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Sample Complexity of Asynchronous Q-Learning:

Sharper Analysis and Variance Reduction

Gen Li, Student Member, IEEE, Yuting Wei , Member, IEEE, Yuejie Chi , Senior Member, IEEE,

Yuantao Gu , Senior Member, IEEE, and Yuxin Chen , Senior Member, IEEE

Abstract— Asynchronous Q-learning aims to learn the optimal
action-value function (or Q-function) of a Markov decision
process (MDP), based on a single trajectory of Markovian
samples induced by a behavior policy. Focusing on a γ-discounted
MDP with state space S and action space A, we demonstrate
that the `∞ -based sample complexity of classical asynchronous
Q-learning — namely, the number of samples needed to yield an
entrywise ε-accurate estimate of the Q-function — is at most on
the order of 1

µmin(1−γ)5ε2 +
tmix

µmin(1−γ)
up to some logarithmic

factor, provided that a proper constant learning rate is adopted.
Here, tmix and µmin denote respectively the mixing time and
the minimum state-action occupancy probability of the sample
trajectory. The first term of this bound matches the sample com-
plexity in the synchronous case with independent samples drawn
from the stationary distribution of the trajectory. The second
term reflects the cost taken for the empirical distribution of the
Markovian trajectory to reach a steady state, which is incurred
at the very beginning and becomes amortized as the algorithm
runs. Encouragingly, the above bound improves upon the state-
of-the-art result by a factor of at least |S||A| for all scenarios,
and by a factor of at least tmix|S||A| for any sufficiently small
accuracy level ε. Further, we demonstrate that the scaling on
the effective horizon 1

1−γ
can be improved by means of variance

reduction.
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I. INTRODUCTION

MODEL-FREE algorithms such as Q-learning [3] play a

central role in recent breakthroughs of reinforcement

learning (RL) [4]. In contrast to model-based algorithms

that decouple model estimation and planning, model-free

algorithms attempt to directly interact with the environment

— in the form of a policy that selects actions based on

perceived states of the environment — from the collected

data samples, without modeling the environment explicitly.

Therefore, model-free algorithms are able to process data in an

online fashion and are often memory-efficient. Understanding

and improving the sample efficiency of model-free algorithms

lie at the core of recent research activity [5], whose importance

is particularly evident for the class of RL applications in which

data collection is costly and time-consuming (such as clinical

trials, online advertisements, and so on).

The current paper concentrates on Q-learning, an off-

policy model-free algorithm that seeks to learn the optimal

action-value function by observing what happens under a

behavior policy. The off-policy feature makes it appealing in

various RL applications where it is infeasible to change the

policy under evaluation on the fly. There are two basic update

models in Q-learning. The first one is termed a synchronous

setting, which hypothesizes on the existence of a simulator

(also called a generative model); at each time, the simulator

generates an independent sample for every state-action pair,

and the estimates are updated simultaneously across all state-

action pairs. The second model concerns an asynchronous

setting, where only a single sample trajectory following a

behavior policy is accessible; at each time, the algorithm

updates its estimate of a single state-action pair using one state

transition from the trajectory. Obviously, understanding the

asynchronous setting is considerably more challenging than

the synchronous model, due to the Markovian (and hence non-

i.i.d.) nature of its sampling process.

Focusing on an infinite-horizon Markov decision

process (MDP) with state space S and action space A,

this work investigates asynchronous Q-learning on a single

Markovian trajectory induced by a behavior policy. We ask a

fundamental question:
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How many samples are needed for asynchronous

Q-learning to learn the optimal Q-function?

Despite a considerable number of prior works analyzing this

algorithm (ranging from the classical works [6], [7] to the

very recent paper [2]), it remains unclear whether existing

sample complexity analysis of asynchronous Q-learning is

tight. As we shall elucidate momentarily, there exists a large

gap — at least as large as |S||A| — between the state-of-the-

art sample complexity bound for asynchronous Q-learning [2]

and the one derived for the synchronous counterpart [8]. This

raises a natural desire to examine whether there is any bot-

tleneck intrinsic to the asynchronous setting that significantly

limits its performance.

A. Main Contributions

This paper develops a refined analysis framework that sharp-

ens our understanding about the sample efficiency of classical

asynchronous Q-learning on a single sample trajectory. Setting

the stage, consider an infinite-horizon MDP with state space

S, action space A, and a discount factor γ ∈ (0, 1). What we

have access to is a sample trajectory of the MDP induced by a

stationary behavior policy. In contrast to the synchronous set-

ting with i.i.d. samples, we single out two parameters intrinsic

to the Markovian sample trajectory: (i) the mixing time tmix,

which characterizes how fast the trajectory disentangles itself

from the initial state; (ii) the smallest state-action occupancy

probability µmin of the stationary distribution of the trajectory,

which captures how frequent each state-action pair has been

at least visited.

With these parameters in place, our findings unveil that:

the sample complexity required for asynchronous Q-learning

to yield an ε-optimal Q-function estimate — in a strong �∞
sense — is at most1

Õ
( 1

µmin(1 − γ)5ε2
+

tmix

µmin(1 − γ)

)
. (1)

The first component of (1) is consistent with the sample

complexity derived for the setting with independent samples

drawn from the stationary distribution of the trajectory [8].

In comparison, the second term of (1) — which is unaffected

by the accuracy level ε — is intrinsic to the Markovian

nature of the trajectory; in essence, this term reflects the cost

taken for the empirical distribution of the sample trajectory

to converge to a steady state, and becomes amortized as the

algorithm runs. In other words, the behavior of asynchronous

Q-learning would resemble what happens in the setting with

independent samples, as long as the algorithm has been run for

reasonably long. In addition, our analysis framework readily

yields another sample complexity bound

Õ
( tcover

(1 − γ)5ε2

)
, (2)

where tcover stands for the cover time — namely, the time

taken for the trajectory to visit all state-action pairs at least

1Let X :=
�
|S|, |A|, 1

1−γ
, 1

ε

�
. The notation f(X ) = O(g(X )) means

there exists a universal constant C1 > 0 such that f ≤ C1 g. The notation�O(·) is defined analogously except that it hides any logarithmic factor.

once. This facilitates comparisons with several prior results

based on the cover time.

Furthermore, we leverage the idea of variance reduction

to improve the scaling with the discount complexity 1
1−γ .

We demonstrate that a variance-reduced variant of asynchro-

nous Q-learning attains ε-accuracy using at most

Õ
( 1

µmin(1 − γ)3 min{1, ε2} +
tmix

µmin(1 − γ)

)
(3)

samples, matching the complexity of its synchronous counter-

part if ε ≤ min
{
1, 1

(1−γ)
√

tmix

}
[12]. Moreover, by taking the

action space to be a singleton set, the aforementioned results

immediately lead to �∞-based sample complexity guarantees

for temporal difference (TD) learning [13] on Markovian

samples.

Comparisons with past results. A large fraction of the

classical literature focused on asymptotic convergence analysis

of asynchronous Q-learning (e.g. [6], [7], [14]); these results,

however, did not lead to non-asymptotic sample complexity

bounds. The state-of-the-art sample complexity analysis was

due to the recent work [2], which derived a sample complex-

ity bound Õ
(

tmix

µ2
min

(1−γ)5ε2

)
. Given the obvious lower bound

1/µmin ≥ |S||A|, our result (1) improves upon that of [2] by

a factor at least on the order of |S||A|min
{
tmix,

1
(1−γ)4ε2

}
.

In particular, for sufficiently small accuracy level ε, our

improvement exceeds a factor of at least

tmix|S||A|.

In addition, we note that several prior works [9], [10]

developed sample complexity bounds in terms of the cover

time tcover of the sample trajectory; our result strengthens these

bounds by a factor of at least

t2cover|S||A| ≥ |S|3|A|3.

The interested reader is referred to Table I for more precise

comparisons, and to Section V for a discussion of further

related works.

B. Paper Organization, Notation, and Basic Concept

The remainder of the paper is organized as follows.

Section II formulates the problem and introduces some basic

quantities and assumptions. Section III presents the asynchro-

nous Q-learning algorithm along with its theoretical guar-

antees, whereas Section IV accommodates the extension:

asynchronous variance-reduced Q-learning. A more detailed

account of related works is given in Section V. The analy-

ses of our main theorems are described in Sections VI-IX.

We conclude this paper with a summary of our results and a

list of future directions in Section X. Several preliminary facts

about Markov chains and the proofs of technical lemmas are

postponed to the appendix.

Next, we introduce a set of notation that will be used

throughout the paper. Denote by ∆(S) (resp. ∆(A)) the

probability simplex over the set S (resp. A). For any vector

z = [zi]1≤i≤n ∈ R
n, we overload the notation

√· and | · |
to denote entry-wise operations, such that

√
z := [

√
zi]1≤i≤n

and |z| := [|zi|]1≤i≤n. For any vectors z = [ai]1≤i≤n and
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TABLE I

SAMPLE COMPLEXITY OF ASYNCHRONOUS Q-LEARNING AND ITS VARIANTS TO COMPUTE AN ε-OPTIMAL Q-FUNCTION IN THE �∞ NORM, WHERE WE

HIDE ALL LOGARITHMIC FACTORS. WITH REGARDS TO THE MARKOVIAN TRAJECTORY INDUCED BY THE BEHAVIOR POLICY, WE DENOTE BY

tcover , tmix , AND µmin THE COVER TIME, MIXING TIME, AND MINIMUM STATE-ACTION OCCUPANCY PROBABILITY OF THE ASSOCIATED

STATIONARY DISTRIBUTION, RESPECTIVELY

w = [wi]1≤i≤n, the notation z ≥ w (resp. z ≤ w) means

zi ≥ wi (resp. zi ≤ wi) for all 1 ≤ i ≤ n. Additionally,

we denote by 1 the all-one vector, I the identity matrix,

and 1{·} the indicator function. For any matrix P = [Pij ],
we denote kP k1 := maxi

∑
j |Pij |. Throughout this paper,

we use c, c0, c1, · · · to denote universal constants that do not

depend either on the parameters of the MDP or the target

levels (ε, δ), and their exact values may change from line to

line.

Finally, let us introduce the concept of uniform ergod-

icity for Markov chains. Consider any Markov chain

(X0, X1, X2, · · · ) with transition kernel P , finite state space

X and stationary distribution µ, and denote by P t(· |x) the

distribution of Xt conditioned on X0 = x ∈ X . This Markov

chain is said to be uniformly ergodic if, for some ρ < 1 and

M < ∞, one has

sup
x∈X

dTV

(
µ, P t(· |x)

)
≤ Mρt, (4)

where dTV(µ, ν) stands for the total variation distance between

two distributions µ and ν [15]:

dTV(µ, ν) :=
1

2

∑

x∈X

∣∣µ(x)−ν(x)
∣∣ = sup

A⊆X

∣∣µ(A)−ν(A)
∣∣. (5)

II. MODELS AND BACKGROUND

This paper studies an infinite-horizon MDP with discounted

rewards, as represented by a quintuple M = (S,A, P, r, γ).
Here, S and A denote respectively the (finite) state space

and action space, whereas γ ∈ (0, 1) indicates the discount

factor. Particular emphasis is placed on the scenario with

large state/action space and long effective horizon, namely,

|S|, |A| and the effective horizon 1
1−γ can all be quite large.

We use P : S × A → ∆(S) to represent the probability

transition kernel of the MDP, where for each state-action pair

(s, a) ∈ S×A, P (s′ | s, a) denotes the probability of transiting

to state s′ from state s when action a is executed. The reward

function is represented by r : S×A → [0, 1], such that r(s, a)
denotes the immediate reward from state s when action a is

taken; for simplicity, we assume throughout that all rewards

lie within [0, 1]. We focus on the tabular setting which, despite

its basic form, has not yet been well understood. See [16] for

an in-depth introduction of this model.

A. Q-Function and Bellman Operator

An action selection rule is termed a policy and represented

by a mapping π : S → ∆(A), which maps a state to a

distribution over the set of actions. A policy is said to be

stationary if it is time-invariant. We denote by {st, at, rt}∞t=0

a sample trajectory, where st (resp. at) denotes the state

(resp. the action taken) at time t, and rt = r(st, at) denotes

the reward received at time t. It is assumed throughout that the

rewards are deterministic and depend solely upon the current

state-action pair. We denote by V π : S → R the value function

of a policy π, namely,

∀s ∈ S : V π(s) := E

[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s

]
,

which is the expected discounted cumulative reward received

when (i) the initial state is s0 = s, (ii) the actions are taken
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based on the policy π (namely, at ∼ π(st) for all t ≥ 0)

and the trajectory is generated based on the transition kernel

(namely, st+1 ∼ P (·|st, at)). It can be easily verified that

0 ≤ V π(s) ≤ 1
1−γ for any π. The action-value function (also

Q-function) Qπ : S ×A → R of a policy π is defined for all

(s, a) ∈ S ×A by

Qπ(s, a) := E

[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s, a0 = a

]
,

where the actions are taken according to the policy π except

the initial action (i.e. at ∼ π(st) for all t ≥ 1). As is well-

known, there exists an optimal policy — denoted by π� — that

simultaneously maximizes V π(s) and Qπ(s, a) uniformly over

all state-action pairs (s, a) ∈ (S × A). Here and throughout,

we shall denote by V � := V π�

and Q� := Qπ�

the optimal

value function and the optimal Q-function, respectively.

In addition, the Bellman operator T , which is a mapping

from R
|S|×|A| to itself, is defined such that the (s, a)-th entry

of T (Q) is given by

T (Q)(s, a) := r(s, a) + γ E
s′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)
]
. (6)

It is well known that the optimal Q-function Q� is the

unique fixed point of the Bellman operator.

B. Sample Trajectory and Behavior Policy

Imagine we have access to a sample trajectory

{st, at, rt}∞t=0 generated by the MDP M under a given

stationary policy πb — called a behavior policy. The behavior

policy is deployed to help one learn the “behavior” of the

MDP under consideration, which often differs from the

optimal policy being sought. Given the stationarity of πb,

the sample trajectory can be viewed as a sample path of a

time-homogeneous Markov chain over the set of state-action

pairs {(s, a) | s ∈ S, a ∈ A}. Throughout this paper,

we impose the following uniform ergodicity assumption [17]

(see the definition of uniform ergodicity in Section I-B).

Assumption 1: The Markov chain induced by the stationary

behavior policy πb is uniformly ergodic.

There are several properties concerning the behavior policy

and its resulting Markov chain that play a crucial role in

learning the optimal Q-function. Specifically, denote by µπb

the stationary distribution (over all state-action pairs) of the

aforementioned behavior Markov chain, and define

µmin := min
(s,a)∈S×A

µπb
(s, a). (7)

Intuitively, µmin reflects an information bottleneck; that is,

the smaller µmin is, the more samples are needed in order to

ensure all state-action pairs are visited sufficiently many times.

