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THE COMPLEXITY OF CONTRACTS\ast 

P. D\"UTTING\dagger , T. ROUGHGARDEN\ddagger , AND I. TALGAM-COHEN\S 

Abstract. We initiate the study of computing (near-)optimal contracts in succinctly repre-
sentable principal-agent settings. Here optimality means maximizing the principal's expected payoff
over all incentive-compatible contracts---known in economics as ``second-best"" solutions. We also
study a natural relaxation to approximately incentive-compatible contracts. We focus on principal-
agent settings with succinctly described (and exponentially large) outcome spaces. We show that the
computational complexity of computing a near-optimal contract depends fundamentally on the num-
ber of agent actions. For settings with a constant number of actions, we present a fully polynomial-
time approximation scheme (FPTAS) for the separation oracle of the dual of the problem of min-
imizing the principal's payment to the agent, and we use this subroutine to efficiently compute
a \delta -incentive-compatible (\delta -IC) contract whose expected payoff matches or surpasses that of the
optimal IC contract. With an arbitrary number of actions, we prove that the problem is hard to ap-
proximate within any constant c. This inapproximability result holds even for \delta -IC contracts where \delta 
is a sufficiently rapidly-decaying function of c. On the positive side, we show that simple linear \delta -IC
contracts with constant \delta are sufficient to achieve a constant-factor approximation of the ``first-best""
(full-welfare-extracting) solution, and that such a contract can be computed in polynomial time.
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1. Introduction. Economic theory distinguishes three fundamentally different
problems involving asymmetric information and incentives. In the first---known as
mechanism design (or screening)---the less informed party has to make a decision.
A canonical example is Myerson's optimal auction design problem [42], in which a
seller wants to maximize the revenue from selling an item, having only incomplete
information about the buyers' willingness to pay. The second problem is known as
signaling (or Bayesian persuasion). Here, as in the first case, information is hidden,
but this time the more informed party is the active party. A canonical example is
Akerlof's ``market for lemons"" [1]. In this example, sellers are better informed about
the quality of the products they sell and may benefit by sharing (some) of their
information with the buyers.

Both of these basic incentive problems have been studied very successfully and
extensively from a computational perspective; see, e.g., [9, 10, 11, 6, 12, 5, 28, 29] and
[19, 21, 17, 22].

The third basic problem, the agency problem in contract theory, has received
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212 P. D\"UTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

far less attention from the theoretical computer science community, despite being
regarded as equally important in economic theory (see, e.g., the scientific background
on the 2016 Nobel Prize for Hart and Holmstr\"om [48]). (A notable exception is [4],
which we will discuss with further related work in more detail below.)

The basic scenario of contract theory is captured by the following hidden-action
principal-agent problem [30]: There is one principal and one agent. The agent can
take one of n actions ai \in An. Each action ai is associated with a distribution Fi over
m outcomes xj \in R\geq 0 and has a cost ci \in R\geq 0. The principal designs a contract p
that specifies a payment p(xj) for each outcome xj . The agent chooses an action ai
that maximizes expected payment minus cost, i.e.,

\sum 
j Fi,jp(xj)  - ci. The principal

seeks to set up the contract so that the chosen action maximizes expected outcome
minus expected payment, i.e.,

\sum 
j Fi,jxj  - 

\sum 
j Fi,jp(xj).

The principal-agent problem is quite different from mechanism design and sig-
naling, where the basic difficulty is the information asymmetry and that part of the
information is hidden. In the principal-agent problem the issue is one of moral haz-
ard : in and by itself the agent has no intrinsic interest in the expected outcome to
the principal.

It is straightforward to see that the optimal contract can be found in time polyno-
mial in n andm by solving n linear programs (LPs). For each action the corresponding
LP gives the smallest expected payment at which this action can be implemented. The
action that yields the highest expected reward minus payment gives the optimal payoff
to the principal, and the LP for this action gives the optimal contract.

Succinct principal-agent problems.This linear-programming-based algorithm
for computing an optimal contract has several analogues in algorithmic game theory:

1. Mechanism design. For many basic mechanism design problems, the optimal
(randomized) mechanism is the solution of an LP with size polynomial in that
of the players' joint type space.

2. Signaling. For many computational problems in signaling, the optimal sig-
naling scheme is the solution to an LP with size polynomial in the number of
receiver actions and possible states of nature.

3. Correlated equilibria. In finite games, a correlated equilibrium can be com-
puted using an LP with size polynomial in the number of game outcomes.

These linear-programming-based solutions are unsatisfactory when their size is ex-
ponential in some parameter of interest. For example, in the mechanism design and
correlated equilibria examples, the size of the LP is exponential in the number of play-
ers. A major contribution of theoretical computer science to game theory and eco-
nomics has been the articulation of natural classes of succinctly representable settings
and a thorough study of the computational complexity of optimal design problems
in such settings. Examples include work on multidimensional mechanism design that
has emphasized succinct type distributions [9, 10, 11, 12], succinct signaling schemes
with an exponential number of states of nature [22], and the efficient computation of
correlated equilibria in succinctly representable multiplayer games [46, 36]. The goal
of this paper is to initiate an analogous line of work for succinctly described agency
problems in contract theory.

We focus on principal-agent settings with succinctly described (and exponentially
large) outcome spaces, along with a reward function that supports value queries and
a distribution for each action with polynomial description. While there are many
such settings one can study, we focus on what is arguably the most natural one from
a theoretical computer science perspective, where outcomes correspond to vertices
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THE COMPLEXITY OF CONTRACTS 213

of the hypercube, the reward function is additive, and the distributions are product
distributions. (Compare with work on computing revenue-maximizing multi-item
auctions with product distributions over additive valuations, e.g. [9, 10].)

For example, outcomes could correspond to sets of items, where items are sold
separately using posted prices. Actions could correspond to different marketing strate-
gies with different costs, which lead to different (independent) probabilities of sales
of various items. Or, imagine that a firm (principal) uses a headhunter (agent) to
hire an employee (action). Dimensions could correspond to tasks or skills. Actions
correspond to types of employees, costs correspond to the difficulty of recruiting an
employee of a given type, and for each employee type there is some likelihood that
they will possess each skill (or be able to complete some task). The firm wants to
motivate the headhunter to put in enough effort to recruit an employee who is likely
to have useful skills for the firm, without actually running extensive interviews to find
out the employee's type.

In our model, as in the classic model, there is a principal and an agent. The agent
can take one of n actions ai \in An, and each action has a cost ci \in R\geq 0. Unlike in the
original model, we are given a set of items M , with | M | = m. Outcomes correspond
to subsets of items S \in 2M . Each item has a reward rj , and the reward of a set
S of items is

\sum 
j\in S rj . Every action ai comes with probabilities qi,j for each item

j. If action ai is chosen, each item j is included in the outcome independently with
probability qi,j . A contract specifies a payment pS for each outcome S \in 2M . The
goal is to compute a contract that maximizes (perhaps approximately) the principal's
payoff in running time polynomial in n and m (which is logarithmic in the size | 2M | 
of the outcome space).

A notion of approximate incentive compatibility for contracts. The clas-
sic approach in contract theory is to require that the agent be incentivized exactly,
i.e., he (weakly) prefers the chosen action over every other action. We refer to such
contracts as incentive-compatible (IC) contracts. Motivated in part by our hard-
ness results for IC contracts (see the next section) and inspired by the success of
notions of approximate incentive compatibility in mechanism design (as, for example,
in [8, 51, 12], hereafter referred to as the CDW framework), we introduce a notion of
approximate incentive compatibility that is suitable for contracts.

Our notion of \delta -incentive compatibility (or \delta -IC) is that the agent utility of the
approximately incentivized action ai is at least that of any other action ai\prime , less \delta .
(See section 2.4 for details, including how to turn \delta -IC contracts into IC contracts
with small---and necessary---multiplicative and additive losses.) This notion is natural
for several reasons. First, it coincides with the usual notion of \epsilon -IC in ``normalized""
mechanism design settings (with all valuations between 0 and 1), as in [8, 51]. A second
reason is behavioral. There is an increasing body of work in economics on behavioral
biases in contract theory [39], including strong empirical evidence that such biases play
an important role in practice---for example, that agents ``gift"" effort to the principals
employing them [2]. The notion of \delta -IC offers a mathematical formulation of an agent's
bias. Along similar lines, [15] advocates generally for approximate IC constraints in
settings where the designer can propose their ``preferred action"" to agents, in which
case an agent may be biased against deviating due to the complexities involved in
determining the agent-optimal action or the psychological costs of deviating. See also
[25] for related discussion in the context of contract theory.

1.1. Our contribution and techniques. We prove several positive and nega-
tive algorithmic results for computing near-optimal contracts in succinctly described
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214 P. D\"UTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

principal-agent settings. Our work reveals a fundamental dichotomy between settings
with a constant number of actions and those with an arbitrary number of actions.

Constant number of actions. For a constant number of actions, we prove in
section 3 that while it is NP-hard to compute an optimal IC contract, there is a fully
polynomial-time approximation scheme (FPTAS) that computes a \delta -IC contract with
expected principal surplus at least that of the optimal IC contract; the running time
is polynomial in m and 1/\delta .

Theorem 1.1 (see Theorem 3.1 and Corollary 3.2). For every constant n \geq 1
and \delta > 0, there is an algorithm that computes a \delta -IC contract with expected principal
surplus at least that of an optimal IC contract in time polynomial in m and 1/\delta .

The starting point of our algorithm is a linear programming formulation of the
problem of incentivizing a given action with the lowest possible expected payment.
Our formulation has a polynomial number of constraints (one per action other than
the to-be-incentivized one) but an exponential number of variables (one per outcome).
A natural idea is to then solve the dual LP using the ellipsoid method. The dual
separation oracle is as follows: given a weighted mixture of n - 1 product distributions
(over the m items) and a reference product distribution q\ast , minimize the ratio of
the probability of outcome S in the mixture distribution and that in the reference
distribution. Unfortunately, as we show, this is an NP-hard problem, even when there
are only n = 3 actions. On the other hand, we provide an FPTAS for the separation
oracle in the case of a constant number of actions, based on a delicate multidimensional
bucketing approach. The standard method of translating an FPTAS for a separation
oracle to an FPTAS for the corresponding LP relies on a scale-invariance property
that is absent in our problem. We proceed instead via a strengthened version of our
dual LP, to which our FPTAS separation oracle still applies, and show how to extract
from an approximately optimal dual solution a \delta -IC contract with objective function
value at least that of the optimal solution to the original LP.

Arbitrary number of actions. The restriction to a constant number of actions
is essential for the positive results above (assuming P \not = NP). Specifically, we prove in
section 4 that computing the IC contract that maximizes the expected payoff to the
principal is NP-hard, even to approximate to within any constant c. This hardness
of approximation result persists even if we relax from exact IC to \delta -IC contracts,
provided \delta is sufficiently small as a function of c.

Theorem 1.2 (see Theorem 4.1 and Corollary 4.2). For every constant c \in R,
c \geq 1, it is NP-hard to find an IC contract that approximates the optimal expected
payoff achievable by an IC contract to within a multiplicative factor of c.

Theorem 1.3 (see Theorem 4.1 and Corollary 4.3). For any constant c \in R,
c \geq 5, and \delta \leq ( 1

4c )
c, it is NP-hard to find a \delta -IC contract that guarantees > 2

cOPT,
where OPT is the optimal expected payoff achievable by an IC contract.

We prove these hardness of approximation results by reduction from MAX-3SAT,
using the fact that it is NP-hard to distinguish between a satisfiable MAX-3SAT
instance and one in which there is no assignment satisfying more than a 7/8+\alpha fraction
of the clauses, where \alpha is some arbitrarily small constant [33]. Our reduction utilizes
the gap between ``first-best"" (full-welfare-extracting) and ``second-best"" solutions in
contract design settings, where satisfiable instances of MAX-3SAT map to instances
where there is no gap between first and second best and instances of MAX-3SAT in
which no more than 7/8 + \alpha clauses can be satisfied map to instances where there is
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a constant-factor multiplicative gap between the first-best and second-best solutions.
On the positive side, we prove that for every constant \delta there is a simple (in

fact, linear1) contract that achieves a c\delta -approximation, where c\delta is a constant that
depends on \delta . This approximation guarantee is with respect to the strongest possible
benchmark, the first-best solution.2

Theorem 1.4 (see Theorem 5.1). For every constant \delta > 0 there exist a con-
stant c\delta and a polynomial-time (in n and m) computable \delta -IC contract that obtains a
multiplicative c\delta -approximation to the optimal welfare.

Our proof of this result, in section 5, shows that the optimal social welfare can
be upper bounded by a sum of (constantly many in \delta ) expected payoffs achievable by
\delta -IC contracts. The best such contract thus obtains a constant approximation to the
optimal welfare.

Black-box distributions. Product distributions are a rich and natural class
of succinctly representable distributions to study, but one could also consider other
classes. Perhaps the strongest positive result imaginable would be an efficient algo-
rithm for computing a near-optimal contract that works with no assumptions about
each action's probability distribution over outcomes, other than the ability to sample
from them efficiently. (Positive examples of this sort in signaling include [22] and in
mechanism design include [32] and its many follow-ups.) Interestingly, the principal-
agent problem poses unique challenges to such ``black-box"" positive results. The moral
reason for this is explained, for example, in [49]: Rewards play a dual role in contract
settings, both defining the surplus from the joint project to be shared between the
principal and agent and providing a signal to the principal of the agent's action. For
this reason, in optimal contracts, the payment to the agent in a given outcome is
governed both by the outcome's reward and on its ``informativeness,"" and the latter
is highly sensitive to the precise probabilities in the outcome distributions associated
with each action. In section 6 we translate this intuition into an information-theoretic
impossibility result for the black-box model, showing that positive results are possible
only under strong assumptions on the distributions (e.g., that the minimum nonzero
probability is bounded away from 0).

1.2. Related work. The study of computational aspects of contract theory was
pioneered by Babaioff et al. [4] (see also their subsequent works, notably [24] and
[7]). This line of work studies a problem referred to as combinatorial agency, in
which combinations of agents replace the single agent in the classic principal-agent
model. The challenge in the new model stems from the need to incentivize multiple
agents, while the action structure of each agent is kept simple (effort/no effort). The
focus of this line of work is on complex combinations of agents' efforts influencing
the outcomes, and how these determine the subsets of agents to contract with. The
resulting computational problems are very different from the computational problems
in our model.3

1A linear contract is defined by a single parameter \alpha \in [0, 1] and sets the payment pS for any set
S \in 2M to pS = \alpha \cdot 

\sum 
j\in S rj . Linear contracts correspond to a simple percentage commission and

are arguably among the most frequently used contracts in practice. See [16] and [23] for recent work
in economics and computer science in support of linear contracts.

2Note that the principal's objective function (reward minus payment to the agent) is a mixed-sign
objective; such functions are generally challenging for relative approximation results.

3For example, several of the key computational questions in their problem turn out to be \#P-
hard, while all of the problems we consider are in NP.
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A second direction of highly related work is [3], which considers a principal-
agent model in which the agent action space is exponentially sized but compactly
represented, and argues that in such settings indirect (interactive) mechanisms can
be better than one-shot mechanisms. Our focus is more algorithmic, and instead of
a compactly represented action space we consider a compactly represented outcome
space.

A third direction of related work considers a bandit-style model for contract design
[34]. In their model each arm corresponds to a contract, and they present a procedure
that starts out with a discretization of the contract space, which is adaptively refined
and which achieves sublinear regret in the time horizon. Again the result is quite
different from our work, where the complexity comes from the compactly represented
outcome space, and our result on the black-box model sheds a more negative light on
the learning approach.

Further related work comes from Kleinberg and Kleinberg [38], who consider the
problem of delegating a task to an agent in a setting where (unlike in our model)
monetary compensation is not an option. Although payments are not available, they
show through an elegant reduction to the prophet-inequality problem that constant
competitive solutions are possible.

A final related line of work was initiated by Carroll [16], who---working in the
classic model (where computational complexity is not an issue)---shows a sense in
which linear contracts are max-min optimal (see also the recent work of [50]). In [23]
we show an alternative such sense and also provide tight approximation guarantees
for linear contracts.

2. Preliminaries. We start by defining succinct principal-agent settings and
the contract design problem.

2.1. Succinct principal-agent settings. Let n and m be parameters. A
principal-agent setting is composed of the following: n actions An among which the
agent can choose, and their costs 0 = c1 \leq \cdot \cdot \cdot \leq cn for the agent; outcomes which the
actions can lead to, and their rewards for the principal; and a mapping from actions
to distributions over outcomes. Crucially, the agent's choice of action is hidden from
the principal, who observes only the action's realized outcome. Our goal is to study
succinct principal-agent settings with description size polynomial in n and m; the
(implicit) outcome space can have size exponential in m. Throughout, unless stated
otherwise, all principal-agent settings we consider are succinct. We focus on arguably
one of the most natural models of succinctly described settings, namely, those with
additive rewards and product distributions.

In more detail, let M = \{ 1, 2, . . . ,m\} , where M is referred to as the item set. Let
the outcome space be \{ 0, 1\} M , that is, every outcome is an item subset S \subseteq M . For
every item j \in M , the principal gets an additive reward rj if the realized outcome
includes j, so the principal's reward for outcome S is rS =

\sum 
j\in S rj . Every action

ai \in An is associated with probabilities qi,1, . . . , qi,m \in [0, 1] for the items. We denote
the corresponding product distribution by qi. When the agent takes action ai, item j is
included in the realized outcome independently with probability qi,j . The probability
of outcome S is thus qi,S = (

\prod 
j\in S qi,j)(

\prod 
j /\in S(1 - qi,j)). By linearity of expectation,

the principal's expected reward given action ai is Ri =
\sum 

S qi,SrS =
\sum 

j qi,jrj . Action
ai's expected welfare is Ri  - ci, and we assume Ri  - ci \geq 0 for every i \in [n].

