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Abstract. We initiate the study of computing (near-)optimal contracts in succinctly repre-
sentable principal-agent settings. Here optimality means maximizing the principal’s expected payoff
over all incentive-compatible contracts—known in economics as “second-best” solutions. We also
study a natural relaxation to approzimately incentive-compatible contracts. We focus on principal-
agent settings with succinctly described (and exponentially large) outcome spaces. We show that the
computational complexity of computing a near-optimal contract depends fundamentally on the num-
ber of agent actions. For settings with a constant number of actions, we present a fully polynomial-
time approximation scheme (FPTAS) for the separation oracle of the dual of the problem of min-
imizing the principal’s payment to the agent, and we use this subroutine to efficiently compute
a d-incentive-compatible (4-IC) contract whose expected payoff matches or surpasses that of the
optimal IC contract. With an arbitrary number of actions, we prove that the problem is hard to ap-
proximate within any constant c¢. This inapproximability result holds even for §-IC contracts where §
is a sufficiently rapidly-decaying function of c¢. On the positive side, we show that simple linear §-IC
contracts with constant § are sufficient to achieve a constant-factor approximation of the “first-best”
(full-welfare-extracting) solution, and that such a contract can be computed in polynomial time.
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1. Introduction. Economic theory distinguishes three fundamentally different
problems involving asymmetric information and incentives. In the first—known as
mechanism design (or screening)—the less informed party has to make a decision.
A canonical example is Myerson’s optimal auction design problem [42], in which a
seller wants to maximize the revenue from selling an item, having only incomplete
information about the buyers’ willingness to pay. The second problem is known as
signaling (or Bayesian persuasion). Here, as in the first case, information is hidden,
but this time the more informed party is the active party. A canonical example is
Akerlof’s “market for lemons” [1]. In this example, sellers are better informed about
the quality of the products they sell and may benefit by sharing (some) of their
information with the buyers.

Both of these basic incentive problems have been studied very successfully and
extensively from a computational perspective; see, e.g., [9, 10, 11, 6, 12, 5, 28, 29] and
19, 21, 17, 22].

The third basic problem, the agency problem in contract theory, has received
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far less attention from the theoretical computer science community, despite being
regarded as equally important in economic theory (see, e.g., the scientific background
on the 2016 Nobel Prize for Hart and Holmstrom [48]). (A notable exception is [4],
which we will discuss with further related work in more detail below.)

The basic scenario of contract theory is captured by the following hidden-action
principal-agent problem [30]: There is one principal and one agent. The agent can
take one of n actions a; € A,,. Each action qa; is associated with a distribution F; over
m outcomes x; € R>g and has a cost ¢; € R>g. The principal designs a contract p
that specifies a payment p(z;) for each outcome x;. The agent chooses an action a;
that maximizes expected payment minus cost, i.e., Y ; F; jp(z;) — ¢;. The principal
seeks to set up the contract so that the chosen action maximizes expected outcome
minus expected payment, i.e., Zj F, jx; — Zj F; jp(xj).

The principal-agent problem is quite different from mechanism design and sig-
naling, where the basic difficulty is the information asymmetry and that part of the
information is hidden. In the principal-agent problem the issue is one of moral haz-
ard: in and by itself the agent has no intrinsic interest in the expected outcome to
the principal.

It is straightforward to see that the optimal contract can be found in time polyno-
mial in n and m by solving n linear programs (LPs). For each action the corresponding
LP gives the smallest expected payment at which this action can be implemented. The
action that yields the highest expected reward minus payment gives the optimal payoff
to the principal, and the LP for this action gives the optimal contract.

Succinct principal-agent problems. This linear-programming-based algorithm
for computing an optimal contract has several analogues in algorithmic game theory:
1. Mechanism design. For many basic mechanism design problems, the optimal
(randomized) mechanism is the solution of an LP with size polynomial in that

of the players’ joint type space.

2. Signaling. For many computational problems in signaling, the optimal sig-
naling scheme is the solution to an LP with size polynomial in the number of
receiver actions and possible states of nature.

3. Correlated equilibria. In finite games, a correlated equilibrium can be com-
puted using an LP with size polynomial in the number of game outcomes.

These linear-programming-based solutions are unsatisfactory when their size is ex-
ponential in some parameter of interest. For example, in the mechanism design and
correlated equilibria examples, the size of the LP is exponential in the number of play-
ers. A major contribution of theoretical computer science to game theory and eco-
nomics has been the articulation of natural classes of succinctly representable settings
and a thorough study of the computational complexity of optimal design problems
in such settings. Examples include work on multidimensional mechanism design that
has emphasized succinct type distributions [9, 10, 11, 12], succinct signaling schemes
with an exponential number of states of nature [22], and the efficient computation of
correlated equilibria in succinctly representable multiplayer games [46, 36]. The goal
of this paper is to initiate an analogous line of work for succinctly described agency
problems in contract theory.