In addition, we define the associated mixing time of the chain

as

tmix := min
{
t
∣∣∣ max

(s0,a0)∈S×A
dTV

(
P t(· | s0, a0), µπb

)
≤ 1

4

}
,

(8)

where P t(·|s0, a0) denotes the distribution of (st, at) condi-

tional on the initial state-action pair (s0, a0), and dTV(µ, ν) is

the total variation distance between µ and ν (see (5)). In words,

the mixing time tmix captures how fast the sample trajectory

decorrelates from its initial state. Moreover, we define the

cover time associated with this Markov chain as follows

tcover := min
{
t | min

(s0,a0)∈S×A
P
(
Bt | s0, a0

)
≥ 1

2

}
, (9)

where Bt denotes the event such that all (s, a) ∈ S ×A have

been visited at least once between time 0 and time t, and

P
(
Bt | s0, a0

)
denotes the probability of Bt conditional on the

initial state (s0, a0).

Remark 1: It is known that for a finite-state Markov chain,

having a finite mixing time tmix implies uniform ergodicity

of the chain [17, Page 4]. Thus, our uniform ergodicity

assumption is equivalent to the assumption imposed in [2]

(which assumes ergodicity in addition to a finite tmix).

C. Goal

Given a single sample trajectory {st, at, rt}∞t=0 generated

by the behavior policy πb, we aim to compute/approximate

the optimal Q-function Q� in an �∞ sense. This setting —

in which a state-action pair can be updated only when the

Markovian trajectory reaches it — is commonly referred to as

asynchronous Q-learning [2], [6] in tabular RL. The current

paper focuses on characterizing, in a non-asymptotic manner,

the sample efficiency of classical Q-learning and its variance-

reduced variant.

III. ASYNCHRONOUS Q-LEARNING ON A SINGLE

MARKOVIAN TRAJECTORY

A. Algorithm

The Q-learning algorithm [3] is arguably one of the most

famous off-policy algorithms aimed at learning the optimal

Q-function. Given the Markovian trajectory {st, at, rt}∞t=0

generated by the behavior policy πb, the asynchronous

Q-learning algorithm maintains a Q-function estimate Qt :
S ×A → R at each time t and adopts the following iterative

update rule

Qt(st−1, at−1) = (1 − ηt)Qt−1(st−1, at−1)

+ ηtTt(Qt−1)(st−1, at−1)

Qt(s, a) = Qt−1(s, a), ∀(s, a) 6= (st−1, at−1) (10)

for any t ≥ 0, whereas ηt denotes the learning rate or the

stepsize. Here, Tt denotes the empirical Bellman operator

w.r.t. the t-th sample, that is,

Tt(Q) (st−1, at−1) := r(st−1, at−1) + γ max
a′∈A

Q(st, a
′).

(11)

It is worth emphasizing that at each time t, only a single

entry — the one corresponding to the sampled state-action

pair (st−1, at−1) — is updated, with all remaining entries

unaltered. While the estimate Q0 can be initialized to arbitrary

values, we shall set Q0(s, a) = 0 for all (s, a) unless otherwise

noted. The corresponding value function estimate Vt : S → R

at time t is thus given by

∀s ∈ S : Vt(s) := max
a∈A

Qt(s, a). (12)

The complete algorithm is described in Algorithm 1.
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Algorithm 1: Asynchronous Q-Learning

1 input parameters: learning rates {ηt}, number of

iterations T .

2 initialization: Q0 = 0.

3 for t = 1, 2, · · · , T do

4 Draw action at−1 ∼ πb(st−1), observe reward

r(st−1, at−1), and draw next state

st ∼ P (· | st−1, at−1).
5 Update Qt according to (10).

B. Theoretical Guarantees for Asynchronous Q-Learning

We are in a position to present our main theory regard-

ing the non-asymptotic sample complexity of asynchronous

Q-learning, for which the key parameters µmin and tmix defined

respectively in (7) and (8) play a vital role. The proof of this

result is provided in Section VI.

Theorem 1 (Asynchronous Q-Learning): For the asynchro-

nous Q-learning algorithm detailed in Algorithm 1, there exist

some universal constants c0, c1 > 0 such that for any 0 < δ <
1 and 0 < ε ≤ 1

1−γ , one has

∀(s, a) ∈ S ×A : |QT (s, a) − Q�(s, a)| ≤ ε

with probability at least 1 − δ, provided that the iteration

number T and the learning rates ηt ≡ η obey

T ≥ c0

µmin

{
1

(1 − γ)5ε2
+

tmix

1 − γ

}

· log
( |S||A|T

δ

)
log

( 1

(1 − γ)2ε

)
, (13a)

η =
c1

log
( |S||A|T

δ

) min

{
(1 − γ)4ε2

γ2
,

1

tmix

}
. (13b)

Remark 2: The careful reader might immediately remark

that the learning rate η studied in Theorem 1 relies on prior

knowledge of ε, δ and T . This is more stringent than the

learning rates in [2], which do not require pre-determining

these parameters. To address this issue, we will explore a

more adaptive learning rate schedule shortly in Section III-D,

which achieves the same sample complexity without the need

of knowing these parameters a priori.

Theorem 1 delivers a finite-sample/finite-time analysis of

asynchronous Q-learning, given that a fixed learning rate

is adopted and chosen appropriately. The �∞-based sample

complexity required for Algorithm 1 to attain ε accuracy is at

most

Õ
( 1

µmin(1 − γ)5ε2
+

tmix

µmin(1 − γ)

)
. (14)

A few implications are in order.

1) Dependency on the Minimum State-Action Occupancy

Probability µmin: Our sample complexity bound (14) scales

linearly in 1/µmin, which is in general unimprovable. Consider,

for instance, the ideal scenario where state-action occupancy

is nearly uniform across all state-action pairs, in which

case 1/µmin is on the order of |S||A|. In such a “near-

uniform” case, the sample complexity scales linearly with

|S||A|, and this dependency matches the known minimax

lower bound [18] derived for the setting with independent

samples. In comparison, [2, Theorem 7] depends at least

quadratically on 1/µmin, which is at least |S||A| times larger

than our result (14).

2) Dependency on the Effective Horizon 1
1−γ : The sample

size bound (14) scales as 1
(1−γ)5ε2 , which coincides with

both [8], [19] (for the synchronous setting) and [2], [10]

(for the asynchronous setting) with either a rescaled linear

learning rate or a constant learning rate. This turns out to be

the sharpest scaling known to date for the classical form of

Q-learning.

3) Dependency on the Mixing Time tmix: The second addi-

tive term of our sample complexity (14) depends linearly

on the mixing time tmix and is (almost) independent of the

target accuracy ε. The influence of this mixing term is a

consequence of the expense taken for the Markovian trajectory

to reach a steady state, which is a one-time cost that can

be amortized over later iterations if the algorithm is run for

reasonably long. Put another way, if the behavior chain mixes

not too slowly with respect to ε (in the sense that tmix ≤
1

(1−γ)4ε2 ), then the algorithm behaves as if the samples were

independently drawn from the stationary distribution of the

trajectory. In comparison, the influences of tmix and 1
(1−γ)5ε2

in [2] (cf. Table I) are multiplicative regardless of the value

of ε, thus resulting in a much higher sample complexity. For

instance, if ε = O
(

1
(1−γ)2

√
tmix

)
, then the sample complexity

result therein is at least

tmix

µmin

≥ tmix|S||A|

times larger than our result (modulo some log factor).

4) Schedule of Learning Rates: An interesting aspect of

our analysis lies in the adoption of a time-invariant learning

rate, under which the �∞ error decays linearly — down to

some error floor whose value is dictated by the learning

rate. Therefore, a desired statistical accuracy can be achieved

by properly setting the learning rate based on the target

accuracy level ε and then determining the sample complex-

ity accordingly. In comparison, classical analyses typically

adopted a (rescaled) linear or a polynomial learning rule [2],

[9]. While the work [10] studied Q-learning with a constant

learning rate, their bounds were conservative and fell short

of revealing the optimal scaling. Furthermore, we note that

adopting time-invariant learning rates is not the only option

that enables the advertised sample complexity; as we shall elu-

cidate in Section III-D, one can also adopt carefully designed

diminishing learning rates to achieve the same performance

guarantees.

5) Mean Estimation Error: The high-probability bound in

Theorem 1 readily translates to a mean estimation error

guarantee. To see this, let us first make note of the following

basic crude bound (see e.g. [10], [20])

∣∣Qt(s, a)
∣∣ ≤ 1

1 − γ
,

∣∣Qt(s, a) − Q�(s, a)
∣∣ ≤ 1

1 − γ
(15)
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for all t ≥ 0 and all (s, a) ∈ S × A. By taking δ = ε(1 − γ)
in Theorem 1, we immediately reach

E

[
max
s,a

∣∣QT (s, a) − Q�(s, a)
∣∣
]
≤ ε(1 − δ) + δ

1

1 − γ
≤ 2ε,

(16)

provided that T obeys (13a). As a result, the sample com-

plexity remains unchanged (up to some logarithmic fac-

tor) when the goal is to achieve the mean error bound

E
[
maxs,a

∣∣QT (s, a) − Q�(s, a)
∣∣] ≤ 2ε.

In addition, our analysis framework immediately leads to

another sample complexity guarantee stated in terms of the

cover time tcover (cf. (9)), which facilitates comparisons with

several past work [9], [10]. The proof follows essentially that

of Theorem 1, with a sketch provided in Section VII.

Theorem 2: For the asynchronous Q-learning algorithm

detailed in Algorithm 1, there exist some universal constants

c0, c1 > 0 such that for any 0 < δ < 1 and 0 < ε ≤ 1
1−γ , one

has

∀(s, a) ∈ S ×A : |QT (s, a) − Q�(s, a)| ≤ ε

with probability at least 1 − δ, provided that the iteration

number T and the learning rates ηt ≡ η obey

T ≥ c0tcover

(1 − γ)5ε2
log2

( |S||A|T
δ

)
log

( 1

(1 − γ)2ε

)
, (17a)

η =
c1

log
( |S||A|T

δ

) min

{
(1 − γ)4ε2

γ2
, 1

}
. (17b)

Remark 3: The main difference between the cover-time-

based analysis and the mixing-time-based analysis lies in the

number of visits to each state-action pair (s, a) in every time

frame. Owing to the measure concentration of Markov chains,

we can see that the number of visits to each (s, a) concentrates

around its expected value in each time frame, which in

turn ensures that all state-action pairs have been visited at

least once as long as the time frame is sufficiently long.

This important property allows one to establish an intimate

connection between the analysis of Theorem 1 and that of

Theorem 2.

In a nutshell, this theorem tells us that the �∞-based sample

complexity of classical asynchronous Q-learning is bounded

above by

Õ
( tcover

(1 − γ)5ε2

)
, (18)

which scales linearly with the cover time. This improves upon

the prior result [9] (resp. [10]) by an order of at least

t3.29
cover ≥ |S|3.29|A|3.29 (resp. t2cover|S||A| ≥ |S|3|A|3).

See Table I for detailed comparisons. We shall further

make note of some connections between tcover and tmix/µmin

to help compare Theorem 1 and Theorem 2: (i) in gen-

eral, tcover = Õ(tmix/µmin) for uniformly ergodic chains;

(ii) one can find some cases where tmix/µmin = Õ(tcover).
Consequently, while Theorem 1 does not strictly dominate

Theorem 2 in all instances, the aforementioned connections

reveal that Theorem 1 is tighter for the worst-case scenarios.

The interested reader is referred to Section B for details.

C. A Special Case: TD Learning

In the special circumstance that the set of allowable actions

A is a singleton, the corresponding MDP reduces to a Markov

reward process (MRP), where the state transition kernel P :
S → ∆(S) describes the probability of transitioning between

different states, and r : S → [0, 1] denotes the reward function

(so that r(s) is the immediate reward in state s). The goal

is to estimate the value function V : S → R from the

trajectory {st, rt}∞t=0, which arises commonly in the task of

policy evaluation for a given deterministic policy.

The Q-learning procedure in this special setting reduces to

the well-known TD learning algorithm, which maintains an

estimate Vt : S → R at each time t and proceeds according

to the following iterative update2

Vt(st−1) = (1 − ηt)Vt−1(st−1) + ηt (r(st−1) + γVt−1(st)) ,

Vt(s) = Vt−1(s), ∀s 6= st−1. (19)

As usual, ηt denotes the learning rate at time t, and V0 is

taken to be 0. Consequently, our analysis for asynchronous

Q-learning with a Markovian trajectory immediately leads to

non-asymptotic �∞ guarantees for TD learning, stated below

as a corollary of Theorem 1. A similar result can be stated in

terms of the cover time as a corollary to Theorem 2, which

we omit for brevity.

Corollary 1 (Asynchronous TD learning): Consider the TD

learning algorithm (19). There exist some universal constants

c0, c1 > 0 such that for any 0 < δ < 1 and 0 < ε ≤ 1
1−γ , one

has

∀s ∈ S : |VT (s) −V (s)| ≤ ε

with probability at least 1 − δ, provided that the iteration

number T and the learning rates ηt ≡ η obey

T ≥ c0

µmin

{
1

(1 − γ)5ε2
+

tmix

1 − γ

}

· log
( |S|T

δ

)
log

( 1

(1 − γ)2ε

)
, (20a)

η =
c1

log
( |S|T

δ

) min

{
(1 − γ)4ε2

γ2
,

1

tmix

}
. (20b)

The above result reveals that the �∞-sample complexity for

TD learning is at most

Õ
( 1

µmin(1 − γ)5ε2
+

tmix

µmin(1 − γ)

)
, (21)

provided that an appropriate constant learning rate is adopted.

We note that prior finite-sample analysis on asynchronous

TD learning typically focused on (weighted) �2 estimation

errors with linear function approximation [21], [22], and it is

hence difficult to make fair comparisons. The recent paper [23]

developed �∞ guarantees for TD learning, focusing on the

synchronous settings with i.i.d. samples rather than Markovian

samples.

2When A = {a} is a singleton, the Q-learning update rule (10) reduces to
the TD update rule (19) by relating Q(s, a) = V (s).
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D. Adaptive and Implementable Learning Rates

As alluded to previously, the learning rates recommended

in (13b) depend on the mixing time tmix, a parameter that

might be either a priori unknown or difficult to estimate.

Fortunately, it is feasible to adopt a more adaptive learning rate

schedule, which does not rely on prior knowledge of tmix while

still being capable of achieving the performance advertised in

Theorem 1.

1) Learning Rates: In order to describe our new learning

rate schedule, we need to keep track of the following quantities

for all (s, a) ∈ S ×A:

• Kt(s, a): the number of times that the sample trajectory

visits (s, a) during the first t iterations.

In addition, we maintain an estimate µ̂min,t of µmin, computed

recursively as follows

µ̂min,t =

⎧
⎪⎨

⎪⎩

1
|S||A| , if mins,a Kt(s, a) = 0;

µ̂min,t−1, if 1
3 <

mins,a Kt(s,a)/t
�µmin,t−1

< 3;

mins,a Kt(s, a)/t, otherwise.

