > c3log (32)

1
e(l—n)*
The proof of this result is postponed to Section IX.
In view of Theorem 4, the /.-based sample complexity for
variance-reduced Q-learning to yield £ accuracy — which is
characterized by M (N + tepoch) — can be as low as

6 ( 1 + tmlx )
Pomin (1 — 7)3 min{1, 52} Hmin (1 =) .
Except for the second term that depends on the mixing
time, the first term matches the result of [12] derived for the

synchronous settings with independent samples. In the range
e € (0,min{l, W—}] the sample complexity reduce

to O(m) the scaling ~——5 matches the minimax
lower bound derived in [18] for the synchronous setting.
Once again, we can immediately deduce guarantees for
asynchronous variance-reduced TD learning by reducing the
action space to a singleton set (akin to Section III-C), which
extends the analysis [23] to Markovian noise. In addition,
similar to Section III-D, we can also employ adaptive learning
rates in variance-reduced Q-learning — which do not require
prior knowledge of tmix and pmin — without compromising

(33)
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Algorithm  2:
Learning

Asynchronous Variance-Reduced Q-

1 input parameters: number of epochs M, epoch length
lepoch, recentering length IV, learning rate 7).
2 initialization: set Qgp“h —0.
3 for each epoch m=1,--- , M do
L /* Call Algorithm 3. */
4

QePoch — VR-Q-RUN-EPOCH( QT N tepoch).

m—1>

Algorithm  3:
( Qv N, tepoch)

1 Draw N new consecutive samples from the sample

trajectory; compute 7 () according to (28).
2 Set sy < current state, and Qg «— @
3fort=1,2, -+ tepoch do
4 | Draw action a;—q ~ mp(s¢—1), observe reward
r(st—1,at—1), and draw next state
St~ P( | St—1, Clt_l).
5 | Update @); according to (27).

function (9 =  VR-Q-RUN-EPOCH

6 return: Q — Q...

the sample complexity. For the sake of brevity, we omit these
extensions in the current paper.

V. RELATED WORKS

In this section, we review several recent lines of works and
compare our results with them.

A. The Q-Learning Algorithm and Its Variants

The Q-learning algorithm, originally proposed in [29], has
been analyzed in the asymptotic regime by [6], [7], [14], [30]
since more than two decades ago. Additionally, finite-time
performance of Q-learning and its variants have been analyzed
by [2], [8]-[10], [19], [31]-[34] in the tabular setting, by [21],
[35]-[43] in the context of function approximations, and
by [44] with nonparametric regression. In addition, [11], [12],
[24], [45]-[47] studied modified Q-learning algorithms that
might potentially improve sample complexities and accelerate
convergence. Another line of work studied Q-learning with
sophisticated exploration strategies such as UCB exploration
(e.g. [48]-[51]), which is beyond the scope of the current
work.

B. Finite-Sample {~, Guarantees for Q-Learning

We now expand on non-asymptotic ¢, guarantees available
in prior literature, which are the most relevant to the current
work. An interesting aspect that we shall highlight is the
importance of learning rates. For instance, when a linear
learning rate (i.e. n; = 1/t) is adopted, the sample complexity
results derived in past works [9], [14] exhibit an exponential
blow-up in ﬁ, which is clearly undesirable. In the synchro-
nous setting, [8]-[10], [19] studied the finite-sample complex-
ity of Q-learning under various learning rate rules; the best

sample complexity known to date is 6((1@%@'52)’ achieved

via either a rescaled linear learning rate [8], [19] or a constant
learning rate [19]. When it comes to asynchronous Q-learning
(in its classical form), our work provides the first analysis
that achieves linear scaling with 1/pimin O tcover; see Table I
for detailed comparisons. Going beyond classical Q-learning,
the speedy Q-learning algorithm, which adds a momentum
term in the update by using previous Q-function estimates,
provably achieves a sample complexity of O( (11?;)3552) [11]
in the asynchronous setting, whose update rule takes twice
the storage of classical Q-learning. However, the proof idea
adopted in the speedy Q-learning paper relies heavily on the
specific update rules of speedy Q-learning, which cannot be
readily used here to help improve the sample complexity of
asynchronous Q-learning in terms of its dependency on ﬁ
In comparison, our analysis of the variance-reduced Q-learning
algorithm achieves a sample complexity of O( 5z +

1
Nmin(lf'Y)
m) when € < 1.

C. Finite-Sample Guarantees for Model-Free Algorithms

Convergence properties of several model-free RL algorithms
have been studied recently in the presence of Markovian
data, including but not limited to TD learning and its vari-
ants [21], [22], [28], [52]-[60], Q-learning [35], [36], and
SARSA [61]. However, these recent papers typically focused
on the (weighted) /5 error rather than the /., risk, where the
latter is often more relevant in the context of RL. In addi-
tion, [23] investigated the /., bounds of (variance-reduced)
TD learning, although they did not account for Markovian
noise.

D. Finite-Sample Guarantees for Model-Based Algorithms

Another contrasting approach for learning the optimal
Q-function is the class of model-based algorithms, which
has been shown to enjoy minimax-optimal sample complex-
ity in the synchronous setting. More precisely, it is known
that by planning over an empirical MDP constructed from
O((ngs\‘g) samples, we are guaranteed to find not only an
e-optimal Q-function but also an e-optimal policy [18], [62],
[63]. It is worth emphasizing that the minimax optimality of
model-based approach has been shown to hold for the entire -
range; in comparison, the sample optimality of the model-free
approach has only been shown for a smaller range of accuracy
level ¢ in the synchronous setting. We also remark that existing
sample complexity analysis for model-based approaches might
be generalizable to Markovian data.

VI. ANALYSIS OF ASYNCHRONOUS Q-LEARNING
This section is devoted to establishing Theorem 1. Before

proceeding, we find it convenient to introduce some matrix
notation. Let A, € RISIIAIXISIAl pe a diagonal matrix obeying

At((s,a% (s,a)) = {77; if (s,a) = (st—1,0a1-1),

: (34)
0, otherwise,

where 77 > 0 is the learning rate. In addition, we use the vector
Q, € RISIAI (resp. V; € RISI) to represent our estimate Q;
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(resp. V) in the t-th iteration, so that the (s, a)-th (resp. sth)
entry of Q, (resp. V) is given by Q:(s,a) (resp. Vi(s)).
Similarly, let the vectors Q* € RISIIAl and V* e RIS
represent the optimal Q-function Q* and the optimal value
function V*, respectively. We also let the vector r € RISIIAl
stand for the reward function 7, so that the (s,a)-th entry
of r is given by 7(s,a). In addition, we define the matrix
P; € {0, 1}ISIIMIXISI guch that

Pt((s,a),s') — {17 if (8,(1,8/) = (stflaatflvst)a (35)

0, otherwise.
Clearly, this set of notation allows us to express the
Q-learning update rule (10) in the following matrix form

Q, = (I - At)Qt71 + Ay (7“ + 'YPtthl)~ (36)

A. Error Decay in the Presence of Constant Learning Rates

The main step of the analysis is to establish the following
result concerning the dynamics of asynchronous Q-learning.
In order to state it formally, we find it convenient to introduce
several auxiliary quantities

443t min 4 T

e 1= 2t o, (USIATTY. (372)

Hmin 6

2log e
t = max{ —— D% g L (37

N Hmin

Hframe ‘= aﬂmintframm (37C)
pi=(1—7)(1 = (1 —mn)tere). (37d)

With these quantities in mind, we have the following result.

Theorem 5: Consider the asynchronous Q-learning algo-
rithm in Algorithm 1 with n, = 7. For any 6 € (0,1) and
any € € (0, ﬁ], there exists a universal constant ¢ > 0 such
that with probability at least 1 — 64, the following relation
holds uniformly for all ¢ < T (defined in (13a))

Q- @l < (1= pp 122l

Yy ISIAIT
F IV ey fmios () + e 69

provided that 0 < 5 log (LELAT

max {0, L%J }

In words, Theorem 5 asserts that the /., estimation error
decays linearly — in a blockwise manner — to some error
floor that scales with /7. This result suggests how to set the
learning rate based on the target accuracy level, which in turn
allows us to pin down the sample complexity under consider-
ation. In what follows, we shall first establish Theorem 5, and
then return to prove Theorem 1 using this result.