Example 2.1 (succinct principal-agent setting). A company (principal) hires an
agent to sell its m products. The agent may succeed in selling any subset of the m
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items, depending on his effort level, where the ith level leads to sale of item j with
probability qi,j. Reward rj from selling item j is the profit-margin of product j for the
company.

Representation. A succinct principal-agent setting is described by an n-vector
of costs c, an m-vector of rewards r, and an n\times m matrix Q, where entry (i, j) is equal
to probability qi,j (and we assume for simplicity that the number of bits of precision
for all values is poly(n,m)).

Assumptions. Our assumption that c1 = 0 is a typical assumption in the con-
tracts literature. It serves to make the individual rationality constraint a special case
of the incentive compatibility constraint (also see section 2.2 below).

Unless stated otherwise, we assume that all principal-agent settings are normal-
ized, i.e., Ri \leq 1 for every ai \in An (and thus also ci \leq 1). Normalization amounts to a
simple change of ``currency,"" i.e., of the units in which rewards and costs are measured.
It is a standard assumption in the context of approximate incentive compatibility---see
section 2.3 (similar assumptions appear in both the CDW framework and in [15]).

2.2. Contracts and incentives. A contract p is a vector of payments from the
principal to the agent. Payments are nonnegative; this is known as limited liability
of the agent.4 The contractual payments are contingent on the outcomes and not
actions, as the actions are not directly observable by the principal. A contract p can
potentially specify a payment pS \geq 0 for every outcome S, but by linear programming
considerations detailed below, we can focus on contracts for which the support size
of the vector p is polynomial in n. We sometimes denote by pi the expected payment\sum 

S\subseteq M qi,SpS to the agent for choosing action ai, and without loss of generality restrict
attention to contracts for which pi \leq Ri for every ai \in An (in particular, pi \leq 1 by
normalization).

Given contract p, the agent's expected utility from choosing action ai is pi  - ci.
The principal's expected payoff is then Ri  - pi. The agent wishes to maximize his
expected utility over all actions and over an outside option with utility normalized to
zero (``individual rationality,"" or IR). Since by assumption the cost c1 of action a1 is
0, the outside opportunity is always dominated by action a1 and so we can omit the
outside option from consideration. Therefore, the incentive constraints for the agent
to choose action ai are pi  - ci \geq pi\prime  - ci\prime for every i\prime \not = i. If these constraints hold, we
say ai is incentive compatible (IC) (and, as discussed, in our model IC implies IR).
The standard tie-breaking assumption in the contract design literature is that among
several IC actions the agent tie-breaks in favor of the principal, i.e., chooses the IC
action that maximizes the principal's expected payoff.5 We say contract p implements
or incentivizes action ai if, given p, the agent chooses ai (namely, ai is IC and survives
tie-breaking). If there exists such a contract for action ai, we say ai is implementable;
slightly abusing notation, we sometimes refer to the implementing contract as an IC
contract.

Simple contracts. In a linear contract, the payment scheme is a linear function
of the rewards, i.e., pS = \alpha rS for every outcome S. We refer to \alpha \in [0, 1] as the
linear contract's parameter, and it serves as a succinct representation of the contract.

4Limited liability plays a similar role in the contract literature as risk-averseness of the agent.
Both reflect the typical situation in which the principal has ``deeper pockets"" than the agent and is
thus the better bearer of expenses/risks.

5The idea is that one could perturb the payment schedule slightly to make the desired action
uniquely optimal for the agent. For further discussion see [13, p. 8].
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Linear contracts have an alternative succinct representation by an m-vector of item
payments pj = \alpha rj for every j \in M , which induce additive payments pS =

\sum 
j\in S pj .

A natural generalization is separable contracts, the payments of which can also be
separated over the m items and represented by an m-vector of nonnegative payments
(not necessarily linear). The optimal linear (resp., separable) contract can be found in
polynomial time (see Proposition A.1 in Appendix A). We return to linear contracts
in section 5 and to separable contracts in Appendix H.

2.3. Contract design and relaxations. The goal of contract design is to max-
imize the principal's expected payoff from the action chosen by the agent subject
to IC constraints. A corresponding computational problem is OPT-CONTRACT:
The input is a succinct principal-agent setting, and the output is the principal's ex-
pected payoff from the optimal IC contract. A related problem is MIN-PAYMENT:
The input is a succinct principal-agent setting and an action ai, and the output is
the minimum expected payment p\ast i with which ai can be implemented (up to tie-
breaking). OPT-CONTRACT reduces to solving n instances of MIN-PAYMENT to
find p\ast i for every action ai, and returning the maximum expected payoff to the prin-
cipal maxi\in [n]\{ Ri  - p\ast i \} . Observe that MIN-PAYMENT can be formulated as an
exponentially sized LP with 2m variables \{ pS\} (one for each set S \subseteq M) and n  - 1
constraints:

min
\sum 
S\subseteq M

qi,SpS(2.1)

s.t.
\sum 
S\subseteq M

qi,SpS  - ci \geq 
\sum 
S\subseteq M

qi\prime ,SpS  - ci\prime \forall i\prime \not = i, i\prime \in [n],

pS \geq 0 \forall S \subseteq M.

While we can't use this linear programming formulation to compute an optimal
contract, it implies that there is a succinct optimal contract: There exists an extreme
point of the feasible region which is optimal. That extreme point must satisfy 2m

constraints with equality (one per variable). Only n - 1 of those constraints aren't of
the form pS = 0, so the remaining constraints must all have pS = 0.

The dual LP has n - 1 nonnegative variables \{ \lambda i\prime \} (one for every action i\prime other
than i), and exponentially many constraints:

max
\sum 
i\prime \not =i

\lambda i\prime (ci  - ci\prime )(2.2)

s.t.

\biggl( \sum 
i\prime \not =i

\lambda i\prime 

\biggr) 
 - 1 \leq 

\sum 
i\prime \not =i

\lambda i\prime 
qi\prime ,S
qi,S

\forall S \subseteq E, qi,S > 0,

\lambda i\prime \geq 0 \forall i\prime \not = i, i\prime \in [n].

However, the ellipsoid method cannot be applied to solve the dual LP in polyno-
mial time. The separation oracle, which is related to the concept of likelihood ratios
from statistical inference, turns out to be NP-hard except for the n = 2 case---see
Proposition B.1 in Appendix B.

We return to LP (2.1) and to its dual LP (2.2) in section 3.

Relaxed incentive compatibility. Contract design like auction design is ulti-
mately an optimization problem subject to IC constraints. The state of the art in
optimal auction design requires a relaxation of IC constraints to \epsilon -IC. In the CDW
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framework, the \epsilon loss factor is additive and applies to normalized auction settings.
The framework enables polytime computation of an \epsilon -IC auction with expected rev-
enue approximating that of the optimal IC auction.6 Appropriate \epsilon -IC relaxations are
also studied in multiple additional contexts---see [15] and references within for voting,
matching, and competitive equilibrium, and see [45] for Nash equilibrium. We wish
to achieve similar results in the context of optimal contracts. For completeness we
include the definition of \epsilon -IC cast in the language of contracts.

Definition 2.2 (\delta -IC action). Consider a (normalized) contract setting. For \delta \geq 
0, an action ai is \delta -IC given a contract p if the agent loses no more than additive \delta 
in expected utility by choosing ai, i.e., pi  - ci \geq pi\prime  - ci\prime  - \delta for every action ai\prime \not = ai.

As in the IC case, we often slightly abuse notation and refer to the contract p itself
as \delta -IC. By this we mean a contract p with an (implicit) action ai that is \delta -IC given p (if
there are several such \delta -IC actions, by our tie-breaking assumption the agent chooses
the one that maximizes the principal's expected payoff). We also say the contract
\delta -implements or \delta -incentivizes action ai. Finally if there exists such a contract for
ai, then we say this action is \delta -implementable. We denote by \delta -OPT-CONTRACT
and \delta -MIN-PAYMENT the above computational problems with IC replaced by \delta -IC
(e.g., the input to \delta -OPT-CONTRACT is a succinct principal-agent setting and a
parameter \delta , and the output is the principal's expected payoff from the optimal \delta -IC
contract).

2.4. Properties of approximately IC contracts. We conclude this section
with a few observations concerning \delta -IC contracts. Proofs appear in Appendix C.

Implementability. A first observation is that, by linear programming duality,
any action can be \delta -implemented up to tie-breaking even for arbitrarily small \delta . Note
that this result just talks about whether a given action can be \delta -incentivized; it may
be the case that the payments required for this are very high.

Proposition 2.3. For every principal-agent setting and every \delta > 0, every action
ai can be \delta -implemented up to tie-breaking.

Relaxed vs. exact incentive compatibility. Our next pair of results concerns
the relation between IC contracts and \delta -IC contracts.

Proposition 2.4 shows that for every \delta -IC contract there is an IC contract with
approximately the same expected payoff to the principal up to small---and necessary---
multiplicative and additive losses. Thus relaxing IC to \delta -IC increases the expected
payoff of the principal only to a certain extent. More precisely, Proposition 2.4 shows
that any \delta -IC contract can be transformed into an IC contract that maintains at least
(1 - 

\surd 
\delta ) of the principal's expected payoff up to an additive loss of (

\surd 
\delta  - \delta ). Similar

results are known in the context of auctions (see [31, 20] for welfare maximization
and [18] for revenue maximization).

To state Proposition 2.4, denote by \ell \alpha =1 the linear contract with parameter \alpha = 1
(that transfers the full reward from principal to agent).

Proposition 2.4. Fix a principal-agent setting and \delta > 0. Let p be a contract
that \delta -incentivizes action ai. Then the IC contract p\prime defined as (1 - 

\surd 
\delta )p+

\surd 
\delta \ell \alpha =1

achieves for the principal expected payoff of at least (1  - 
\surd 
\delta )(Ri  - pi)  - (

\surd 
\delta  - \delta ),

where Ri  - pi is the expected payoff of contract p.

6To be precise, the CDW framework focuses on Bayesian IC (BIC) and \epsilon -BIC auctions.
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Proposition 2.5 shows that an additive loss is necessary, as even for tiny \delta there
can be a multiplicative constant-factor gap between the expected payoff of an IC
contract and a \delta -IC one.

Proposition 2.5. For any \delta \in (0, 1/2], there exists a principal-agent setting where
the optimal contract extracts expected payoff OPT, but a \delta -IC contract extracts ex-
pected payoff \geq 4

3OPT .

Relaxed incentive compatibility with exact IR. In our model, incentive
compatibility implies IR due to the existence of a zero-cost action a1, but this is
no longer the case for \delta -IC. What if we are willing to relax IC to \delta -IC due to the
considerations above, but do not want to give up on IR? Suppose we enforce IR by
assuming that the agent chooses a \delta -IC action only if it has expected utility \geq 0. The
following lemma shows that this has only a small additive effect on the principal's
expected payoff, allowing us from now on to focus on \delta -IC contracts (IR can be later
enforced by applying the lemma).

Lemma 2.6. For every \delta -IC contract p that achieves expected payoff of \Pi for
the principal, there exists a \delta -IC and IR contract p\prime that achieves expected payoff of
\geq \Pi  - \delta .

3. Constant number of actions. In this section we begin our exploration of
the computational problems OPT-CONTRACT and MIN-PAYMENT by considering
principal-agent settings with a constant number n of actions. For every constant
n \geq 3 these problems are NP-hard, and this holds even if the incentive compatibility
requirement is relaxed to \delta -IC (see Proposition D.1 and Corollary D.2 in Appendix D).
As our main positive result, we establish the tractability of finding a \delta -IC contract
that matches the expected payoff of the optimal IC contract. In section 4 we show this
result is too strong to hold for nonconstant values of n (under standard complexity
assumptions), and in section 5 we provide an approximation result for general settings.

To state our results more formally, fix a principal-agent setting and action ai; let
OPTi be the solution to MIN-PAYMENT for ai (or \infty if ai cannot be implemented
up to tie-breaking without loss to the principal), and let OPT be the solution to
OPT-CONTRACT. Observe that OPT = maxi\in [n]\{ Ri - OPTi\} . Our main results in
this section are the following.

Theorem 3.1 (MIN-PAYMENT). There exists an algorithm that receives as in-
put a (succinct) principal-agent setting with a constant number of actions and m
items, an action ai, and a parameter \delta > 0, and returns in time poly(m, 1

\delta ) a contract
that \delta -incentivizes ai with expected payment \leq OPTi to the agent.

Corollary 3.2 (OPT-CONTRACT). There exists an algorithm that receives as
input a (succinct) principal-agent setting with a constant number of actions and m
items, and a parameter \delta > 0, and returns in time poly(m, 1

\delta ) a \delta -IC contract with
expected payoff \geq OPT to the principal.

Proof. Apply the algorithm from Theorem 3.1 once per action ai to get a con-
tract that \delta -incentivizes ai with expected payoff at least Ri  - OPTi to the principal.
Maximizing over the actions, we get a \delta -IC contract with expected payoff \geq OPT to
the principal.

Corollary 3.2 shows how to achieve OPT with a \delta -IC contract rather than an
IC one, in the same vein as the CDW results for auctions. A similar result does not
hold for general n unless P = NP (Corollary 4.3). Note that the \delta -IC contract can be
transformed into an IR one with an additive \delta loss by applying Lemma 2.6, and to a
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fully IC one with slightly more loss by Proposition 2.4, where \delta can be an arbitrarily
small inverse polynomial in m.

In the rest of the section we prove Theorem 3.1.

An FPTAS for the separation oracle. We begin by stating the separation
oracle problem and relating it to a problem called MIN-LR. LP (2.1) formulates MIN-
PAYMENT for action ai. Its dual LP (2.2) has constraints of the form\biggl( \sum 

i\prime \not =i

\lambda i\prime 

\biggr) 
 - 1 \leq 

\sum 
i\prime \not =i

\lambda i\prime 
qi\prime ,S
qi,S

.(3.1)

The separation oracle problem is thus as follows: Given n - 1 nonnegative values \{ \lambda i\prime \} 
and n product distributions qi, \{ qi\prime \} over the m items, find an outcome S such that
(
\sum 

i\prime \not =i \lambda i\prime ) - 1 >
\sum 

i\prime \not =i \lambda i\prime 
qi\prime ,S
qi,S

(i.e., a violated constraint), or determine that no such

S exists. Dividing by
\sum 

i\prime \not =i \lambda i\prime and letting \alpha i\prime = \lambda i\prime /(
\sum 

i\prime \not =i \lambda i\prime ), we can rewrite (3.1)
as

1 - 1\sum 
i\prime \not =i \lambda i\prime 

\leq 
\sum 
i\prime \not =i

\Biggl( 
\lambda i\prime \sum 
i\prime \not =i \lambda i\prime 

\cdot qi
\prime ,S

qi,S

\Biggr) 
=
\sum 
i\prime \not =i

\alpha i\prime qi\prime ,S
qi,S

.

Observe that the \alpha 's sum to 1, since
\sum 

i\prime \not =i \alpha i\prime =
\sum 

i\prime \not =i \lambda i\prime /(
\sum 

i\prime \not =i \lambda i\prime ) = 1. We
conclude that the separation oracle problem for dual LP (2.2) is equivalent to search-
ing for S such that

\sum 
i\prime 

\alpha i\prime qi\prime ,S
qi,S

is strictly less than 1  - 1/(
\sum 

i\prime \not =i \lambda i\prime ). Minimizing\sum 
i\prime 

\alpha i\prime qi\prime ,S
qi,S

over all S is sufficient to solve the problem.

We can restate this minimization problem over S in the language of likelihood
ratios (LRs). Let the MIN-LR problem be as follows: For constant n and parameter
m, the input is (i) n - 1 nonnegative weights \{ \alpha i\prime \} that sum to 1, (ii) n - 1 product
distributions \{ qi\prime \} , and (iii) a product distribution qi, where all product distributions

are over m items M . The goal is to minimize the likelihood ratio
\sum 

i\prime \alpha i\prime qi\prime ,S
qi,S

over

all outcomes S \subseteq M , where the numerator is the likelihood of S under the weighted
combination distribution

\sum 
i\prime \alpha i\prime qi\prime , and the denominator is the likelihood of S under

distribution qi. Observe that a weighted combination distribution is not in general a
product distribution itself, so the problem might be challenging. Denote the optimal
solution to MIN-LR (the minimum likelihood ratio) by \rho \ast .

Solving the separation oracle problem turns out to be NP-hard (see Proposition
B.1 in Appendix C),7 but we can give an FPTAS for the MIN-LR problem (Lemma 3.3,
proof in Appendix E). Lemma 3.4 states the guarantee from applying this FPTAS to
solve the separation oracle problem.

Lemma 3.3 (FPTAS). There is an algorithm for the MIN-LR problem that re-
turns an outcome S with likelihood ratio \leq (1 + \delta )\rho \ast in time polynomial in m, 1

\delta .

Lemma 3.4. If the FPTAS for the MIN-LR problem with parameter \delta does not
find a violated constraint of dual LP (2.2) (i.e., returns an outcome with likelihood ra-
tio \geq 1 - 1/(

\sum 
i\prime \not =i \lambda i\prime )), then for every S the dual constraint (3.1) holds approximately

up to (1 + \delta ): \biggl( \sum 
i\prime \not =i

\lambda i\prime 

\biggr) 
 - 1 \leq (1 + \delta )

\sum 
i\prime \not =i

\lambda i\prime 
qi\prime ,S
qi,S

.

7In fact the problem is strongly NP-hard; but because it involves products of the form qi,S =
(
\prod 

j\in S qi,j)(
\prod 

j /\in S(1  - qi,j)), the strong NP-hardness does not rule out an FPTAS [47, Theorem

17.12].
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Proof. Assume there exists S such that (
\sum 

i\prime \not =i \lambda i\prime )  - 1 > (1 + \delta )
\sum 

i\prime \not =i \lambda i\prime 
qi\prime ,S
qi,S

.