(22)

With the above quantities in place, we propose the following

learning rate schedule:

ηt = min
{
1, cη exp

(⌊
log

log t

µ̂min,t(1 − γ)γ2t

⌋)}
, (23)

where cη > 0 is some universal constant independent of any

MDP parameter3 and bxc denotes the nearest integer less than

or equal to x. If µ̂min,t forms a reliable estimate of µmin, then

one can view (23) as a sort of “piecewise constant approxi-

mation” of the rescaled linear stepsizes
cη log t

µmin(1−γ)γ2t ; in fact,

this can be viewed as a sort of “doubling trick” — reducing

the learning rate by a constant factor every once a while — to

approximate rescaled linear learning rates. Theorem 1 can then

be readily applied to analyze the performance for each constant

segment of this learning rate schedule (23). Noteworthily, such

learning rates are fully data-driven and do no rely on any prior

knowledge about the Markov chain (like tmix and µmin) or the

target accuracy level ε.

2) Performance Guarantees: Encouragingly, our theoreti-

cal framework can be readily extended without difficulty to

accommodate this adaptive learning rate choice. Specifically,

for the Q-function estimates

Q̂t =

{
Qt, if ηt+1 6= ηt,

Q̂t−1, otherwise,
(24)

where Qt is provided by the Q-learning iterations (cf. (10)).

We can then establish the following theoretical guarantees,

whose proof is deferred to Section VIII.

Theorem 3: Consider asynchronous Q-learning with learn-

ing rates (23) and the output (24). There exists some universal

constant C > 0 such that: for any 0 < δ < 1 and 0 < ε ≤
1

1−γ , one has

∀(s, a) ∈ S ×A :
∣∣Q̂T (s, a) − Q�(s, a)

∣∣ ≤ ε (25)

3More precisely, cη > 0 can be any universal constant obeying cη ≥
74c0c1 and cη > 11, with c0 and c1 being the universal constants stated in
Theorem 1.

with probability at least 1 − δ, provided that

T ≥ C

γ2
max

{ 1

µmin(1 − γ)5ε2
,

tmix

µmin(1 − γ)

}

· log
( |S||A|T

δ

)
log

( T

(1 − γ)2ε

)
. (26)

Remark 4: The interested reader might wonder whether

our sample complexity guarantees continue to hold under the

linear learning rate ηt = 1
Kt(st,at)

— a learning rate schedule

that has been previously studied in [6], [9]. Nevertheless,

as discussed in [8, Section 3.3.1], this linear learning rate

can lead to a sample complexity that scales exponentially in

the effective horizon 1
1−γ , which is clearly outperformed by a

properly rescaled linear learning rate.

IV. EXTENSION: ASYNCHRONOUS VARIANCE-REDUCED

Q-LEARNING

As pointed out in prior literature, the classical form of

Q-learning (10) often suffers from sub-optimal dependence on

the effective horizon 1
1−γ . For instance, in the synchronous

setting, the minimax lower bound is proportional to 1
(1−γ)3

(see, [18]), while the sharpest known upper bound for vanilla

Q-learning scales as 1
(1−γ)5 ; see detailed discussions in [8].

To remedy this issue, recent work proposed to leverage the

idea of variance reduction to develop accelerated RL algo-

rithms in the synchronous setting [12], [24], as inspired by

the seminal SVRG algorithm [25] that originates from the

stochastic optimization literature. In this section, we adapt this

idea to asynchronous Q-learning and characterize its sample

efficiency.

A. Algorithm

In order to accelerate the convergence, it is instrumental

to reduce the variability of the empirical Bellman operator

Tt employed in the update rule (10) of classical Q-learning.

This can be achieved via the following means. Simply put,

assuming we have access to (i) a reference Q-function esti-

mate, denoted by Q, and (ii) an estimate of T (Q), denoted by

T̃ (Q), the variance-reduced Q-learning update rule is given

by

Qt(st−1, at−1) = (1 − ηt)Qt−1(st−1, at−1)

+ ηt

(
Tt(Qt−1)−Tt(Q)+T̃ (Q)

)
(st−1, at−1),

Qt(s, a) = Qt−1(s, a), ∀(s, a) 6= (st−1, at−1),

(27)

where Tt denotes the empirical Bellman operator at time t
(cf. (11)). The empirical estimate T̃ (Q) can be computed using

a set of samples; more specifically, by drawing N consecutive

sample transitions {(si, ai, si+1)}0≤i<N from the observed

trajectory, we compute

T̃ (Q)(s, a) = r(s, a)

+
γ
∑N−1

i=0 1{(si, ai) = (s, a)}maxa′ Q(si+1, a
′)

∑N−1
i=0 1{(si, ai) = (s, a)}

. (28)
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Fig. 1. A pictorial illustration of variance-reduced Q-learning.

Compared with the classical form (10), the original update

term Tt(Qt−1) has been replaced by Tt(Qt−1)−Tt(Q)+T̃ (Q),
in the hope of achieving reduced variance as long as Q (which

serves as a proxy to Q�) is chosen properly.

We now take a moment to elucidate the rationale behind the

variance-reduced update rule (27). In the vanilla Q-learning

update rule (10), the variability in each iteration (condi-

tional on the past) comes primarily from the stochastic term

Tt(Qt−1). In order to accelerate convergence, it is advisable

to reduce the variability of this term. Suppose now that we

have access to a reference point Q that is close to Qt−1.

By replacing Tt(Qt−1) with

{
Tt(Qt−1) − Tt(Q)

}
+ T̃ (Q),

we see that the variability of the first term Tt(Qt−1)−Tt(Q)
can be small if Qt−1 ≈ Q, while the uncertainty of the second

term T̃ (Q) can also be well controlled via the use of batch

data. Motivated by this simple idea, the variance-reduced

Q-learning rule attempts to operate in an epoch-based manner,

computing T̃ (Q) once every epoch (so as not to increase

the overall sampling burden) and leveraging it to help reduce

variability.

For convenience of presentation, we introduce the following

notation

Q = VR-Q-RUN-EPOCH(Q, N, tepoch ) (29)

to represent the above-mentioned update rule, which starts

with a reference point Q and operates upon a total number

of N + tepoch consecutive sample transitions. The first N

samples are employed to construct T̃ (Q) via (28), with the

remaining samples employed in tepoch iterative updates (27);

see Algorithm 3. To achieve the desired acceleration, the proxy

Q needs to be periodically updated so as to better approximate

the truth Q� and hence reduce the bias. It is thus natural

to run the algorithm in a multi-epoch manner. Specifically,

we divide the samples into contiguous subsets called epochs,

each containing tepoch iterations and using N +tepoch samples.

We then proceed as follows

Qepoch
m = VR-Q-RUN-EPOCH(Qepoch

m−1 , N, tepoch ) (30)

for m = 1, . . . , M , where M is the total number of epochs,

and Qepoch
m denotes the output of the m-th epoch. The whole

procedure is summarized in Algorithm 2. Clearly, the total

number of samples used in this algorithm is given by M(N +
tepoch). We remark that the idea of performing variance

reduction in RL is certainly not new, and has been explored

in a number of recent works [12], [23], [24], [26]–[28].

B. Theoretical Guarantees for Variance-Reduced Q-Learning

This subsection develops a non-asymptotic sample complex-

ity bound for asynchronous variance-reduced Q-learning on a

single trajectory. Before presenting our theoretical guarantees,

there are several algorithmic parameters that we shall specify;

for given target levels (ε, δ), choose

ηt ≡ η =
c0

log
( |S||A|tepoch

δ

) min

{
(1 − γ)2

γ2
,

1

tmix

}
,

(31a)

N ≥ c1

µmin

( 1

(1 − γ)3 min{1, ε2} + tmix

)

· log
( |S||A|tepoch

δ

)
, (31b)

tepoch ≥ c2

µmin

( 1

(1 − γ)3
+

tmix

1 − γ

)

· log
( 1

(1 − γ)2ε

)
log

( |S||A|tepoch

δ

)
, (31c)

where c0 > 0 is some sufficiently small constant, c1, c2 >
0 are some sufficiently large constants, and we recall the

definitions of µmin and tmix in (7) and (8), respectively. Note

that the learning rate (31a) chosen here could be larger than the

choice (13b) for the classical form by a factor of O
(

1
(1−γ)2

)

(which happens if tmix is not too large), allowing the algorithm

to progress more aggressively.

Theorem 4 (Asynchronous Variance-Reduced Q-Learning):

Let Qepoch
M be the output of Algorithm 2 with parameters

chosen according to (31). There exists some constant c3 > 0
such that for any 0 < δ < 1 and 0 < ε ≤ 1

1−γ , one has

∀(s, a) ∈ S ×A : |Qepoch
M (s, a) − Q�(s, a)| ≤ ε

with probability at least 1− δ, provided that the total number

of epochs exceeds

M ≥ c3 log
1

ε(1 − γ)2
. (32)

The proof of this result is postponed to Section IX.

In view of Theorem 4, the �∞-based sample complexity for

variance-reduced Q-learning to yield ε accuracy — which is

characterized by M(N + tepoch) — can be as low as

Õ
( 1

µmin(1 − γ)3 min{1, ε2} +
tmix

µmin(1 − γ)

)
. (33)

Except for the second term that depends on the mixing

time, the first term matches the result of [12] derived for the

synchronous settings with independent samples. In the range

ε ∈ (0, min{1, 1
(1−γ)

√
tmix

}], the sample complexity reduce

to Õ
(

1
µmin(1−γ)3ε2

)
; the scaling 1

(1−γ)3 matches the minimax

lower bound derived in [18] for the synchronous setting.

Once again, we can immediately deduce guarantees for

asynchronous variance-reduced TD learning by reducing the

action space to a singleton set (akin to Section III-C), which

extends the analysis [23] to Markovian noise. In addition,

similar to Section III-D, we can also employ adaptive learning

rates in variance-reduced Q-learning — which do not require

prior knowledge of tmix and µmin — without compromising
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Algorithm 2: Asynchronous Variance-Reduced Q-

Learning

1 input parameters: number of epochs M , epoch length

tepoch, recentering length N , learning rate η.

2 initialization: set Qepoch
0 ← 0.

3 for each epoch m = 1, · · · , M do

/* Call Algorithm 3. */

4 Qepoch
m = VR-Q-RUN-EPOCH(Qepoch

m−1 , N, tepoch).

Algorithm 3: function Q = VR-Q-RUN-EPOCH

(Q, N, tepoch)

1 Draw N new consecutive samples from the sample

trajectory; compute T̃ (Q) according to (28).

2 Set s0 ← current state, and Q0 ← Q.

3 for t = 1, 2, · · · , tepoch do

4 Draw action at−1 ∼ πb(st−1), observe reward

r(st−1, at−1), and draw next state

st ∼ P (· | st−1, at−1).
5 Update Qt according to (27).

6 return: Q ← Qtepoch
.

the sample complexity. For the sake of brevity, we omit these

extensions in the current paper.

V. RELATED WORKS

In this section, we review several recent lines of works and

compare our results with them.

A. The Q-Learning Algorithm and Its Variants

The Q-learning algorithm, originally proposed in [29], has

been analyzed in the asymptotic regime by [6], [7], [14], [30]

since more than two decades ago. Additionally, finite-time

performance of Q-learning and its variants have been analyzed

by [2], [8]–[10], [19], [31]–[34] in the tabular setting, by [21],

[35]–[43] in the context of function approximations, and

by [44] with nonparametric regression. In addition, [11], [12],

[24], [45]–[47] studied modified Q-learning algorithms that

might potentially improve sample complexities and accelerate

convergence. Another line of work studied Q-learning with

sophisticated exploration strategies such as UCB exploration

(e.g. [48]–[51]), which is beyond the scope of the current

work.

B. Finite-Sample �∞ Guarantees for Q-Learning

We now expand on non-asymptotic �∞ guarantees available

in prior literature, which are the most relevant to the current

work. An interesting aspect that we shall highlight is the

importance of learning rates. For instance, when a linear

learning rate (i.e. ηt = 1/t) is adopted, the sample complexity

results derived in past works [9], [14] exhibit an exponential

blow-up in 1
1−γ , which is clearly undesirable. In the synchro-

nous setting, [8]–[10], [19] studied the finite-sample complex-

ity of Q-learning under various learning rate rules; the best

sample complexity known to date is Õ
( |S||A|

(1−γ)5ε2

)
, achieved

via either a rescaled linear learning rate [8], [19] or a constant

learning rate [19]. When it comes to asynchronous Q-learning

(in its classical form), our work provides the first analysis

that achieves linear scaling with 1/µmin or tcover; see Table I

for detailed comparisons. Going beyond classical Q-learning,

the speedy Q-learning algorithm, which adds a momentum

term in the update by using previous Q-function estimates,

provably achieves a sample complexity of Õ
(

tcover

(1−γ)4ε2

)
[11]

in the asynchronous setting, whose update rule takes twice

the storage of classical Q-learning. However, the proof idea

adopted in the speedy Q-learning paper relies heavily on the

specific update rules of speedy Q-learning, which cannot be

readily used here to help improve the sample complexity of

asynchronous Q-learning in terms of its dependency on 1
1−γ .

In comparison, our analysis of the variance-reduced Q-learning

algorithm achieves a sample complexity of Õ
(

1
µmin(1−γ)3ε2 +

tmix

µmin(1−γ)

)
when ε < 1.

C. Finite-Sample Guarantees for Model-Free Algorithms

Convergence properties of several model-free RL algorithms

have been studied recently in the presence of Markovian

data, including but not limited to TD learning and its vari-

ants [21], [22], [28], [52]–[60], Q-learning [35], [36], and

SARSA [61]. However, these recent papers typically focused

on the (weighted) �2 error rather than the �∞ risk, where the

latter is often more relevant in the context of RL. In addi-

tion, [23] investigated the �∞ bounds of (variance-reduced)

TD learning, although they did not account for Markovian

noise.

D. Finite-Sample Guarantees for Model-Based Algorithms

Another contrasting approach for learning the optimal

Q-function is the class of model-based algorithms, which

has been shown to enjoy minimax-optimal sample complex-

ity in the synchronous setting. More precisely, it is known

that by planning over an empirical MDP constructed from

Õ
( |S||A|

(1−γ)3ε2

)
samples, we are guaranteed to find not only an

ε-optimal Q-function but also an ε-optimal policy [18], [62],

[63]. It is worth emphasizing that the minimax optimality of

model-based approach has been shown to hold for the entire ε-

range; in comparison, the sample optimality of the model-free

approach has only been shown for a smaller range of accuracy

level ε in the synchronous setting. We also remark that existing

sample complexity analysis for model-based approaches might

be generalizable to Markovian data.