Before embarking on the proof of Theorem 5, we would
like to point out a few key technical ingredients: (i) an
epoch-based analysis that focuses on macroscopic dynamics
as opposed to per-iteration dynamics, (ii) measure concentra-
tion of Markov chains (see Section A) that helps reveal the
similarity between epoch-based dynamics and the synchronous

) < 1. Here, we define k :=
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counterpart, and (iii) careful analysis of recursive relations.
These key ingredients taken collectively lead to a sample
complexity bound that improves upon prior analysis in [2].

B. Proof of Theorem 5

We are now positioned to outline the proof of Theorem 5.
We remind the reader that for any two vectors z = [z]
and w = [w;], the notation z < w (resp. z > w) denotes
entrywise comparison (cf. Section I), meaning that z; < w;
(resp. z; > w;) holds for all 7. As a result, for any non-negative
matrix A, one has Az < Aw as long as z < w.

1) Key Decomposition and a Recursive Formula: The start-
ing point of our proof is the following elementary decompo-
sition

(I-A)Q, 1 +Ai(r+vP V1) —QF
(I - At) (Qt_1 - Q*) + Ay (’l‘ + P Vi1 — Q*)
= (I — At) (Qt,l — Q*) + vA; (PtVt,l - PV*)
= (I-A) A1 4+7A (P — P)V 4y APy (Vo — V)
(39)
for any ¢ > 0, where the first line results from the update
rule (36), and the penultimate line follows from the Bellman

equation Q* = r + yPV™ (see [16]). Applying this relation
recursively gives

t t
A=Y [] T-A)A(P;—P)V*
i=1 j=i+1
zzﬂl,f
t t
+'YZ H (I — AJ)AZP,L(V,L,1 — V*)
i=1 j=i+1
=:162,f,
t
+ 11 (1 - A5)A0. (40)
j=1
=:163,t
Applying the triangle inequality, we obtain
|A] < By 4|+ [Ba | + 1834l (41)

where we recall the notation |z| := [|2;|]1<i<n for any vector
z = [zi]1<i<n. In what follows, we shall look at these terms
separately.

o First of all, given that I — A; and A; are both non-
negative diagonal matrices and that

||Pi (Vifl - V*) <||PillillVic1 = V|
=[[Vie1 = V¥
<Qim1 — Qoo = | Ai=1][o0,

we can easily see that

lc

t

IT (1-A)An

j=i+1

t
1B24] <7 A1 (42)
=1
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o Next, the term 3;, can be controlled by exploiting
some sort of statistical independence across different
transitions and applying the Bernstein inequality. This
is summarized in the following lemma, with the proof
deferred to Section C.

Lemma 1: Consider any fixed vector V* € RIS, There
exists some universal constant ¢ > 0 such that for any
0<d<l1l,onehasforall 1 <t<T

t t
Y I (1= A)Ai(Pi = P)V*| < 7|Vl
i=1 j=i+1
(43)

with probability at least 1 — §, provided that 0 <
nlog (ISH#) < 1. Here, we define

STATT w

T = ¢y nlog( 5

« Additionally, we develop an upper bound on the term
Bs ., which follows directly from the concentration of
the empirical distribution of the Markov chain (see
Lemma 8). The proof is deferred to Section D.

Lemma 2: For any 6 > 0, recall the definition of tfame
in (37a). Suppose that T' > tfame and 0 < 1 < 1. Then
with probability exceeding 1 — § one has

t
[T (- A5 a0 < (1=mitmAgll @)
j=1

uniformly over all ¢ obeying T' > ¢ > tgame and all vector
Ag € RISIAL

Moreover, in the case where ¢t < tfame, We make note of
the straightforward bound

t
H I—Aj)Aq| <A, (46)

given that I — A is a diagonal non-negative matrix whose
entries are bounded by 1 —n < 1.

Substituting the preceding bounds into (41), we arrive at

A <

¥ i 1A [l Tz €

71V ool + [|A|| 1

722:1 HAileoo H§'=i+1(

+71 [V [loo + (1 = ) toimi

I-A)AL

t < tframe
I—-AjAl
Ao 1,

tframe <t< T
47)

with probability at least 1—20, where tfame is defined in (37a).
The rest of the proof is thus dedicated to bounding |A;| based
on the above recursive formula (47).

2) Recursive Analysis: We shall start by presenting a crude
bound, followed by more refined analysis.

a) A crude bound: We start by observing the following
recursive relation

t
IAt|<vZHAz . JT @ —anan
Jj=t+1
+T1||V*||oo1+|\AoHoo1,

1<t<T, (48

which is a direct consequence of (47). In the sequel, we invoke

mathematical induction to establish, for all 1 < ¢ < T, the

following crude upper bound

Tl[V oo + [[ Aol
1—+v ’

which implies the stability of the asynchronous Q-learning

updates.

Towards this, we first observe that (49) holds trivially for
the base case (namely, ¢ = 0). Now suppose that the inequality
(49) holds for all iterations up to ¢t — 1. In view of (48) and
the induction hypotheses,

Y IV oo + [|A0].) &~ +

1Al < (49)

|A <

1= v i=1 j=i+1
+ [V ool + Aol 1, (50)
where we invoke the fact that the vector H;Zi (I =Aj)A

is non-negative. Next, define the diagonal matrix M; :=
H§:i+1(I — A;)A;, and denote by N/(s,a) the number of
visits to the state-action pair (s,a) between the i-th and the
j-th iterations (including ¢ and 7). Then the diagonal entries
of M satisfy

Mi((sa a)v (87 a))

n(1l = )N (o),
o, if (s,

if (s,a) = (si—1,ai—1),

a) 7é (51;—1; ai_l).

Letting e, q) € RISIAl be a standard basis vector whose
only nonzero entry is the (s, a)-th entry, we can easily verify
that

t
[ U-A)AL=M1=Me,, ..,
j=i+1

= (1 —p)NinGi-nae (51a)

and

s
I
-

L+1(5i—1;az‘—1)e(g air)
Si—1,A7—

@
I
—

= Z €(s.0)

(s,a)eSx.A
-{Zn(l
< > D nl=n)e

(s,a)eSx.Aj=0

)Nf+1<sv“> 1 {(Si—h ai-1) = (s, a)}}

>0 -0y

1=1.

€(s,a) =

(51b)
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Combining the above relations with the inequality (50), one
deduces that
VTV o + [[ Aol
1—
Ve + ]
L—x
thus establishing (49) for the ¢-th iteration. This induction
analysis thus validates (49) for all 1 <t <T.
b) Refined analysis: Now, we strengthen the bound (49)
by means of a recursive argument. To begin with, it is easily
1
seen that the term (1 — 7)2%min||Ag||o is bounded above by
(I — y)e for any ¢ > tw, where we remind the reader of
the definition of ¢y, in (37b) and the fact that ||Agllec =
Qoo < ﬁ It is assumed that T' > ty,. To facilitate our
argument, we introduce a collection of auxiliary quantities
as follows
18]
1—v "
U = [|vos,
t t
YD e Hj:i-‘,—l(I = Aj)Ailuig + [ Ao,
for 1<t <t,

1Al + 7V oo + [| Aol

Y

(52a)

with

vy = ¢ ¢
Y imi [Lmin (I — Aj) A Luiy,
for ¢ > typ.

(52b)

These auxiliary quantities are useful as they provide upper
bounds on ||A;||, as asserted by the following lemma. The
proof is deferred to Section E.

Lemma 3: Recall the definition (44) of 7; in Lemma 1.
With probability at least 1 — 24, the quantities {u;} defined in
(52) satisfy

*
o < 2V e
L=~

The preceding result motivates us to turn attention to
bounding the quantities {u;}. Towards this end, we resort to
a frame-based analysis by dividing the iterations [1,¢] into
contiguous frames each comprising tame (cf. (37a)) iterations.
Further, we define another auxiliary sequence:

B0l _ ;190 = @l
1—7 1—7
where we remind the reader of the definition of p in (37d).
The connection between {wy} and {u;} is made precise as
follows, whose proof is postponed to Section F.