We focus on principal-agent settings with succinctly described (and exponentially
large) outcome spaces, along with a reward function that supports value queries and
a distribution for each action with polynomial description. While there are many
such settings one can study, we focus on what is arguably the most natural one from
a theoretical computer science perspective, where outcomes correspond to vertices
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of the hypercube, the reward function is additive, and the distributions are product
distributions. (Compare with work on computing revenue-maximizing multi-item
auctions with product distributions over additive valuations, e.g. [9, 10].)

For example, outcomes could correspond to sets of items, where items are sold
separately using posted prices. Actions could correspond to different marketing strate-
gies with different costs, which lead to different (independent) probabilities of sales
of various items. Or, imagine that a firm (principal) uses a headhunter (agent) to
hire an employee (action). Dimensions could correspond to tasks or skills. Actions
correspond to types of employees, costs correspond to the difficulty of recruiting an
employee of a given type, and for each employee type there is some likelihood that
they will possess each skill (or be able to complete some task). The firm wants to
motivate the headhunter to put in enough effort to recruit an employee who is likely
to have useful skills for the firm, without actually running extensive interviews to find
out the employee’s type.

In our model, as in the classic model, there is a principal and an agent. The agent
can take one of n actions a; € A, and each action has a cost ¢; € R>¢. Unlike in the
original model, we are given a set of items M, with |M| = m. Outcomes correspond
to subsets of items S € 2. Each item has a reward r;, and the reward of a set
S of items is Zje g¢7j. Bvery action a; comes with probabilities ¢; ; for each item
j. If action a; is chosen, each item j is included in the outcome independently with
probability ¢; ;. A contract specifies a payment pg for each outcome S & 2M - The
goal is to compute a contract that maximizes (perhaps approximately) the principal’s
payoff in running time polynomial in n and m (which is logarithmic in the size |2 |
of the outcome space).

A notion of approximate incentive compatibility for contracts. The clas-
sic approach in contract theory is to require that the agent be incentivized exactly,
i.e., he (weakly) prefers the chosen action over every other action. We refer to such
contracts as incentive-compatible (IC) contracts. Motivated in part by our hard-
ness results for IC contracts (see the next section) and inspired by the success of
notions of approximate incentive compatibility in mechanism design (as, for example,
in [8, 51, 12], hereafter referred to as the CDW framework), we introduce a notion of
approximate incentive compatibility that is suitable for contracts.

Our notion of d-incentive compatibility (or §-IC) is that the agent utility of the
approximately incentivized action a; is at least that of any other action a;, less d.
(See section 2.4 for details, including how to turn 4-IC contracts into IC contracts
with small—and necessary—multiplicative and additive losses.) This notion is natural
for several reasons. First, it coincides with the usual notion of e-IC in “normalized”
mechanism design settings (with all valuations between 0 and 1), as in [8, 51]. A second
reason is behavioral. There is an increasing body of work in economics on behavioral
biases in contract theory [39], including strong empirical evidence that such biases play
an important role in practice—for example, that agents “gift” effort to the principals
employing them [2]. The notion of 4-IC offers a mathematical formulation of an agent’s
bias. Along similar lines, [15] advocates generally for approximate IC constraints in
settings where the designer can propose their “preferred action” to agents, in which
case an agent may be biased against deviating due to the complexities involved in
determining the agent-optimal action or the psychological costs of deviating. See also
[25] for related discussion in the context of contract theory.

1.1. Our contribution and techniques. We prove several positive and nega-
tive algorithmic results for computing near-optimal contracts in succinctly described

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/23/21 to 128.59.11.34 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

214 P. DUTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

principal-agent settings. Our work reveals a fundamental dichotomy between settings
with a constant number of actions and those with an arbitrary number of actions.

Constant number of actions. For a constant number of actions, we prove in
section 3 that while it is NP-hard to compute an optimal IC contract, there is a fully
polynomial-time approximation scheme (FPTAS) that computes a 6-IC contract with
expected principal surplus at least that of the optimal IC contract; the running time
is polynomial in m and 1/4.

THEOREM 1.1 (see Theorem 3.1 and Corollary 3.2). For every constant n > 1
and 6 > 0, there is an algorithm that computes a -1C contract with expected principal
surplus at least that of an optimal IC contract in time polynomial in m and 1/4.

The starting point of our algorithm is a linear programming formulation of the
problem of incentivizing a given action with the lowest possible expected payment.
Our formulation has a polynomial number of constraints (one per action other than
the to-be-incentivized one) but an exponential number of variables (one per outcome).
A natural idea is to then solve the dual LP using the ellipsoid method. The dual
separation oracle is as follows: given a weighted mixture of n—1 product distributions
(over the m items) and a reference product distribution ¢*, minimize the ratio of
the probability of outcome S in the mixture distribution and that in the reference
distribution. Unfortunately, as we show, this is an NP-hard problem, even when there
are only n = 3 actions. On the other hand, we provide an FPTAS for the separation
oracle in the case of a constant number of actions, based on a delicate multidimensional
bucketing approach. The standard method of translating an FPTAS for a separation
oracle to an FPTAS for the corresponding LP relies on a scale-invariance property
that is absent in our problem. We proceed instead via a strengthened version of our
dual LP, to which our FPTAS separation oracle still applies, and show how to extract
from an approximately optimal dual solution a §-IC contract with objective function
value at least that of the optimal solution to the original LP.