Then dividing by (
\sum 

i\prime \lambda i\prime ) and using the definition of \rho \ast as the minimum likelihood
ratio, we get 1 - 1\sum 

i\prime \lambda i\prime 
> (1+\delta )\rho \ast . Combining this with the guarantee of Lemma 3.3,

the FPTAS returns S\prime with likelihood ratio < 1 - 1\sum 
i\prime \lambda i\prime 

, thus identifying a violated

constraint. This completes the proof.

Applying the separation oracle FPTAS: The standard method. Given
an FPTAS with parameter \delta for the separation oracle of a dual LP, for many problems
it is possible to find in polynomial time an approximately optimal, feasible solution
to the primal---see, e.g., [37, 14, 35, 44, 27, 26]. We first describe a fairly standard
approach in the literature to utilizing a separation oracle FPTAS, which we refer to
as the standard method, and explain where we must deviate from this approach. The
proof of Theorem 3.1 then applies an appropriately modified approach.

The standard method works as follows: Let OPTi be the optimal value of the
primal (minimization) LP. For a benchmark value \Gamma , add to the (maximization) dual
LP a constraint that requires its objective to be at least \Gamma , and attempt to solve the
dual by running the ellipsoid algorithm with the separation oracle FPTAS.

Assume first that the ellipsoid algorithm returns a solution with value \Gamma . Since
the separation oracle applies the FPTAS, it may wrongly conclude that some solution
is feasible despite a slight violation of one or more of the constraints. For example, if
we were to apply the FPTAS separation oracle from Lemma 3.3 to solve dual LP (2.2),
we could possibly get a solution for which there exists S such that\sum 

i\prime \not =i

\lambda i\prime 
qi\prime ,S
qi,S

<

\biggl( \sum 
i\prime \not =i

\lambda i\prime 

\biggr) 
 - 1 \leq (1 + \delta )

\sum 
i\prime \not =i

\lambda i\prime 
qi\prime ,S
qi,S

,

where the second inequality is by Lemma 3.4. Clearly, the value \Gamma of an approximately
feasible solution may be higher than OPTi. In the standard method, the approxi-
mately feasible solution can be scaled by 1

1+\delta to regain feasibility while maintaining a

value of \Gamma 
1+\delta . Scaling thus establishes that \Gamma 

1+\delta \leq OPTi. Now assume that for some
(larger) value of \Gamma , the ellipsoid algorithm identifies that the dual LP is infeasible. In
this case we can be certain that OPTi < \Gamma , and we can also find in polynomial time
a primal feasible solution with value < \Gamma (more details in the proof of Theorem 3.1
below).

Using binary search (in our case over the range [ci, Ri] \subseteq [0, 1] since Ri is the
maximum the principal can pay without losing money), the standard method finds
the smallest \Gamma \ast for which the dual is identified to be infeasible, up to a negligible
binary search error \epsilon . This gives a primal feasible solution that achieves value \Gamma \ast + \epsilon ,

and at the same time establishes that (\Gamma \ast ) - 

1+\delta \leq OPTi by the scaling argument, which

is equivalent to \Gamma \ast 

1+\delta \leq OPTi.
8 So the standard method has found an approximately

optimal, feasible solution to the primal.

Applying the separation oracle FPTAS: Our method. The issue with
applying the standard method to solve MIN-PAYMENT is that the scaling argument
does not hold. To see this, consider an approximately-feasible dual solution for which
(
\sum 

i\prime \not =i \lambda i\prime ) - 1 \leq (1 + \delta )
\sum 

i\prime \not =i \lambda i\prime 
qi\prime ,S
qi,S

for every S, and notice that scaling the values

\{ \lambda i\prime \} does not achieve feasibility. We therefore turn to an alternative method to prove
Theorem 3.1.

8The notation (\Gamma \ast ) - means any number smaller than \Gamma \ast .
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Proof of Theorem 3.1. We apply the standard method using the FPTAS with
parameter \delta (see Lemma 3.3) as separation oracle to the following strengthened version
of dual LP (2.2),9 where the extra (1+\delta ) multiplicative factor in the constraints makes
them harder to satisfy:

max
\sum 
i\prime \not =i

\lambda i\prime (ci  - ci\prime )(3.2)

s.t. (1 + \delta )

\biggl( \biggl( \sum 
i\prime \not =i

\lambda i\prime 

\biggr) 
 - 1

\biggr) 
\leq 
\sum 
i\prime \not =i

\lambda i\prime 
qi\prime ,S
qi,S

\forall S \subseteq E, qi,S > 0,

\lambda i\prime \geq 0 \forall i\prime \not = i, i\prime \in [n].

Let \Gamma \ast be the infimum value for which dual LP (3.2) would be identified as
infeasible. The ellipsoid algorithm is thus able to find an approximately feasible
solution to dual LP (3.2) with objective (\Gamma \ast ) - . The key observation is that this
solution is fully feasible with respect to the original dual LP (2.2). This is because
if the separation oracle FPTAS does not find a violated constraint of dual LP (3.2),
then for every S it holds that (

\sum 
i\prime \not =i \lambda i\prime ) - 1 \leq 

\sum 
i\prime \not =i \lambda i\prime 

qi\prime ,S
qi,S

(by the same argument

as in the proof of Lemma 3.4). From the key observation it follows that

(3.3) (\Gamma \ast ) - \leq OPTi

(despite the fact that the scaling argument does not hold).
Now let \Gamma \ast + \epsilon be the smallest value for which the binary search runs the ellipsoid

algorithm for dual LP (3.2) and identifies its infeasibility. During its run for \Gamma \ast +\epsilon , the
ellipsoid algorithm identifies polynomially many separating hyperplanes that constrain
the objective to < \Gamma \ast +\epsilon . Formulate a ``small"" primal LP with variables corresponding
exactly to these hyperplanes. By duality, the small primal LP has a solution with
objective < \Gamma \ast + \epsilon , and moreover since the number of variables and constraints is
polynomial we can find such a solution p\ast in polynomial time. Observe that p\ast is also
a feasible solution to the primal LP corresponding to dual (3.2) (the only difference
from the small LP is more variables):

min (1 + \delta )
\sum 
S\subseteq E

qi,SpS(3.4)

s.t. (1 + \delta )

\biggl( \sum 
S\subseteq E

qi,SpS

\biggr) 
 - ci \geq 

\sum 
S\subseteq E

qi\prime ,SpS  - ci\prime \forall i\prime \not = i, i\prime \in [n],

pS \geq 0 \forall S \subseteq E.

We have thus obtained a contract p\ast that is a feasible solution to LP (3.4) with
objective (1+ \delta )

\sum 
S\subseteq E qi,SpS < \Gamma \ast + \epsilon . For action ai, this contract pays the agent an

expected transfer of
\sum 

S\subseteq E qi,SpS < \Gamma \ast +\epsilon 
1+\delta . We have the following chain of inequalities:\sum 

S\subseteq E qi,SpS \leq (\Gamma \ast ) - +\epsilon 
1+\delta \leq OPTi+\epsilon 

1+\delta \leq OPTi, where the second inequality is by (3.3),

and the last inequality is by taking the binary search error to be sufficiently small.10

To complete the proof we must show that p\ast is \delta -IC. This holds since the constraints
of LP (3.4) ensure that for every action ai\prime \not = ai, using the notation pi =

\sum 
S\subseteq E qi,SpS ,

we have pi\prime  - ci\prime \leq (1 + \delta )pi  - ci \leq pi  - ci + \delta pi \leq pi  - ci + \delta (the last inequality uses
that pi \leq Ri \leq 1 by normalization).

9Strengthened duals appear, e.g., in [44, 26].
10We use here that OPTi \geq ci and that the number of bits of precision is polynomial.
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4. Hardness of approximation. In this section, unlike the previous one, the
number of actions is no longer assumed to be constant. We show a hardness of
approximation result for optimal contracts, based on the known hardness of approxi-
mation for MAX-3SAT. In his landmark paper, H\r astad [33] shows that it is NP-hard
to distinguish between a satisfiable MAX-3SAT instance and one in which there is
no assignment satisfying more than 7/8 + \alpha of the clauses, where \alpha is an arbitrarily
small constant (Theorems 5.6 and 8.3 in [33]). We build upon this to prove our main
technical contribution stated in Theorem 4.1, which immediately leads to our main
results for this section in Corollaries 4.2 and 4.3.

Theorem 4.1. Let c \in Z, c \geq 3, be an (arbitrarily large) constant integer. Let

\epsilon ,\Delta \in R, \epsilon > 0, \Delta \in [0, 1
20c ] be such that \epsilon  - 2\Delta 1/c

3 \in (0, 1
20 ] and ( \epsilon  - 2\Delta 1/c

3 )c is an
(arbitrarily small) constant. Then it is NP-hard to determine whether a principal-
agent setting has an IC contract extracting full expected welfare, or whether there is
no \Delta -IC contract extracting > 1

c + \epsilon of the expected welfare.

We present two direct implications of Theorem 4.1. First, Corollary 4.2 applies
to the OPT-CONTRACT problem and states hardness of approximation within any
constant of the optimal expected payoff by an IC contract. (A similar result can be
shown for MIN-PAYMENT; see Appendix F.)

Corollary 4.2. For any constant c \in R, c \geq 1, it is NP-hard to approximate
the optimal expected payoff achievable by an IC contract to within a multiplicative
factor c.

Corollary 4.2 suggests that in order to achieve positive results, we may want to
follow the approach of the CDW framework and relax IC to \Delta -IC. That is, instead
of trying to compute in polynomial time an approximately optimal IC contract, we
should try to compute in polynomial time a \Delta -IC contract with expected payoff that
is guaranteed to approximately exceed that of the optimal IC contract. The next
corollary establishes a computational limitation on this approach: Corollary 4.3 fixes
a constant approximation factor c and derives \Delta for which a c-approximation by a
\Delta -IC contract is NP-hard to find. (It is also possible to reverse the roles---fix \Delta 
and derive a constant approximation factor for which NP-hardness holds.) We shall
complement this limitation with a positive result in section 5.

Corollary 4.3. For any constant c \in R, c \geq 5, and \Delta \leq ( 1
4c )

c, it is NP-hard
to find a \Delta -IC contract that guarantees > 2

cOPT , where OPT is the optimal expected
payoff achievable by an IC contract.11

Proof. The corollary follows from Theorem 4.1 by setting \epsilon = 1
c .

It also follows from Theorem 4.1 and Corollary 4.3 that for every c,\Delta as speci-
fied, it is NP-hard to approximate the optimal expected payoff achievable by a \Delta -IC
contract to within a multiplicative factor c/2. That is, hardness of approximation
also holds for \delta -OPT-CONTRACT.

In the remainder of the section we prove Theorem 4.1. After a brief overview, we
set up some tools in section 4.2 for the proof, in section 4.3 we focus on the special case
of c = 2, and in section 4.4 we prove the more general statement for any constant c.

4.1. Proof overview. It will be instructive to consider first a version of Theo-
rem 4.1 for the case of c = 2.

11The relevant hardness notion is more accurately FNP-hardness.
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SAT item 1 … SAT item ! Gap item
SAT action 1, 
gap action 1 "

… …
SAT action #, 
gap action 1 "
Gap action 2 0.5 … 0.5 1

SAT setting probabilities

Fig. 1. Outline of a product setting for c = 2.

Theorem 4.4. Let \epsilon ,\Delta \in R, \epsilon > 0,\Delta \in [0, 1
202 ] be such that \epsilon  - 2\Delta 1/2

3 \in (0, 1
20 ]

and ( \epsilon  - 2\Delta 1/2

3 )2 is an (arbitrarily small) constant. Then it is NP-hard to determine
whether a principal-agent setting has an IC contract extracting full expected welfare,
or whether there is no \Delta -IC contract extracting > 1

2 + \epsilon of the expected welfare.

This theorem is already interesting as it shows that even relaxing IC to \Delta -IC,
where \Delta \gg 0, approximating the optimal expected payoff within 65\% is computa-
tionally hard.

Corollary 4.5. For any \Delta \leq 1
202 , it is NP-hard to find a \Delta -IC contract that

guarantees > 0.65 \cdot OPT , where OPT is the optimal expected payoff achievable by an
IC contract.

Proof. The corollary follows from Theorem 4.4 by setting \epsilon = 3
20 .

To establish Theorem 4.4 we present a gap-preserving reduction from any MAX-
3SAT instance \varphi to a principal-agent setting that we call the ``product setting"" (the
reduction appears in Algorithm 4.2 and is analyzed in Proposition 4.15). The product
setting encompasses a 2-action, 1-item principal-agent ``gap setting,"" in which any \delta -
IC contract for sufficiently small \delta cannot extract much more than 1

2 of the expected
welfare (Proposition 4.8). The ``gap setting"" is coupled with a useful gadget that we
call the ``SAT setting,"" which is a principal-agent setting with n actions and m items
whose probabilities depend on the 3SAT instance \varphi . Figure 1 shows how the gap and
SAT settings are combined to form the product setting.

The important property of the SAT setting is the following: If assigning TRUE
to exactly the variable subset S satisfies the 3SAT formula, then item subset S occurs
in the SAT setting with probability zero for every action. This property becomes
useful once the gap actions are added to this gadget (see Figure 1). In particular,
``gap action 2"" achieves set S with nonzero probability, and so a contract paying only
for set S can incentivize this action by just covering its cost, thus extracting the full
welfare. If, on the other hand, the 3SAT formula is unsatisfiable, then the ``gap"" in
the gap setting kicks in and prevents any contract from extracting more than 1

2 of the
expected welfare.

Constant c > 2. The special case of c = 2 captures most ideas behind the proof
of the more general Theorem 4.1, but the analysis is simplified by the fact that to
extract more than roughly 1

2 of the expected welfare in the 2-action gap setting, there
is a single action that the contract could potentially incentivize. The more general
case involves gap settings with more actions (the reduction appears in Algorithm 4.3
and is analyzed in Proposition 4.17). To extract more than \approx 1

c of the expected
welfare, the contract could potentially incentivize almost any one of these actions
(Proposition 4.9).
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Barrier to going beyond constant \bfitc . Our techniques for establishing Theorem
4.1 do not generalize beyond constant values of c (the approximation factor). The
reason for this is that we do not know of (c, \epsilon , f )-gap settings (Definition 4.6) where
f(c, \epsilon ) = o(\epsilon c). As long as f(c, \epsilon ) is of order \epsilon c, the gap in the MAX-3SAT instance
we reduce from must be between 7/8 + \epsilon c and 1, and this gap problem is known
to be NP-hard only for constant c. As [33] notes, significantly stronger complexity
assumptions may lead to hardness for slightly (but not significantly) larger values of c.

4.2. Main tools used in the proof. In this section we formalize the notions of
``gap"" and ``SAT"" principal-agent settings as well as the notion of an ``average action,""
which will be useful in proving Theorems 4.1 and 4.4. The term ``gap setting"" reflects
the gap between the first-best solution (i.e., the expected welfare), and the second-
best solution (i.e., the expected payoff to the principal from the optimal contract). It
will be convenient not to normalize gap settings (and thus also the product settings
encompassing them). This makes our negative results only stronger, as we show next.

Unnormalized settings and a stronger \bfitdelta -IC notion. Before proceeding we
must define what we mean by a \delta -IC contract in an unnormalized setting. Moreover
we show that if Theorem 4.1 or 4.4 holds for unnormalized settings with the new \delta -IC
notion, then it also holds for normalized settings with the standard \delta -IC notion.

Recall that in a normalized setting, action ai that is \delta -incentivized by the contract
must satisfy \delta -IC constraints of the form pi  - ci + \delta \geq pi\prime  - ci\prime for every i\prime \not = i. In
an unnormalized setting, an additive \delta -deviation from optimality is too weak of a
requirement; we require instead that ai satisfy \delta -IC constraints of the form

(4.1) (1 + \delta )pi  - ci \geq pi\prime  - ci\prime \forall i\prime \not = i.

Two key observations: (i) The constraints in (4.1) imply the standard \delta -IC constraints
if pi \leq 1, as is the case if the setting is normalized. (ii) The constraints in (4.1) are
invariant to scaling of the setting and contract (i.e., to a change of currency of the
rewards, costs, and payments). By these observations, a \delta -IC contract according to
the new notion in an unnormalized setting becomes a standard \delta -IC contract after
normalization of the setting and payments, with the same fraction of optimal expected
welfare extracted as payoff to the principal.

Assume a negative result holds for unnormalized settings, i.e., it is NP-hard to
determine between the two cases stated in Theorem 4.1 (or Theorem 4.4). Assume for
contradiction this does not hold for normalized settings. Then, given an unnormalized
setting, we can simply scale the expected rewards and costs to normalize it, and then
determine whether or not there is an IC contract extracting full expected welfare. If
such a contract exists, it is also IC and full-welfare-extracting in the unnormalized
setting after scaling back the payments. On the other hand, by the discussion above, if
there is no standard-notion \Delta -IC contract extracting a given fraction of the expected
welfare in the normalized setting, there can also be no such contract with the new
\Delta -IC notion in any scaling of the setting. We have thus reached a contradiction to
NP-hardness. We conclude that proving our negative results for unnormalized settings
only strengthens these results.

Gap settings and their construction. We now turn to the definition of gap
settings.

Definition 4.6 (unstructured gap setting). Let f(c, \epsilon ) \in R\geq 0 be an increasing
function where c \in Z>0 and \epsilon \in R>0. An unstructured (c, \epsilon , f )-gap setting is a
principal-agent setting such that for every 0 \leq \delta \leq f(c, \epsilon ), the optimal \delta -IC contract
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can extract no more than 1
c + \epsilon of the expected welfare as the principal's expected

payoff.