VI. ANALYSIS OF ASYNCHRONOUS Q-LEARNING

This section is devoted to establishing Theorem 1. Before

proceeding, we find it convenient to introduce some matrix

notation. Let Λt ∈ R
|S||A|×|S||A| be a diagonal matrix obeying

Λt

(
(s, a), (s, a)

)
:=

{
η, if (s, a) = (st−1, at−1),

0, otherwise,
(34)

where η > 0 is the learning rate. In addition, we use the vector

Qt ∈ R
|S||A| (resp. V t ∈ R

|S|) to represent our estimate Qt
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(resp. Vt) in the t-th iteration, so that the (s, a)-th (resp. sth)

entry of Qt (resp. V t) is given by Qt(s, a) (resp. Vt(s)).
Similarly, let the vectors Q� ∈ R

|S||A| and V � ∈ R
|S|

represent the optimal Q-function Q� and the optimal value

function V �, respectively. We also let the vector r ∈ R
|S||A|

stand for the reward function r, so that the (s, a)-th entry

of r is given by r(s, a). In addition, we define the matrix

P t ∈ {0, 1}|S||A|×|S| such that

P t

(
(s, a), s′

)
:=

{
1, if (s, a, s′) = (st−1, at−1, st),

0, otherwise.
(35)

Clearly, this set of notation allows us to express the

Q-learning update rule (10) in the following matrix form

Qt =
(
I − Λt

)
Qt−1 + Λt

(
r + γP tV t−1

)
. (36)

A. Error Decay in the Presence of Constant Learning Rates

The main step of the analysis is to establish the following

result concerning the dynamics of asynchronous Q-learning.

In order to state it formally, we find it convenient to introduce

several auxiliary quantities

tframe :=
443tmix

µmin

log
(4|S||A|T

δ

)
, (37a)

tth := max

{
2 log 1

(1−γ)2ε

ηµmin

, tframe

}
, (37b)

µframe :=
1

2
µmintframe, (37c)

ρ := (1 − γ)
(
1 − (1 − η)µframe

)
. (37d)

With these quantities in mind, we have the following result.

Theorem 5: Consider the asynchronous Q-learning algo-

rithm in Algorithm 1 with ηt ≡ η. For any δ ∈ (0, 1) and

any ε ∈ (0, 1
1−γ ], there exists a universal constant c > 0 such

that with probability at least 1 − 6δ, the following relation

holds uniformly for all t ≤ T (defined in (13a))

kQt − Q�k∞ ≤ (1 − ρ)k kQ0 − Q�k∞
1 − γ

+
cγ

1 − γ
kV �k∞

√
η log

( |S||A|T
δ

)
+ ε, (38)

provided that 0 < η log
( |S||A|T

δ

)
< 1. Here, we define k :=

max
{
0,

⌊
t−tth

tframe

⌋}
.

In words, Theorem 5 asserts that the �∞ estimation error

decays linearly — in a blockwise manner — to some error

floor that scales with
√

η. This result suggests how to set the

learning rate based on the target accuracy level, which in turn

allows us to pin down the sample complexity under consider-

ation. In what follows, we shall first establish Theorem 5, and

then return to prove Theorem 1 using this result.

Before embarking on the proof of Theorem 5, we would

like to point out a few key technical ingredients: (i) an

epoch-based analysis that focuses on macroscopic dynamics

as opposed to per-iteration dynamics, (ii) measure concentra-

tion of Markov chains (see Section A) that helps reveal the

similarity between epoch-based dynamics and the synchronous

counterpart, and (iii) careful analysis of recursive relations.

These key ingredients taken collectively lead to a sample

complexity bound that improves upon prior analysis in [2].

B. Proof of Theorem 5

We are now positioned to outline the proof of Theorem 5.

We remind the reader that for any two vectors z = [zi]
and w = [wi], the notation z ≤ w (resp. z ≥ w) denotes

entrywise comparison (cf. Section I), meaning that zi ≤ wi

(resp. zi ≥ wi) holds for all i. As a result, for any non-negative

matrix A, one has Az ≤ Aw as long as z ≤ w.

1) Key Decomposition and a Recursive Formula: The start-

ing point of our proof is the following elementary decompo-

sition

∆t := Qt − Q�

=
(
I − Λt

)
Qt−1 + Λt

(
r + γP tV t−1

)
− Q�

=
(
I − Λt

)(
Qt−1 − Q�

)
+ Λt

(
r + γP tV t−1 − Q�

)

=
(
I − Λt

)(
Qt−1 − Q�

)
+ γΛt

(
P tV t−1 − PV �

)

=
(
I−Λt

)
∆t−1+γΛt

(
P t − P

)
V �+γΛtP t

(
V t−1 − V �

)

(39)

for any t > 0, where the first line results from the update

rule (36), and the penultimate line follows from the Bellman

equation Q� = r + γPV � (see [16]). Applying this relation

recursively gives

∆t = γ

t∑

i=1

t∏

j=i+1

(
I − Λj

)
Λi

(
P i − P

)
V �

︸ ︷︷ ︸
=:β1,t

+ γ

t∑

i=1

t∏

j=i+1

(
I − Λj

)
ΛiP i

(
V i−1 − V �

)

︸ ︷︷ ︸
=:β2,t

+

t∏

j=1

(
I − Λj

)
∆0

︸ ︷︷ ︸
=:β3,t

. (40)

Applying the triangle inequality, we obtain

|∆t| ≤ |β1,t| + |β2,t| + |β3,t|, (41)

where we recall the notation |z| := [|zi|]1≤i≤n for any vector

z = [zi]1≤i≤n. In what follows, we shall look at these terms

separately.

• First of all, given that I − Λj and Λj are both non-

negative diagonal matrices and that
∥∥P i

(
V i−1 − V �

)∥∥
∞ ≤ kP ik1kV i−1 − V �k∞

= kV i−1 − V �k∞
≤ kQi−1 − Q�k∞ = k∆i−1k∞,

we can easily see that

∣∣β2,t

∣∣ ≤ γ

t∑

i=1

k∆i−1k∞
t∏

j=i+1

(
I − Λj

)
Λi1. (42)
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• Next, the term β1,t can be controlled by exploiting

some sort of statistical independence across different

transitions and applying the Bernstein inequality. This

is summarized in the following lemma, with the proof

deferred to Section C.

Lemma 1: Consider any fixed vector V � ∈ R
|S|. There

exists some universal constant c > 0 such that for any

0 < δ < 1, one has for all 1 ≤ t ≤ T

∣∣∣∣∣γ
t∑

i=1

t∏

j=i+1

(
I − Λj

)
Λi

(
P i − P

)
V �

∣∣∣∣∣ ≤ τ1kV �k∞1

(43)

with probability at least 1 − δ, provided that 0 <
η log

( |S||A|T
δ

)
< 1. Here, we define

τ1 := cγ

√
η log

( |S||A|T
δ

)
. (44)

• Additionally, we develop an upper bound on the term

β3,t, which follows directly from the concentration of

the empirical distribution of the Markov chain (see

Lemma 8). The proof is deferred to Section D.

Lemma 2: For any δ > 0, recall the definition of tframe

in (37a). Suppose that T > tframe and 0 < η < 1. Then

with probability exceeding 1 − δ one has

∣∣∣∣∣

t∏

j=1

(
I − Λj

)
∆0

∣∣∣∣∣ ≤ (1 − η)
1
2 tµmink∆0k∞1 (45)

uniformly over all t obeying T ≥ t ≥ tframe and all vector

∆0 ∈ R
|S||A|.

Moreover, in the case where t < tframe, we make note of

the straightforward bound

∣∣∣∣∣

t∏

j=1

(
I − Λj

)
∆0

∣∣∣∣∣ ≤ k∆0k∞1, (46)

given that I−Λj is a diagonal non-negative matrix whose

entries are bounded by 1 − η < 1.

Substituting the preceding bounds into (41), we arrive at

|∆t| ≤⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ
∑t

i=1

∥∥∆i−1

∥∥
∞

∏t
j=i+1(I − Λj)Λi1

+τ1kV �k∞1 +
∥∥∆0

∥∥
∞1, t < tframe

γ
∑t

i=1

∥∥∆i−1

∥∥
∞

∏t
j=i+1(I − Λj)Λi1

+τ1kV �k∞1 + (1 − η)
1
2 tµmin

∥∥∆0

∥∥
∞1, tframe ≤ t ≤ T

(47)

with probability at least 1−2δ, where tframe is defined in (37a).

The rest of the proof is thus dedicated to bounding |∆t| based

on the above recursive formula (47).

2) Recursive Analysis: We shall start by presenting a crude

bound, followed by more refined analysis.

a) A crude bound: We start by observing the following

recursive relation

|∆t| ≤ γ

t∑

i=1

∥∥∆i−1

∥∥
∞

t∏

j=i+1

(I − Λj)Λi1

+ τ1kV �k∞1 + k∆0k∞1, 1 ≤ t ≤ T, (48)

which is a direct consequence of (47). In the sequel, we invoke

mathematical induction to establish, for all 1 ≤ t ≤ T , the

following crude upper bound

∥∥∆t

∥∥
∞ ≤ τ1kV �k∞ + k∆0k∞

1 − γ
, (49)

which implies the stability of the asynchronous Q-learning

updates.

Towards this, we first observe that (49) holds trivially for

the base case (namely, t = 0). Now suppose that the inequality

(49) holds for all iterations up to t − 1. In view of (48) and

the induction hypotheses,

|∆t| ≤
γ
(
τ1kV �k∞ +

∥∥∆0

∥∥
∞
)

1 − γ

t∑

i=1

t∏

j=i+1

(I − Λj)Λi1

+ τ1kV �k∞1 + k∆0k∞1, (50)

where we invoke the fact that the vector
∏t

j=i+1(I −Λj)Λi1

is non-negative. Next, define the diagonal matrix M i :=∏t
j=i+1(I − Λj)Λi, and denote by N j

i (s, a) the number of

visits to the state-action pair (s, a) between the i-th and the

j-th iterations (including i and j). Then the diagonal entries

of M i satisfy

M i((s, a), (s, a))

=

{
η(1 − η)Nt

i+1(s,a), if (s, a) = (si−1, ai−1),

0, if (s, a) 6= (si−1, ai−1).

Letting e(s,a) ∈ R
|S||A| be a standard basis vector whose

only nonzero entry is the (s, a)-th entry, we can easily verify

that

t∏

j=i+1

(I − Λj)Λi1 = M i1 = M ie(si−1,ai−1)

= η(1 − η)Nt
i+1(si−1,ai−1)e(si−1,ai−1) (51a)

and

t∑

i=1

t∏

j=i+1

(I − Λj)Λi1

=

t∑

i=1

η(1 − η)Nt
i+1(si−1,ai−1)e(si−1,ai−1)

=
∑

(s,a)∈S×A
e(s,a)

·
{

t∑

i=1

η(1 − η)Nt
i+1(s,a)

1
{
(si−1, ai−1) = (s, a)

}
}

≤
∑

(s,a)∈S×A

∞∑

j=0

η(1 − η)je(s,a) =
∞∑

j=0

η(1 − η)j
1 = 1.

(51b)
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Combining the above relations with the inequality (50), one

deduces that

∥∥∆t

∥∥
∞ ≤

γ(τ1kV �k∞ +
∥∥∆0

∥∥
∞)

1 − γ
+ τ1kV �k∞ +

∥∥∆0

∥∥
∞

=
τ1kV �k∞ +

∥∥∆0

∥∥
∞

1 − γ
,

thus establishing (49) for the t-th iteration. This induction

analysis thus validates (49) for all 1 ≤ t ≤ T .

b) Refined analysis: Now, we strengthen the bound (49)

by means of a recursive argument. To begin with, it is easily

seen that the term (1 − η)
1
2 tµmink∆0k∞ is bounded above by

(1 − γ)ε for any t > tth, where we remind the reader of

the definition of tth in (37b) and the fact that k∆0k∞ =
kQ�k∞ ≤ 1

1−γ . It is assumed that T > tth. To facilitate our

argument, we introduce a collection of auxiliary quantities ut

as follows

u0 =
k∆0k∞
1 − γ

, (52a)

ut = kvtk∞, with

vt =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

γ
∑t

i=1

∏t
j=i+1(I − Λj)Λi1ui−1 + k∆0k∞1,

for 1≤ t≤ tth,

γ
∑t

i=1

∏t
j=i+1(I − Λj)Λi1ui−1,

for t > tth.

(52b)

These auxiliary quantities are useful as they provide upper

bounds on k∆tk∞, as asserted by the following lemma. The

proof is deferred to Section E.

Lemma 3: Recall the definition (44) of τ1 in Lemma 1.

With probability at least 1−2δ, the quantities {ut} defined in

(52) satisfy

k∆tk∞ ≤ τ1kV �k∞
1 − γ

+ ut + ε. (53)

The preceding result motivates us to turn attention to

bounding the quantities {ut}. Towards this end, we resort to

a frame-based analysis by dividing the iterations [1, t] into

contiguous frames each comprising tframe (cf. (37a)) iterations.

Further, we define another auxiliary sequence:

wk := (1 − ρ)k k∆0k∞
1 − γ

= (1 − ρ)k kQ0 − Q�k∞
1 − γ

, (54)

where we remind the reader of the definition of ρ in (37d).

The connection between {wk} and {ut} is made precise as

follows, whose proof is postponed to Section F.

Lemma 4: For any δ ∈ (0, 1
2 ), with probability at least

1 − 2δ, one has

ut ≤ wk, with k = max

{
0,

⌊ t − tth
tframe

⌋}
. (55)

Combining Lemmas 3-4, we arrive at

kQt − Q�k∞ = k∆tk∞ ≤ τ1kV �k∞
1 − γ

+ wk + ε

≤ (1 − ρ)kkQ0 − Q�k∞
1 − γ

+
τ1kV �k∞

1 − γ
+ ε,

which finishes the proof of Theorem 5.

C. Proof of Theorem 1

Now we return to complete the proof of Theorem 1.

To control k∆tk∞ to the desired level, we first claim that

the first term of (38) obeys

(1 − ρ)k k∆0k∞
1 − γ

≤ ε (56)

whenever

t ≥ tth + tframe +
4

(1 − γ)ηµmin

log

( k∆0k∞
ε(1 − γ)

)
, (57)

provided that η < 1/µframe. Furthermore, by taking the

learning rate as

η = min

{
(1 − γ)4ε2

c2γ2 log |S||A|T
δ

,
1

µframe

}
, (58)

one can easily verify that the second term of (38) satisfies

cγ

1 − γ
kV �k∞

√
η log

( |S||A|T
δ

)
≤ ε, (59)

where the last step follows since kV �k∞ ≤ 1
1−γ . Putting the

above bounds together ensures k∆tk∞ ≤ 3ε. By replacing ε
with ε/3, we can readily conclude the proof, as long as the

claim (56) can be justified.

Proof of the Inequality (56): Observe that

(1 − ρ)k k∆0k∞
1 − γ

≤ exp(−ρk)
k∆0k∞
1 − γ

≤ ε

holds true whenever k ≥ log
(

‖∆0‖∞
ε(1−γ)

)

ρ , which would hold as

long as (according to the definition (55) of k)

t ≥ tth + tframe +
tframe

ρ
log

( k∆0k∞
ε(1 − γ)

)
. (60)

In addition, if η < 1/µframe, then one has (1 − η)µframe ≤
1 − ηµframe/2, thus guaranteeing that

ρ = (1 − γ)
(
1 − (1 − η)µframe) ≥ (1 − γ)

(
1 − 1 +

ηµframe

2

)

=
1

2
(1 − γ)ηµframe.

This taken collectively with (60) demonstrates that (1 −
ρ)k ‖∆0‖∞

1−γ ≤ ε holds as long as

t ≥ tth + tframe +
2tframe

(1 − γ)ηµframe

log

( k∆0k∞
ε(1 − γ)

)

= tth + tframe +
4

(1 − γ)ηµmin

log

( k∆0k∞
ε(1 − γ)

)
, (61)

where we have made use of the definition of µframe (cf. (37c)).