Arbitrary number of actions. The restriction to a constant number of actions
is essential for the positive results above (assuming P # NP). Specifically, we prove in
section 4 that computing the IC contract that maximizes the expected payoff to the
principal is NP-hard, even to approximate to within any constant c¢. This hardness
of approximation result persists even if we relax from exact IC to §-IC contracts,
provided 9 is sufficiently small as a function of c.

THEOREM 1.2 (see Theorem 4.1 and Corollary 4.2). For every constant ¢ € R,
c > 1, it is NP-hard to find an IC contract that approximates the optimal expected
payoff achievable by an IC contract to within a multiplicative factor of c.

THEOREM 1.3 (see Theorem 4.1 and Corollary 4.3). For any constant ¢ € R,
c>5, and d < (ﬁ)c, it is NP-hard to find a §-1C contract that guarantees > %OPT,
where OPT is the optimal expected payoff achievable by an IC contract.

We prove these hardness of approximation results by reduction from MAX-3SAT,
using the fact that it is NP-hard to distinguish between a satisfiable MAX-3SAT
instance and one in which there is no assignment satisfying more than a 7/8+« fraction
of the clauses, where « is some arbitrarily small constant [33]. Our reduction utilizes
the gap between “first-best” (full-welfare-extracting) and “second-best” solutions in
contract design settings, where satisfiable instances of MAX-3SAT map to instances
where there is no gap between first and second best and instances of MAX-3SAT in
which no more than 7/8 + « clauses can be satisfied map to instances where there is
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a constant-factor multiplicative gap between the first-best and second-best solutions.

On the positive side, we prove that for every constant ¢ there is a simple (in
fact, linear!) contract that achieves a cs-approximation, where cs is a constant that
depends on §. This approximation guarantee is with respect to the strongest possible
benchmark, the first-best solution.?

THEOREM 1.4 (see Theorem 5.1). For every constant 6 > 0 there exist a con-
stant cs and a polynomial-time (in n and m) computable §-IC contract that obtains a
multiplicative cs-approximation to the optimal welfare.

Our proof of this result, in section 5, shows that the optimal social welfare can
be upper bounded by a sum of (constantly many in d) expected payoffs achievable by
0-1C contracts. The best such contract thus obtains a constant approximation to the
optimal welfare.

Black-box distributions. Product distributions are a rich and natural class
of succinctly representable distributions to study, but one could also consider other
classes. Perhaps the strongest positive result imaginable would be an efficient algo-
rithm for computing a near-optimal contract that works with no assumptions about
each action’s probability distribution over outcomes, other than the ability to sample
from them efficiently. (Positive examples of this sort in signaling include [22] and in
mechanism design include [32] and its many follow-ups.) Interestingly, the principal-
agent problem poses unique challenges to such “black-box” positive results. The moral
reason for this is explained, for example, in [49]: Rewards play a dual role in contract
settings, both defining the surplus from the joint project to be shared between the
principal and agent and providing a signal to the principal of the agent’s action. For
this reason, in optimal contracts, the payment to the agent in a given outcome is
governed both by the outcome’s reward and on its “informativeness,” and the latter
is highly sensitive to the precise probabilities in the outcome distributions associated
with each action. In section 6 we translate this intuition into an information-theoretic
impossibility result for the black-box model, showing that positive results are possible
only under strong assumptions on the distributions (e.g., that the minimum nonzero
probability is bounded away from 0).

1.2. Related work. The study of computational aspects of contract theory was
pioneered by Babaioff et al. [4] (see also their subsequent works, notably [24] and
[7]). This line of work studies a problem referred to as combinatorial agency, in
which combinations of agents replace the single agent in the classic principal-agent
model. The challenge in the new model stems from the need to incentivize multiple
agents, while the action structure of each agent is kept simple (effort/no effort). The
focus of this line of work is on complex combinations of agents’ efforts influencing
the outcomes, and how these determine the subsets of agents to contract with. The
resulting computational problems are very different from the computational problems
in our model.?

LA linear contract is defined by a single parameter o € [0, 1] and sets the payment pg for any set
S e2M topsg =a- Zjes r;. Linear contracts correspond to a simple percentage commission and
are arguably among the most frequently used contracts in practice. See [16] and [23] for recent work
in economics and computer science in support of linear contracts.

2Note that the principal’s objective function (reward minus payment to the agent) is a mixed-sign
objective; such functions are generally challenging for relative approximation results.

3For example, several of the key computational questions in their problem turn out to be #P-
hard, while all of the problems we consider are in NP.
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A second direction of highly related work is [3], which considers a principal-
agent model in which the agent action space is exponentially sized but compactly
represented, and argues that in such settings indirect (interactive) mechanisms can
be better than one-shot mechanisms. Our focus is more algorithmic, and instead of
a compactly represented action space we consider a compactly represented outcome
space.