Lemma 4: For any § € (0,3), with probability at least

+ ur + €. (53)

wy = (1 - p)* ;54

1 — 26, one has
. t — tn
Uy < W, with k£ = max< 0, L J . (55)

tframe

Combining Lemmas 3-4, we arrive at

* Tl V* oo

Q- @l = A = PP
L 0=9MQ =@, AVl ,

1—7 1—7

which finishes the proof of Theorem 5.
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C. Proof of Theorem 1

Now we return to complete the proof of Theorem 1.
To control ||A;]|« to the desired level, we first claim that
the first term of (38) obeys

(56)

whenever

ANIIES
(L =) nktmin e(1-7)
provided that 7 < 1/pgame. Furthermore, by taking the
learning rate as

t> tih + tframe +

N4 2
(1-7)'e 1 } .

= min
" {6272 log SIAT Jifome

one can easily verify that the second term of (38) satisfies

<y * / S| AT
V <
1_,yH [loo 7710g( 5 ) ¢,

where the last step follows since |V ||oo < ﬁ Putting the
above bounds together ensures ||A¢||s < 3e. By replacing €
with €/3, we can readily conclude the proof, as long as the
claim (56) can be justified.

Proof of the Inequality (56): Observe that

NA0lls A0l
1 — p)P 822 < exp(—ph) 2 < e
(1= IEele < expl—piy L0l

(59)

< 1 <

og (120l

1
holds true whenever k > M, which would hold as

long as (according to the definition (55) of k)

tfram A
t > teh + tirame + fra elog(| 0|oo>
p e(1 =)

In addition, if 77 < 1/pframe, then one has (1 — n)Hfreme <
1 — ntgrame/2, thus guaranteeing that

p=(1=7)(1=1=n)en)=> (1—7)(1—1+

(60)

T frame )
2

1
= 5(1 - ’Y)nﬂframe-

This taken collectively with (60) demonstrates that (1 —
p)k% < ¢ holds as long as

2ttrame ( HAOHOO )
t > tih + tirame + lo
e L tttame o \e(1— )
—————log (— (6D
(1 = ) nkmin e(l1—1)
where we have made use of the definition of fifame (cf. (37¢)).
|

= tth + tframe +

VII. COVER-TIME-BASED ANALYSIS OF ASYNCHRONOUS
Q-LEARNING

In this section, we sketch the proof of Theorem 2. Before
continuing, we recall the definition of ¢cover in (9), and further
introduce a quantity

teover,all := tcover log g (62)
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There are two useful facts regarding fcover,an that play an
important role in the analysis.
Lemma 5: Define the event

K= {El(s, a) € S x A s.t. it is not visited

within iterations (ltcover’a”, I+ 1)tcover,a”} },

and set L := Ltmr —|. Then one has P {Ul 0 ICZ} < 4.

Proof: See Section H. |
In other words, Lemma 5 tells us that with high probability,
all state-action pairs are visited at least once in every time
frame (Ztcover,alh (l + 1)tcover,all] with 0 < l < \_T/tcover,allj-
The next result is a consequence of Lemma 5 as well as the
analysis of Lemma 2; the proof can be found in Section D.
Lemma 6: For any 6 > 0, recall the definition of Zcover all
in (62). Suppose that T > tcover,ail and 0 < 7 < 1. Then with
probability exceeding 1 — § one has

ﬁ (I —Aj)Ag

uniformly over all ¢ obeying T > ¢ > tcover,al and all vector
Ag € RISIAL

With the above two lemmas in mind, we are now positioned
to prove Theorem 2. Repeating the analysis of (47) (except
that Lemma 2 is replaced by Lemma 6) yields

< (1 _ ,'7) T eover all HAOHool (63)

A <
722:1 ||AZ'*1HOo H;=i+1(I_ Aj)Ail
71V ool + || Ao|| 1
722:1 ||Ai*1”oo H;=i+1(I_ Aj)Ail
FrlIV ool + (1= 7)ot [ Ao 1,

t < tcover,all

tcover,all S t § T

with probability at least 1 — 2§. This observation resembles
47), except that Zfame (resp. fimin) is replaced by tcover,all
(resp. T all) As a consequence, we can immediately use the
recursive analysis carried out in Section VI-B.2 to establish
a convergence guarantee based on the cover time. More
specifically, define

teover.all

pi= (=) (1= (1= mTeesi) = 1 =9 (1- (1 -n)}).
(64)

Replacing p by p in Theorem 5 reveals that with probability
at least 1 — 60,

— Q"

1Q
A)k —

(65)

1Q: — Q7llo < (1

¢y *
—|V
P IV

holds for all ¢ < T, where k := max {0, [%J} and we
abuse notation to define ’

tth,cover = 2tcover,all 1Og m

Repeating the proof of the inequality (56) yields

180
1-pyr sl
(=P

2t cover,all

whenever ¢ > tih,cover 1+ Tcover,all + - 7)7] IOg( )
with the prov1so that n < 1/2. In addition, settlng 77 =

1
e Ez(log z)‘s”g“‘T) guarantees that
Yy |SIIAIT
14 log ( )
al ISIAT
< iy fmlog () <
STV Ty ) =f

In conclusion, we have ||Q; — Q|| < 3¢ as long as
/
c't
¢ cover,all 1

> T og (|S||(;4|T) log (ﬁ),

for some sufficiently large constant ¢/ > 0. This together with
the definition (62) completes the proof.

VIII. ANALYSIS UNDER ADAPTIVE LEARNING RATES
(PROOF OF THEOREM 3)

A. Useful Preliminary Facts About 1,

To begin with, we make note of several useful properties
about 7).
o Invoking the concentration result in Lemma 8, one can
easily show that with probability at least 1 — 4,
Ki(s,a 3
(sa)

E,Uzmin < Igl,ian i 5/-//min

holds simultaneously for all ¢ obeying 7' > ¢t >
443t iy log( AS1IALty

(66)

. In addition, this concentration result
taken collectlvely Wlth the update rule (22) of fimin+ — in
particular, the second case of (22) — implies that [ Fmin, ¢
“stabilizes” as t grows; to be precise, there exists some
quantity ¢’ € [1/6,9/2] such that

ﬁmin,t = Clﬂmin (67)

holds simultaneously for all ¢ obeying T > ¢ >
Hmin .

o For any ¢ obeying ¢t >

6y tmix log( 2IS|1Alt )

Hmin (1—7) 72
443t i log( 2s1]AlL

(so that

logt 1
T (=777t )2t§6—andt>
1

), the learning rate (23) s1mp11ﬁes to

v (|8 )

Clearly, there exists a sequence of endpoints ; < 3 <

) for cy =

(68)

2|S[Alt
ty < ... with ; < SCulmeloEl g = such that:
2t < tpg1 < 3ty and (69)
ag logtyi1
Nt = Nk) ‘= + , Vi <t <tpy1

fmin(1 = )72t
(70)
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2¢cqy

for some positive constant oy € [F2,6cy]; in words,
(70) provides a concrete expression/bound for the piece-
wise constant learning rate, where the ¢;’s form the
change points.
Combining (70) with the definition of @t (cf. (22)), one can
easily check that for ¢ > 14,

Qt = tha
meaning that @t remains fixed within each time segment
(tk, ti+1]. With this property in mind, we only need to analyze

Q¢ in the sequel, which can be easily accomplished by
invoking Theorem 1.

Vi <t < tpy1, (71)

B. A Crude Bound

Given that 0 < 7, < 1 and 0 < r(s,a) < 1, the update rule
(10) of @Q, implies that
Q¢
< max {(1 = 70)[|Q;_1 oo + 1 (1H+7Q_1ll00): Q1o }
<NQi—illoo +1,

thus leading to the following crude bound that for any ¢ > ﬁ

2
1Q; — Q"[loo <+ [|Qolloc + Q7 [loo <t + T < 3t.
(72)
Remark 5: As we shall see momentarily, this crude bound
allows one to control — in a coarse manner — the error at

the beginning of each time interval [t;_1, tx], which is needed
when invoking Theorem 1.