For convenience we focus on (structured) gap settings as follows.

Definition 4.7 (gap setting). A (c, \epsilon , f)-gap setting is a setting as in Defini-
tion 4.6 with the following structure: there are a single item and c actions; the first
action has zero cost; the last action has probability 1 for the item and maximum
expected welfare among all actions.

To construct a gap setting, we construct a principal-agent setting with a single
item, c actions, and parameter \gamma \in R>0, \gamma < 1. The construction is similar to [23],
but requires a different analysis. For every i \in [c], set the probability of action ai for
the item to \gamma c - i, and set ai's cost to ci = (1/\gamma i - 1) - i+ (i - 1)\gamma . Set the reward for
the item to be 1/\gamma c - 1. Observe that the expected welfare of action ai is i - (i - 1)\gamma ,
so the last action has the maximum expected welfare c - (c - 1)\gamma . This establishes the
structural requirements from a gap setting (Definition 4.7). Propositions 4.8 and 4.9
establish the gap requirements from a gap setting (Definition 4.6) for c = 2 and c \geq 3,
respectively---the separation between these cases is for clarity of presentation. We use
the former in section 4.3, in which we show hardness for the c = 2 case; the latter is
a generalization to arbitrarily large constant c. See Appendix G for proofs.

Proposition 4.8 (2-action gap settings). For every \epsilon \in (0, 1
4 ], there exists a

(2, \epsilon , \epsilon 2)-gap setting.

Proposition 4.9 (c-action gap settings). For every c \geq 3 and \epsilon \in (0, 1
4 ], there

exists a (c, \epsilon , \epsilon c)-gap setting.

For concreteness we describe the 2-action gap setting: The agent has c = 2
actions, which can be thought of as ``effort"" and ``no effort."" Effort has cost 1

\epsilon  - 2+ \epsilon ,
and no effort has cost 0. Without effort the item has probability \epsilon , and with effort the
probability is 1. The reward associated with the item is 1

\epsilon . It is immediate to see that
the maximum expected welfare (first-best) is 2 - \epsilon . In the proof of Proposition 4.8 we
show that the best an \epsilon 2-IC contract can extract is \approx 1.

Average actions and SAT settings. The motivation for the next definition is
that, given a contract, for an action to be IC or \delta -IC it must yield higher expected
utility for the agent in comparison to the ``average action."" Average actions are thus
a useful tool for analyzing contracts.

Definition 4.10 (average action). Given a principal-agent setting and a subset
of actions, by average action we refer to a hypothetical action with the average of the
subset's distributions, and average cost. (If a particular subset is not specified, the
average is taken over all actions in the setting.)

Another useful ingredient will be SAT settings defined as follows.

Definition 4.11 (SAT setting). A SAT principal-agent setting corresponds to a
MAX-3SAT instance \varphi . If \varphi has n clauses and m variables, then the SAT setting has
n actions and m items. Two conditions hold: (1) \varphi is satisfiable if and only if there
is an item set in the SAT setting that the average action leads to with zero probability.
(2) If every assignment to \varphi satisfies at most 7/8 + \alpha of the clauses, then for every
item set S the average action leads to S with probability at least 1 - 8\alpha 

2m .

The following proposition provides a reduction from MAX-3SAT instances to SAT
settings.
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Proposition 4.12. For every \varphi the reduction in Algorithm 4.1 runs in polyno-
mial time on input \varphi and returns a SAT setting corresponding to \varphi .

Algorithm 4.1 SAT setting construction in polytime.

Input : A MAX-3SAT instance \varphi with n clauses and m variables.
Output: A principal-agent SAT setting (Definition 4.11) corresponding to \varphi .
begin

Given \varphi , construct a principal-agent setting in which every clause corresponds to
an action with a product distribution, and for every variable there is a corre-
sponding item. If variable j appears in clause i of \varphi as a positive literal, then let
item j's probability in the ith product distribution be 0, and if it appears as a
negative literal, then let item j's probability be 1. Set all other probabilities to
1
2 . We set the costs of all actions and the rewards for all items to 0.

end

Proof of Proposition 4.12. We first argue that there is a satisfying assignment to
the MAX-3SAT instance if and only if there is a set S with 0-probability in every one
of the product distributions. First note that there is a natural 1-to-1 correspondence
between subsets \{ S\} of items and truth assignments to the variables: For every vari-
able j, if item j \in S, then assign TRUE and otherwise FALSE. Now consider a set S
and its corresponding assignment. S has 0-probability in the ith product distribution
if and only if either an item in S has probability 0 or an item in S has probability
1 according to this distribution. Therefore, in clause i, either one of the TRUE vari-
ables appears as a positive literal or one of the FALSE variables appears as a negative
literal. And this is a necessary and sufficient condition for the clause to be satisfied.
We conclude that S has 0-probability in every product distribution if and only if the
corresponding assignment satisfies every clause, establishing condition (1) of Defini-
tion 4.11. To show condition (2), assume that at most 7

8 + \alpha of the clauses can be
satisfied. Consider the average action whose distribution results from averaging over
all actions. This distribution has for every S a probability at least ( 18 - \alpha )\cdot 8

2m = 1 - 8\alpha 
2m ,

since the probability of S is 8
2m in every distribution corresponding to a clause which

the assignment corresponding to S does not satisfy. This completes the proof.

4.3. The c = 2 case: Proof of Theorem 4.4. In this section we present a
polynomial-time reduction from MAX-3SAT to a product setting, which combines
gap and SAT settings. The reduction appears in Algorithm 4.2. We then analyze
the guarantees of the reduction and use them to prove Theorem 4.4. Most of the
analysis appears in Proposition 4.15, which shows that the reduction in Algorithm
4.2 is gap-preserving. Some of the results are formulated in general terms so they can
be reused in the next section (section 4.4).

Before turning to Proposition 4.15, we begin with two simple observations about
the product setting resulting from the reduction.

Observation 4.13. Partition all actions of the product setting but the last one
into blocks of n actions each.12 Every action in the ith block has the same expected
reward for the principal as action ai in the gap setting, and the last action in the
product setting has the same expected reward as the last action in the gap setting.

12If the number of actions in the gap setting is 2, there is a single such block.
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Algorithm 4.2 Polytime reduction from MAX-3SAT to principal-agent.

Input : A MAX-3SAT instance \varphi with n clauses and m variables; a parameter
\epsilon \in R\geq 0.

Output: A principal-agent product setting combining a SAT setting and a gap setting.
begin

Combine the SAT setting corresponding to \varphi (attainable in polytime by Propo-
sition 4.12) with a poly-sized (2, \epsilon , \epsilon 2)-gap setting (exists by Proposition 4.8) to
get the product setting, as follows:

\bullet The product setting has n+ 1 actions and m+ 1 items: m ``SAT items""
correspond to the SAT setting items, and the last ``gap item"" corresponds
to the gap setting item.

\bullet The upper-left block of the product setting's (n + 1) \times (m + 1) matrix
of probabilities is the SAT setting's n \times m matrix of probabilities. The
entire lower-left 1 \times m block is set to 1

2 . The entire upper-right n \times 1
block is set to the probability that action a1 in the gap setting results in
the item. The remaining lower-right 1\times 1 block is set to the probability
that the last action (i.e., action a2) in the gap setting results in the item
(recall that this probability is 1).

\bullet In the product setting, the rewards for the m SAT items are set to 0,
and the reward for the gap item is set as in the gap setting.

\bullet The costs of the first n actions in the product setting are the cost of
action a1 in the gap setting; the cost of the last action in the product
setting is the cost of the last action (i.e., action a2) in the gap setting.

end

Corollary 4.14. The optimal expected welfares of the product and gap settings
are the same and are determined by their respective last actions.

Proposition 4.15 (gap preservation by Algorithm 4.2). Let \varphi be a MAX-3SAT
instance for which either there is a satisfying assignment or every assignment satisfies
at most 7/8 + \alpha of the clauses for \alpha \leq (0.05)2. Let \Delta \leq (0.05)2. Consider the
product setting resulting from the reduction in Algorithm 4.2 run on input \varphi , \epsilon =
3\alpha 1/2 + 2\Delta 1/2 \leq 1

4 . Then the following hold:
1. If \varphi has a satisfying assignment, the product setting has an IC contract that

extracts full expected welfare.
2. If every assignment to \varphi satisfies at most 7/8 + \alpha of the clauses, the optimal

\Delta -IC contract can extract no more than 1
2 + \epsilon of the expected welfare.

Proof. First, if \varphi has a satisfying assignment, then there is a subset of SAT items
that has zero probability according to every one of the first n actions. Consider
the outcome S\ast combining this subset together with the gap item. We construct a
full-welfare extracting contract: the contract's payment for S\ast is the cost of the last
action in the product setting multiplied by 2m (since the probability of S\ast according
to the last action is 1/2m), and all other payments are set to zero. It is not hard to
see that the resulting contract makes the agent indifferent among all actions, so by
tie-breaking in favor of the principal, the principal receives the full expected welfare
as her payoff.

Now consider the case that every assignment to \varphi satisfies at most 7/8+\alpha of the
clauses, and assume for contradiction that there is a \Delta -IC contract p for the product
setting that extracts more than 1

2 +\epsilon of the expected welfare. We derive from p a \delta -IC
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contract p\prime for the (2, \epsilon , \epsilon 2)-gap setting where \delta \leq \epsilon 2, which extracts more than 1
2 + \epsilon 

of the expected welfare. This is a contradiction of the properties of the gap setting
(Definition 4.6).

It remains to specify and analyze contract p\prime : For brevity we denote the singleton
containing the gap item by M \prime and define

p\prime (S\prime ) =
1 - 8\alpha 

2m

\sum 
S\subseteq [m]

p(S \cup S\prime ) \forall S\prime \subseteq M \prime ,(4.2)

where S\prime is either the singleton containing the gap item or the empty set. The starting
point of the analysis is the observation that to extract > 1

2 + \epsilon of the expected welfare
in the product setting, contract p must \Delta -incentivize the last action (this follows
since the expected rewards and costs of the actions are as in the gap setting by
Observation 4.13, and so the same argument as in the proof of Proposition 4.8 holds).

Claim 4.16 below establishes that if contract p \Delta -incentivizes the last action in
the product setting, then contract p\prime \delta -incentivizes the last action in the gap setting
for \delta = 8\alpha +\Delta 

1 - 8\alpha . So indeed

\delta =
8\alpha 

1 - 8\alpha 
+

\Delta 

1 - 8\alpha 

\leq 9\alpha + 4\Delta 

= (3\alpha 1/2)2 + (2\Delta 1/2)2

\leq (3\alpha 1/2 + 2\Delta 1/2)2 = \epsilon 2,

using that \alpha ,\Delta \leq (0.05)2 for the first inequality.
Now observe that the expected payoff to the principal from contract p\prime that \delta -

incentivizes the last gap setting action is at least that of contract p that \Delta -incentivizes
the last product setting action: the payments of p\prime as defined in (4.2) are the average
payments of p lowered by a factor of (1  - 8\epsilon ), and the expected rewards in the two
settings are the same (Observation 4.13). The expected welfares in the two settings
are also equal (Corollary 4.14). We conclude that, like contract p in the product
setting, contract p\prime guarantees extraction of > 1

2 + \epsilon of the expected welfare in the
gap setting. This leads to a contradiction and completes the proof of Proposition 4.15
(up to Claim 4.16 proved below).

The next claim is formulated in general terms so that it can also be used in section
4.4. It references the contract p\prime defined in (4.2).

Claim 4.16. Assume every assignment to the MAX-3SAT instance \varphi satisfies at
most 7/8 + \alpha of its clauses where \alpha < 1

8 , and consider the product and gap settings
returned by the reduction in Algorithm 4.2 (resp., Algorithm 4.3). If in the product
setting the last action is \Delta -incentivized by contract p, then in the gap setting the last
action is \delta -incentivized by contract p\prime for \delta = 8\alpha +\Delta 

1 - 8\alpha .

Proof. Let gi denote the distribution of action ai in the gap setting, and let c be
the number of actions in this setting. In the product setting, by construction its last

action assigns probability gc(S
\prime )

2m to every set S \cup S\prime such that S contains SAT items
and S\prime \subseteq M \prime . Thus the expected payment for the last action given contract p is\sum 

S\subseteq [m]

\sum 
S\prime \subseteq M \prime 

gc(S
\prime )

2m
p(S \cup S\prime ) =

1

1 - 8\alpha 

\sum 
S\prime \subseteq M \prime 

gc(S
\prime )p\prime (S\prime ),(4.3)
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where the equality follows from the definition of p\prime in (4.2). Note that the resulting
expression in (4.3) is precisely the expected payment for the last action in the gap
setting given contract p\prime , multiplied by factor 1/(1 - 8\alpha ).

Similarly, for every i \in c consider the average action over the ith block of n actions
in the product setting.13 Again by construction, the probability this ith average action

assigns to S \cup S\prime is \geq gi(S
\prime )(1 - 8\alpha )
2m , where we use that the average action of the SAT

setting has probability \geq 1 - 8\alpha 
2m for S (Definition 4.11). Thus the expected payment

for the ith average action given contract p is at least\sum 
S\subseteq [m]

\sum 
S\prime \subseteq M \prime 

gi(S
\prime )(1 - 8\alpha )

2m
p(S \cup S\prime ) =

\sum 
S\prime \subseteq M \prime 

gi(S
\prime )p\prime (S\prime ) \forall i \in [c],(4.4)

where again the equality follows from (4.2). Note that the resulting expression in (4.4)
is precisely the expected payment for action ai in the gap setting given contract p\prime .

We now use the assumption that in the product setting, contract p \Delta -incentivizes
the last action. This means the agent \Delta -prefers the last action to the ith average
action, which has cost zero. Combining (4.3) and (4.4), we get

1 + \Delta 

1 - 8\alpha 

\sum 
S\prime \subseteq M \prime 

gc(S
\prime )p\prime (S\prime ) - \scrC \geq 

\sum 
S\prime \subseteq M \prime 

gi(S
\prime )p\prime (S\prime ) \forall i \in [c],(4.5)

where \scrC denotes the cost of the last action in the product and gap settings. By
definition of \delta -IC, inequality (4.5) immediately implies that in the gap setting, the
last action is \delta -IC given contract p\prime where \delta = 8\alpha +\Delta 

1 - 8\alpha , thus completing the proof of
Claim 4.16.

We can now use Proposition 4.15 to prove Theorem 4.4.

Proof of Theorem 4.4. Recall that (\epsilon  - 2\Delta 1/2)2

9 is a constant \leq (0.05)2. Assume
a polynomial-time algorithm for determining whether a principal-agent setting has a
(fully IC) contract that extracts the full expected welfare, or whether no \Delta -IC contract
can extract more than 1

2 + \epsilon . Then given a MAX-3SAT instance \varphi for which either

there is a satisfying assignment or every assignment satisfies at most 7
8 +

(\epsilon  - 2\Delta 1/2)2

9 of
the clauses, by Proposition 4.15 the product setting (constructed in polynomial time)
either has a full-welfare extracting contract or has no \Delta -IC contract that can extract
more than 1

2 + \epsilon . Since the algorithm can distinguish between these two cases, it

can solve the MAX-3SAT instance \varphi . But by [33] and since (\epsilon  - 2\Delta 1/2)2

9 is a constant,
we know that there is no polynomial-time algorithm for solving such MAX-3SAT
instances unless P = NP. This completes the proof of Theorem 4.4.

4.4. The general case: Proof of Theorem 4.1. In this section we formulate
and analyze the guarantees of the reduction in Algorithm 4.3.

Proposition 4.17 (gap preservation by Algorithm 4.3). Let c \in Z, c \geq 3. Let \varphi 
be a MAX-3SAT instance for which either there is a satisfying assignment or every
assignment satisfies at most 7/8 + \alpha of the clauses for \alpha \leq (0.05)c. Let \Delta \leq (0.05)c.
Consider the product setting resulting from the reduction in Algorithm 4.3 run on
input \varphi , c, \epsilon = 3\alpha 1/c + 2\Delta 1/c \leq 1

4 . Then the following hold:
1. If \varphi has a satisfying assignment, the product setting has an IC contract that

extracts full expected welfare.

13If c = 2, there is a single such block.
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Algorithm 4.3 Generalized polytime reduction from MAX-3SAT to principal-agent.

Input : A MAX-3SAT instance \varphi with n clauses and m variables; parameters \epsilon \in 
R\geq 0 and c \in Z>0, where c \geq 3.

Output: A principal-agent product setting combining copies of a SAT setting and a
gap setting.

begin
Combine multiple copies of the SAT setting corresponding to \varphi (attainable in
polytime by Proposition 4.12) with a poly-sized (c, \epsilon , \epsilon c)-gap setting (exists by
Proposition 4.9) to get the product setting, as follows:

\bullet The product setting has cn+1 actions and m+1 items: m ``SAT items""
correspond to the SAT setting items, and the last ``gap item"" corresponds
to the gap setting item.

\bullet For every i \in [c], consider the ith block of n rows of the product setting's
(cn+ 1)\times (m+ 1) matrix of probabilities. The ith block consists of row
(i - 1) \cdot n+1 to row i \cdot n and forms a submatrix of size n\times (m+1). The
first m columns of the submatrix are set to a copy of the SAT setting's
n \times m matrix of probabilities, and the entire last column is set to the
probability that action ai in the gap setting results in the item. Finally,
the first m entries of the last row of the product setting's matrix (i.e.,
row cn+1) are set to 1

2 , and the last entry (the lower-right corner of the
matrix) is set to the probability that the last action in the gap setting
results in the item.

\bullet In the product setting, the rewards for the m SAT items are set to 0,
and the reward for the gap item is set as in the gap setting.