A third direction of related work considers a bandit-style model for contract design
[34]. In their model each arm corresponds to a contract, and they present a procedure
that starts out with a discretization of the contract space, which is adaptively refined
and which achieves sublinear regret in the time horizon. Again the result is quite
different from our work, where the complexity comes from the compactly represented
outcome space, and our result on the black-box model sheds a more negative light on
the learning approach.

Further related work comes from Kleinberg and Kleinberg [38], who consider the
problem of delegating a task to an agent in a setting where (unlike in our model)
monetary compensation is not an option. Although payments are not available, they
show through an elegant reduction to the prophet-inequality problem that constant
competitive solutions are possible.

A final related line of work was initiated by Carroll [16], who—working in the
classic model (where computational complexity is not an issue)—shows a sense in
which linear contracts are max-min optimal (see also the recent work of [50]). In [23]
we show an alternative such sense and also provide tight approximation guarantees
for linear contracts.

2. Preliminaries. We start by defining succinct principal-agent settings and
the contract design problem.

2.1. Succinct principal-agent settings. Let n and m be parameters. A
principal-agent setting is composed of the following: n actions A, among which the
agent can choose, and their costs 0 = ¢; < -+ < ¢, for the agent; outcomes which the
actions can lead to, and their rewards for the principal; and a mapping from actions
to distributions over outcomes. Crucially, the agent’s choice of action is hidden from
the principal, who observes only the action’s realized outcome. Our goal is to study
succinct principal-agent settings with description size polynomial in n and m; the
(implicit) outcome space can have size exponential in m. Throughout, unless stated
otherwise, all principal-agent settings we consider are succinct. We focus on arguably
one of the most natural models of succinctly described settings, namely, those with
additive rewards and product distributions.

In more detail, let M = {1,2,...,m}, where M is referred to as the item set. Let
the outcome space be {0,1}, that is, every outcome is an item subset S C M. For
every item j € M, the principal gets an additive reward r; if the realized outcome
includes j, so the principal’s reward for outcome S is rg = > jes T Every action
a; € A, is associated with probabilities g; 1, ..., ¢.m € [0, 1] for the items. We denote
the corresponding product distribution by g;. When the agent takes action a;, item j is
included in the realized outcome independently with probability ¢; ;. The probability
of outcome ' is thus ¢;,s = ([ ¢,j)(I];¢s(1 — i) By linearity of expectation,
the principal’s expected reward given action a; is R; = Y g ¢ srs = Zj gi,j7;. Action
a;’s expected welfare is R; — ¢;, and we assume R; — ¢; > 0 for every i € [n].

EXAMPLE 2.1 (succinct principal-agent setting). A company (principal) hires an
agent to sell its m products. The agent may succeed in selling any subset of the m
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items, depending on his effort level, where the ith level leads to sale of item j with
probability q; ;. Reward r; from selling item j is the profit-margin of product j for the
company.

Representation. A succinct principal-agent setting is described by an n-vector
of costs ¢, an m-vector of rewards r, and an n x m matrix @), where entry (i, j) is equal
to probability ¢; ; (and we assume for simplicity that the number of bits of precision
for all values is poly(n,m)).

Assumptions. Our assumption that ¢; = 0 is a typical assumption in the con-
tracts literature. It serves to make the individual rationality constraint a special case
of the incentive compatibility constraint (also see section 2.2 below).

Unless stated otherwise, we assume that all principal-agent settings are normal-
ized, i.e., R; <1 for every a; € A,, (and thus also ¢; < 1). Normalization amounts to a
simple change of “currency,” i.e., of the units in which rewards and costs are measured.
It is a standard assumption in the context of approximate incentive compatibility—see
section 2.3 (similar assumptions appear in both the CDW framework and in [15]).

2.2. Contracts and incentives. A contract p is a vector of payments from the
principal to the agent. Payments are nonnegative; this is known as limited liability
of the agent. The contractual payments are contingent on the outcomes and not
actions, as the actions are not directly observable by the principal. A contract p can
potentially specify a payment pg > 0 for every outcome S, but by linear programming
considerations detailed below, we can focus on contracts for which the support size
of the vector p is polynomial in n. We sometimes denote by p; the expected payment
> scum 9i,sPs to the agent for choosing action a;, and without loss of generality restrict
attention to contracts for which p; < R; for every a; € A, (in particular, p; < 1 by
normalization).