C. Refined Analysis
Let us define

k=
Mmin(]- - 7)57215]6
where the constant ¢y is chosen to be ¢x0 = ag—1/c1 > 0,

with ¢; > 0 the universal constant stated in Theorem 1. The
property (70) of 7, together with the definition (73) implies
c1(1 —v)te? 1

that
_ _ n{(l— )ie2 1 }
o g(\snAm) ke

N =
lo g(ISHAItk)
forany t € (t;_1,1x], as long as (1—~)*
explicitly, when

; (73)

€2 < 1/tmix, OF more

(ISl 1 4,

Ck’,Otmix 1Og

frmin (1 = )y

In addition, the condition (69) and the definition (73) further
tell us that

p > : (74)

1, cro log (%)

th—th1 > te1 > =t log 1
k— tk—1 k=1 > Slg =
3% T Bpamn(1 — 77
Invoking Theorem 1 with an initialization Q,, |
clearly satisfies the crude bound (72)) ensures that

1Q:, — Q7lloe < &

(which

(75)
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with probability at least 1 — §, with the proviso that
1
1y > co

1 + tmix
3 - Hmin (1 - 7)562 1- Y
|S||Altk t
+log ( 5 ) log ((1 - 'y)QEk) (76)

with ¢g > 0 the universal constant stated in Theorem 1. Under
the sample size condition (74), this requirement (76) can be
guaranteed by adjusting the constant ¢,, in (23) to satisfy the
following inequality:

Qp_
k—1 >
c1 9ecy

Ck,0 =

Finally, taking ¢ . to be the largest change point that does

max

not exceed T, we see from (69) that %T < thpar < T'. Then
one has
1Q@r = Q[ = @y, — @l

.. \/Ck,o log(%) log g,
> Ckmax —
Mmin(]- - 7)572tkmax

- \/BC;Q,O 1og(%) logT
B Mmin(l - 7)572T

7

These immediately conclude the proof of the theorem under
the sample size condition (26), provided that

18¢,,
C1 C1

3o,
C> >£

== 3Ck,0.

IX. ANALYSIS OF ASYNCHRONOUS VARIANCE-REDUCED
Q-LEARNING

This section aims to establish Theorem 4. We carry out
an epoch-based analysis, that is, we first quantify the progress
made over each epoch, and then demonstrate how many epochs
are sufficient to attain the desired accuracy. In what follows,
we shall overload the notation by defining

443t mix 4|8 t
frame 1= = log( | ||-’L}S| ePoch)7 (782)
2log —L-
tth = Imax { 477/51 - )% ) tframe}a (78b)
pr=(1=7)(1— (1 —n)ere), (78¢)
Hframe = iﬂmintfram@ (78d)

A. Per-Epoch Analysis

We start by analyzing the progress made over each epoch.
Before proceeding, we denote by P < [0,1]ISIMIXISI 3
matrix corresponding to the empirical probability transition
kernel used in (28) from N new sample transitions. Further,
we use the vector @ € RISIMI to represent the reference
Q-function, and introduce the vector V' € R!S! to represent the
corresponding value function so that V(s) := max, Q(s,a)
for all s € S.



462 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

For convenience, this subsection abuses notation to assume

that an epoch starts with an estimate @@, = @, and consists
of the subsequent

81og%

" B 79
(1 = 7)1 ttmin (79

tepoch = tframe T tth +
iterations of variance-reduced Q-learning updates, where tframe
and ty, are defined in (78a) and (78b), respectively. In the
sequel, we divide all epochs into two phases, depending on
the quality of the initial estimate @ in each epoch.

1) Phase 1: When ||Q — Q*||s > 1/+/T — 7: Recalling the
matrix notation of A; and P, in (34) and (35), respectively,
we can rewrite (27) as follows

Q= (I-A)Qy_; + Ay (7' +yP(Vi—1 = V) +’yl~37) )
(80)

Following similar steps as in the expression (39), we arrive
at the following error decomposition

0,:=Q,-Q" =(T-A)Q,_,
+ Ay (7" +YP(Vi_1 = V) +’71~DV) -Qr
= (I - At) (Qt—l - Q*)
+ A (1 +7PUVi1 = V) + 9PV - Q)
= (I -A)(Qu1 - Q)

A, (Pt (Vi1 —V)+ PV — PV*)
(I Af)@f 1 +’)/Af(P P)V

+’YAf(Pf P) V)"-’YAtPf(Vt 1—V*),
81
which once again leads to a recursive relation
t t
©,=v> [] @-A)A(P-P)V
i=1 j=i+1
=:ho ¢
t ot o
+93° ] T-A)A(P;—P)(V*-V)
i=1 j=i+1
=thi
t t
+9> [ T-A)AP;(Viea - V)
=1 j=i+1
=:ho ¢
t
+ ] (1-A5)e0 (82)
j=1

This identity takes a very similar form as (40) except for
the additional term hg ;.

Let us begin by controlling the first term, towards which
we have the following lemma. The proof is postponed to
Section G.

Lemma 7: Suppose that P is constructed using N consec-
utive sample transitions. If N > tfame, then with probability

greater than 1 — §, one has
4log 6NISIJAly N
[Boslloe < ;Mm 7w,
4log (SMISIAI
e %§M ) (83)

If t < tframe, then it is straightforwardly seen that

hs,e| < [[©0lloo1.

Taking this together with the results from Lemma 1 and
Lemma 2, we are guaranteed that

|h17t‘ S 7'2||V* —VHOO]_
(1— n)%tuman
||®0H0017

with probability at least 1 — 24, where

S||A te oc
T9 = c/"y\/n 10g (M)

for some constant ¢/ > 0 (similar to (44)). In addition,
the term hy ; can be bounded in the same way as 3, , in (42).
Therefore, repeating the same argument as for Theorem 5 and

®0Ho<>17 if tframe S t S 7fepoch
lhs | <

if t < tframe

taking £ = ﬁ, we conclude that with probability at least
1-9,
@ < 1 - pp LRl 7
:(1_p)k|Q1__Q’y|oo _'_;_’_g (84)

holds simultaneously for all 0 < t < fepoch, Where k =
maX{O, Lt_t”"gJ }, and

thrame

cy R i e
Ti= +| V-V
= V= 2N ! o
\/ 1o (|S||A|tepoch) + 4log (%HA')
nlog 5 N :

2log —Ls
tin,e := max {7(1 )*€

NHmin

5 tframe}
for some constant ¢ > 0.

Let C > 0 be some sufficient large constant. Setting

(1-? 1
[STIAlt
5

N =1 = min

. , and ensuring N >
C2log

bepoch 7 fiframe

s 1)
max{tframe, C 1(olg77n} we can easily demonstrate that
ol <@l
[©l < (1 - p) =

+ ZHV* _VHoo-

1
e
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' Slog ;2=
As a consequence, if tepoch = tframe +tin e+ “j’fm’ one
has
1
(1=p)t < 2(=n),
which in turn implies that
101nlloe < =@ = Qe + ———— + V" = V|
tepoch oo = 8 o0 8 (1 — ,-y) 4 o
1 ra) *
ngaX{\/T—v, lQ-@Q IIOO}, (85)
where the last step invokes the simple relation ||V* Ve <
|Q — Q|| - Thus, we conclude that
L Q-qQ 86
Qs = @'l < gax { . 1@ - @} (56)

2) Phase 2: When ||Q — Q*||oo < 1/+/T —7: The analysis
of Phase 2 follows by straightforwardly combining the analysis
of Phase 1 and that of the synchronous counterpart in [12].
For the sake of brevity, we only sketch the main steps.

Following the progf idea of [12, Section B.2], we introduce
an auxiliary vector () which is the unique fix point to the fol-
lowing equation, which can be regarded as a population-level
Bellman equation with proper reward perturbation, namely,

Q=r+~vP(V -V)+~PV. (87)

Here, as usual, V e RISl represents the value function
corresponding to Q. This can be viewed as a Bellman equation
when the reward vector 7 is replaced by 7 := r+~(P—P)V.
Repeating the arguments in the proof of [12, Lemma 4] (except
that we need to apply the measure concentration of P in the
manner performed in the proof of Lemma 7 due to Markovian
data), we reach

log NISILAl

—m—— <¢
(1 - ’V)JNNmin

Q-a. . <¢ (88)

with probability at least 1 — ¢ for some constant ¢’ > 0,
provided that N > (¢ )21°g and that [|Q — Q"o <

N|S||A|
= )352
1/4/T — . It is worth noting that Q only serves as a helper in
the proof and is never explicitly constructed in the algorithm,
as we don’t have access to the probability transition matrix P.