\bullet For every i \in [c], the costs of the n actions in block i are the cost of
action ai in the gap setting; the cost of the last action in the product
setting is the cost of the last action in the gap setting.

end

2. If every assignment to \varphi satisfies at most 7/8 + \alpha of the clauses, the optimal
\Delta -IC contract can extract no more than 1

c + \epsilon of the expected welfare.

Proof. First, if \varphi has a satisfying assignment, then there is a subset of SAT items
that has zero probability according to every one of the actions in the product setting
except for the last action, and so we can construct a full-welfare extracting contract as
in the proof of Proposition 4.15. From now on consider the case that every assignment
to \varphi satisfies at most 7/8 + \alpha of the clauses, and assume for contradiction there is a
\Delta -IC contract p for the product setting that extracts more than 1

c + \epsilon of the expected
welfare.

Consider the case that p \Delta -incentivizes the last action in the product setting.
Then we can derive from it a \delta -IC contract p\prime for the (c, \epsilon , \epsilon c)-gap setting where \delta \leq \epsilon c,
which extracts more than 1

c + \epsilon of the expected welfare. This is a contradiction of the
properties of the gap setting (Definition 4.6). The construction of p\prime and its analysis
are as in the proof of Proposition 4.15 (where (4.2) defines p\prime ), and so are omitted
here except for the following verification: we must verify that indeed \delta \leq \epsilon c. We know
from Claim 4.16 that \delta = 8\alpha +\Delta 

1 - 8\alpha . As in the proof of Proposition 4.15 this is \leq 9\alpha +4\Delta ,
and it is not hard to see that

9\alpha + 4\Delta \leq (3\alpha 1/c)c + (2\Delta 1/c)c \leq (3\alpha 1/c + 2\Delta 1/c)c = \epsilon c,

where the first inequality uses that c \geq 3.
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In the remaining case, p \Delta -incentivizes an action ai\ast k in the product setting which
is the kth action in block i\ast \in [c] (recall that each block has n actions). We derive
from p a contract p\prime k (depending on k) for the gap setting that \Delta -incentivizes ai\ast at
the same expected payment. As in the proof of Proposition 4.17, this means that p\prime k
extracts > 1

c + \epsilon of the expected welfare in the gap setting. Since \Delta \leq \delta = 8\alpha +\Delta 
1 - 8\alpha it

follows from the argument above that \Delta \leq \epsilon c, and so we have reached a contradiction
to the properties of the gap setting (Definition 4.6).

We define p\prime k as follows: Let sk denote the distribution of action ak in the SAT
setting. For every subset S\prime \subseteq M \prime of gap items,

p\prime k(S
\prime ) =

\sum 
S\subseteq [m]

p(S \cup S\prime )sk(S) \forall S\prime \subseteq M \prime ,(4.6)

where S\prime is either the singleton containing the gap item or the empty set.
For the analysis, let gi denote the distribution of action ai in the gap setting. In

the product setting, for every i \in [c], k \leq n the expected payment for action aik by
contract p is

(4.7)
\sum 

S\in [m]

\sum 
S\prime \subseteq M \prime 

sk(S)gi(S
\prime )p(S \cup S\prime ).

In the gap setting, the expected payment for ai by contract p\prime k is
\sum 

S\prime \subseteq M \prime gi(S
\prime )p\prime (S\prime ),

and by definition of p\prime k in (4.6) this coincides with the expected payment in (4.7). We
know that contract p \Delta -incentivizes ai\ast k in the product setting, in particular against
any action aik where i \in [c] \setminus \{ i\ast \} (i.e., against actions in the same position k but in
different blocks). This implies that contract p\prime k \Delta -incentivizes ai\ast in the gap setting
against any action ai, completing the proof.

We can now use Proposition 4.17 to prove Theorem 4.1. The proof is identical to
that of Theorem 4.4 and so is omitted here.

5. Approximation guarantees. In this section we show that for any constant
\delta there is a simple, namely, linear, \delta -IC contract that extracts as expected payoff for
the principal a c\delta -fraction of the optimal welfare, where c\delta is a constant that depends
only on \delta . Recall that a linear contract is defined by a parameter \alpha \in [0, 1] and pays
the agent pS = \alpha 

\sum 
j\in S rj for every outcome S \subseteq M .

Theorem 5.1. Consider a principal-agent setting with n actions. For every \delta > 0
let c\delta = max\gamma \in (0,1)(1  - \gamma )(\lceil log1+\delta (

1
\gamma )\rceil + 1) - 1. Then there is a \delta -IC linear contract

with expected payoff ALG, where

ALG \geq c\delta \cdot max
i\in [n]

\{ Ri  - ci\} .

An immediate corollary of Theorem 5.1 is that we can compute a \delta -IC linear
contract that achieves a constant-factor approximation in polynomial time. By Corol-
lary 4.2 we cannot achieve a similar result for IC (rather than \delta -IC) contracts unless
P = NP. In fact, an even stronger lower bound holds for the class of exactly IC
linear (or, more generally, separable) contracts. These contracts cannot achieve an
approximation ratio better than n (see [23] and Appendix H for details).

5.1. Geometric understanding of linear contracts. To prove Theorem 5.1
we will rely on the following geometric understanding of linear contracts developed in
[23]. Fix a principal-agent setting. For a linear contract with parameter \alpha \in [0, 1] and
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\alpha 

\alpha Ri  - ci

 - c1

 - c2

 - c3

R1  - c1

R2  - c2

R3  - c3

\alpha 1 \alpha 2 \alpha 3

Fig. 2. Upper envelope diagram for linear contracts.

an action ai, the expected reward Ri =
\sum 

S qi,SrS is split between the principal and
the agent, leaving the principal with (1 - \alpha )Ri in expected utility and the agent with
\alpha Ri  - ci (the sum of the players' expected utilities is action ai's expected welfare).
The agent's expected utility for choosing action ai as a function of \alpha is thus a line
from  - ci (for \alpha = 0) to Ri  - ci (for \alpha = 1). Drawing these lines for each of the n
actions, we trace the maximum the agent's utility for his best action as \alpha goes from
0 to 1. This gives us the upper envelope diagram for linear contracts in the given
principal-agent setting.

Figure 2 illustrates the construction and enables a few key observations that hold
in general. A first observation is that only actions that appear on the upper envelope
can be incentivized, and for each action that can be incentivized the smallest \alpha for
which this action is part of the upper envelope is the one that yields the highest
expected payoff for the principal. Moreover, if we index actions from left to right as
they appear on the upper envelope, then they will be sorted by increasing welfare
Ri  - ci, increasing expected reward Ri, and increasing cost ci as these correspond to
the intercept of \alpha Ri  - ci with the y-axis at \alpha = 1, the slope of \alpha Ri  - ci, and the
intercept of \alpha Ri  - ci with the y-axis at \alpha = 0.

In the remainder of this section, we will use IN for the subset of N \leq n actions
that are implementable by some linear contract, and we will index them in the order
in which they appear on the upper envelope. Note that then i < i\prime implies that
ci < ci\prime , Ri < Ri\prime , and Ri  - ci < Ri\prime  - ci\prime . Moreover, maxi\{ Ri  - ci\} = RN  - cN , as
the action with the highest welfare must appear on the upper envelope.

For every action ai \in IN , we denote by \alpha i the smallest parameter \alpha of a linear
contract that incentivizes ai. Note that because of our assumption that the minimum
cost of any action is 0, we have that \alpha 1 = 0.

5.2. Bucketing construction. Our proof of Theorem 5.1 relies on a bucket-
ing construction that is parametrized by \delta > 0 and \gamma \in (0, 1). We describe this
construction below and visualize it in Figure 3.

For a fixed \delta > 0 and fixed \gamma \in (0, 1) we subdivide the range [0, 1] of \alpha -parameters
into \kappa + 1 = \lceil log1+\delta (

1
\gamma )\rceil + 1 buckets as follows:

B1 = [0, \gamma (1 + \delta )0),

Bk = [\gamma (1 + \delta )k - 2, \gamma (1 + \delta )k - 1) for k \in \{ 2, . . . , \kappa \} ,
B\kappa +1 = [\gamma (1 + \delta )\kappa  - 1, 1].

For each bucket Bk with k \in [\kappa + 1] we now specify an action ah(k). If bucket Bk
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\alpha 

\alpha Ri  - ci

\alpha h(1)

\alpha h(0),h(1) \alpha h(1),h(2) \alpha h(2),h(3)

B1 B2 B3

ah(1) = a2

ah(2) = a2

ah(3) = a4

Fig. 3. Bucketing construction.

has a single action ai that is implementable with an \alpha \in Bk, then we let ah(k) = ai.
Otherwise, if bucket Bk has more than one action ai that is implementable with an
\alpha \in Bk, then we let ah(k) be the action ai with the highest expected reward that is
implementable with an \alpha \in Bk.

Next for each bucket Bk and associated action ah(k) we define a value of \alpha , which
we will denote by \alpha h(k - 1),h(k). For k = 1 we set \alpha h(k - 1),h(k) = 0. For k \geq 2 we
distinguish between the case where Bk has exactly one implementable action, and the
case where it has more than one. If it has exactly one implementable action, we set
\alpha h(k - 1),h(k) = \gamma (1 + \delta )k - 2, i.e., we define \alpha h(k - 1),h(k) to be the left endpoint of Bk.
Note that in this case h(k) = h(k  - 1), and so

Rh(k)  - ch(k) = Rh(k - 1)  - ch(k - 1).

Otherwise, if Bk has more than one implementable action, then we have h(k) >
h(k  - 1) and therefore also Rh(k) > Rh(k - 1), and we set

\alpha h(k - 1),h(k) =
ch(k)  - ch(k - 1)

Rh(k)  - Rh(k - 1)
,

i.e., in this case \alpha h(k - 1),h(k) is the \alpha that makes the agent indifferent between actions
ah(k - 1) and ah(k).

5.3. Upper bound on the optimal welfare. The first key ingredient in our
proof of Theorem 5.1 will be the following upper bound on the optimal welfare
maxi\in [n](Ri - ci) = RN  - cN in terms of the parameters of the bucketing construction
in section 5.2 for any \delta > 0 and \gamma \in (0, 1).

Lemma 5.2. Fix \delta > 0 and \gamma \in (0, 1) and consider the bucketing construction
from section 5.2. Then

max
i\in [n]

(Ri  - ci) = RN  - cN \leq 
\kappa +1\sum 
k=1

(1 - \alpha h(k - 1),h(k))Rh(k).

To prove Lemma 5.2 we rely on the following observation from [23].
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Observation 5.3. Consider two actions ai, ai\prime such that ai has higher expected
reward and higher welfare than ai\prime , i.e., Ri > Ri\prime and Ri  - ci > Ri\prime  - ci\prime , and let
\alpha i\prime ,i = (ci  - ci\prime )/(Ri  - Ri\prime ). Then

(Ri  - ci) - (Ri\prime  - ci\prime ) \leq (1 - \alpha i\prime ,i)Ri.

Proof of Lemma 5.2. We argue by induction that for all k \geq 1, Rh(k)  - ch(k) \leq \sum k
i=1(1 - \alpha h(i - 1),h(i))Rh(i). For k = 1, recall that \alpha h(0),h(1) = 0 by definition, and it

trivially holds that Rh(1)  - ch(1) \leq Rh(1). Now assume that the inequality holds for
k  - 1, i.e.,

Rh(k - 1)  - ch(k - 1) \leq 
k - 1\sum 
i=1

(1 - \alpha h(i - 1),h(i))Rh(i).(5.1)

If Bk is a bucket that contains only one implementable action, then h(k) = h(k - 1)
and thus (Rh(k) - ch(k)) - (Rh(k - 1) - ch(k - 1)) = 0. So, in particular, (Rh(k) - ch(k)) - 
(Rh(k - 1)  - ch(k - 1)) \leq (1 - \alpha h(k - 1),h(k))Rh(k).

Otherwise, if Bk is a bucket that contains more than one implementable action,
then h(k) > h(k - 1) and thus Rh(k) > Rh(k - 1) and Rh(k) - ch(k) > Rh(k - 1) - ch(k - 1).
So we can apply Observation 5.3 to actions ah(k) and ah(k - 1). This shows (Rh(k)  - 
ch(k)) - (Rh(k - 1)  - ch(k - 1)) \leq (1 - \alpha h(k - 1),h(k))Rh(k).

We conclude that in both cases (Rh(k)  - ch(k))  - (Rh(k - 1)  - ch(k - 1)) \leq (1  - 
\alpha h(k - 1),h(k))Rh(k). Adding this inequality to inequality (5.1), we obtain

Rh(k)  - ch(k) \leq 
k\sum 

i=1

(1 - \alpha h(i - 1),h(i))Rh(i),

as claimed.

5.4. Approximate implementability. The second crucial observation con-
cerning the bucketing construction in section 5.2 for any fixed \delta > 0 and \gamma \in (0, 1)
concerns the (approximate) implementability of the actions ah(k) for k \in [\kappa + 1].

For k = 1, action ah(1) is incentivized exactly at \alpha 1. For k \geq 2 and buckets Bk

that contain only one implementable action, action ah(k) is incentivized exactly at
\alpha h(k - 1),h(k). For k \geq 2 and buckets Bk that contain more than one implementable
action, action ah(k) is not incentivized exactly at \alpha h(k - 1),h(k), but---as the following
lemma shows---it is \delta -incentivized.

Lemma 5.4. Fix \delta > 0 and \gamma \in (0, 1) and consider the bucketing construction
from section 5.2. For any k \in \{ 2, . . . , \kappa + 1\} such that Bk contains more than one
implementable action, the linear contract with \alpha = \alpha h(k - 1),h(k) ensures that

\alpha Rh(k)  - ch(k) + \delta \geq \alpha Ri  - ci for every i \in [n].

Proof. The lines Rh(k)  - ch(k) and Rh(k - 1)  - ch(k - 1) intersect at \alpha h(k - 1),h(k). By
construction, their intersection must fall between, on the one hand, the left endpoint
\gamma (1 + \delta )k - 2 of the bucket in which \alpha h(k) falls, and \alpha h(k) on the other hand. This

shows that (1 + \delta )\alpha h(k - 1),h(k) \geq (1 + \delta )\gamma (1 + \delta )k - 2 = \gamma (1  - \delta )k - 1 \geq \alpha h(k). Com-
bining this with the fact that ah(k) is incentivized exactly at \alpha h(k), we obtain that
\alpha h(k - 1),h(k)Rh(k)  - ch(k) + \delta \geq (1+ \delta )\alpha h(k - 1),h(k)Rh(k)  - ch(k) \geq \alpha h(k)Rh(k)  - ch(k) \geq 
\alpha h(k)Ri - ci for all i \in [n], where the first inequality holds since Rh(k) \leq 1 by normal-
ization.
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5.5. Proof of the approximation guarantee. We are now ready to prove
Theorem 5.1. We will use the bucketing construction from section 5.2, and we will
use Lemma 5.2 to derive an upper bound on the optimal welfare and Lemma 5.4 to
derive a lower bound on what a \delta -IC linear contract can achieve.

Proof of Theorem 5.1. Fix some \delta > 0 and some \gamma \in (0, 1), and consider the
bucketing construction from section 5.2 for these parameters. Write ALG for the
payoff achievable with a \delta -IC linear contract, and OPT for the maximum welfare of
any action. For the linear contract we consider choosing the best \alpha among \alpha h(1) and
\alpha h(k - 1),h(k) for k \geq 2. We then have

ALG \geq max\{ (1 - \alpha h(1))Rh(1), (1 - \alpha h(1),h(2))Rh(2), . . . , (1 - \alpha h(\kappa ),h(\kappa +1))Rh(\kappa +1)\} 
\geq (1 - \gamma )max\{ (1 - \alpha h(0),h(1))Rh(1), (1 - \alpha h(1),h(2))Rh(2),

. . . , (1 - \alpha h(\kappa ),h(\kappa +1))Rh(\kappa +1)\} 

\geq (1 - \gamma )
1

\kappa + 1

\kappa +1\sum 
i=1

(1 - \alpha h(k - 1),h(k))Rh(k)

\geq (1 - \gamma )
1

\kappa + 1
OPT,

where for the first inequality we use Lemma 5.4, for the second inequality we use
that \alpha h(1) \leq \gamma and that \alpha h(0),h(1) \geq 0, for the third inequality we lower bound the
maximum with the average, and for the final inequality we use Lemma 5.2.

The proof is completed by observing that for a fixed \delta > 0 the above argument
applies for all \gamma \in (0, 1). We can thus conclude that

ALG \geq max
\gamma \in (0,1)

(1 - \gamma )
1

\lceil log1+\delta (
1
\gamma )\rceil + 1

OPT,

as claimed.

6. Black-box model. We conclude by considering a black-box model which con-
cerns nonnecessarily succinct principal-agent settings. In this model, the principal
knows the set of actions An, the cost ci of each action ai \in An, the set of items M ,
and the rewards rj for each item j \in M , but does not know the probabilities qi,S
that action ai assigns to outcome S \subseteq M . Instead, the principal has query access to
the distributions \{ qi\} . Upon querying distribution qi of action ai, a (random) set is
returned where S is selected with probability qi,S . Our goal is to study how well a
\delta -IC contract in this model can approximate the optimal IC contract if limited to a
polynomial number of queries (where the guarantees should hold with high probability
over the random samples). Black-box models have been studied in other algorithmic
game theory contexts such as signaling---see [22] for a successful example.

Let \eta = min\{ qi,S | i \in [n], S \subseteq M, qi,S \not = 0\} be the minimum nonzero probability
of any set of items under any of the actions. Note that then either qi,S = 0 or qi,S \geq \eta 
for every S. In section 6.1 we address the case in which \eta is inverse superpolynomial
and obtain a negative result; in section 6.2 we show a positive result for the case of
inverse polynomial \eta .