VII. COVER-TIME-BASED ANALYSIS OF ASYNCHRONOUS

Q-LEARNING

In this section, we sketch the proof of Theorem 2. Before

continuing, we recall the definition of tcover in (9), and further

introduce a quantity

tcover,all := tcover log
T

δ
. (62)
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There are two useful facts regarding tcover,all that play an

important role in the analysis.

Lemma 5: Define the event

Kl :=
{
∃(s, a) ∈ S ×A s.t. it is not visited

within iterations
(
ltcover,all, (l + 1)tcover,all

] }
,

and set L := b T
tcover,all

c. Then one has P

{⋃L
l=0 Kl

}
≤ δ.

Proof: See Section H.

In other words, Lemma 5 tells us that with high probability,

all state-action pairs are visited at least once in every time

frame (ltcover,all, (l + 1)tcover,all] with 0 ≤ l ≤ bT/tcover,allc.

The next result is a consequence of Lemma 5 as well as the

analysis of Lemma 2; the proof can be found in Section D.

Lemma 6: For any δ > 0, recall the definition of tcover,all

in (62). Suppose that T > tcover,all and 0 < η < 1. Then with

probability exceeding 1 − δ one has
∣∣∣∣∣

t∏

j=1

(
I − Λj

)
∆0

∣∣∣∣∣ ≤ (1 − η)
t

2tcover,all k∆0k∞1 (63)

uniformly over all t obeying T ≥ t ≥ tcover,all and all vector

∆0 ∈ R
|S||A|.

With the above two lemmas in mind, we are now positioned

to prove Theorem 2. Repeating the analysis of (47) (except

that Lemma 2 is replaced by Lemma 6) yields

|∆t| ≤⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ
∑t

i=1

∥∥∆i−1

∥∥
∞

∏t
j=i+1(I − Λj)Λi1

+τ1kV �k∞1 +
∥∥∆0

∥∥
∞1, t < tcover,all

γ
∑t

i=1

∥∥∆i−1

∥∥
∞

∏t
j=i+1(I − Λj)Λi1

+τ1kV �k∞1 + (1 − η)
t

2tcover,all

∥∥∆0

∥∥
∞1, tcover,all≤ t≤T

with probability at least 1 − 2δ. This observation resembles

(47), except that tframe (resp. µmin) is replaced by tcover,all

(resp. 1
tcover,all

). As a consequence, we can immediately use the

recursive analysis carried out in Section VI-B.2 to establish

a convergence guarantee based on the cover time. More

specifically, define

ρ̃ := (1 − γ)
(
1 − (1 − η)

tcover,all
2tcover,all

)
= (1 − γ)

(
1 − (1 − η)

1
2

)
.

(64)

Replacing ρ by ρ̃ in Theorem 5 reveals that with probability

at least 1 − 6δ,

kQt − Q�k∞ ≤ (1 − ρ̃)k kQ0 − Q�k∞
1 − γ

+
cγ

1 − γ
kV �k∞

√
η log

( |S||A|T
δ

)
+ ε

(65)

holds for all t ≤ T , where k := max
{
0,

⌊ t−tth,cover

tcover,all

⌋}
and we

abuse notation to define

tth,cover := 2tcover,all log
1

(1 − γ)2ε
.

Repeating the proof of the inequality (56) yields

(1 − ρ̃)k k∆0k∞
1 − γ

≤ ε,

whenever t ≥ tth,cover + tcover,all +
2tcover,all

(1−γ)η log
(

1
ε(1−γ)2

)
,

with the proviso that η < 1/2. In addition, setting η =
(1−γ)4

c2γ2ε2 log
(

|S||A|T
δ

) guarantees that

cγ

1 − γ
kV �k∞

√
η log

( |S||A|T
δ

)

≤ cγ

(1 − γ)2

√
η log

( |S||A|T
δ

)
≤ ε.

In conclusion, we have kQt − Q�k∞ ≤ 3ε as long as

t ≥ c′tcover,all

(1 − γ)5ε2
log

( |S||A|T
δ

)
log

( 1

ε(1 − γ)2

)
,

for some sufficiently large constant c′ > 0. This together with

the definition (62) completes the proof.

VIII. ANALYSIS UNDER ADAPTIVE LEARNING RATES

(PROOF OF THEOREM 3)

A. Useful Preliminary Facts About ηt

To begin with, we make note of several useful properties

about ηt.

• Invoking the concentration result in Lemma 8, one can

easily show that with probability at least 1 − δ,

1

2
µmin < min

s,a

Kt(s, a)

t
<

3

2
µmin (66)

holds simultaneously for all t obeying T ≥ t ≥
443tmix log( 4|S||A|t

δ
)

µmin
. In addition, this concentration result

taken collectively with the update rule (22) of µ̂min,t — in

particular, the second case of (22) — implies that µ̂min,t

“stabilizes” as t grows; to be precise, there exists some

quantity c′ ∈ [1/6, 9/2] such that

µ̂min,t ≡ c′µmin (67)

holds simultaneously for all t obeying T ≥ t ≥
443tmix log( 4|S||A|t

δ
)

µmin
.

• For any t obeying t ≥ 6cηtmix log( 2|S||A|t
δ

)

µmin(1−γ)γ2 (so that

log t
�µmin,t(1−γ)γ2t ≤ 1

cη
and t ≥ 443tmix log( 2|S||A|t

δ
)

µmin
for cη ≥

11), the learning rate (23) simplifies to

ηt = cη exp
(⌊

log
log t

c′µmin(1 − γ)γ2t

⌋)
. (68)

Clearly, there exists a sequence of endpoints t1 < t2 <

t3 < . . . with t1 ≤ 6ecηtmix log(
2|S||A|t1

δ
)

µmin(1−γ)γ2 such that:

2tk < tk+1 < 3tk and (69)

ηt = η(k) :=
αk log tk+1

µmin(1 − γ)γ2tk+1
, ∀tk < t ≤ tk+1

(70)
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for some positive constant αk ∈
[ 2cη

9e , 6cη

]
; in words,

(70) provides a concrete expression/bound for the piece-

wise constant learning rate, where the tk’s form the

change points.

Combining (70) with the definition of Q̂t (cf. (22)), one can

easily check that for t > t1,

Q̂t = Qtk
, ∀tk < t ≤ tk+1, (71)

meaning that Q̂t remains fixed within each time segment

(tk, tk+1]. With this property in mind, we only need to analyze

Qtk
in the sequel, which can be easily accomplished by

invoking Theorem 1.

B. A Crude Bound

Given that 0 < ηt ≤ 1 and 0 ≤ r(s, a) ≤ 1, the update rule

(10) of Qt implies that

kQtk∞
≤ max

{
(1 − ηt)kQt−1k∞ + ηt(1+γkQt−1k∞), kQt−1k∞

}

≤ kQt−1k∞ + γ,

thus leading to the following crude bound that for any t > 1
1−γ

kQt − Q�k∞ ≤ t + kQ0k∞ + kQ�k∞ ≤ t +
2

1 − γ
≤ 3t.

(72)

Remark 5: As we shall see momentarily, this crude bound

allows one to control — in a coarse manner — the error at

the beginning of each time interval [tk−1, tk], which is needed

when invoking Theorem 1.

C. Refined Analysis

Let us define

εk :=

√
ck,0 log( |S||A|tk

δ ) log tk

µmin(1 − γ)5γ2tk
, (73)

where the constant ck,0 is chosen to be ck,0 = αk−1/c1 > 0,

with c1 > 0 the universal constant stated in Theorem 1. The

property (70) of ηt together with the definition (73) implies

that

ηt =
c1(1 − γ)4ε2

k

log( |S||A|tk

δ )
=

c1

log( |S||A|tk

δ )
min

{
(1 − γ)4ε2

k,
1

tmix

}

for any t ∈ (tk−1, tk], as long as (1−γ)4ε2
k ≤ 1/tmix, or more

explicitly, when

tk ≥ ck,0tmix log( |S||A|tk

δ ) log tk

µmin(1 − γ)γ2
. (74)

In addition, the condition (69) and the definition (73) further

tell us that

tk − tk−1 > tk−1 >
1

3
tk =

ck,0 log
( |S||A|tk

δ

)
log tk

3µmin(1 − γ)5γ2ε2
k

.

Invoking Theorem 1 with an initialization Qtk−1
(which

clearly satisfies the crude bound (72)) ensures that

kQtk
− Q�k∞ ≤ εk (75)

with probability at least 1 − δ, with the proviso that

1

3
tk ≥ c0

µmin

{
1

(1 − γ)5ε2
k

+
tmix

1 − γ

}

· log
( |S||A|tk

δ

)
log

( tk
(1 − γ)2εk

)
(76)

with c0 > 0 the universal constant stated in Theorem 1. Under

the sample size condition (74), this requirement (76) can be

guaranteed by adjusting the constant cη in (23) to satisfy the

following inequality:

ck,0 =
αk−1

c1
≥ 2cη

9ec1
> 6c0.

Finally, taking tkmax to be the largest change point that does

not exceed T , we see from (69) that 1
3T ≤ tkmax ≤ T . Then

one has

kQT − Q�k∞ = kQtkmax
− Q�k∞

≤ εkmax =

√
ck,0 log(

|S||A|tkmax

δ ) log tkmax

µmin(1 − γ)5γ2tkmax

≤

√
3ck,0 log( |S||A|T

δ ) log T

µmin(1 − γ)5γ2T
(77)

These immediately conclude the proof of the theorem under

the sample size condition (26), provided that

C >
18cη

c1
>

3αk−1

c1
= 3ck,0.

IX. ANALYSIS OF ASYNCHRONOUS VARIANCE-REDUCED

Q-LEARNING

This section aims to establish Theorem 4. We carry out

an epoch-based analysis, that is, we first quantify the progress

made over each epoch, and then demonstrate how many epochs

are sufficient to attain the desired accuracy. In what follows,

we shall overload the notation by defining

tframe :=
443tmix

µmin

log
(4|S||A|tepoch

δ

)
, (78a)

tth := max

{
2 log 1

(1−γ)2ε

ηµmin

, tframe

}
, (78b)

ρ := (1 − γ)
(
1 − (1 − η)µframe

)
, (78c)

µframe :=
1

2
µmintframe. (78d)

A. Per-Epoch Analysis

We start by analyzing the progress made over each epoch.

Before proceeding, we denote by P̃ ∈ [0, 1]|S||A|×|S| a

matrix corresponding to the empirical probability transition

kernel used in (28) from N new sample transitions. Further,

we use the vector Q ∈ R
|S||A| to represent the reference

Q-function, and introduce the vector V ∈ R
|S| to represent the

corresponding value function so that V (s) := maxa Q(s, a)
for all s ∈ S.
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For convenience, this subsection abuses notation to assume

that an epoch starts with an estimate Q0 = Q, and consists

of the subsequent

tepoch := tframe + tth +
8 log 2

1−γ

(1 − γ)ηµmin

(79)

iterations of variance-reduced Q-learning updates, where tframe

and tth are defined in (78a) and (78b), respectively. In the

sequel, we divide all epochs into two phases, depending on

the quality of the initial estimate Q in each epoch.

1) Phase 1: When kQ−Q�k∞ > 1/
√

1 − γ: Recalling the

matrix notation of Λt and P t in (34) and (35), respectively,

we can rewrite (27) as follows

Qt =
(
I − Λt

)
Qt−1 + Λt

(
r + γP t(V t−1 − V ) + γP̃ V

)
.

(80)

Following similar steps as in the expression (39), we arrive

at the following error decomposition

Θt := Qt − Q� =
(
I − Λt

)
Qt−1

+ Λt

(
r + γP t(V t−1 − V ) + γP̃V

)
− Q�

=
(
I − Λt

)(
Qt−1 − Q�

)

+ Λt

(
r + γP t(V t−1 − V ) + γP̃V − Q�

)

=
(
I − Λt

)(
Qt−1 − Q�

)

+ γΛt

(
P t(V t−1 − V ) + P̃ V − PV �

)

=
(
I − Λt

)
Θt−1 + γΛt

(
P̃ − P

)
V

+ γΛt

(
P t − P

)
(V � − V ) + γΛtP t

(
V t−1 − V �

)
,

(81)

which once again leads to a recursive relation

Θt = γ

t∑

i=1

t∏

j=i+1

(
I − Λj

)
Λi

(
P̃ − P

)
V

︸ ︷︷ ︸
=:h0,t

+ γ

t∑

i=1

t∏

j=i+1

(
I − Λj

)
Λi

(
P i − P

)
(V � − V )

︸ ︷︷ ︸
=:h1,t

+ γ

t∑

i=1

t∏

j=i+1

(
I − Λj

)
ΛiP i

(
V i−1 − V �

)

︸ ︷︷ ︸
=:h2,t

+

t∏

j=1

(
I − Λj

)
Θ0

︸ ︷︷ ︸
=:h3,t

. (82)

This identity takes a very similar form as (40) except for

the additional term h0,t.

Let us begin by controlling the first term, towards which

we have the following lemma. The proof is postponed to

Section G.

Lemma 7: Suppose that P̃ is constructed using N consec-

utive sample transitions. If N > tframe, then with probability

greater than 1 − δ, one has

kh0,tk∞ ≤ γ

√
4 log

( 6N |S||A|
δ

)

Nµmin

∥∥V − V �
∥∥
∞

+
γ

1 − γ

√
4 log

( 6N |S||A|
δ

)

Nµmin

. (83)

If t < tframe, then it is straightforwardly seen that

|h3,t| ≤ kΘ0k∞1.

Taking this together with the results from Lemma 1 and

Lemma 2, we are guaranteed that

∣∣h1,t

∣∣ ≤ τ2kV � − V k∞1

|h3,t| ≤

⎧
⎨

⎩
(1 − η)

1
2 tµminkΘ0k∞1, if tframe ≤ t ≤ tepoch

kΘ0k∞1, if t < tframe

with probability at least 1 − 2δ, where

τ2 := c′γ

√
η log

( |S||A|tepoch

δ

)

for some constant c′ > 0 (similar to (44)). In addition,

the term h2,t can be bounded in the same way as β2,t in (42).

Therefore, repeating the same argument as for Theorem 5 and

taking ξ = 1
16

√
1−γ

, we conclude that with probability at least

1 − δ,

kΘtk∞ ≤ (1 − ρ)k kΘ0k∞
1 − γ

+ τ̃ + ξ

= (1 − ρ)k kQ − Q�k∞
1 − γ

+ τ̃ + ξ (84)

holds simultaneously for all 0 < t ≤ tepoch, where k =
max

{
0,

⌊ t−tth,ξ

tframe

⌋}
, and

τ̃ :=
cγ

1 − γ

{√
log N |S||A|

δ

(1 − γ)2Nµmin

+ kV � − V k∞

·

⎛
⎝
√

η log
( |S||A|tepoch

δ

)
+

√
4 log

( 6N |S||A|
δ

)

Nµmin

⎞
⎠

}
,

tth,ξ := max

{
2 log 1

(1−γ)2ξ

ηµmin
, tframe

}

for some constant c > 0.