In addition, we claim that

1@ - Qx| 1€ -Q"=

HQtepoch_@HOO S 8 8

+e. (89)

Under this claim, the triangle inequality yields

1@ = @l = 1@, — Rl + 1@ — Qo
1= 9.~
< L@ - Qoo+ 1@ — Q" + 2
1= ., 17
<1@- Qe + 5=, ©0)

where the last inequality follows from (88).
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a) Proof of the inequality (88): Suppose that
|7 —r| =+|(P - P)V|

holds for some constant ¢ > 0. By replacing Lemma 5 in the
proof of [12, Lemma 4] with this bound, we can arrive at (88)
immediately. In what follows, we demonstrate how to prove
the bound (91), which follows a similar argument as in the
proof of Lemma 7.

Let us begin with the following triangle inequality:

(P - P)V|<|(P-P)V -V*|+|(P-P)V*,
92)

log MSIIA

Nﬂmin
2

leaving us with two terms to control.
o Similar to (141), by applying the Hoeffding inequality
and taking the union bound over all (s,a) € S x A, we
can control the first term on the right-hand side of (92)
as follows:

I(P = P)(V = V)]l

2log (23A) .
Kt V7V

4log (2N|§HAI)
]\fﬂmin(1 - 'Y)

with probability at least 1 — §. Here, we have made use
of the following property of this phase that

V-V <@ Q' <1/VT—7

and Kn(s,a) > N pumin/2 for all (s,a) (see Lemma ).

o Next, we turn attention to the second term on the
right-hand side of (92), towards which we resort to
the Bernstein inequality. Note that the (s, a)-th entry of
|(P — P)V*| is given by

< max
(s,a)eSX.A

93)

Kn(s,a)
1 *
m Zz:; (Ptl.+1(8,(1,) - P(s,a))V 5 (94)

where Ky (s,a) denotes the total number of visits to
(s,a) during the first N time instances (see also (113)).
In addition, let ¢; := t;(s,a) denote the time stamp
when the trajectory visits (s,a) for the ¢-th time (see
also (112)). In view of our derivation for (117), the state
transitions happening at times ¢,to,--- ,t; (which are
random) are independent for any given integer £ > 0.
It can be calculated that

(Pusals,0) = P,a) Vi < 7= O50)
Lk
<Ez (P, 41(s,a) P(s,a))V*)
i=1
1
= EvarP(s,a) (V*) (95b)
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Consequently, invoking the Bernstein inequality implies

that with probability at least 1 — SITAD

k
1
E Z (Pt7‘,+1(85 Cl) - P(S7 a))V*
=1
g () vy ¢ S
<¢___%___Nmmwxv>+—§at§?_

holds simultaneously for all 1 < k£ < N. Recognizing
the bound $Njimin < Kn(s,a) < N and applying the
union bound over all (s,a) € S x A yield

2N|S||A]
(P PV < ¢ 208 s varp ()

8log (2N|§HAI)
3(1 = 9)N bmin
« Finally, combining (93) and (96) immediately establishes
the claim (91).

b) Proof of the Inequality (89): Recalling the variance-
reduced update rule (80) and using the Bellman-type equation
(87), we obtain

0, :=Q,—Q=(I-A)(Q,_, —Q)+A, (r 4PV,
~V)+9PV —r—yP(V - V) - 1PV
= (I-A) Q-1 - Q)
+ A (YPAVi1 = V) = P(V = V)

(96)

= (I - At)(:)t—l
+9A: ((Pi=P)(V = V)+Pi(Vi1=V)) . O7)

Adopting the same expansion as before (see (40)), we arrive
at
t A~
I[I Z-A)A(Pi-P)(V-V)

t
O =73
i=1

j=it1
=191 ¢
t t N

+9> [ T-A)AP(Viei—V)

i=1 j=i+1

=192t

t -~

+ (I — A]‘)(‘)o.
j=1
=93¢

Inheriting the results in Lemma 1 and Lemma 2, we can
demonstrate that, with probability at least 1 — 20,

||| Altepoch \ .
5 )1’

if tframe <t< tepoch;

91| < vV —VIOO\/nlog (

(1= )40 | @ 1.

[93.4] <

||®0H0017 if ¢ < tframe-

Repeating the same argument as for Theorem 5, we reach

e
c ~ S||Altepoc
7 Vo (1T e

for some constant ¢ > 0, where k = max{0, | =5 | } with ty,
defined in (78b).

; _ ; (1—)?* 1
By taking n = c¢5 mm{w, uﬁame} for some
sufficiently small constant c; > 0 and ensuring that
tepoch = tih + tirame + ©_ !
h = tth 1 1f 0g
epoc! tl rame (1 — 'Y)n/imin (1 — 7)2
for some large constant cg > 0, we obtain
= Q-Q
181l < 19
A * o) *
e SQ loe , 19 SQ [l e

where the last line follows by the triangle inequality.

B. How Many Epochs Are Needed?

We are now ready to pin down how many epochs are needed
to achieve e-accuracy.

o In Phase 1, the contraction result (86) indicates that,
if the algorithm is initialized with Q, = 0 at the very
beginning, then it takes at most

1@ [l 1
‘o8 <max{€,\/%}> <togs (= _7)

+ log, (5(%—7))

epochs to yield [|[Q — Q" |loc < max{ﬁ,a} (so as
to enter Phase 2). Clearly, if the target accuracy level

1 . . . .
€> 7= then the algorithm terminates in this phase.

1
e Suppose now that the target accuracy level ¢ < Ti

Once the algorithm enters Phase 2, the dynamics can
be characterized by (90). Given that Q is also the last
iterate of the preceding epoch, the property (90) provides
a recursive relation across epochs. Standard recursive
analysis thus reveals that: within at most

1 1
crlog (E\/ﬁ) < crlog (6(1 - 'y))
epochs (with ¢7 > 0 some constant), we are guaranteed
to attain an /., estimation error at most 3¢.
To summarize, a total number of O(logﬁ + log 12=)
epochs are sufficient for our purpose. This concludes the proof.

X. DISCUSSION

This work develops a sharper finite-sample analysis of the
classical asynchronous Q-learning algorithm, highlighting and
refining its dependency on intrinsic features of the Markovian
trajectory induced by the behavior policy. Our sample com-
plexity bound strengthens the state-of-the-art result by an order
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of at least |S||.A|. A variance-reduced variant of asynchronous
Q-learning is also analyzed, exhibiting improved scaling with
the effective horizon ﬁ

Our findings and the analysis framework developed herein
suggest a couple of directions for future investigation. For
instance, our improved sample complexity of asynchronous
Q-learning has a dependence of ﬁ on the effective
horizon, which is inferior to its model-based counterpart.
In the synchronous setting, [32], [34] recently demonstrated
Q-learning has a dependence of %, which is tight up to
logarithmic factors. In light of this development, it would be
important to determine the exact scaling for the asynchronous
setting, which is left as future work. In addition, it would
be interesting to see whether the techniques developed herein
can be exploited towards understanding model-free algorithms
with more sophisticated exploration schemes [64]. Finally,
asynchronous Q-learning on a single Markovian trajectory
is closely related to coordinate descent with coordinates
selected according to a Markov chain; one would naturally ask
whether our analysis framework can yield improved conver-
gence guarantees for general Markov-chain-based optimization

algorithms [65], [66].

APPENDIX

In this section, we gather some basic facts about Markov
chains. Before proceeding, we remind the readers of some
notation. For any two probability distributions p and v,
denote by drv(u,v) the total variation distance between p
and v (cf. (5)). Recall the definition of uniform ergodicity
in Section I-B. For any time-homogeneous and uniformly
ergodic Markov chain (X, X1, Xs, -+ ) with transition kernel
P, finite state space X and stationary distribution p, we let
P'(-| x) denote the distribution of X; conditioned on X = z.
Then the mixing time %nyix of this Markov chain is defined by

tmix(€) := min {t ‘ mea))édTV(Pt(- | x),u) < e}; (98a)
tmix(1/4). (98b)

tmix =

A. Concentration of Empirical Distributions of Markov
Chains

We first record a result concerning the concentration of
measure of the empirical distribution of a uniformly ergodic
Markov chain, which makes clear the role of the mixing time.