Given contract p, the agent’s expected utility from choosing action a; is p; — ¢;.
The principal’s expected payoff is then R; — p;. The agent wishes to maximize his
expected utility over all actions and over an outside option with utility normalized to
zero (“individual rationality,” or IR). Since by assumption the cost ¢; of action a; is
0, the outside opportunity is always dominated by action a; and so we can omit the
outside option from consideration. Therefore, the incentive constraints for the agent
to choose action a; are p; — ¢; > p; — ¢y for every i’ # i. If these constraints hold, we
say a; is incentive compatible (IC) (and, as discussed, in our model IC implies IR).
The standard tie-breaking assumption in the contract design literature is that among
several IC actions the agent tie-breaks in favor of the principal, i.e., chooses the IC
action that maximizes the principal’s expected payoff.> We say contract p implements
or incentivizes action a; if, given p, the agent chooses a; (namely, a; is IC and survives
tie-breaking). If there exists such a contract for action a;, we say a; is implementable;
slightly abusing notation, we sometimes refer to the implementing contract as an IC
contract.

Simple contracts. In a linear contract, the payment scheme is a linear function
of the rewards, i.e., ps = arg for every outcome S. We refer to o € [0,1] as the
linear contract’s parameter, and it serves as a succinct representation of the contract.

4Limited liability plays a similar role in the contract literature as risk-averseness of the agent.
Both reflect the typical situation in which the principal has “deeper pockets” than the agent and is
thus the better bearer of expenses/risks.

5The idea is that one could perturb the payment schedule slightly to make the desired action
uniquely optimal for the agent. For further discussion see [13, p. 8].
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Linear contracts have an alternative succinct representation by an m-vector of item
payments p; = ar; for every j € M, which induce additive payments pg = Zjespj.
A natural generalization is separable contracts, the payments of which can also be
separated over the m items and represented by an m-vector of nonnegative payments
(not necessarily linear). The optimal linear (resp., separable) contract can be found in
polynomial time (see Proposition A.1 in Appendix A). We return to linear contracts
in section 5 and to separable contracts in Appendix H.

2.3. Contract design and relaxations. The goal of contract design is to max-
imize the principal’s expected payoff from the action chosen by the agent subject
to IC constraints. A corresponding computational problem is OPT-CONTRACT:
The input is a succinct principal-agent setting, and the output is the principal’s ex-
pected payoff from the optimal IC contract. A related problem is MIN-PAYMENT:
The input is a succinct principal-agent setting and an action a;, and the output is
the minimum expected payment p; with which a; can be implemented (up to tie-
breaking). OPT-CONTRACT reduces to solving n instances of MIN-PAYMENT to
find p; for every action a;, and returning the maximum expected payoff to the prin-
cipal max;ep,{R; — pj}. Observe that MIN-PAYMENT can be formulated as an
exponentially sized LP with 2™ variables {ps} (one for each set S C M) and n — 1
constraints:

(2.1) min Z qi,SPs

SCM
s.t. Z Qi,sPs — C; = Z Qi' ,SPS — Ci Vi’ #1443 € [n],
SCM SCM
ps >0 VS C M.

While we can’t use this linear programming formulation to compute an optimal
contract, it implies that there is a succinct optimal contract: There exists an extreme
point of the feasible region which is optimal. That extreme point must satisfy 2™
constraints with equality (one per variable). Only n — 1 of those constraints aren’t of
the form ps = 0, so the remaining constraints must all have pg = 0.

The dual LP has n — 1 nonnegative variables {\;/} (one for every action ' other
than 4), and exponentially many constraints:

(2.2) max Z /\i’ (Ci - Cil)

iy
di’,s
s.t. AN | —1< At — VS CE,qs >0,
(Z) 1= pmis s
) il i
A >0 Vil £ 14,4 € [n].

However, the ellipsoid method cannot be applied to solve the dual LP in polyno-
mial time. The separation oracle, which is related to the concept of likelihood ratios
from statistical inference, turns out to be NP-hard except for the n = 2 case—see
Proposition B.1 in Appendix B.

We return to LP (2.1) and to its dual LP (2.2) in section 3.

Relaxed incentive compatibility. Contract design like auction design is ulti-
mately an optimization problem subject to IC constraints. The state of the art in
optimal auction design requires a relaxation of IC constraints to e-IC. In the CDW
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framework, the € loss factor is additive and applies to normalized auction settings.
The framework enables polytime computation of an eIC auction with expected rev-
enue approximating that of the optimal IC auction.® Appropriate e-IC relaxations are
also studied in multiple additional contexts—see [15] and references within for voting,
matching, and competitive equilibrium, and see [45] for Nash equilibrium. We wish
to achieve similar results in the context of optimal contracts. For completeness we
include the definition of e-IC cast in the language of contracts.

DEFINITION 2.2 (§-IC action). Consider a (normalized) contract setting. For § >
0, an action a; is 6-1C given a contract p if the agent loses no more than additive 0
in expected utility by choosing a;, i.e., p; — ¢; > pyr — ¢y — 0 for every action a; # a;.