6.1. Inverse superpolynomial probabilities. We show a negative result for
the case where the minimum probability \eta is inverse superpolynomial by proving that
poly(1/

\surd 
\eta ) samples are required to obtain a constant factor multiplicative approxi-

mation better than \approx 1.15. The negative result holds even for succinct settings, in
which the unknown distributions are product distributions.
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The basic idea is to construct two nearby instances, which, with high probability,
cannot be distinguished with polynomially many samples, and for which no single
contract can simultaneously be good for both settings.

Theorem 6.1. Assume \eta \leq \eta 0 = 1/625 and \delta \leq \delta 0 = 1/100. Even with n = 2
actions and m = 2 items, achieving a multiplicative \leq 1.15 approximation to the
optimal IC contract through a \delta -IC contract, where the approximation guarantee is
required to hold with probability at least 1 - \gamma , may require at least s \geq  - log(\gamma )/(9

\surd 
\eta )

queries.

Proof. We consider a scenario with two settings, both of which have n = 2 actions
and m = 2 items, and which differ only in the probabilities of the items given the

second action. Let \tau be some constant > 2 (to be fixed later), and let \mu =
\surd 
\eta 

\tau . Let
\beta = (1 + 1

\tau 2 )
 - 1 and note that \beta < 1.

Setting I:

r1 = \beta 
\tau 2\mu r2 = \beta 

\tau 2\mu 

a1 : \tau \mu \tau \mu c1 = 0

a2 : \tau 2\mu \mu c2 = \tau  - 1
\tau 3

1
1 - \mu \beta 

Setting II:

r1 = \beta 
\tau 2\mu r2 = \beta 

\tau 2\mu 

a1 : \tau \mu \tau \mu c1 = 0

a2 : \mu \tau 2\mu c2 = \tau  - 1
\tau 3

1
1 - \mu \beta 

Note further that the minimum probability of any set of items in both settings is
q2,\{ 1,2\} = \tau 2\mu 2 = \eta , as required by definition of \eta .

The expected reward achieved by the two actions in the two settings is R1 =
2\beta /\tau < 1 and R2 = (1 + 1/\tau 2)\beta = 1. Moreover, the cost of action 2 is c2 \leq \beta /\tau 2. So
the welfare achieved by the two actions is R1  - c1 < \beta and R2  - c2 \geq \beta .

In both settings the optimal IC contract incentivizes action 2 by paying only for
the set of items that maximizes the likelihood ratio. In Setting 1 this is \{ 1\} , in Setting
2 it is \{ 2\} . The payment for this set in both cases is c2/(\tau 

2\mu (1 - \mu ) - \tau \mu (1 - \tau \mu )) =
c2/(\tau 

2\mu  - \tau \mu ). This leads to an expected payment of \tau 2\mu (1 - \mu )\cdot c2/(\tau 2\mu  - \tau \mu ) = \beta /\tau 2.
The resulting payoff (and our benchmark) is therefore R2  - \beta /\tau 2 = \beta .

We now argue that if we cannot distinguish between the two settings, then we
can only achieve a \approx 1.1568 approximation. Of course, we can always pay nothing
and incentivize action 1, but this only yields a payoff of 2\beta /\tau . We can also try to
\delta -incentivize action 2 in both settings by paying for outcome \{ 1\} and \{ 2\} . But (as we
show below) the payoff that we can achieve this way is (for \delta \rightarrow 0 and \mu \rightarrow 0) at most
(1+ 1/\tau 2  - (\tau 2 +1)/((\tau  - 1)\tau 3))\beta . Now max\{ 2/\tau , 1+ 1/\tau 2  - (\tau 2 +1)/((\tau  - 1)\tau 3)\} is
minimized at \tau = 1 +

\surd 
2, where it is 2/(1 +

\surd 
2) \approx 0.8284. The upper bound on the

payoff from action 2 for this choice of \tau is actually increasing in both \mu and \delta and equal
to \approx 0.8644 \cdot \beta at the upper bounds \mu 0 =

\surd 
\eta 0/(2

2) = 1/100 and \delta 0 = 1/100, implying
that the best we can achieve without knowing the setting is a \approx 1/0.8644 \approx 1.1568
approximation.

So if we want to achieve at least a \leq 1.15 approximation with probability at least
1  - \gamma , then we need to be able to distinguish between the two settings with at least
this probability. A necessary condition for being able to distinguish between the two
settings is that we see at least some item in one of our queries to action 2. So,

1 - \gamma \leq 1 - (1 - \tau 2\mu )2s,
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THE COMPLEXITY OF CONTRACTS 239

which implies that s \geq log(\gamma )/(2 log(1 - \tau 2\mu )) \geq  - log(\gamma )/(2 \cdot \mu \cdot \tau 2) \geq  - log(\gamma )/(18\mu ).

Plugging in \mu we get s \geq  - log(\gamma )/(18
\surd 
\mu 

\tau ) >  - log(\gamma )/(9
\surd 
\mu ).

We still need to prove our claims regarding the payoff that we can achieve if we
want to \delta -incentivize action 2 in both settings. To this end consider the IC constraints
for \delta -incentivizing action 2 over action 1 in Setting I and Setting II, respectively:

\tau 2\mu (1 - \mu )p\{ 1\} + (1 - \tau 2\mu )\mu p\{ 2\}  - c2

\geq \tau \mu (1 - \tau \mu )p\{ 1\} + (1 - \tau \mu )\tau \mu p\{ 2\}  - \delta ,

(1 - \tau 2\mu )\mu p\{ 1\} + \tau 2\mu (1 - \mu )p\{ 2\}  - c2

\geq \tau \mu (1 - \tau \mu )p\{ 1\} + (1 - \tau \mu )\tau \mu p\{ 2\}  - \delta .

Adding up these constraints yields

(\tau 2\mu (1 - \mu ) + (1 - \tau 2\mu )\mu  - 2\tau \mu (1 - \tau \mu )) \cdot (p\{ 1\} + p\{ 2\} ) \geq 2c2  - 2\delta .

We maximize the minimum performance across the two settings by choosing p\{ 1\} =
p\{ 2\} . Letting p = p\{ 1\} = p\{ 2\} , we thus obtain

(\tau 2\mu (1 - \mu ) + (1 - \tau 2\mu )\mu  - 2\tau \mu (1 - \tau \mu ))p \geq c2  - \delta .

It follows that

p \geq c2  - \delta 

\tau 2\mu + \mu  - 2\tau \mu 
.

The performance of the optimal contract that \delta -incentivizes action 2 in both settings
thus achieves an expected payoff of

R2  - (\tau 2\mu (1 - \mu ) + (1 - \tau 2\mu )\mu )
c2  - \delta 

\tau 2\mu + \mu  - 2\tau \mu 
= R2  - 

\tau 2(1 - 2\mu ) + 1

(\tau  - 1)2
(c2  - \delta ).

Plugging in R2 and c2 and letting \delta \rightarrow 0 and \mu \rightarrow 0, we obtain the aforementioned
1 + 1/\tau 2  - (\tau 2 + 1)/((\tau  - 1)\tau 3)\beta . Finally, to see that the expected payoff evaluated
at \tau = 1 +

\surd 
2 > 2 is increasing in both \delta and \mu , observe that the derivative in \delta is

simply the probability term (\tau 2(1 - 2\mu )+1)/(\tau  - 1)2, which is positive, and that both
this probability term and the cost c2 are decreasing in \mu , implying that as \mu increases
we subtract less.

6.2. Inverse polynomial probabilities. We show a positive result for the case
where the minimum probability \eta is inverse polynomial. Namely, let OPT denote the
expected payoff of the optimal IC contract; then with poly(n,m, 1

\eta ,
1
\epsilon ,

1
\gamma ) queries it

is possible to find, with probability at least (1  - \gamma ), a 4\epsilon -IC contract with expected
payoff at least OPT  - 5\epsilon . The following theorem formally presents this.

Theorem 6.2. Fix \epsilon > 0, and assume \epsilon \leq 1/2. Fix distributions Q such that
qi,S \geq \eta for all i \in [n] and S \subseteq M . Denote the expected payoff of the optimal IC
contract for distributions Q by OPT . Then there is an algorithm that, with s =
(3 log( 2n\eta \gamma ))/(\eta \epsilon 

2) queries to each action and probability at least 1  - \gamma , computes a

contract \~p which (i) is 4\epsilon -IC on the actual distributions Q, and (ii) has expected
payoff \Pi on the actual distributions satisfying \Pi \geq OPT  - 5\epsilon .

We will show that the optimal 2\epsilon -IC contract for the empirical distributions ob-
tained from s = (3 log( 2n\eta \gamma ))/(\eta \epsilon 

2) queries to each action has the desired properties.14

14Note that this contract can be computed in polynomial time by solving n - 1 LPs similar to the
MIN-PAYMENT LP, with an appropriately relaxed IC constraint, because there will be at most ns
outcomes with a nonzero probability.
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Our proof goes through a series of technical lemmas (Lemmas 6.3 to 6.7), which we
describe and state below, and whose proofs appear in Appendix I.

The first lemma (Lemma 6.3) establishes that s = (3 log( 2n\eta \gamma ))/(\eta \epsilon 
2) queries to

each action suffice to ensure that with probability at least 1  - \gamma all empirical proba-
bilities are within an error of at most \epsilon of the actual probabilities.

Lemma 6.3. Consider the algorithm that issues s queries to each action i \in N ,
and sets \~qi,S to be the empirical probability of set S under action i. With s =
(3 log( 2n\eta \gamma ))/(\eta \epsilon 

2) queries to each action, with probability at least 1 - \gamma , for all i \in [n]
and S \subseteq M ,

(1 - \epsilon )qi,S \leq \~qi,S \leq (1 + \epsilon )qi,S .

The remaining lemmas (Lemma 6.4 to Lemma 6.7) all operate on the assumption
that the empirical probabilities are close to the actual probabilities.

The first two of these lemmas---Lemmas 6.4 and 6.5---show that IC and \delta -IC are
approximately preserved when switching from the actual distributions to the empirical
distributions, and vice versa.

We will use Lemma 6.4 to relate the performance of the optimal 2\epsilon -IC contract
for the empirical distributions to that of the optimal IC contract for the actual dis-
tributions. We will use Lemma 6.5 to show that the optimal 2\epsilon -IC contract for the
empirical distributions is 4\epsilon -IC under the actual distributions.

Lemma 6.4. Suppose that (1 - \epsilon )qi,S \leq \~qi,S \leq (1+\epsilon )qi,S for all i \in [n] and S \subseteq M .
Consider contract p. If ai is the action that is incentivized by this contract under the
actual probabilities Q, then the payoff of ai under the empirical distributions \~Q is at
least as high as that of any other action up to an additive term of 2\epsilon .

Lemma 6.5. Suppose that (1 - \epsilon )qi,S \leq \~qi,S \leq (1+\epsilon )qi,S for all i \in [n] and S \subseteq M .
Consider contract \~p. If ai is the action that is \delta -incentivized by this contract under
the empirical probabilities \~Q, then the payoff of ai under the actual distributions is at
least as high as that of any other action up to an additive term of \delta + 2\epsilon .

The final two lemmas (Lemmas 6.6 and 6.7) relate the payoff of an action on the
actual distributions to that on the empirical distributions, and vice versa.

We will use these lemmas to connect the performance of the two aforementioned
contracts under the empirical and actual distributions.

Lemma 6.6. Suppose that (1  - \epsilon )qi,S \leq \~qi,S \leq (1 + \epsilon )qi,S for all i \in [n] and

S \subseteq M . If action ai achieves payoff \~\Pi under contract \~p when evaluated on the
empirical distributions \~Q, then it achieves payoff \Pi \geq \~\Pi  - 2\epsilon when evaluated on the
actual distributions Q.

Lemma 6.7. Assume \epsilon \leq 1/2. Suppose that (1 - \epsilon )qi,S \leq \~qi,S \leq (1+ \epsilon )qi,S for all
i \in [n] and S \subseteq M . If action ai achieves payoff P under contract p when evaluated
on the actual distributions Q, then it achieves payoff \~P \geq P  - 3\epsilon when evaluated on
the empirical distributions Q.

We are now ready to prove the theorem.

Proof of Theorem 6.2. Let \~Q denote the empirical distributions that result from
querying each action s times. By Lemma 6.3, with probability at least 1  - \gamma , the
empirical probabilities obtained in this way will satisfy (1 - \epsilon )qi,S \leq \~qi,S \leq (1+ \epsilon )qi,S
for all i \in [n] and S \subseteq M .

Denote the optimal 2\epsilon -IC contract for the empirical distributions \~Q by \~p . We will
use \~\Pi for the expected payoff that this contract achieves under the empirical distribu-
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tions \~Q, and \Pi for the expected payoff that it achieves under the actual distributions
Q. Likewise, denote by p the optimal IC contract for the actual distributions Q. We
will write P for the expected payoff that it achieves under the actual distributions Q,
and \~P for its expected payoff under the empirical distributions \~Q.

By Lemma 6.5, contract \~p which is 2\epsilon -IC on \~Q is 4\epsilon -IC on Q, as claimed. Fur-
thermore, by Lemma 6.4, contract p which is IC on Q is 2\epsilon -IC on \~Q. Since \~p is the
optimal such contract, this implies that \~\Pi \geq \~P . Together with Lemmas 6.6 and 6.7
we thus obtain

\Pi \geq \~\Pi  - 2\epsilon \geq \~P  - 2\epsilon \geq P  - 5\epsilon ,

which completes the proof.

Appendix A. Tractability of linear and separable contracts. Proposi-
tion A.1 establishes that the problem of finding an optimal IC or \delta -IC linear, respec-
tively, separable, contract is tractable.

Proposition A.1. Let \delta \geq 0. Given a principal-agent setting, an optimal linear
(resp., separable) \delta -IC contract can be found in polynomial time.

Proof. The problem of finding an optimal linear (resp., separable) \delta -IC contract
for incentivizing any action ai can be formulated as a polynomial-sized LP with 1
variable (resp., m variables) representing the contract's parameter \alpha (resp., the item
payments \{ pj\} ), and n - 1 \delta -IC constraints.

Appendix B. Intractability of the ellipsoid method. In this appendix we
establish the intractability of the ellipsoid method for MIN-PAYMENT, except for
the special case of n = 2. Recall LP (2.1) for the MIN-PAYMENT problem. Its dual
is as follows, where \{ \lambda i\prime \} are n - 1 nonnegative variables (one for every action other
than i):

max
\sum 
i\prime \not =i

\lambda i\prime (ci  - ci\prime )

s.t.

\biggl( \sum 
i\prime \not =i

\lambda i\prime 

\biggr) 
 - 1 \leq 

\sum 
i\prime \not =i

\lambda i\prime 
qi\prime ,S
qi,S

\forall S \subseteq E, qi,S > 0,

\lambda i\prime \geq 0 \forall i\prime \not = i, i\prime \in [n].

Consider applying the ellipsoid method to solve LP (2.1) for action ai. The sepa-
ration oracle problem is as follows: Given an instantiation of the dual variables \{ \lambda i\prime \} ,
consider the combination distribution

\sum 
i\prime \not =i \lambda i\prime qi\prime , which is a convex combination of

the product distributions \{ qi\prime \} . To find a violated constraint of the dual LP we need
to find a set S for which the likelihood ratio between the combination distribution
and the product distribution qi is sufficiently small.

Note that a combination distribution is not itself a product distribution.15 There-
fore solving the separation oracle is not easy, and in fact it is an NP-hard problem
even for n = 3, as formalized in Proposition B.1. In the special case of n = 2, the
combination distribution is a product distribution. By taking S to be all items that

15For example, consider a fifty-fifty mix between the following two product distributions over two
items: a point mass on the empty set, and a point mass on the grand bundle. This combination
distribution has probability 1

2
for the empty set and probability 1

2
for the grand bundle, and the

item marginals are 1
2
. A product distribution with item marginals of 1

2
has probability 1

4
for every

set.
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are more likely according to qi than according to the combination distribution, we
minimize the likelihood ratio and solve the separation oracle. (This is one way to
conclude that OPT-CONTRACT with n = 2 is tractable.)

Proposition B.1. Solving the separation oracle of dual LP (2.2) is NP-hard for
n \geq 3.

Proof. Rather than prove Proposition B.1 directly, it is enough to point the reader
to Corollary D.2, which establishes the NP-hardness of MIN-PAYMENT.

Remark B.2. Proposition B.1 immediately holds for \delta -IC as well, i.e., for the
separation oracle of dual LP (3.2). This dual corresponds to primal LP (3.4) solving
MIN-PAYMENT for \delta -IC contracts. This is simply because the separation oracle
problem of dual LP (3.2) is identical to that of dual LP (2.2).

Appendix C. Properties of \bfitdelta -IC contracts. In this appendix we give the
proofs that were omitted from section 2.4.

Proof of Proposition 2.3. Action ai can be \delta -implemented if and only if LP C.1
has a feasible solution.

min 0(C.1)

s.t. (1 + \delta )

\biggl( \sum 
S\subseteq E

qi,SpS

\biggr) 
 - ci \geq 

\sum 
S\subseteq E

qi\prime ,SpS  - ci\prime \forall i\prime \not = i, i\prime \in [n],

pS \geq 0 \forall S \subseteq E.

Consider the dual

max
\sum 
i\prime \not =i

\lambda i\prime (ci  - ci\prime )(C.2)

s.t. (1 + \delta )qi,S
\sum 
i\prime \not =i

\lambda i\prime \leq 
\sum 
i\prime \not =i

\lambda i\prime qi\prime ,S \forall S \subseteq E, qi,S > 0,

\lambda i\prime \geq 0 \forall i\prime \not = i, i\prime \in [n].

Since qi and \{ qi\prime \} are distributions and \delta > 0, the only feasible solution to the dual
LP (C.2) is \lambda i\prime = 0 for every i\prime \not = i. The dual is feasible and bounded, and hence the
primal must be feasible, completing the proof.