Lemma 8: Consider the above-mentioned Markov chain.
Forany 0 < § < 1,if t > %bg%,thenforanyy c X,
one has

>

N | =

ST 1{X; = a}—tu(x)

i=1

ley{ﬂxe){:

tu(x)} < 0.
99)

Proof: To begin with, consider the scenario when X; ~
1, namely, when X; follows the stationary distribution of the
chain. Then [17, Theorem 3.4] tells us that: for any given

465
r € X and any 7 > 0,
t
Px,p { Z]I{Xi =z} —tu(z)| > T}
i=1
725
<2e — ps
= ( 8(t+ 1/pe)pi(z) + 207>
7—Q/tmix
<2 — 100
= 2exp ( 16(t + 2t mix) 1) +407) ’ (100)

where 7,5 stands for the so-called pseudo spectral gap as
defined in [17, Section 3.1]. Here, the first inequality relies
on the fact Varx,.,[1{X; = z}] = p(2)(1 — pz)) <
p(x), while the last inequality results from the fact v, >
1/(2tmix) that holds for uniformly ergodic chains (cf. [17,
Proposition 3.4]). Consequently, for any ¢ > t,ix and any
7 > 0, one can continue the bound (100) to obtain

72
100) < 2 —
(100) < 2 exp < A8t () tix + 407tmix>
< 2max< ex —T72 ex T
- p 96tﬂ(x)tmix »XP 80tmix
)
S T
| X

provided that

2| x|

2|1X|
7 > max ¢ 104/ tp(z)tmix log 3

, 80tmix log —} .

5

As a result, by taking 7 = ;—(l)tu(x) and applying the union
bound, we reach

SOULX; = o} — tu()

Px,mu {Elx €X:
i=1

S Z PXlwp, {

zeX

> %tu(x)}

10
> — <
> 21tu(fc)} <9,

(101)

Z H{X, =z} —tu(z)

as long as

10
ﬁt,u(a:) > max {10\/t,u(a:)tmix log

for all x € X, or equivalently, when
¢ > 441t mix log 2|1X|

Mmin
Next, we seek to extend the above result to the more general

case when X; takes an arbitrary state y € X. From the
definition of tmix(+) (cf. (98a)), we know that

drv ( sup P (.| y), M) <.
yeX

This taken together with the definition of dtv (cf. (5))
reveals that: for any event B belonging to the o-algebra
generated by {X:};> . (5), one has

2| X

)

2| X
5

, 80tmix log

with fimin 1= Hél/lyl w(x).
xT

(102)

BB | X1 =y} — P{B| X1 ~ u}}|

D PBI X0 = sYP{ Xt 6 = 5 | X1 =y}
s€S
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> P{B| Xy, )

sES

= sP{Xs o 5) = s | Xa~p}

S max{ Z [P{Xtmlx =S | X1 = y}ip{Xtmix(é) =S ‘ X1 ~ ’u,}]7
SESL

> [P{Xtmix(é) =s| X1 ~pp—P{X; 5 =s|X1= y}] }

sES_

S sup. ‘P{Xtmix(é) EA| X1 =y} —P{X; (5 €Al X1~ u}‘ <3,

(103)
where we define
Sy ={seS:
P{X () =5 | X1 =y} > P{Xy5) = 5 | X1~ p} )
_={seS:
P{Xtmix((S) =S | X1 = y} < P{Xtmix(5) =S | X1 ~ /.L}}

Here, the last inequality in (103) follows from the inequality
(102) and the definition (5) of the total-variation distance. As a
consequence, one obtains

sup Px, —y {Hm S Z L{X; =z} — (t — tmix(8) ) ()
ver = trmix (8)
_ 10
> 32 (0t le) )
< PXIN {31‘ cX: Z I|.{X~; = :L'} — (t — tmix(é)),u(m)
=t (8)
% (t - tm.x(é))u(x)} +5< 2, (104)

with the proviso that t > tmix(d) + % log %.
To finish up, we recall from [17, Section 1.1] that ¢, (0) <
tmix lOg g Consequently, if ¢ > % log % > tmix(0) +

2x
4‘L1tm'x log | ‘ , then one has
min

2| x|

441tm,x
5 log —— > 100tmix(9),

| =

(t—tmix(6)) p(z) —tmix (8) >
10

%(t_tmix(é))u(x)_tmix(é) ﬁ(t - tmlx(é)):u(x)'

These taken together lead to (105), shown at the bottom of
the next page. Here, the last inequality of (105) results from
(104). Replacing ¢ with §/2 thus concludes the proof. O

=

B. Connection Between the Mixing Time and the Cover Time

Lemma 8 combined with the definition (9) immediately
reveals the following upper bound on the cover time:

teover = o( mix 1og|X|) (106)

In addition, while a general matching converse bound
(namely, tmix/ftmin = O(tcover)) is not available, we can come
up with some special examples for which the bound (106) is
provably tight.

Example 1: Consider a time-homogeneous Markov chain
with state space X' := {1,---,|X|} and probability transition
matrix P € RI¥I*I¥] a5

q(k+1)

P:(l—
2

T T
)Im +or | Fliailixy e ey }

X {
(107)

for some quantities ¢ > 0 and k£ > 1. Suppose ¢(k + 1) < 2
and |X'| > 3. Then this chain obeys

tmIX

81og2+4log

Leover = ( (108)

)Mmln .

With the lower bound (108) in place, we conclude that the
upper bound (106) is, in general, nearly un-improvable (up to
some logarithmic factor).

Remark 6: We shall take a moment to briefly discuss the
key design rationale behind Example 1. Let us partition the
state space into two halves, denoted respectively by X; and
Xy. From every state s € X, it is much easier to transition
into the first half X rather than the second half A5. This leads
to two properties: (i) the stationary distribution of any state in
X is much lower than that of a state in AX7; (ii) the cover time
also increases as the stationary distribution w.r.t. X5 decreases,
given that it becomes more difficult to traverse the second half.
As a result, we can guarantee that fcoyer 1 proportional to fimin
through this type of designs. On the other hand, the example
is also constructed in a way such that all states are “lazy”,
meaning that they are more inclined to stay unchanged rather
than moving to a different state. The level of laziness clearly
controls how fast the Markov chain mixes, as well as how long
it takes to cover all states. This in turn allows one to ensure
that tcover 1S proportional to ¢mix. More details can be found
in the proof below.

Proof: As can be easily verified, this chain is reversible,
whose stationary distribution vector p € R obeys

2 [/ﬂw/g]
(k+DIX] | Lz |

As a result, the minimum state occupancy probability of the
stationary distribution is given by

l’l‘:

N 2
BRCESE

In addition, the rever51b111ty of this chain implies that the
matrix P! := D?PD ™7 with D := = diag [p] is symmetric
and has the same set of eigenvalues as P [67]. A little algebra
yields

pd (1 _qk+ 1))1‘){'

2
-
ELix /21 %)/

q
+m[f

min ‘= i T 109
K 1<t (109)

.
\/EI\XVQ_}lX\/Q
Lix) 21 52

T 9
k1|21 %) /2
allowing us to determine the eigenvalues {\;}i<;<|x| as
follows

q(k+1)

A =1 5

A=1- >0 (i>2).
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We are now ready to establish the lower bound on the
cover time. First of all, the well-known connection between the
spectral gap and the mixing time gives [17, Proposition 3.3]

2log2 +log = 2log2+log

2(1 = A2) q(k+1) -

In addition, let (xg,x1,---) be the corresponding Markov
chain, and assume that xy ~ pu, where p stands for the
stationary distribution. Consider the last state — denoted by
|X'|, which enjoys the minimum state occupancy probability
Imin. For any integer ¢ > 0 one has

P #|X], VO <1<t}

(110)

tmix =

D P {ao # X[} [ B{wi# 1] |20 # ), 2o # |X] |
=1

(i) ¢
> P{xo # |X|}Hj'§;£&‘@{xl #1X| |21 = j}
I=1""

© 0 ) ()

(iv)
> (- gewm) (1)

where (i) follows from the chain rule, (ii) relies on the
Markovian property, (iii) results from the construction (107),
and (iv) holds as long as %t < % Consequently, if |X| > 3
and if t < ‘8—?;', then one necessarily has

Pz #£ X, VO<1<1}

> (4~ ) (- 1) > 5

This taken collectively with the definition of tcover (cf. (9))
reveals that
|X | tmix
>

t ver — 5 )
cove 8q (8 log2 + 4log ﬁ)ﬂmin

where the last inequality is a direct consequence of (109)
and (110). O

C. Proof of Lemma 1

Fix any state-action pair (s,a) € S x A, and let us look at
B (s, a), namely, the (s, a)-th entry of

,61,t:’72t: ﬁ (I—Aj)A(P; —P)V™.