Asin the IC case, we often slightly abuse notation and refer to the contract p itself
as 6-1C. By this we mean a contract p with an (implicit) action a; that is 6-IC given p (if
there are several such 6-IC actions, by our tie-breaking assumption the agent chooses
the one that maximizes the principal’s expected payoff). We also say the contract
d-implements or d-incentivizes action a;. Finally if there exists such a contract for
a;, then we say this action is d-implementable. We denote by s-OPT-CONTRACT
and 5-MIN-PAYMENT the above computational problems with IC replaced by §-1C
(e.g., the input to 6-OPT-CONTRACT is a succinct principal-agent setting and a
parameter 0, and the output is the principal’s expected payoff from the optimal §-1C
contract).

2.4. Properties of approximately IC contracts. We conclude this section
with a few observations concerning §-IC contracts. Proofs appear in Appendix C.

Implementability. A first observation is that, by linear programming duality,
any action can be d-implemented up to tie-breaking even for arbitrarily small §. Note
that this result just talks about whether a given action can be §-incentivized; it may
be the case that the payments required for this are very high.

PROPOSITION 2.3. For every principal-agent setting and every § > 0, every action
a; can be §-implemented up to tie-breaking.

Relaxed vs. exact incentive compatibility. Our next pair of results concerns
the relation between IC contracts and §-IC contracts.

Proposition 2.4 shows that for every 6-IC contract there is an IC contract with
approximately the same expected payoff to the principal up to small—and necessary—
multiplicative and additive losses. Thus relaxing IC to §-IC increases the expected
payoff of the principal only to a certain extent. More precisely, Proposition 2.4 shows
that any 6-IC contract can be transformed into an IC contract that maintains at least
(1 —+/9) of the principal’s expected payoff up to an additive loss of (v/§ — §). Similar
results are known in the context of auctions (see [31, 20] for welfare maximization
and [18] for revenue maximization).

To state Proposition 2.4, denote by f,—1 the linear contract with parameter o = 1
(that transfers the full reward from principal to agent).

PROPOSITION 2.4. Fiz a principal-agent setting and § > 0. Let p be a contract
that §-incentivizes action a;. Then the IC contract p' defined as (1 — v/8)p + v/0la—1
achieves for the principal expected payoff of at least (1 — /8)(R; — p;) — (V6 — 0),
where R; — p; is the expected payoff of contract p.

6To be precise, the CDW framework focuses on Bayesian IC (BIC) and e-BIC auctions.
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Proposition 2.5 shows that an additive loss is necessary, as even for tiny ¢ there
can be a multiplicative constant-factor gap between the expected payoff of an IC
contract and a 6-IC one.

PROPOSITION 2.5. For any d € (0, 1/2], there exists a principal-agent setting where
the optimal contract extracts expected payoff OPT, but a d-1C contract extracts ez-
pected payoff > %OPT.

Relaxed incentive compatibility with exact IR. In our model, incentive
compatibility implies IR due to the existence of a zero-cost action a;, but this is
no longer the case for §-IC. What if we are willing to relax IC to §-IC due to the
considerations above, but do not want to give up on IR? Suppose we enforce IR by
assuming that the agent chooses a §-1C action only if it has expected utility > 0. The
following lemma shows that this has only a small additive effect on the principal’s
expected payoff, allowing us from now on to focus on §-IC contracts (IR can be later
enforced by applying the lemma).

LEMMA 2.6. For every 6-1C contract p that achieves expected payoff of 11 for
the principal, there exists a §-IC and IR contract p’ that achieves expected payoff of
>11-94.

3. Constant number of actions. In this section we begin our exploration of
the computational problems OPT-CONTRACT and MIN-PAYMENT by considering
principal-agent settings with a constant number n of actions. For every constant
n > 3 these problems are NP-hard, and this holds even if the incentive compatibility
requirement is relaxed to 0-IC (see Proposition D.1 and Corollary D.2 in Appendix D).
As our main positive result, we establish the tractability of finding a §-IC contract
that matches the expected payoff of the optimal IC contract. In section 4 we show this
result is too strong to hold for nonconstant values of n (under standard complexity
assumptions), and in section 5 we provide an approximation result for general settings.

To state our results more formally, fix a principal-agent setting and action a;; let
OPT; be the solution to MIN-PAYMENT for a; (or co if a; cannot be implemented
up to tie-breaking without loss to the principal), and let OPT be the solution to
OPT-CONTRACT. Observe that OPT = max;c[n{ R; — OPT;}. Our main results in
this section are the following.

THEOREM 3.1 (MIN-PAYMENT). There exists an algorithm that receives as in-
put a (succinct) principal-agent setting with a constant number of actions and m
items, an action a;, and a parameter § > 0, and returns in time poly(m, %) a contract
that d-incentivizes a; with expected payment < OPT; to the agent.

COROLLARY 3.2 (OPT-CONTRACT). There exists an algorithm that receives as
input a (succinct) principal-agent setting with a constant number of actions and m
items, and a parameter 6 > 0, and returns in time poly(m, %) a 6-1C contract with
expected payoff > OPT to the principal.