Proof of Proposition 2.4. The expected payoff of action ai under the interpolation
contract p\prime is

Ri  - [(1 - 
\surd 
\delta )pi +

\surd 
\delta Ri] = (1 - 

\surd 
\delta )(Ri  - pi).

We will argue that for every action ai\prime with i\prime \not = i, either i\prime is not incentivized by p\prime 

(Case 1) or its expected payoff is sufficiently high (Case 2).
Case 1: Assume Ri  - (1 +

\surd 
\delta )pi > Ri\prime  - pi\prime . We claim that in this case ai is

preferred over ai\prime under contract p
\prime . Namely,

(1 - 
\surd 
\delta )pi +

\surd 
\delta Ri  - ci = (1 + \delta )pi  - ci +

\surd 
\delta (Ri  - (1 +

\surd 
\delta )pi)

\geq pi\prime  - ci\prime +
\surd 
\delta (Ri  - (1 +

\surd 
\delta )pi)

> pi\prime  - ci\prime +
\surd 
\delta (Ri\prime  - pi\prime )

= (1 - 
\surd 
\delta )pi\prime +

\surd 
\delta Ri\prime  - ci\prime ,
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where we used that action ai is \delta -incentivized under p for the first inequality, and the
second inequality holds by assumption because we are in Case 1.

Case 2: Assume now that Ri  - (1 +
\surd 
\delta )pi \leq Ri\prime  - pi\prime . In this case the expected

payoff achieved by action ai\prime is high. Namely,

Ri\prime  - (1 - 
\surd 
\delta )pi\prime  - 

\surd 
\delta Ri\prime = (1 - 

\surd 
\delta )(Ra\prime 

i
 - pa\prime 

i
)

\geq (1 - 
\surd 
\delta )(Ri  - (1 +

\surd 
\delta )pi)

= (1 - 
\surd 
\delta )(Ri  - pi) - (1 - 

\surd 
\delta )
\surd 
\delta pi,

where the inequality holds by assumption because we are in Case 2.

Proof of Proposition 2.5. Consider the following principal-agent setting parame-
terized by \delta and \epsilon > 0. Let \scrM = \epsilon /\delta . There are n = 2 actions and m = 2 items. The
probabilities of the items given the actions is described by the matrix\Biggl( 

1
4

2\epsilon 
3(\scrM +\epsilon )

0 1

\Biggr) 
,

where the first column corresponds to item 1 and the second column to item 2. Set
the rewards to be r1 = 4\epsilon 

3 for item 1 and r2 = \scrM + \epsilon for item 2 (notice r1 < r2),

and set the costs to be c1 = 0 and c2 = \scrM  - \scrM \epsilon 
2(\scrM +\epsilon ) > 0. Observe that the expected

rewards are R1 = \epsilon and R2 = \scrM + \epsilon .

Claim C.1. OPT = \epsilon .

Proof of Claim C.1. The expected payoff from letting the agent chose the zero-
cost action a1 is R1 = \epsilon . Can we get any better by incentivizing a2? The optimal
contract for incentivizing the costly action in a 2-action setting is well understood
(see, e.g., [23]): The only positive payment should be for the single subset of items
maximizing the likelihood that the agent has chosen action a2; in our case this is
the subset \{ 2\} containing item 2 only. Observe that its probability given action 1 is

\epsilon 
2(\scrM +\epsilon ) . The 2-action characterization also specifies the payment for this outcome,

setting it at p\{ 2\} = c2/
\bigl( 
1  - \epsilon 

2(\scrM +\epsilon )

\bigr) 
= \scrM . Subtracted from R2, we get expected

payoff of \epsilon from optimally incentivizing a2.

Claim C.2. Contract p that pays \scrM  - \epsilon 
3 for outcome S = \{ 2\} and 0 otherwise

\delta -incentivizes action a2 with expected payoff R2  - p2 = 4
3\epsilon .

Proof of Claim C.2. We show action a2 is \delta -IC: The agent's expected utility from

a1 is \epsilon 
2(\scrM +\epsilon )p2 = \epsilon (3\scrM  - \epsilon )

6(\scrM +\epsilon ) , and from a2 given contract (1 + \delta )p it is (1 + \delta )p2  - c2 =

(1 + \epsilon 
\scrM )(\scrM  - \epsilon 

3 )  - \scrM + \scrM \epsilon 
2(\scrM +\epsilon ) = \epsilon (2\scrM  - \epsilon )

3\scrM + \scrM \epsilon 
2(\scrM +\epsilon ) . It can be verified that the

former is less than the latter for \delta \leq 1
2 .

Putting these claims together completes the proof of Proposition 2.5.

Proof of Lemma 2.6. Fix a principal-agent setting. Let ai be the action that is \delta -
incentivized by contract p and assume ai is not IR. Observe that the agent's expected
utility from ai is \geq  - \delta (otherwise ai would not be \delta -IC with respect to a1, which
has expected utility \geq 0 for the agent). First, if \Pi > \delta , then let p\prime be identical to p
except for an additional \delta payment for every outcome. Contract p\prime still \delta -incentivizes
action ai, but now the agent's expected utility from ai is \geq 0, as required. Otherwise
if \Pi \leq \delta , let p\prime be the contract with all-zero payments. The expected payoff to the
principal is zero, which is at most an additive \delta loss compared to \Pi .
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Appendix D. Hardness with a constant number of actions. In this ap-
pendix we show NP-hardness of the two computational problems related to optimal
contracts when the number of actions n is constant. Appendices D.1 and D.2 prove
hardness of \delta -OPT-CONTRACT (Proposition D.1), from which hardness of \delta -MIN-
PAYMENT follows by the reduction in section 2 (Corollary D.2).

Proposition D.1. \delta -OPT-CONTRACT is NP-hard even for n = 3 actions.

Corollary D.2. \delta -MIN-PAYMENT is NP-hard even for n = 3 actions.

D.1. The computational problem MIN-MAX-PROB. It will be conve-
nient to reduce to \delta -OPT-CONTRACT from a computational problem we call MIN-
MAX-PROB, which is a variant of MIN-MAX PRODUCT PARTITION [40] and thus
NP-hard.

\bullet Input: A product distribution q over m items such that, for every item j, its
probability qj is equal to 1

aj+1 , where aj is an integer \in [3, amax] (log amax is

polynomial in m).
\bullet Output: YES if and only if there exists a subset of items S\ast such that qS\ast =

\ell A, where A =
\sqrt{} \prod 

j aj and \ell =
\prod 

j qj .

We now take a closer look at MIN-MAX-PROB. Denote aS =
\prod 

j\in S aj .

Observation D.3. The probability of subset S is qS = \ell aS.

Proof. For every item j, the probability it is excluded is

1 - qj = 1 - 1

aj + 1
=

aj
aj + 1

= qjaj .

So the probability of the outcome being precisely S is

qS =

\biggl( \prod 
j\in S

qj

\biggr) \biggl( \prod 
j /\in S

(1 - qj)

\biggr) 

=

\biggl( \prod 
j\in S

qj

\biggr) \biggl( \prod 
j /\in S

qjaj

\biggr) 

=

\biggl( m\prod 
j=1

qj

\biggr) \biggl( \prod 
j /\in S

aj

\biggr) 
= \ell aS ,

as claimed.

Observation D.3 immediately implies the following.

Observation D.4. For every subset S, aS + aS = aS + A2

aS
\geq 2A, where equality

holds if and only if aS = aS = A. Equivalently, qS + qS \geq 2\ell A, where equality holds
if and only if qS = qS = \ell A.

Proof. The inequality in the observation holds by the inequality of arithmetic
and geometric means (AM-GM inequality), which states that for any two nonnegative
numbers w, z, (w + z)/2 \geq 

\surd 
wz. Namely, for z = aS , w = A2/aS , and A =

\surd 
zw the

AM-GM inequality states that aS + A2/aS = z + w \geq 2
\surd 
wz = 2

\sqrt{} 
aS \cdot A2/aS = 2A,

as claimed.

Observation D.4 shows the connection between MIN-MAX-PROB and the NP-
hard problem MIN-MAX PRODUCT PARTITION: q is a YES instance (there exists
a subset of items S such that qS = \ell A) if and only if aS = A.

The following observation will be useful in the reduction to \delta -OPT-CONTRACT.
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Observation D.5. Let \Delta = 1 - \ell A2m - 1; then 0 < \Delta < 1.

Proof. By definition,

\ell A =

\sqrt{} \prod 
aj\prod 

(aj + 1)
\leq 
\prod \sqrt{} 

aj + 1\prod 
(aj + 1)

=
1\prod \sqrt{} 
aj + 1

\leq 1

2m
<

1

2m - 1
,

where the second-to-last inequality follows since aj \geq 3, and so
\sqrt{} 

aj + 1 \geq 2. We
conclude that \ell A2m - 1 < 1, completing the proof.

D.2. Proof of Proposition D.1. We now use hardness of MIN-MAX-PROB
to establish hardness of \delta -OPT-CONTRACT.

Proof of Proposition D.1. The proof is by reduction from MIN-MAX-PROB, as
follows.

Reduction. Given an instance q of MIN-MAX-PROB, construct a principal-
agent setting with n = 3 actions.

\bullet For action a1, set its product distribution q1 to be q.
\bullet For action a2, set its product distribution q2 to be 1 - q (i.e., q1,j + q2,j = 1

for every item j).
\bullet For action a3, set its product distribution q3 to be such that q3,1 = 1 (i.e.,
this action's outcome always includes item 1), and q3,j = 1

2 for every other
item j > 1.

Set costs c1, c2 to zero and set c3 to be c = (amax +1) - 1. The only nonzero reward is
r = r1 for item 1; set r to be any number strictly greater than \Delta  - 1.

Analysis. First notice that the reduction is polynomial in m; in particular, the
number of bits of precision required to describe the probabilities, cost c, and reward
r is polynomial.

The analysis will show that the expected payoff the principal can extract by a
\delta -IC contract if q is a YES instance is strictly larger than if q is a NO instance. We
introduce some notation: Let \scrS 1 = \{ S \subseteq [m] | 1 \in S\} , i.e., \scrS 1 is the collection of
all item subsets containing item 1. Given a contract p, let P =

\sum 
S\in \scrS 1 pS (the total

payment for subsets in \scrS 1). Observe that the expected payment to the agent if he
chooses action a3 is P

2m - 1 .

Claim D.6. Action a3 can be weakly \delta -incentivized with expected payment c
\Delta (1+\delta )

if and only if q is a YES instance of MIN-MAX-PROB.

Proof of Claim D.6. Fix a \delta -IC contract p that weakly \delta -incentivizes action a3.
By Observation D.3, the agent's expected utility from action a1 is \ell 

\sum 
S pSaS and from

action a2 is \ell 
\sum 

S pSaS . The agent's expected utility from action a3 (after boosting

by (1 + \delta )) is P (1+\delta )
2m - 1  - c.

Assume first that q is a NO instance. If p weakly incentivizes action a3, then

P (1 + \delta )

2m - 1
 - c \geq \ell \cdot max

\Biggl\{ \sum 
S

pSaS ,
\sum 
S

pSaS

\Biggr\} 

\geq \ell 

2

\Biggl( \sum 
S

pSaS +
\sum 
S

pSaS

\Biggr) 

=
\ell 

2

\sum 
S

pS(aS + aS) > \ell A
\sum 
S

pS \geq \ell AP,

D
ow

nl
oa

de
d 

12
/2

3/
21

 to
 1

28
.5

9.
11

.3
4 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

246 P. D\"UTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

where the second-to-last inequality is by Observation D.4, and is strict by our as-

sumption that q is a NO instance. Rearranging P (1+\delta )
2m - 1  - c > \ell AP , we get

c <
P (1 + \delta )

2m - 1
 - \ell AP (1 + \delta ) =

P (1 + \delta )

2m - 1

\bigl( 
1 - \ell A2m - 1

\bigr) 
=

P\Delta (1 + \delta )

2m - 1
.

By Observation D.5 we can divide both sides by \Delta (1 + \delta ) > 0 to establish P
2m - 1 >

c
\Delta (1+\delta ) , completing the proof of the first direction.

Assume now that q is a YES instance. Then there exists S\ast such that aS\ast =
aS\ast = A, and without loss of generality S\ast \in \scrS 1 (otherwise take its complement).

Consider the following contract: Let pS\ast = c2m - 1

\Delta (1+\delta ) and set all other payments to 0.

The expected payment to the agent for action a3 is pS\ast 
2m - 1 = c

\Delta (1+\delta ) , as required, and

the agent's expected utility (after boosting by (1 + \delta )) is pS\ast (1+\delta )
2m - 1  - c = c

\Delta  - c =
c(1 - \Delta )

\Delta . Plugging in \Delta = 1  - \ell A2m - 1, we get that the expected utility from action

a3 is \ell A c2m - 1

\Delta = \ell ApS\ast . This is equal to the expected utility from action a1, since
\ell 
\sum 

S pSaS = \ell pS\ast aS\ast = \ell ApS\ast Similarly, the expected utility from action a2 is also
\ell ApS\ast . We conclude that p weakly \delta -incentivizes a3, completing the proof of Claim
D.6.

We now use Claim D.6 to complete the hardness proof by showing that the ex-
pected payoff the principal can extract if q is a YES instance is strictly larger than if
q is a NO instance.

For a YES instance, by Claim D.6 action a3 can be weakly \delta -incentivized with
expected payment c

\Delta (1+\delta ) . We argue that the values chosen in the reduction for c and r

guarantee that action a3 has the (strictly) highest expected payoff for the principal, so
the agent breaks ties in favor of a3: Since the only positive reward is r1 = r and since
q3,1 = 1, the expected payoff from a3 is q3,1r1  - c

\Delta (1+\delta ) = r  - c
\Delta (1+\delta ) . The expected

reward (and thus also payoff) from a1 is at most q1,1r1 \leq r
4 (using that a1+1 \geq 4), and

the expected reward from a2 is at most q2,1r1 \leq (1 - 1
amax+1 )r. Since

r
4 \leq (1 - 1

amax+1 )r

(using that amax \geq 3), it suffices to show r  - c
\Delta (1+\delta ) \geq r  - c

\Delta > (1  - 1
amax+1 )r, or

simplifying, r > c(amax+1)
\Delta . Since the reduction sets c = (amax + 1) - 1 and r > \Delta  - 1,

the argument is complete.
For a NO instance, by Claim D.6 the expected payoff from a3 is strictly lower than

r - c
\Delta (1+\delta ) . By the analysis of the YES case we know that the expected rewards from

a1, a2 are strictly lower than r  - c
\Delta (and by limited liability the principal's expected

payoff is bounded by the expected reward). This completes the proof of Proposition
D.1.

Appendix E. An FPTAS for the separation oracle. In this appendix we
establish the FPTAS for MIN-LR stated in Lemma 3.3. Recall from the discussion
leading to Lemma 3.3 that the separation oracle problem reduces to MIN-LR.

Proof of Lemma 3.3. We adapt an FPTAS of Moran [41] (see also subsequent
papers such as [43]). Let

\Delta = (1 + \epsilon )1/2m.

FPTAS algorithm. The algorithm proceeds in iterations from 0 to m. In
iteration j, the partial solutions in that iteration are subsets of the first j items. For
a partial solution S \subseteq \{ 1, . . . , j\} , recall that q\ell ,S is the marginal probability to draw
S among the first k items if the sample is distributed according to q\ell .
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The partial solutions in iteration j are partitioned into families Yj,1, . . . , Yj,rj .
The partition is such that for every family r \in [rj ] and partial solutions S, S\prime \in Yj,r,
for every distribution \ell \in [k] \cup \{ i\} , the ratio between q\ell ,S and q\ell ,S\prime is at most \Delta .

In the first iteration j = 0, the only solution is the empty set. The solutions in
iteration j+1 are generated from the families in iteration j as follows: One arbitrary
partial solution S is chosen from every family Yj,r to ``represent"" it, and for each such
S two partial solutions S \cup \{ j+1\} and S are added to the solutions of iteration j+1
(i.e., with and without the (j + 1)st item).

The algorithm outputs the minimum objective 1
qi,S

\sum 
k \alpha kqk,S among the solutions

S in iteration m.

Analysis. We first argue that ALG \leq (1 + \epsilon )OPT . Let S\ast be the optimal
solution, and denote the subset of S\ast containing only items among the first j by S\ast 

j .

By induction, in iteration j there is a partial solution S\prime 
j such that \Delta  - j \cdot q\ell ,S\ast 

j
\leq 

q\ell ,S\prime 
j
\leq \Delta j \cdot q\ell ,S\ast 

j
for every distribution \ell \in [k] \cup \{ i\} . Denote S\prime = S\prime 

m. Then

ALG \leq 1
qi,S\prime 

\sum 
k \alpha kqk,S\prime \leq \Delta 2m \cdot 1

qi,S\ast 

\sum 
k \alpha kqk,S\ast = (1 + \epsilon )OPT .

It remains to show that the FPTAS runs in polynomial time. The running time
is O(

\sum 
j rj). In the input distributions \{ qk\} , qi, denote the range of every nonzero

probability by [qmin, 1] (qmin can be exponentially small). For every distribution \ell \in 
[k] \cup \{ i\} , the probabilities that are not 0 are at least qmmin. So a partition ``in jumps
of \Delta "" requires O(t) parts, where t is the smallest integer satisfying qmmin \cdot \Delta t \geq 1. So

t =

\biggl\lceil 
m log(q - 1

min)

log\Delta 

\biggr\rceil 
=

\biggl\lceil 
2m2 log(q - 1

min)

log (1 + \epsilon )

\biggr\rceil 
\leq 
\biggl\lceil 
2m2 log(q - 1

min)

\epsilon 

\biggr\rceil 
,

where the last inequality uses log(1 + \epsilon ) \geq \epsilon for \epsilon \in (0, 1]. Since the partition to
rj families maintains ``jumps of \Delta "" for n distributions, rk = O(tn). We invoke the
assumption that n is constant to complete the analysis and the proof of Lemma 3.3.