Let C > 0 be some sufficient large constant. Setting

ηt ≡ η = min
{

(1−γ)2

Cγ2 log
|S||A|tepoch

δ

, 1
µframe

}
, and ensuring N ≥

max{tframe, C
log N|S||A|

δ

(1−γ)3µmin
}, we can easily demonstrate that

kΘtk∞ ≤ (1 − ρ)k kQ − Q�k∞
1 − γ

+
1

8
√

1 − γ
+

1

4
kV � − V k∞.
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As a consequence, if tepoch ≥ tframe +tth,ξ +
8 log 2

1−γ

(1−γ)ηµmin
, one

has

(1 − ρ)k ≤ 1

8
(1 − γ),

which in turn implies that

kΘtepoch
k∞ ≤ 1

8
kQ − Q�k∞ +

1

8
√

(1 − γ)
+

1

4
kV � − V k∞

≤ 1

2
max

{ 1√
1 − γ

, kQ − Q�k∞
}
, (85)

where the last step invokes the simple relation kV �−V k∞ ≤
kQ − Q�k∞. Thus, we conclude that

kQtepoch
− Q�k∞ ≤ 1

2
max

{ 1√
1 − γ

, kQ − Q�k∞
}
. (86)

2) Phase 2: When kQ−Q�k∞ ≤ 1/
√

1 − γ: The analysis

of Phase 2 follows by straightforwardly combining the analysis

of Phase 1 and that of the synchronous counterpart in [12].

For the sake of brevity, we only sketch the main steps.

Following the proof idea of [12, Section B.2], we introduce

an auxiliary vector Q̂ which is the unique fix point to the fol-

lowing equation, which can be regarded as a population-level

Bellman equation with proper reward perturbation, namely,

Q̂ = r + γP (V̂ − V ) + γP̃ V . (87)

Here, as usual, V̂ ∈ R
|S| represents the value function

corresponding to Q̂. This can be viewed as a Bellman equation

when the reward vector r is replaced by r̃ := r+γ(P̃ −P )V .

Repeating the arguments in the proof of [12, Lemma 4] (except

that we need to apply the measure concentration of P̃ in the

manner performed in the proof of Lemma 7 due to Markovian

data), we reach

∥∥Q̂ − Q�
∥∥
∞ ≤ c′

√
log N |S||A|

δ

(1 − γ)3Nµmin

≤ ε (88)

with probability at least 1 − δ for some constant c′ > 0,

provided that N ≥ (c′)2
log

N|S||A|
δ

(1−γ)3ε2 and that kQ − Q�k∞ ≤
1/

√
1 − γ. It is worth noting that Q̂ only serves as a helper in

the proof and is never explicitly constructed in the algorithm,

as we don’t have access to the probability transition matrix P .

In addition, we claim that

∥∥Qtepoch
− Q̂

∥∥
∞ ≤ kQ̂ − Q�k∞

8
+

kQ − Q�k∞
8

+ ε. (89)

Under this claim, the triangle inequality yields

kQtepoch
− Q�k∞ ≤ kQtepoch

− Q̂k∞ + kQ̂ − Q�k∞

≤ 1

8
kQ − Q�k∞ +

9

8
kQ̂ − Q�k∞ + ε

≤ 1

8
kQ − Q�k∞ +

17

8
ε, (90)

where the last inequality follows from (88).

a) Proof of the inequality (88): Suppose that
∣∣r̃ − r

∣∣ = γ
∣∣(P̃ − P )V

∣∣

≤ c

{
1√

1 − γ
1 +

√
VarP (V �)

}√
log N |S||A|

δ

Nµmin

,

(91)

holds for some constant c > 0. By replacing Lemma 5 in the

proof of [12, Lemma 4] with this bound, we can arrive at (88)

immediately. In what follows, we demonstrate how to prove

the bound (91), which follows a similar argument as in the

proof of Lemma 7.

Let us begin with the following triangle inequality:
∣∣(P̃ − P )V

∣∣ ≤
∣∣(P̃ − P )(V − V �)

∣∣ +
∣∣(P̃ − P )V �

∣∣,
(92)

leaving us with two terms to control.

• Similar to (141), by applying the Hoeffding inequality

and taking the union bound over all (s, a) ∈ S × A, we

can control the first term on the right-hand side of (92)

as follows:
∥∥(P̃ − P )(V − V �)

∥∥
∞

≤ max
(s,a)∈S×A

√
2 log

( 2N |S||A|
δ

)

KN (s, a)

∥∥V − V �
∥∥
∞

≤

√
4 log

( 2N |S||A|
δ

)

Nµmin(1 − γ)
(93)

with probability at least 1 − δ. Here, we have made use

of the following property of this phase that
∥∥V − V �

∥∥
∞ ≤ kQ − Q�k∞ ≤ 1/

√
1 − γ

and KN(s, a) ≥ Nµmin/2 for all (s, a) (see Lemma 8).

• Next, we turn attention to the second term on the

right-hand side of (92), towards which we resort to

the Bernstein inequality. Note that the (s, a)-th entry of∣∣(P̃ − P )V �
∣∣ is given by

∣∣∣∣∣
1

KN(s, a)

KN (s,a)∑

i=1

(
P ti+1(s, a) − P (s, a)

)
V �

∣∣∣∣∣, (94)

where KN(s, a) denotes the total number of visits to

(s, a) during the first N time instances (see also (113)).

In addition, let ti := ti(s, a) denote the time stamp

when the trajectory visits (s, a) for the i-th time (see

also (112)). In view of our derivation for (117), the state

transitions happening at times t1, t2, · · · , tk (which are

random) are independent for any given integer k > 0.

It can be calculated that
∣∣∣
(
P ti+1(s, a) − P (s, a)

)
V �

∣∣∣ ≤ 1

1 − γ
; (95a)

Var

(
1

k

k∑

i=1

(
P ti+1(s, a) − P (s, a)

)
V �

)

=
1

k
VarP (s,a)

(
V �

)
. (95b)
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Consequently, invoking the Bernstein inequality implies

that with probability at least 1 − δ
|S||A| ,

∣∣∣∣∣
1

k

k∑

i=1

(
P ti+1(s, a) − P (s, a)

)
V �

∣∣∣∣∣

≤

√
4 log

( 2N |S||A|
δ

)

k
VarP (s,a)

(
V �

)
+

4 log
( 2N |S||A|

δ

)

3(1 − γ)k

holds simultaneously for all 1 ≤ k ≤ N . Recognizing

the bound 1
2Nµmin ≤ KN (s, a) ≤ N and applying the

union bound over all (s, a) ∈ S ×A yield

∣∣(P̃ − P )V �
∣∣ ≤

√
2 log

( 2N |S||A|
δ

)

Nµmin

VarP

(
V �

)

+
8 log

( 2N |S||A|
δ

)

3(1 − γ)Nµmin

. (96)

• Finally, combining (93) and (96) immediately establishes

the claim (91).

b) Proof of the Inequality (89): Recalling the variance-

reduced update rule (80) and using the Bellman-type equation

(87), we obtain

Θ̂t := Qt−Q̂=
(
I − Λt

)
(Qt−1 − Q̂)+Λt

(
r + γP t(V t−1

− V ) + γP̃ V − r − γP (V̂ − V ) − γP̃ V
)

=
(
I − Λt

)
(Qt−1 − Q̂)

+ Λt

(
γP t(V t−1 − V ) − γP (V̂ − V )

)

=
(
I − Λt

)
Θ̂t−1

+ γΛt

(
(P t−P )(V̂ − V )+P t(V t−1−V̂ )

)
. (97)

Adopting the same expansion as before (see (40)), we arrive

at

Θ̂t = γ

t∑

i=1

t∏

j=i+1

(
I − Λj

)
Λi

(
P i − P

)
(V̂ − V )

︸ ︷︷ ︸
=:ϑ1,t

+ γ

t∑

i=1

t∏

j=i+1

(
I − Λj

)
ΛiP i

(
V i−1 − V̂

)

︸ ︷︷ ︸
=:ϑ2,t

+

t∏

j=1

(
I − Λj

)
Θ̂0

︸ ︷︷ ︸
=:ϑ3,t

.

Inheriting the results in Lemma 1 and Lemma 2, we can

demonstrate that, with probability at least 1 − 2δ,

∣∣ϑ1,t

∣∣ ≤ cγkV̂ − V k∞
√

η log
( |S||A|tepoch

δ

)
1;

|ϑ3,t| ≤

⎧
⎨
⎩

(1 − η)
1
2 tµminkΘ̂0k∞1, if tframe ≤ t ≤ tepoch,

kΘ̂0k∞1, if t < tframe.

Repeating the same argument as for Theorem 5, we reach

kΘ̂tk∞ ≤ (1 − ρ)k kQ̂ − Qk∞
1 − γ

+
cγ

1 − γ
kV̂ − V k∞

√
η log

( |S||A|tepoch

δ

)
+ ε

for some constant c > 0, where k = max{0,
⌊

t−tth

tframe

⌋
} with tth

defined in (78b).

By taking η = c5 min
{ (1−γ)2

γ2 log
|S||A|tepoch

δ

, 1
µframe

}
for some

sufficiently small constant c5 > 0 and ensuring that

tepoch ≥ tth + tframe +
c6

(1 − γ)ηµmin

log
1

(1 − γ)2

for some large constant c6 > 0, we obtain

kΘ̂tepoch
k∞ ≤ kQ̂ − Qk∞

8
+ ε

≤ kQ̂ − Q�k∞
8

+
kQ − Q�k∞

8
+ ε,

where the last line follows by the triangle inequality.

B. How Many Epochs Are Needed?

We are now ready to pin down how many epochs are needed

to achieve ε-accuracy.

• In Phase 1, the contraction result (86) indicates that,

if the algorithm is initialized with Q0 = 0 at the very

beginning, then it takes at most

log2

(
kQ�k∞

max
{
ε, 1√

1−γ

}
)

≤ log2

( 1√
1 − γ

)

+ log2

( 1

ε(1 − γ)

)

epochs to yield kQ − Q�k∞ ≤ max{ 1√
1−γ

, ε} (so as

to enter Phase 2). Clearly, if the target accuracy level

ε > 1√
1−γ

, then the algorithm terminates in this phase.

• Suppose now that the target accuracy level ε ≤ 1√
1−γ

.

Once the algorithm enters Phase 2, the dynamics can

be characterized by (90). Given that Q is also the last

iterate of the preceding epoch, the property (90) provides

a recursive relation across epochs. Standard recursive

analysis thus reveals that: within at most

c7 log
( 1

ε
√

1 − γ

)
≤ c7 log

( 1

ε(1 − γ)

)

epochs (with c7 > 0 some constant), we are guaranteed

to attain an �∞ estimation error at most 3ε.

To summarize, a total number of O
(
log 1

ε(1−γ) + log 1
1−γ

)

epochs are sufficient for our purpose. This concludes the proof.

X. DISCUSSION

This work develops a sharper finite-sample analysis of the

classical asynchronous Q-learning algorithm, highlighting and

refining its dependency on intrinsic features of the Markovian

trajectory induced by the behavior policy. Our sample com-

plexity bound strengthens the state-of-the-art result by an order
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of at least |S||A|. A variance-reduced variant of asynchronous

Q-learning is also analyzed, exhibiting improved scaling with

the effective horizon 1
1−γ .

Our findings and the analysis framework developed herein

suggest a couple of directions for future investigation. For

instance, our improved sample complexity of asynchronous

Q-learning has a dependence of 1
(1−γ)5 on the effective

horizon, which is inferior to its model-based counterpart.

In the synchronous setting, [32], [34] recently demonstrated

Q-learning has a dependence of 1
(1−γ)4 , which is tight up to

logarithmic factors. In light of this development, it would be

important to determine the exact scaling for the asynchronous

setting, which is left as future work. In addition, it would

be interesting to see whether the techniques developed herein

can be exploited towards understanding model-free algorithms

with more sophisticated exploration schemes [64]. Finally,

asynchronous Q-learning on a single Markovian trajectory

is closely related to coordinate descent with coordinates

selected according to a Markov chain; one would naturally ask

whether our analysis framework can yield improved conver-

gence guarantees for general Markov-chain-based optimization

algorithms [65], [66].

APPENDIX

In this section, we gather some basic facts about Markov

chains. Before proceeding, we remind the readers of some

notation. For any two probability distributions µ and ν,

denote by dTV(µ, ν) the total variation distance between µ
and ν (cf. (5)). Recall the definition of uniform ergodicity

in Section I-B. For any time-homogeneous and uniformly

ergodic Markov chain (X0, X1, X2, · · · ) with transition kernel

P , finite state space X and stationary distribution µ, we let

P t(· |x) denote the distribution of Xt conditioned on X0 = x.

Then the mixing time tmix of this Markov chain is defined by

tmix(ε) := min
{

t
∣∣∣ max

x∈X
dTV

(
P t(· |x), µ

)
≤ ε

}
; (98a)

tmix := tmix(1/4). (98b)

A. Concentration of Empirical Distributions of Markov

Chains

We first record a result concerning the concentration of

measure of the empirical distribution of a uniformly ergodic

Markov chain, which makes clear the role of the mixing time.

Lemma 8: Consider the above-mentioned Markov chain.

For any 0 < δ < 1, if t ≥ 443tmix

µmin
log 4|X |

δ , then for any y ∈ X ,

one has

PX1=y

{
∃x ∈ X :

∣∣∣∣∣

t∑

i=1

1{Xi = x}−tµ(x)

∣∣∣∣∣ ≥
1

2
tµ(x)

}
≤ δ.

(99)

Proof: To begin with, consider the scenario when X1 ∼
µ, namely, when X1 follows the stationary distribution of the

chain. Then [17, Theorem 3.4] tells us that: for any given

x ∈ X and any τ ≥ 0,

PX1∼µ

{∣∣∣∣∣

t∑

i=1

1{Xi = x} − tµ(x)

∣∣∣∣∣ ≥ τ

}

≤ 2 exp

(
− τ2γps

8(t + 1/γps)µ(x) + 20τ

)

≤ 2 exp

(
− τ2/tmix

16(t + 2tmix)µ(x) + 40τ

)
, (100)

where γps stands for the so-called pseudo spectral gap as

defined in [17, Section 3.1]. Here, the first inequality relies

on the fact VarXi∼µ[1{Xi = x}] = µ(x)(1 − µ(x)) ≤
µ(x), while the last inequality results from the fact γps ≥
1/(2tmix) that holds for uniformly ergodic chains (cf. [17,

Proposition 3.4]). Consequently, for any t ≥ tmix and any

τ ≥ 0, one can continue the bound (100) to obtain

(100) ≤ 2 exp

(
− τ2

48tµ(x)tmix + 40τtmix

)

≤ 2 max

{
exp

(
− τ2

96tµ(x)tmix

)
, exp

(
− τ

80tmix

)}

≤ δ

|X | ,

provided that

τ ≥ max

{
10

√
tµ(x)tmix log

2|X |
δ

, 80tmix log
2|X |

δ

}
.