Proof. Apply the algorithm from Theorem 3.1 once per action a; to get a con-
tract that d-incentivizes a; with expected payoff at least R; — OPT; to the principal.
Maximizing over the actions, we get a J-IC contract with expected payoff > OPT to
the principal. 0

Corollary 3.2 shows how to achieve OPT with a §-IC contract rather than an
IC one, in the same vein as the CDW results for auctions. A similar result does not
hold for general n unless P = NP (Corollary 4.3). Note that the J-IC contract can be
transformed into an IR one with an additive § loss by applying Lemma 2.6, and to a
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fully IC one with slightly more loss by Proposition 2.4, where § can be an arbitrarily
small inverse polynomial in m.
In the rest of the section we prove Theorem 3.1.

An FPTAS for the separation oracle. We begin by stating the separation
oracle problem and relating it to a problem called MIN-LR. LP (2.1) formulates MIN-
PAYMENT for action a;. Its dual LP (2.2) has constraints of the form

(3.1) (Z)‘Z> 1< Z)‘i’ qi’,s

Iy iz 1S

The separation oracle problem is thus as follows: Given n— 1 nonnegative values {\;}
and n product distributions g;, {¢;} over the m items, find an outcome S such that
(Zi/# Ai)—1> Zi,# Air (Zf”ss (i.e., a violated constraint), or determine that no such
S exists. Dividing by 3, ; A and letting cir = Air /(32 4; A ), we can rewrite (3.1)
as

1 Air 4, Qi Qi s
- ——— < IS ) N LS
Zi’;ﬁi Air ; (Zi/;ﬁi A Gis l/%:l qi,s
Observe that the a’s sum to 1, since Zi,# oy = Zi,#, )\i//(zi,# Av) = 1. We
conclude that the separation oracle problem for dual LP (2.2) is equivalent to search-

ing for S such that >, ai{;zisl‘s is strictly less than 1 —1/(32,; Air). Minimizing

Do % over all S is sufficient to solve the problem.

We can restate this minimization problem over S in the language of likelihood
ratios (LRs). Let the MIN-LR problem be as follows: For constant n and parameter
m, the input is (i) n — 1 nonnegative weights {a; } that sum to 1, (ii) n — 1 product
distributions {g;/ }, and (iii) a product distribution ¢;, where all product distributions
Do Qs di’ s

are over m items M. The goal is to minimize the likelihood ratio - over
all outcomes S C M, where the numerator is the likelihood of S under the weighted
combination distribution ), a; ¢, and the denominator is the likelihood of S under
distribution g;. Observe that a weighted combination distribution is not in general a
product distribution itself, so the problem might be challenging. Denote the optimal
solution to MIN-LR (the minimum likelihood ratio) by p*.

Solving the separation oracle problem turns out to be NP-hard (see Proposition
B.1in Appendix C),” but we can give an FPTAS for the MIN-LR problem (Lemma 3.3,
proof in Appendix E). Lemma 3.4 states the guarantee from applying this FPTAS to
solve the separation oracle problem.

LEMMA 3.3 (FPTAS). There is an algorithm for the MIN-LR problem that re-
turns an outcome S with likelihood ratio < (14 §)p* in time polynomial in m, %.

LEMMA 3.4. If the FPTAS for the MIN-LR problem with parameter 6 does not
find a violated constraint of dual LP (2.2) (i.e., returns an outcome with likelihood ra-
tio > 1=1/(3 ,4; Aiv)), then for every S the dual constraint (3.1) holds approzimately

up to (14 6):
!
< E )\1/> —1< (1+5> E /\i/(h 7S.
— "y qi,S
) i £
"In fact the problem is strongly NP-hard; but because it involves products of the form 4,58 =

(ITjes @i,5)(I1¢s(1 — ai,5)), the strong NP-hardness does not rule out an FPTAS [47, Theorem
17.12].
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Proof. Assume there exists S such that (32, Av) —1 > (1+6) 30,4 )\i/‘Z—’SS.

Then dividing by (_,, Ai) and using the definition of p* as the minimum likelihood
ratio, we get 1 — ﬁ > (140)p*. Combining this with the guarantee of Lemma 3.3,

the FPTAS returns S” with likelihood ratio < 1 — ﬁ, thus identifying a violated
constraint. This completes the proof. / ]

Applying the separation oracle FPTAS: The standard method. Given
an FPTAS with parameter § for the separation oracle of a dual LP, for many problems
it is possible to find in polynomial time an approximately optimal, feasible solution
to the primal—see, e.g., [37, 14, 35, 44, 27, 26]. We first describe a fairly standard
approach in the literature to utilizing a separation oracle FPTAS, which we refer to
as the standard method, and explain where we must deviate from this approach. The
proof of Theorem 3.1 then applies an appropriately modified approach.

The standard method works as follows: Let OPT; be the optimal value of the
primal (minimization) LP. For a benchmark value I', add to the (maximization) dual
LP a constraint that requires its objective to be at least I', and attempt to solve the
dual by running the ellipsoid algorithm with the separation oracle FPTAS.