467

For convenience of presentation, we abuse the notation to
let Aj(s,a) denote the (s, a)-th diagonal entry of the diagonal
matrix A;, and Py (s,a) (resp. P(s,a)) the (s,a)-th row of
P, (resp. P). In view of the definition (40), we can write

Brisa) =73 T [(1-As(s.0)Ails.a)

i=1 j=i+1

.(Pi(s,a)—P(s,a))V*}. (111)

As it turns out, it is convenient to study this expression by
defining

tr(s,a) := the time stamp when the trajectory

visits (s, a) for the k-th time (112)

and

Ki(s,a) := max {k | ty(s,a) < t}, (113)

namely, the total number of times — during the first ¢ iterations
— that the sample trajectory visits (s, a). With these in place,
the special form of A; (cf. (34)) allows us to rewrite (111) as

K, (s,a)
51,t(8, a)=r Z {(1 — n)Kt(s,a)_kn
k=1

(Pyyya(s,a) — P(s,a))v*}. (114)

where we suppress the dependency on (s,a) and write ¢ :=
t1:(s, a) to streamline notation. The main step thus boils down
to controlling (114).

Towards this, we claim that: with probability at least 1 — 6,

K
(1- n)K_kn(Ptk-H(Sa a) — P(s, a))V*

k=1
STATN, - .
< yfmtog (ALY v,

holds simultaneously for all (s,a) € S x Aand all 1 < K <
T, provided that 0 < nlog (ISH#) < 1. Recognizing the
trivial bound K;(s,a) < ¢t < T (by construction (113)) and
substituting the claimed bound (115) into the expression (114),
we arrive at for all (s,a) € S x A

S||A|IT N
1By.(5.0)] < 7/ miog (AT Yy

(115)

ISITAITY | <«
<y\/nl Vo, 116
i=1 j—it1 = nog( 5 )H I (116)
- 1
sup ]P’le{Elx e X: Z]l{Xi =z} —tu(x) —tﬂ(x)}
yeX =1 2
: 1
< sug PX1=y{3x cX: Z {X; =x} — (t — tmix(0)) ()| > §(t — tmix(5))u(x) — tmix((S)}
ve =t (8)
t
< sup IP’XFy{Hx eX: Z {X; =a} — (t — tmix(0)) ()| > %(t tmix(5))u(x)} < 26. (105)
yEX i:tmix(é)
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thus concluding the proof of this lemma. It remains to validate
the inequality (115).

Proof of the Inequality (115): We first make the observa-
tion that: for any fixed integer K > 0, the following vectors

{Ptk-‘rl(sva) | 1 SkSK}

are identically and independently distributed.* To justify this
observation, let us denote by P, ,(-) the transition probability
from state s when action « is taken. For any i1, ,ix € S,
one obtains

P{Stk+1 = Zk (V]. S k § K)}

= P{Stk—i-l =ik (Vl <k<K-1)and st 41 = iK}
=3 Plsyy1=ir V1<k<K-—1)and tg =m
m>0
and Sp41 = Z'K}

@ > [P{Stk-i-l:ik (V1<k<K-1)andtg =m}

m>0
P{smt1 =K | Sm = S,am = a}
- Ps,a(iK)
'Z]P{Sthrl:Z'k (V1<k<K-1)and tx =m}
m>0

=Pso(ix)P{st,41 =1r (VI <k <K -—1)},

where (i) holds true from the Markov property as well as the
fact that ¢ is an iteration in which the trajectory visits state
s and takes action a. Invoking the above identity recursively,
we arrive at

P {Sthrl =1k

(V1 <k < K)} (117)

K
H s,a Zj
meaning that the state transitions happening at times
{t1, - ,tx} are independent, each following the distribu-
tion P o(-). This clearly demonstrates the independence of
{Pii1(s.0) | 1<k < K},

With the above observation in mind, we resort to the
Hoeffding inequality to bound the quantity of interest (which
has zero mean). To begin with, notice the facts that for all
k>1,

0< Py 41(5,0)V*<||[V* |0, and 0< P(5,a)V* < ||V o,
(118)
which gives

|(1 - n)K_kn(Ptk-H(Saa) - P(57
<1 =)V .

a))V*|

As a consequence, invoking the Hoeffding inequality [68]
implies that

K

(1 - W)K_kU(Ptk (Sa a) -
k=1

P(s,a))V*

4The Markov chain w.r.t. the sample trajectory should be viewed as being
infinitely long, although we only get to observe its first 7" samples. The
random variables {¢x} are, in truth, independent of the choice of T'.

< 535 (@) g (ASIAT)
k=1
< \fntos (ALY v (119)

with probability exceeding 1 — where the last line

holds since

K oo
> ((1 - 77)K”“n)2 <p?d (1—n)y =
j=0

k=1

4
|SIIA[T>

772
1—(1-n)

Taking the union bound over all (s,a) € S x A and all
1 < K < T then reveals that: with probability at least 1 — 6,
the inequality (119) holds simultaneously over all (s,a) €
S x Aand all 1 < K <T. This concludes the proof. O

:77.

D. Proof of Lemma 2 and Lemma 6

Proof of Lemma 2: Let B3, = H;:1 (I — Aj)Ao.
Denote by 33 ,(s,a) (resp. Ag(s,a)) the (s,a)-th entry of
Bs,. (resp. Ag). From the definition of 3 ,, it is easily seen
that

|53t5a‘—

where K;(s,a) denotes the number of times the sample
trajectory visits (s,a) during the iterations [1,¢] (cf. (113)).
By virtue of Lemma 8 and the union bound, one has, with
probability at least 1 — 4, that

K*(g “)|A0 (s,a)l,

(120)

Ki(s,a) > tpmin/2 (121)

simultaneously over all (s,a) € S x A and all ¢ obeying
4437“*1 g‘“sHA‘T < t < T. Substitution into the relation
(120) establishes that, with probability greater than 1 — 6,

|/63(saa)| < (1 — n)%tumin

holds uniformly over all (s,a) € S x A and all ¢ obeying
4M3Tmix g 4‘SHA‘T <t <T, as claimed.

" Proof of Lemma 6: The proof of this lemma is essentially
the same as that of Lemma 2, except that we use instead the
following lower bound on Ky(s,a) (which is an immediate
consequence of Lemma 5)

Ag(s,a)l. (122)

Ki(s,a) > [ (123)

t t
IE
tcover,all 2tcover,all

for all ¢ > tcover,ail. Therefore, replacing ¢fimin With ¢/tcover,all
in the above analysis, we establish Lemma 6.

E. Proof of Lemma 3

We prove this fact via an inductive argument. The base case
with ¢ = 0 is a consequence of the crude bound (49). Now,
assume that the claim holds for all iterations up to t—1, and we
would like to justify it for the ¢-th iteration as well. Towards

thiS, deﬁ“e
h(t) = {| H Y 1 — th)

124
(1—7)e, if t > ty. (124



LI et al.: SAMPLE COMPLEXITY OF ASYNCHRONOUS Q-LEARNING

Recall that (1 — n)%t”mi“ < (1 — v)e for any t > tih.
Therefore, combining the inequality (47) with the induction
hypotheses indicates that

V*
|At|<72 H (I —Aj)A1- (T1| ||OO+W—1+E)
=1 j=i+1 -7
+ 71|V ]|l + h(1)1
t t
=) J[ @ = A)Aiduiy + 71|Vl + A(t)1
i—lj*iJrl
+72 H (I—A;) A1<TI|V ”°°+e>.
=1 j=i+1 v

Taking this together with the inequality (51b) and rearrang-
ing terms, we obtain

t t *
111V
|At| < 'YZ H (I - Aj)Ailuifl + ﬁl
i=1 j=i+1
+ el 4+ 7 ||V*|l ol + h(t)1
v ST
1
= Tool + ’}/61 + ’}/Z H (I — Aj)Ail’U,i_l
1=1 j=1i+1
+ h(t)1
TV o
_ %1 el v (1= e 1{t > t}l
V*
< TV 4 o1 4o, (125)
-y
where we have used the definition of v; in (52). This taken
collectively with the definition u; = ||v¢]|oo establishes that
T||[V*
A< MV o,

as claimed. This concludes the proof.