As a result, by taking τ = 10
21 tµ(x) and applying the union

bound, we reach

PX1∼µ

{
∃x ∈ X :

∣∣∣∣∣

t∑

i=1

1{Xi = x} − tµ(x)

∣∣∣∣∣ ≥
10

21
tµ(x)

}

≤
∑

x∈X
PX1∼µ

{∣∣∣∣∣

t∑

i=1

1{Xi = x} − tµ(x)

∣∣∣∣∣ ≥
10

21
tµ(x)

}
≤ δ,

(101)

as long as

10

21
tµ(x) ≥ max

{
10

√
tµ(x)tmix log

2|X |
δ

, 80tmix log
2|X |

δ

}

for all x ∈ X , or equivalently, when

t ≥ 441tmix

µmin

log
2|X |

δ
with µmin := min

x∈X
µ(x).

Next, we seek to extend the above result to the more general

case when X1 takes an arbitrary state y ∈ X . From the

definition of tmix(·) (cf. (98a)), we know that

dTV

(
sup
y∈X

P tmix(δ)(· | y), µ
)
≤ δ. (102)

This taken together with the definition of dTV (cf. (5))

reveals that: for any event B belonging to the σ-algebra

generated by {Xτ}τ≥tmix(δ), one has

��P{B | X1 = y} − P{B | X1 ∼ µ}
��

=

�����
�
s∈S

P{B | Xtmix(δ)
= s}P{Xtmix(δ)

= s | X1 = y}
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−
�
s∈S

P{B | Xtmix(δ)
= s}P{Xtmix(δ)

= s | X1 ∼ µ}

�����

≤ max

��
�
�

s∈S+

	
P{Xtmix(δ)

=s | X1 = y}−P{Xtmix(δ)
= s | X1 ∼ µ}



,

�
s∈S−

	
P{Xtmix(δ)

= s | X1 ∼ µ} − P{Xtmix(δ)
= s | X1 = y}


��



≤ sup
A⊆S

���P{Xtmix(δ)
∈ A | X1 = y} − P{Xtmix(δ)

∈ A | X1 ∼ µ}
��� ≤ δ,

(103)

where we define

S+ := {s ∈ S :

P{Xtmix(δ) =s | X1 = y} > P{Xtmix(δ) = s | X1 ∼ µ}
}

;

S− := {s ∈ S :

P{Xtmix(δ) =s | X1 = y} < P{Xtmix(δ) = s | X1 ∼ µ}
}

.

Here, the last inequality in (103) follows from the inequality

(102) and the definition (5) of the total-variation distance. As a

consequence, one obtains

sup
y∈X

PX1=y

��
�∃x ∈ X :

������
t�

i=tmix(δ)

1{Xi = x} −
�
t − tmix(δ)

�
µ(x)

������
≥

10

21

�
t − tmix(δ)

�
µ(x)

�

≤ PX1∼µ

��
�∃x ∈ X :

������
t�

i=tmix(δ)

1{Xi = x} −
�
t − tmix(δ)

�
µ(x)

������
≥

10

21

�
t − tmix(δ)

�
µ(x)

�
+ δ ≤ 2δ, (104)

with the proviso that t ≥ tmix(δ) + 441tmix

µmin
log 2|X |

δ .

To finish up, we recall from [17, Section 1.1] that tmix(δ) ≤
2tmix log 2

δ . Consequently, if t ≥ 443tmix

µmin
log 2|X |

δ ≥ tmix(δ) +
441tmix

µmin
log 2|X |

δ , then one has

1

2

(
t−tmix(δ)

)
µ(x)−tmix(δ) ≥

441tmix

2
log

2|X |
δ

≥100tmix(δ),

=⇒ 1

2

(
t−tmix(δ)

)
µ(x)−tmix(δ)≥

10

21

(
t − tmix(δ)

)
µ(x).

These taken together lead to (105), shown at the bottom of

the next page. Here, the last inequality of (105) results from

(104). Replacing δ with δ/2 thus concludes the proof.

B. Connection Between the Mixing Time and the Cover Time

Lemma 8 combined with the definition (9) immediately

reveals the following upper bound on the cover time:

tcover = O
( tmix

µmin

log |X |
)
. (106)

In addition, while a general matching converse bound

(namely, tmix/µmin = Õ(tcover)) is not available, we can come

up with some special examples for which the bound (106) is

provably tight.

Example 1: Consider a time-homogeneous Markov chain

with state space X := {1, · · · , |X |} and probability transition

matrix P ∈ R
|X |×|X | as

P =
(
1− q(k + 1)

2

)
I|X | +

q

|X |
[

k1|X |1
�
|X |/2 1|X |1

�
|X |/2

]

(107)

for some quantities q > 0 and k ≥ 1. Suppose q(k + 1) < 2
and |X | ≥ 3. Then this chain obeys

tcover ≥
tmix(

8 log 2 + 4 log 1
µmin

)
µmin

. (108)

With the lower bound (108) in place, we conclude that the

upper bound (106) is, in general, nearly un-improvable (up to

some logarithmic factor).

Remark 6: We shall take a moment to briefly discuss the

key design rationale behind Example 1. Let us partition the

state space into two halves, denoted respectively by X1 and

X2. From every state s ∈ X , it is much easier to transition

into the first half X1 rather than the second half X2. This leads

to two properties: (i) the stationary distribution of any state in

X2 is much lower than that of a state in X1; (ii) the cover time

also increases as the stationary distribution w.r.t. X2 decreases,

given that it becomes more difficult to traverse the second half.

As a result, we can guarantee that tcover is proportional to µmin

through this type of designs. On the other hand, the example

is also constructed in a way such that all states are “lazy”,

meaning that they are more inclined to stay unchanged rather

than moving to a different state. The level of laziness clearly

controls how fast the Markov chain mixes, as well as how long

it takes to cover all states. This in turn allows one to ensure

that tcover is proportional to tmix. More details can be found

in the proof below.

Proof: As can be easily verified, this chain is reversible,

whose stationary distribution vector µ ∈ R
|X | obeys

µ =
2

(k + 1)|X |

[
k1|X |/2

1|X |/2

]
.

As a result, the minimum state occupancy probability of the

stationary distribution is given by

µmin := min
1≤x≤|X |

µx =
2

(k + 1)|X | . (109)

In addition, the reversibility of this chain implies that the

matrix P d := D
1
2 PD− 1

2 with D := diag [µ] is symmetric

and has the same set of eigenvalues as P [67]. A little algebra

yields

P d =
(
1 − q(k + 1)

2

)
I |X |

+
q

|X |

[
k1|X |/21

�
|X |/2

√
k1|X |/21

�
|X |/2√

k1|X |/21
�
|X |/2 1|X |/21

�
|X |/2

]
,

allowing us to determine the eigenvalues {λi}1≤i≤|X | as

follows

λ1 = 1 and λi = 1 − q(k + 1)

2
> 0 (i ≥ 2).
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We are now ready to establish the lower bound on the

cover time. First of all, the well-known connection between the

spectral gap and the mixing time gives [17, Proposition 3.3]

tmix ≤
2 log 2 + log 1

µmin

2(1 − λ2)
=

2 log 2 + log 1
µmin

q(k + 1)
. (110)

In addition, let (x0, x1, · · · ) be the corresponding Markov

chain, and assume that x0 ∼ µ, where µ stands for the

stationary distribution. Consider the last state — denoted by

|X |, which enjoys the minimum state occupancy probability

µmin. For any integer t > 0 one has

P {xl 6= |X |, ∀ 0 ≤ l ≤ t}
(i)
= P {x0 6= |X |}

t∏

l=1

P

{
xl 6= |X |

∣∣∣ x0 6= |X |, · · · , xl−1 6= |X |
}

(ii)

≥ P {x0 6= |X |}
t∏

l=1

min
j:j �=|X |

P
{
xl 6= |X |

∣∣ xl−1 = j
}

(iii)
=

(
1 − 2

(k + 1)|X |
)(

1 − q

|X |

)t

(iv)

≥
(
1 − 2

(k + 1)|X |
)(

1 − 2qt

|X |

)
,

where (i) follows from the chain rule, (ii) relies on the

Markovian property, (iii) results from the construction (107),

and (iv) holds as long as q
|X |t < 1

2 . Consequently, if |X | ≥ 3

and if t < |X |
8q , then one necessarily has

P {xl 6= |X |, ∀ 0 ≤ l ≤ t}

≥
(
1 − 2

(k + 1)|X |
)(

1 − 2qt

|X |

)
>

1

2
.

This taken collectively with the definition of tcover (cf. (9))

reveals that

tcover ≥
|X |
8q

≥ tmix(
8 log 2 + 4 log 1

µmin

)
µmin

,

where the last inequality is a direct consequence of (109)

and (110).

C. Proof of Lemma 1

Fix any state-action pair (s, a) ∈ S ×A, and let us look at

β1,t(s, a), namely, the (s, a)-th entry of

β1,t = γ

t∑

i=1

t∏

j=i+1

(
I − Λj

)
Λi

(
P i − P

)
V �.

For convenience of presentation, we abuse the notation to

let Λj(s, a) denote the (s, a)-th diagonal entry of the diagonal

matrix Λj , and P t(s, a) (resp. P (s, a)) the (s, a)-th row of

P t (resp. P ). In view of the definition (40), we can write

β1,t(s, a) = γ

t∑

i=1

t∏

j=i+1

[(
1 − Λj(s, a)

)
Λi(s, a)

·
(
P i(s, a) − P (s, a)

)
V �

]
. (111)

As it turns out, it is convenient to study this expression by

defining

tk(s, a) := the time stamp when the trajectory

visits (s, a) for the k-th time (112)

and

Kt(s, a) := max {k | tk(s, a) ≤ t} , (113)

namely, the total number of times — during the first t iterations

— that the sample trajectory visits (s, a). With these in place,

the special form of Λj (cf. (34)) allows us to rewrite (111) as

β1,t(s, a) = γ

Kt(s,a)∑

k=1

[
(1 − η)Kt(s,a)−kη

·
(
P tk+1(s, a) − P (s, a)

)
V �

]
. (114)

where we suppress the dependency on (s, a) and write tk :=
tk(s, a) to streamline notation. The main step thus boils down

to controlling (114).

Towards this, we claim that: with probability at least 1− δ,
∣∣∣∣∣

K∑

k=1

(1 − η)K−kη
(
P tk+1(s, a) − P (s, a)

)
V �

∣∣∣∣∣

≤
√

η log
( |S||A|T

δ

)
kV �k∞ (115)

holds simultaneously for all (s, a) ∈ S ×A and all 1 ≤ K ≤
T , provided that 0 < η log

( |S||A|T
δ

)
< 1. Recognizing the

trivial bound Kt(s, a) ≤ t ≤ T (by construction (113)) and

substituting the claimed bound (115) into the expression (114),

we arrive at for all (s, a) ∈ S ×A

|β1,t(s, a)| ≤ γ

√
η log

( |S||A|T
δ

)
kV �k∞

≤
√

η log
( |S||A|T

δ

)
kV �k∞, (116)

sup
y∈X

PX1=y

{
∃x ∈ X :

∣∣∣∣∣

t∑

i=1

1{Xi = x} − tµ(x)

∣∣∣∣∣ ≥
1

2
tµ(x)

}

≤ sup
y∈X

PX1=y

{
∃x ∈ X :

∣∣∣∣∣∣

t∑

i=tmix(δ)

1{Xi = x} − (t − tmix(δ))µ(x)

∣∣∣∣∣∣
≥ 1

2

(
t − tmix(δ)

)
µ(x) − tmix(δ)

}

≤ sup
y∈X

PX1=y

{
∃x ∈ X :

∣∣∣∣∣∣

t∑

i=tmix(δ)

1{Xi = x} − (t − tmix(δ))µ(x)

∣∣∣∣∣∣
≥ 10

21

(
t − tmix(δ)

)
µ(x)

}
≤ 2δ. (105)
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thus concluding the proof of this lemma. It remains to validate

the inequality (115).

Proof of the Inequality (115): We first make the observa-

tion that: for any fixed integer K > 0, the following vectors

{P tk+1(s, a) | 1 ≤ k ≤ K}

are identically and independently distributed.4 To justify this

observation, let us denote by Ps,a(·) the transition probability

from state s when action a is taken. For any i1, · · · , iK ∈ S,

one obtains

P {stk+1 = ik (∀1 ≤ k ≤ K)}
= P {stk+1 = ik (∀1 ≤ k ≤ K − 1) and stK+1 = iK}
=

∑

m>0

P
{
stk+1 = ik (∀1 ≤ k ≤ K − 1) and tK = m

and sm+1 = iK
}

(i)
=

∑

m>0

[
P {stk+1 = ik (∀1 ≤ k ≤ K − 1) and tK = m}

· P {sm+1 = iK | sm = s, am = a}
]

= Ps,a(iK)

·
∑

m>0

P {stk+1 = ik (∀1 ≤ k ≤ K − 1) and tK = m}

= Ps,a(iK)P {stk+1 = ik (∀1 ≤ k ≤ K − 1)} ,

where (i) holds true from the Markov property as well as the

fact that tK is an iteration in which the trajectory visits state

s and takes action a. Invoking the above identity recursively,

we arrive at

P {stk+1 = ik (∀1 ≤ k ≤ K)} =

K∏

j=1

Ps,a(ij), (117)

meaning that the state transitions happening at times

{t1, · · · , tK} are independent, each following the distribu-

tion Ps,a(·). This clearly demonstrates the independence of

{P tk+1(s, a) | 1 ≤ k ≤ K}.

With the above observation in mind, we resort to the

Hoeffding inequality to bound the quantity of interest (which

has zero mean). To begin with, notice the facts that for all

k ≥ 1,

0≤P tk+1(s, a)V �≤kV �k∞, and 0≤P (s, a)V �≤kV �k∞,

(118)

which gives
∣∣(1 − η)K−kη

(
P tk+1(s, a) − P (s, a)

)
V �

∣∣

≤ (1 − η)K−kηkV �k∞.

As a consequence, invoking the Hoeffding inequality [68]

implies that
∣∣∣∣∣

K∑

k=1

(1 − η)K−kη
(
P tk

(s, a) − P (s, a)
)
V �

∣∣∣∣∣

4The Markov chain w.r.t. the sample trajectory should be viewed as being
infinitely long, although we only get to observe its first T samples. The
random variables {tk} are, in truth, independent of the choice of T .

≤

√√√√1

2

K∑

k=1

(
(1 − η)K−kηkV �k∞

)2

log
(2|S||A|T

δ

)

≤
√

η log
( |S||A|T

δ

)
kV �k∞ (119)

with probability exceeding 1 − δ
|S||A|T , where the last line

holds since

K∑

k=1

(
(1 − η)K−kη

)2

≤ η2
∞∑

j=0

(1 − η)j =
η2

1 − (1 − η)
= η.

Taking the union bound over all (s, a) ∈ S × A and all

1 ≤ K ≤ T then reveals that: with probability at least 1 − δ,

the inequality (119) holds simultaneously over all (s, a) ∈
S ×A and all 1 ≤ K ≤ T . This concludes the proof.