Appendix F. Hardness of MIN-PAYMENT. In this appendix we show the
following counterpart to Corollary 4.2.

Proposition F.1. For any constant c \in R, c \geq 1, it is NP-hard to approximate
the minimum expected payment for implementing a given action to within a multi-
plicative factor c.

Proof. The proof is by reduction from MAX-3SAT. Given an instance of MAX-
3SAT, the goal is to determine whether the instance is satisfiable or whether at most
7
8 + \epsilon of the clauses can be satisfied, where \epsilon is an arbitrarily small constant.

Reduction. Given \varphi , we obtain the SAT principal-agent setting corresponding
to \varphi (Proposition 4.12), but we set the reward for every item to be 1 rather than 0.
We add an action an+1 with cost \scrC and product distribution qn+1 with probability 1

2
for every item.

Analysis. As in the analysis in the proof of Proposition 4.15, if \varphi has a satisfying
assignment, then we can implement an+1 at cost \scrC . Otherwise recall that by Definition
4.11, the average action over the first n actions leads to every item set S with proba-
bility at least 1 - 8\epsilon 

2m . Consider a contract p, and let P =
\sum 

S pS . The expected utility
of the agent for choosing an+1 is P/2m - \scrC . Consider again the average action over the
first n actions. The expected payment to the agent for ``choosing"" this action (i.e.,
the expected payment over the average distribution) is at least 1 - 8\epsilon 

2m P = P
2m  - 8\epsilon P

2m ,
and there is some action ai (with cost 0) for which the expected payment is as high.
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To incentivize an+1 over ai it must hold that P
2m  - \scrC \geq P

2m  - 8\epsilon P
2m , i.e., P

2m \geq \scrC 
8\epsilon .

We conclude that if there is no assignment satisfying more than 7
8 + \epsilon of the clauses,

the expected payment for implementing an+1 is \scrC 
8\epsilon rather than \scrC . Approximating the

expected payment within a multiplicative factor 1
8\epsilon would thus solve the MAX-3SAT

instance we started with, and we can make \epsilon as small a constant as we want.

Appendix G. Proofs omitted from section 4. In this appendix we provide
proofs for Propositions 4.8 and 4.9. In particular, we establish the existence of gap
settings for 2 actions (Proposition 4.8) and c actions (Proposition 4.9).

Proof of Proposition 4.8. For the gap setting constructed above with c = 2 actions
and \gamma = \epsilon , consider a \delta -IC contract. Since the expected reward of the first action a1
is 1, and the maximum expected welfare is 2 - \gamma \geq 2 - 4\epsilon 

1+2\epsilon , if a contract is to extract

more than 1
2 - 4\epsilon /(1+2\epsilon ) = 1

2 + \epsilon of the expected welfare, then it must \delta -incentivize

the last action ac (a limited liability contract cannot extract more than the expected
reward from an agent choosing a1, since a1 is zero-cost). Let p be the payment for
the item, and let p0 be the payment for the empty set. For any action ai\ast that the
contract \delta -incentivizes, the following inequality must hold for every i \in [c]:

(1 + \delta )
\Bigl( 
\gamma c - i\ast p+ (1 - \gamma c - i\ast )p0

\Bigr) 
 - 1

\gamma i\ast  - 1
+ i\ast  - (i\ast  - 1)\gamma 

\geq 
\bigl( 
\gamma c - ip+ (1 - \gamma c - i)p0

\bigr) 
 - 1

\gamma i - 1
+ i - (i - 1)\gamma .(G.1)

Observe that for the contract to \delta -incentivize ac at minimum expected payment, it
must hold that p0 = 0. We can now plug p0 = 0 into inequality (G.1) and choose
i\ast = c, i = i\ast  - 1. We get a lower bound on the expected payment for \delta -incentivizing
ac:

p \geq (1 - \gamma )2

\gamma (1 + \delta  - \gamma )
.

The principal's expected payoff is thus \leq 1
\gamma  - (1 - \gamma )2

\gamma (1+\delta  - \gamma ) \leq 1
1+\gamma 2 - \gamma , where the last

inequality uses \delta \leq f(\epsilon ) = \gamma 2. We get an upper bound of 1
1+\gamma 2 - \gamma on what the best

\delta -IC contract can extract out of 2  - \gamma for the principal. The ratio is thus at most
1
2 + \epsilon (using \gamma \leq 1

4 ), and this completes the proof of Proposition 4.8.

Proof of Proposition 4.9. For the gap setting constructed above with c actions
and \gamma = \epsilon , consider a \delta -IC contract. As in the proof of Proposition 4.8, this contract
cannot extract more than 1

c + \epsilon of the expected welfare by \delta -incentivizing action a1.
Assume from now on that the contract \delta -incentivizes action ai\ast for i\ast \geq 2 at minimum
expected payment. As in the proof of Proposition 4.8, inequality (G.1) must hold for
i\ast and every i \in [c].

Assume first that the contract's payment p0 for the empty set is zero. (This
assumption is without loss of generality for the case of c = 2 actions, as well as for
c \geq 3 and fully IC optimal contracts by Proposition 6 in [23].) Plugging p0 = 0
into inequality (G.1) and choosing i = i\ast  - 1, we get a lower bound on the expected
payment for \delta -incentivizing ai\ast (in particular making it preferable to ai\ast  - 1):

(G.2) \gamma c - i\ast p \geq (1 - \gamma i\ast  - 1)(1 - \gamma )

\gamma i\ast  - 1(1 + \delta  - \gamma )
.

The principal's expected payoff is thus \leq 1
\gamma i\ast  - 1  - (1 - \gamma i\ast  - 1)(1 - \gamma )

\gamma i\ast  - 1(1+\delta  - \gamma )
\leq \gamma c+\gamma i\ast  - 1(1 - \gamma )

\gamma i\ast  - 1(1+\gamma c - \gamma )
=

\gamma c

\gamma i\ast  - 1(1+\gamma c - \gamma )
+ 1 - \gamma 

1+\gamma c - \gamma , where the last inequality uses \delta \leq f(\epsilon ) = \gamma c. Maximizing
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this expression by plugging in i\ast = c, we get an upper bound of 1
1+\gamma c - \gamma on what the

best \delta -IC contract can extract out of c - (c - 1)\gamma for the principal. The ratio can thus
be shown to be at most 1

c + \epsilon , as required (using that c \geq 3 and \gamma \leq 1
4 ; see Claim

G.1).
Now consider the case that p0 > 0. We argue that in this case, plugging i = i\ast  - 1

into inequality (G.1) gives a lower bound on \gamma c - i\ast p that is only higher than that in
inequality (G.2). To see this, consider the contribution of p0 > 0 to the left-hand side
of inequality (G.1), which is (1 + \delta )(1  - \gamma c - i\ast )p0. Compare this to its contribution
to the right-hand side of inequality (G.1), which is (1  - \gamma c - i)p0. For \delta \leq \gamma c, \gamma \leq 1

4 ,

and i = i\ast  - 1 it holds that (1 + \delta )(1  - \gamma c - i\ast ) \leq 1  - \gamma c - i. This completes the proof
of Proposition 4.9 up to Claim G.1.

Claim G.1. For every \gamma \in (0, 1
4 ] and c \in Z, c \geq 3,

1

1 + \gamma c  - \gamma 
\cdot 1

c - (c - 1)\gamma 
\leq 1

c
+ \gamma .

Proof. We first establish the claim for c = 3. We need to show 1
1+\gamma 3 - \gamma \cdot 1

3 - 2\gamma \leq 
1
3 + \gamma . Simplifying, we need to show 13\gamma +6\gamma 4 \leq 4+9\gamma 2 +7\gamma 3, which holds for every
\gamma \leq 1

4 .
We now consider c \geq 4: It is sufficient to show 1

1 - \gamma \cdot 1
c - c\gamma \leq 1

c + \gamma . Multiplying

by c, we get 1
(1 - \gamma )2 \leq 1 + c\gamma . This holds if and only if c \geq 2 - \gamma 

(1 - \gamma )2 . The right-hand

side is an increasing function in the range 0 < \gamma \leq 1
4 , and so we can plug in \gamma = 1

4
and verify. Since c \geq 4 \geq 28

9 , the proof is complete.

Appendix H. Approximation by separable contracts. In this appendix we
examine the gap between separable and optimal contracts.

Recall that a contract p is separable if there are payments p1, . . . , pm such that
p(S) =

\sum 
j\in S pj for every S \subseteq M . By linearity of expectation, the expected payment

for action ai given a separable contract p is
\sum 

j qi,jpj .
As we have shown in Proposition A.1 the optimal separable contract can be

computed in polynomial time via linear programming. Thus we know that separable
(and other simple computationally tractable) contracts cannot achieve a constant
approximation to OPT unless P = NP (Corollary 4.2).

In fact, an even stronger lower bound holds---they cannot achieve an approxima-
tion better than n, unless we relax the IC requirement to \delta -IC. We provide a proof of
this general lower bound for the case of n = 2.

Proposition H.1. For every \epsilon > 0 there is a principal-agent instance with n = 2
actions and m = 2 items, in which the best separable contract only provides a 2  - \epsilon 
approximation to OPT .

Proof. For \delta \in (0, 1) consider the following n = 2 actions and m = 2 items
instance. The probabilities qi,j for the two actions i \in \{ 1, 2\} and items j \in \{ 1, 2\} are

q1,1 =
\delta 

2
, q1,2 = 1 - \delta 

2
and q2,1 =

1

2
, q2,2 =

1

2
.

The rewards rj for the two items j \in \{ 1, 2\} are

r1 =
1 - (1 - \delta 

2 )\delta 
\delta 
2

and r2 = \delta .
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The resulting expected rewards Ri for the two actions i \in \{ 1, 2\} are

R1 = q1,1r1 + q1,2r2 =
\delta 

2

1 - (1 - \delta 
2 )\delta 

\delta 
2

+

\biggl( 
1 - \delta 

2

\biggr) 
\delta = 1 and

R2 = q2,1r1 + q2,2r2 =
1

2

1 - (1 - \delta 
2 )\delta 

\delta 
2

+
1

2
\delta =

1

\delta 
 - 1 + \delta ,

so that R2 > 1 for all \delta \in (0, 1) and R2 \rightarrow \infty as \delta \rightarrow 0. The costs ci for the two
actions i \in \{ 1, 2\} are

c1 = 0 and c2 = (1 - \delta )(R2  - R1) = (1 - \delta )

\biggl( 
1

\delta 
 - 2 + \delta 

\biggr) 
.

Note that on this instance

R1  - c1 = 1 and R2  - c2 = 2 - 2\delta + \delta 2.

We claim the following: (1) The optimal contract can incentivize action 2 with
an expected payment of c2/(1  - \delta 2), so that the expected payoff to the principal is
R2  - c2/(1 - \delta 2) = (1/\delta  - 1 + \delta ) - (1/\delta  - 2 + \delta )/(1 + \delta ). (2) The optimal separable
contract can either incentivize action 1 by paying nothing or it can incentivize action
2 by setting p1 = 2c2/(1 - \delta ) and p2 = 0. Since

R2  - q2,1p1 =

\biggl( 
1

\delta 
 - 1 + \delta 

\biggr) 
 - 1

2

2c2
(1 - \delta )

= 1

the expected payoff to the principal in both cases is 1.
Using (1) and (2) and setting \delta = 1

2 (3 - \epsilon  - 
\surd 
\epsilon 2  - 10\epsilon + 9) we have

OPT

ALG
=

\biggl( 
1

\delta 
 - 1 + \delta 

\biggr) 
 - 

1
\delta  - 2 + \delta 

1 + \delta 
= 2 - \epsilon .

It remains to show (1) and (2). For (1) denote the payments in the optimal
contract for outcomes (1,0), (0,1), and (1,1) by p1, p2, p1,2. The optimal contract can
incentivize action 2 via p1 > 0 and p2 = p1,2 = 0 as long as

q2,1(1 - q2,2)p1  - c2 \geq q1,1(1 - q1,2)p1

\leftrightarrow p1 \geq c2
q2,1(1 - q2,2) - q1,1(1 - q1,2)

=
4c2

1 - \delta 2
.

Setting p1 = 4c2/(1 - \delta 2) leads to an expected payment of q2,1(1 - q2,2)p1 = c2/(1 - \delta 2).
For (2) denote the payments of the optimal separable contract by p1 and p2 and

note that the optimal separable contract either has p1 > 0 and p2 = 0 or has p1 = 0
and p2 > 0. In the former case the incentive constraint is

q2,1p1  - c2 \geq q1,1p1,

and in the latter it is

q2,2p2  - c2 \geq q1,2p2.

Note that since q1,2 = 1  - \delta /2 > 1/2 = q1,2 it is impossible to incentivize action
2 by having only p2 > 0. In the other case, where only p1 > 0, the smallest p1 that
satisfies the incentive constraint is p1 = c2/(q2,1  - q1,1) = 2c2/(1 - \delta ).
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Appendix I. Proofs of technical lemmas in section 6. In this appendix we
provide proofs for Lemmas 6.3, 6.4, 6.5, and 6.7.

Proof of Lemma 6.3. Note that with s = (3 log( 2n\eta \gamma ))/(\eta \epsilon 
2) we have \gamma = n

\eta \cdot 
2 exp( - \eta s\epsilon 2/3). Further note that since qi,S \geq \eta for all i \in [n] and S \subseteq M , each action
can assign positive probability to at most 1/\eta sets S. Finally, for all i \in [n], S \subseteq M
such that qi,S = 0 we have \~qi,S = 0. So, by the union bound, it suffices to show that
for each of the at most n/\eta pairs i, S with qi,S > 0 the probability with which \~qi,S
does not fall into [(1 - \epsilon )qi,S , (1 + \epsilon )qi,S ] is at most 2 exp( - \eta s\epsilon 2/3).

Consider any such pair i, S. Let Xi,S denote the random variable that counts the
number of times set S was returned in the s queries to action i. Then \~qi,S = Xi,S/s
and E[X] = sqi,S . So, using Chernoff's bound,

Pr[\~qi,S \not \in [(1 - \epsilon )qi,S , (1 + \epsilon )qi,S ]] = Pr[| Xi,S  - E[Xi,S ]| \geq \epsilon ]

\leq 2 exp( - \eta s\epsilon 2/3),

as claimed.

Proof of Lemma 6.4. Let ai be the action that is incentivized by p under the
actual probabilities Q, and let ai\prime be any other action. Then\sum 

S\subseteq M

\~qi,Spi,S  - ci + 2\epsilon \geq (1 - \epsilon )
\sum 
S\subseteq M

qi,Spi,S  - ci + 2\epsilon 

\geq 
\sum 
S\subseteq M

qi,Spi,S  - ci + \epsilon 

\geq 
\sum 
S\subseteq M

qi\prime ,Spi\prime ,S  - ci\prime + \epsilon 

\geq (1 + \epsilon )
\sum 
S\subseteq M

qi\prime ,Spi\prime ,S  - ci\prime 

\geq 
\sum 
S\subseteq M

\~qi\prime ,Spi\prime ,S  - ci\prime ,

where we used the bounds on the probabilities in the first and last steps, and we are
considering normalized settings in the second and fourth steps, and the IC constraint
in the third step.

Proof of Lemma 6.5. Let ai be the action that is incentivized by \~p under the
empirical probabilities \~Q, and let ai\prime be any other action. Then\sum 

S\subseteq M

qi,Spi,S  - ci + \delta + 2\epsilon \geq (1 + \epsilon )
\sum 
S\subseteq M

qi,Spi,S  - ci + \delta + \epsilon 

\geq 
\sum 
S\subseteq M

\~qi,Spi,S  - ci + \delta + \epsilon 

\geq 
\sum 
S\subseteq M

\~qi\prime ,Spi\prime ,S  - ci\prime + \epsilon 

\geq (1 - \epsilon )
\sum 
S\subseteq M

qi\prime ,Spi\prime ,S  - ci\prime + \epsilon 

\geq 
\sum 
S\subseteq M

qi\prime ,Spi\prime ,S  - ci\prime ,
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where we are considering normalized settings in the first and last steps, and used the
bounds on the probabilities in the second and fourth steps, and the \delta -IC constraint
in the third step.

Proof of Lemma 6.6. We have

\~\Pi =
\sum 
S\subseteq M

\~qi,SrS  - 
\sum 
S\subseteq M

\~qi,Spi,S

\leq (1 + \epsilon )
\sum 
S\subseteq M

qi,SrS  - (1 - \epsilon )
\sum 
S\subseteq M

qi,Spi,S

\leq 
\sum 
S\subseteq M

qi,SrS  - 
\sum 
S\subseteq M

qi,Spi,S + 2\epsilon 

= \Pi + 2\epsilon ,

where we used the bounds on the payments in the first step and that we are considering
normalized settings in the second.

Proof of Lemma 6.7. We have

P =
\sum 
S\subseteq M

qi,SrS  - 
\sum 
S\subseteq M

qi,Spi,S

\leq 1

1 - \epsilon 

\sum 
S\subseteq M

\~qi,SrS  - 1

1 + \epsilon 

\sum 
S\subseteq M

\~qi,Spi,S

\leq (1 + 2\epsilon )
\sum 
S\subseteq M

\~qi,SrS  - (1 - \epsilon )
\sum 
S\subseteq M

qi,Spi,S

= \Pi + 3\epsilon ,

where we used the bounds on the probability in the first step, and that 1/(1 - \epsilon ) \leq 1+2\epsilon 
and 1/(1 + \epsilon ) \geq 1 - \epsilon for all \epsilon \leq 1/2.
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