F. Proof of Lemma 4

We shall prove this result by induction over the index k.
To start with, consider the base case where k = 0 and ¢t <
tih +tframe. By definition, it is straightforward to see that ug <
[[Ao|lee/(1—7) = wp. In fact, repeating our argument for the
crude bound (see Section VI-B.2) immediately reveals that
u < Bl

L=y
thus indicating that the inequality (55) holds for the base case.
In what follows, we assume that the inequality (55) holds up
to k — 1, and would like to extend it to the case with all ¢
obeying | =t | = k.

Consider any 0 < j < tfame. In view of the definition of v,
(cf. (52)) as well as our induction hypotheses, one can arrange
terms to derive

V> 0: (126)

tentktfame+J teh+ktframe+J

Vi +ktgamet+i — 7 (I - An)Ailui,1

.S

s=0

i=1 n=1i+41

ten+ktfame+J

i:max { Li_J_l_t‘h ] ,0}:5 n=itl

tirame

(I—An)Ailuil}
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ten+ktfame+J

by 11

zmax{[7 J-1= f‘hJO}:s n=itl

tirame

.S

I - An)Ail}wS,
s=0

(127)

where the last inequality follows from our induction hypothe-
ses, the non-negativity of (I — A;)A;1, and the fact that w;
is non-increasing.

Given any state-action pair (s,a) € S x A, let us
look at the (s,a)-th entry of vy, ykty,..+; — denoted by
Vi +ktgame+ (S, @), towards which it is convenient to pause
and introduce some notation. Recall that N;*(s,a) has been
used to denote the number of visits to the state-action pair
(s,a) between iteration ¢ and iteration n (including ¢ and n).
To help study the behavior in each timeframe, we introduce
the following quantities

L' = N}'(s,a) (128)

with 7 =ty + htframe +j +1, n =1+ ktframe +j for every
h <k — 1. Lemma 8 tells us that, with probability at least
1-24,

Ll;iil > (k - h)ﬂframe

. 1
with Hframe = §/$mintframev (129)

which holds uniformly over all state-action pairs (s, a). Armed
with this set of notation, it is straightforward to use the
expression (127) to verify that

k—1

k—
Vit htgamets (8, 0) <Y Z 77{(1 —n)hn
h=0

k—
T

Lk 1
++(1 7]) h+1}wh

(Qthg1 — o) w, (130)

h=0

where we denote oy, := (1 — n)L,’TI for any h < k — 1 and
Qp = 1.
A little algebra further leads to
k—1
Y (anir — an) wy, = y(axwk—1 — agwp)
h=0
k—1
+ Z ap (wp—1 —wp) . (131)

h=1

Thus, in order to control the quantity vy, +kigm.+5(S, @),
it suffices to control the right-hand side of (131), for which
we start by bounding the last term. Plugging in the definitions
of wy, and oy, yields

k-1
Zah (wh—1 —
HAoHoo

k—
épZ(l

h:l

n)(k—h)uframe (1 _ p)h—l
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where the last inequality results from the fact (129). Addition-
ally, direct calculation yields

k-1

p Y (1 —m) B (1 — p)h=t

h=1
1—p

(h-1) k-1 h—1
— 1 _ k—1 Hframe ( )
p( 77) Z (]_ — n),u'frame

h=1

- (@%)kﬁ

)(kfl)ﬂframe !

=p(l—n =
(1—m)#frame
1— k=1 _ 1— (k—1) psrame
— p(l _ n)ﬂframe ( p) ( n)
(1= p) = (1 — n)peme
L—p*t
< p(1- n)uframe , (132)
( (= p) = (1=
where the last inequality makes use of the fact that
(1—p) = (1 =)t
=1 (1 _ 7)(1 _ (1 _ n)ﬂframe) _ (1 _ n)liframe
=y{l- (- =0 (3

Combining the inequalities (130), (131) and (132) and using
the fact apwg > 0 give
k—1
Vit htpame+3 (550) < Z ap (Wh—1 — wp) + Yagwk—1
h=1

1A { (1—p)*t
< e8] 1— HMframe
B e L e R

+(1 - p)’”}-

(134)

We are now ready to justify that vy, +x,..+5(S,a) < wg.
Note that the observation (133) implies

5 p(l — n)liframe _ p(l — n)Hﬁ'ame
(1= p) = (1 — n)pome =P
= (1 =) = m)reme.

This combined with the bound (134) yields

Vit ktgamet+ (55 @)

14|

= T;O{(l =) (1 = m)Heme (1 — p)kil + (1 — p)kfl}
A
< ||1 EH’yoo ('y +(1-7)(1- n)mrame)(l _ p)k—l
el Aol
(=Pl =% = s (135)

where the last line follows from the definition of p (cf. (37d)).
Since the above inequality holds for all state-action pair (s, a),
we conclude that

WUteh+ktframe+5 — ||Utth+ktf,ame+jHoo < wg. (136)

As a consequence, we have established the inequality (55)
for all ¢ obeying |:=2:| = k, which together with the

frame

induction argument completes the proof of this lemma.

G. Proof of Lemma 7

Recalling that 0 < Zz 11_[] i
(cf. (51b)), we obtain

t t
Ihoulloe <5 32 TT (- Ay)

i=1 j=i+1
<9 -P)V]

—AHAL < 1

A =PV

(137)

As a result, it remains to upper bound || P P)VH

Suppose that P is constructed using N consecutive sample
transitions. Without loss of generality, assume that these /N
sample transitions are the transitions between the following
N + 1 samples

(s0,a0), (s1,a1), (s2,a2), -+, (sn, an).
Then the (s, a)-th row of P — denoted by P(s,a) — is
given by
N 1 N-1
P = — P Vi
(50 = oy 2 Posa (520 B0 = ()]
KN(S a)

Z P, 1(s,a)V (138)

where P; is defined in (35), and P;(s, a) denotes its (s, a)-th
row. Here, K (s, a) denotes the total number of visits to (s, a)
during the first N time instances (cf. (113)), and ¢y, := tx(s, a)
denotes the time stamp when the trajectory visits (s, a) for the
k-th time (cf. (112)).

In view of our derivation for (117), the state transitions
happening at time 1, to, - - - , {} are independent for any given
integer £ > 0. This together with the Hoeffding inequality

implies that
k
Z Py 11(s,a) (s,a))v > 7—}

1
k
kT2
§2exp{— — }
2[[VI1%
WSIA\ one has

Consequently, with probability at least 1 —

(139)

k
1 —
% E (P, 41(s,a) (s,a))V‘
i=1

1<k<N.

Recognizing the simple bound Ky (s,a) < N, the above
inequality holds for each state-action pair (s,a) when k is
replaced by K n(s,a). Then, applying the union bound over
all (s,a) € § x A, we obtain

2log (2VISIIAL)

I(P—P)V|| T Rn(sa)

7.,

< max
Rl (e a)ESXA

(140)
with probability at least 1 — 4.

In addition, for any N > tfame, Lemma 8 guarantees that
with probability 1 — 24, each state-action pair (s, a) is visited
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at least N pimin/2 times, namely, Kn (s, a) > 1 N pimin for all
(s,a). This combined with (141) yields

V.

2N|SHA|) -
e (7 v+ V)

IA

(141)

with probability at least 1 — 39, where the second inequality
follows from the triangle inequality, and the last inequality
follows from HV*HOO < ﬁ Putting this together with (137)
concludes the proof.

H. Proof of Lemma 5

For notational convenience, set ¢; := teoverl, and define
Hyi= {3(s,0) € S x Athat is not visited within (11, t111] |

for any integer [ > 0. In view of the definition of tcover, We
see that for any given (s',a’) € S x A,

1
P{Hi | (su,00) = (s, d)} < 5. (142)

Consequently, for any integer L > 0, one can invoke the
Markovian property to obtain

P{H:N---NH}=P{HiN---NHp_1}
'P{HL |H10'~OHL,1}
P{Hi N NHEa} Y [P{ML | (s, 00) = (s',)}

s',a’

'P{(Stwatz) = (5/7a/) | Hin--- mHL—l}

IN

1
§P{H1 N---NHp-1}
’ ZP{(Stwatz) = (Slva,) | Ha m"'ﬂHL_l}

1
:ip{H1ﬂ'“ﬁHL71},

where the inequality follows from (142). Repeating this deriva-
tion recursively, we deduce that

P{HiN---NHL} < oL
This tells us that

P{3(s,a) € S x A that is not visited between (0, tcover.anl] }
1 0
S e e al
which in turn establishes the advertised result by applying the
union bound.
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