D. Proof of Lemma 2 and Lemma 6

Proof of Lemma 2: Let β3,t =
∏t

j=1

(
I − Λj

)
∆0.

Denote by β3,t(s, a) (resp. ∆0(s, a)) the (s, a)-th entry of

β3,t (resp. ∆0). From the definition of β3,t, it is easily seen

that
∣∣β3,t(s, a)

∣∣ = (1 − η)Kt(s,a)
∣∣∆0(s, a)

∣∣, (120)

where Kt(s, a) denotes the number of times the sample

trajectory visits (s, a) during the iterations [1, t] (cf. (113)).

By virtue of Lemma 8 and the union bound, one has, with

probability at least 1 − δ, that

Kt(s, a) ≥ tµmin/2 (121)

simultaneously over all (s, a) ∈ S × A and all t obeying
443τmix

µmin
log 4|S||A|T

δ ≤ t ≤ T . Substitution into the relation

(120) establishes that, with probability greater than 1 − δ,

|β3(s, a)| ≤ (1 − η)
1
2 tµmin

∣∣∆0(s, a)
∣∣. (122)

holds uniformly over all (s, a) ∈ S × A and all t obeying
443τmix

µmin
log 4|S||A|T

δ ≤ t ≤ T , as claimed.

Proof of Lemma 6: The proof of this lemma is essentially

the same as that of Lemma 2, except that we use instead the

following lower bound on Kt(s, a) (which is an immediate

consequence of Lemma 5)

Kt(s, a) ≥
⌊ t

tcover,all

⌋
≥ t

2tcover,all
(123)

for all t > tcover,all. Therefore, replacing tµmin with t/tcover,all

in the above analysis, we establish Lemma 6.

E. Proof of Lemma 3

We prove this fact via an inductive argument. The base case

with t = 0 is a consequence of the crude bound (49). Now,

assume that the claim holds for all iterations up to t−1, and we

would like to justify it for the t-th iteration as well. Towards

this, define

h(t) :=

{
k∆0k∞, if t ≤ tth,

(1 − γ)ε, if t > tth.
(124)
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Recall that (1 − η)
1
2 tµmin ≤ (1 − γ)ε for any t ≥ tth.

Therefore, combining the inequality (47) with the induction

hypotheses indicates that

|∆t| ≤ γ
t∑

i=1

t∏

j=i+1

(I − Λj)Λi1 ·
(

τ1kV �k∞
1 − γ

+ ui−1 + ε

)

+ τ1kV �k∞1 + h(t)1

= γ

t∑

i=1

t∏

j=i+1

(I − Λj)Λi1ui−1 + τ1kV �k∞1 + h(t)1

+ γ
t∑

i=1

t∏

j=i+1

(I − Λj)Λi1

(
τ1kV �k∞

1 − γ
+ ε

)
.

Taking this together with the inequality (51b) and rearrang-

ing terms, we obtain

|∆t| ≤ γ

t∑

i=1

t∏

j=i+1

(I − Λj)Λi1ui−1 +
γτ1kV �k∞

1 − γ
1

+ γε1 + τ1kV �k∞1 + h(t)1

=
τ1kV �k∞

1 − γ
1 + γε1 + γ

t∑

i=1

t∏

j=i+1

(I − Λj)Λi1ui−1

+ h(t)1

=
τ1kV �k∞

1 − γ
1 + γε1 + vt + (1 − γ)ε1{t > tth}1

≤ τ1kV �k∞
1 − γ

1 + ε1 + vt, (125)

where we have used the definition of vt in (52). This taken

collectively with the definition ut = kvtk∞ establishes that

k∆tk∞ ≤ τ1kV �k∞
1 − γ

+ ε + ut

as claimed. This concludes the proof.

F. Proof of Lemma 4

We shall prove this result by induction over the index k.

To start with, consider the base case where k = 0 and t <
tth +tframe. By definition, it is straightforward to see that u0 ≤
k∆0k∞/(1−γ) = w0. In fact, repeating our argument for the

crude bound (see Section VI-B.2) immediately reveals that

∀t ≥ 0 : ut ≤
k∆0k∞
1 − γ

= w0, (126)

thus indicating that the inequality (55) holds for the base case.

In what follows, we assume that the inequality (55) holds up

to k − 1, and would like to extend it to the case with all t
obeying

⌊
t−tth

tframe

⌋
= k.

Consider any 0 ≤ j < tframe. In view of the definition of vt

(cf. (52)) as well as our induction hypotheses, one can arrange

terms to derive

vtth+ktframe+j = γ

tth+ktframe+j∑

i=1

tth+ktframe+j∏

n=i+1

(I − Λn)Λi1ui−1

= γ

k−1∑

s=0

{
∑

i:max
{

 i−j−1−tth

tframe
�,0

}
=s

tth+ktframe+j∏

n=i+1

(I−Λn)Λi1ui−1

}

≤ γ

k−1∑

s=0

{
∑

i:max
{

 i−j−1−tth

tframe
�,0

}
=s

tth+ktframe+j∏

n=i+1

(I − Λn)Λi1

}
ws,

(127)

where the last inequality follows from our induction hypothe-

ses, the non-negativity of (I − Λj)Λi1, and the fact that ws

is non-increasing.

Given any state-action pair (s, a) ∈ S × A, let us

look at the (s, a)-th entry of vtth+ktframe+j — denoted by

vtth+ktframe+j(s, a), towards which it is convenient to pause

and introduce some notation. Recall that Nn
i (s, a) has been

used to denote the number of visits to the state-action pair

(s, a) between iteration i and iteration n (including i and n).

To help study the behavior in each timeframe, we introduce

the following quantities

Lk−1
h := Nn

i (s, a) (128)

with i = tth + htframe + j + 1, n = tth + ktframe + j for every

h ≤ k − 1. Lemma 8 tells us that, with probability at least

1 − 2δ,

Lk−1
h ≥ (k − h)µframe with µframe =

1

2
µmintframe, (129)

which holds uniformly over all state-action pairs (s, a). Armed

with this set of notation, it is straightforward to use the

expression (127) to verify that

vtth+ktframe+j(s, a) ≤ γ

k−1∑

h=0

η
{

(1−η)Lk−1
h

−1 + (1 − η)Lk−1
h

−2

+ · · · + (1 − η)Lk−1
h+1

}
wh

= γ

k−1∑

h=0

(
(1 − η)Lk−1

h+1 − (1 − η)Lk−1
h

)
wh

=: γ

k−1∑

h=0

(αh+1 − αh)wh, (130)

where we denote αh := (1 − η)Lk−1
h for any h ≤ k − 1 and

αk := 1.
A little algebra further leads to

γ

k−1∑

h=0

(αh+1 − αh)wh = γ(αkwk−1 − α0w0)

+ γ

k−1∑

h=1

αh (wh−1 − wh) . (131)

Thus, in order to control the quantity vtth+ktframe+j(s, a),
it suffices to control the right-hand side of (131), for which

we start by bounding the last term. Plugging in the definitions

of wh and αh yields

1 − γ

k∆0k∞

k−1∑

h=1

αh (wh−1 − wh) =

k−1∑

h=1

(1 − η)Lk−1
h (1 − ρ)h−1ρ

≤ ρ

k−1∑

h=1

(1 − η)(k−h)µframe(1 − ρ)h−1,
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where the last inequality results from the fact (129). Addition-

ally, direct calculation yields

ρ

k−1∑

h=1

(1 − η)(k−h)µframe(1 − ρ)h−1

= ρ(1 − η)(k−1)µframe

k−1∑

h=1

( 1 − ρ

(1 − η)µframe

)h−1

= ρ(1 − η)(k−1)µframe

1 −
(

1−ρ
(1−η)µframe

)k−1

1 − 1−ρ
(1−η)µframe

= ρ(1 − η)µframe
(1 − ρ)k−1 − (1 − η)(k−1)µframe

(1 − ρ) − (1 − η)µframe

≤ ρ(1 − η)µframe
(1 − ρ)k−1

(1 − ρ) − (1 − η)µframe
, (132)

where the last inequality makes use of the fact that

(1 − ρ) − (1 − η)µframe

= 1 − (1 − γ)(1 − (1 − η)µframe ) − (1 − η)µframe

= γ {1 − (1 − η)µframe} =
γ

1 − γ
ρ ≥ 0. (133)

Combining the inequalities (130), (131) and (132) and using

the fact α0w0 ≥ 0 give

vtth+ktframe+j(s, a) ≤ γ
k−1∑

h=1

αh (wh−1 − wh) + γαkwk−1

≤
∥∥∆0

∥∥
∞

1 − γ

{
γρ(1 − η)µframe

(1 − ρ)k−1

(1 − ρ) − (1 − η)µframe

+ γ(1 − ρ)k−1

}
. (134)

We are now ready to justify that vtth+ktframe+j(s, a) ≤ wk.

Note that the observation (133) implies

γ
ρ(1 − η)µframe

(1 − ρ) − (1 − η)µframe
= γ

ρ(1 − η)µframe

γ
1−γ ρ

= (1 − γ)(1 − η)µframe .

This combined with the bound (134) yields

vtth+ktframe+j(s, a)

≤
∥∥∆0

∥∥
∞

1 − γ

{
(1 − γ)(1 − η)µframe(1 − ρ)k−1 + γ(1 − ρ)k−1

}

≤
∥∥∆0

∥∥
∞

1 − γ

(
γ + (1 − γ)(1 − η)µframe

)
(1 − ρ)k−1

= (1 − ρ)k

∥∥∆0

∥∥
∞

1 − γ
= wk, (135)

where the last line follows from the definition of ρ (cf. (37d)).

Since the above inequality holds for all state-action pair (s, a),
we conclude that

utth+ktframe+j =
∥∥vtth+ktframe+j

∥∥
∞ ≤ wk. (136)

As a consequence, we have established the inequality (55)

for all t obeying
⌊

t−tth

tframe

⌋
= k, which together with the

induction argument completes the proof of this lemma.

G. Proof of Lemma 7

Recalling that 0 ≤ ∑t
i=1

∏t
j=i+1(I − Λj)Λi1 ≤ 1

(cf. (51b)), we obtain

kh0,tk∞ ≤ γ
∥∥∥

t∑

i=1

t∏

j=i+1

(
I − Λj

)
Λi

∥∥∥
1

∥∥(P̃ − P
)
V
∥∥
∞

≤ γ
∥∥(P̃ − P

)
V
∥∥
∞. (137)

As a result, it remains to upper bound
∥∥(P̃ − P

)
V
∥∥
∞.

Suppose that P̃ is constructed using N consecutive sample

transitions. Without loss of generality, assume that these N
sample transitions are the transitions between the following

N + 1 samples

(s0, a0), (s1, a1), (s2, a2), · · · , (sN , aN).

Then the (s, a)-th row of P̃ — denoted by P̃ (s, a) — is

given by

P̃ (s, a) =
1

KN(s, a)

N−1∑

i=0

P i+1(s, a)V 1{(si, ai) = (s, a)}

=
1

KN(s, a)

KN (s,a)∑

i=1

P ti+1(s, a)V , (138)

where P i is defined in (35), and P i(s, a) denotes its (s, a)-th
row. Here, KN (s, a) denotes the total number of visits to (s, a)
during the first N time instances (cf. (113)), and tk := tk(s, a)
denotes the time stamp when the trajectory visits (s, a) for the

k-th time (cf. (112)).

In view of our derivation for (117), the state transitions

happening at time t1, t2, · · · , tk are independent for any given

integer k > 0. This together with the Hoeffding inequality

implies that

P

{
1

k

∣∣∣∣∣

k∑

i=1

(
P ti+1(s, a) − P (s, a)

)
V

∣∣∣∣∣ ≥ τ

}

≤ 2 exp

{
− kτ2

2kV k2
∞

}
. (139)

Consequently, with probability at least 1 − δ
|S||A| one has

∣∣∣∣∣
1

k

k∑

i=1

(
P ti+1(s, a) − P (s, a)

)
V

∣∣∣∣∣

≤

√
2 log

( 2N |S||A|
δ

)

k

∥∥V
∥∥
∞, 1 ≤ k ≤ N.

Recognizing the simple bound KN(s, a) ≤ N , the above

inequality holds for each state-action pair (s, a) when k is

replaced by KN (s, a). Then, applying the union bound over

all (s, a) ∈ S ×A, we obtain

∥∥(P̃ − P )V
∥∥
∞ ≤ max

(s,a)∈S×A

√
2 log

( 2N |S||A|
δ

)

KN (s, a)

∥∥V
∥∥
∞

(140)

with probability at least 1 − δ.

In addition, for any N ≥ tframe, Lemma 8 guarantees that

with probability 1− 2δ, each state-action pair (s, a) is visited
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at least Nµmin/2 times, namely, KN (s, a) ≥ 1
2Nµmin for all

(s, a). This combined with (141) yields

∥∥(P̃ − P )V
∥∥
∞

≤

√
4 log

( 2N |S||A|
δ

)

Nµmin

∥∥V
∥∥
∞

≤

√
4 log

( 2N |S||A|
δ

)

Nµmin

(∥∥V − V �
∥∥
∞ +

∥∥V �
∥∥
∞
)

≤

√
4 log

( 2N |S||A|
δ

)

Nµmin

∥∥V − V �
∥∥
∞

+
1

1 − γ

√
4 log

( 2N |S||A|
δ

)

Nµmin

(141)

with probability at least 1 − 3δ, where the second inequality

follows from the triangle inequality, and the last inequality

follows from
∥∥V �

∥∥
∞ ≤ 1

1−γ . Putting this together with (137)

concludes the proof.

H. Proof of Lemma 5

For notational convenience, set tl := tcoverl, and define

Hl :=
{
∃(s, a) ∈ S ×A that is not visited within

(
tl, tl+1

]}

for any integer l ≥ 0. In view of the definition of tcover, we

see that for any given (s′, a′) ∈ S ×A,

P {Hl | (stl
, atl

) = (s′, a′)} ≤ 1

2
. (142)

Consequently, for any integer L > 0, one can invoke the

Markovian property to obtain

P {H1 ∩ · · · ∩ HL} = P {H1 ∩ · · · ∩ HL−1}
· P {HL | H1 ∩ · · · ∩ HL−1}

= P {H1 ∩ · · · ∩ HL−1}
∑

s′,a′

[
P {HL | (stl

, atl
) = (s′, a′)}

· P {(stl
, atl

) = (s′, a′) | H1 ∩ · · · ∩ HL−1}
]

≤ 1

2
P {H1 ∩ · · · ∩ HL−1}

·
∑

s′,a′

P {(stl
, atl

) = (s′, a′) | H1 ∩ · · · ∩ HL−1}

=
1

2
P {H1 ∩ · · · ∩ HL−1} ,

where the inequality follows from (142). Repeating this deriva-

tion recursively, we deduce that

P {H1 ∩ · · · ∩ HL} ≤ 1

2L
.

This tells us that

P {∃(s, a) ∈ S ×A that is not visited between (0, tcover,all]}

≤ P

{
H1 ∩ · · · ∩ Hlog2

T
δ

}
≤ 1

2log2
T
δ

=
δ

T
,

which in turn establishes the advertised result by applying the

union bound.
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