Assume first that the ellipsoid algorithm returns a solution with value I'. Since
the separation oracle applies the FPTAS, it may wrongly conclude that some solution
is feasible despite a slight violation of one or more of the constraints. For example, if
we were to apply the FPTAS separation oracle from Lemma 3.3 to solve dual LP (2.2),
we could possibly get a solution for which there exists S such that

>oad < (ZAi/) S1S (48 A,

i'£i 4, i i'£i 7.5

where the second inequality is by Lemma 3.4. Clearly, the value I' of an approximately
feasible solution may be higher than OPT;. In the standard method, the approxi-
mately feasible solution can be scaled by 1J1r 5 to regain feasibility while maintaining a
value of %. Scaling thus establishes that % < OPT;. Now assume that for some
(larger) value of T, the ellipsoid algorithm identifies that the dual LP is infeasible. In
this case we can be certain that OPT; < I', and we can also find in polynomial time
a primal feasible solution with value < T" (more details in the proof of Theorem 3.1
below).

Using binary search (in our case over the range [c;, R;] C [0,1] since R; is the
maximum the principal can pay without losing money), the standard method finds
the smallest T'* for which the dual is identified to be infeasible, up to a negligible
binary search error €. This gives a primal feasible solution that achieves value I'* + ¢,
ge
is equivalent to % < OPT;.8 So the standard method has found an approximately
optimal, feasible solution to the primal.

and at the same time establishes that < OPT; by the scaling argument, which

Applying the separation oracle FPTAS: Our method. The issue with
applying the standard method to solve MIN-PAYMENT is that the scaling argument
does not hold. To see this, consider an approximately-feasible dual solution for which
(i Nir) =1 < (X +6) 2oy A 2:; for every S, and notice that scaling the values
{A\'} does not achieve feasibility. We therefore turn to an alternative method to prove
Theorem 3.1.

8The notation (I'*)~ means any number smaller than I'*.
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Proof of Theorem 3.1. We apply the standard method using the FPTAS with
parameter J (see Lemma 3.3) as separation oracle to the following strengthened version
of dual LP (2.2),° where the extra (1+4) multiplicative factor in the constraints makes
them harder to satisfy:

(3.2) max Z Air(ei — i)

i #i
qi’,s
s.t. (1406 E A ) —1 Sg Ay — VS C E,q,s >0,
( )(< vy ) ) —  4,S %5
i #i i/ #£i
Air >0 Vi’ #i,i' € [n].

Let T* be the infimum value for which dual LP (3.2) would be identified as
infeasible. The ellipsoid algorithm is thus able to find an approximately feasible
solution to dual LP (3.2) with objective (I'*)~. The key observation is that this
solution is fully feasible with respect to the original dual LP (2.2). This is because
if the separation oracle FPTAS does not find a violated constraint of dual LP (3.2),
then for every S it holds that (3 , ,; Air) =1 < > 0 Aw (Z":”SS (by the same argument
as in the proof of Lemma 3.4). From the key observation it follows that

(3.3) (I'*)~ < OPT;

(despite the fact that the scaling argument does not hold).

Now let I'* 4 € be the smallest value for which the binary search runs the ellipsoid
algorithm for dual LP (3.2) and identifies its infeasibility. During its run for I'* +¢, the
ellipsoid algorithm identifies polynomially many separating hyperplanes that constrain
the objective to < I'* +e¢. Formulate a “small” primal LP with variables corresponding
exactly to these hyperplanes. By duality, the small primal LP has a solution with
objective < I'* 4+ ¢, and moreover since the number of variables and constraints is
polynomial we can find such a solution p* in polynomial time. Observe that p* is also
a feasible solution to the primal LP corresponding to dual (3.2) (the only difference
from the small LP is more variables):

(3.4) min (1+9) Z ¢i,sPs

SCE
s.t. (14 5)( > Qi,SpS) —ci > Y qisps —cv Vil #i,i € [nl,
SCE SCE
ps >0 VS C E.

We have thus obtained a contract p* that is a feasible solution to LP (3.4) with
objective (1+0) > oc g ¢i,sps < I'" +e. For action a;, this contract pays the agent an
N [*+e
146

> scE ,sps < (F;)Jr;—e < OI;I%+E < OPT;, where the second inequality is by (3.3),
and the last inequality is by taking the binary search error to be sufficiently small.t?
To complete the proof we must show that p* is §-IC. This holds since the constraints
of LP (3.4) ensure that for every action a; # a;, using the notation p; = > ¢ 4,55,
we have py —cy < (14 8)p; —¢; < p;i —¢; +0p; < p; —¢; + 6 (the last inequality uses
that p; < R; <1 by normalization). 0

expected transfer of ) ¢ ¢i,sps < . We have the following chain of inequalities:

9Strengthened duals appear, e.g., in [44, 26].

10We use here that OPT; > ¢; and that the number of bits of precision is polynomial.
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4. Hardness of approximation. In this section, unlike the previous one, the
number of actions is no longer assumed to be constant. We show a hardness of
approximation result for optimal contracts, based on the known hardness of approxi-
mation for MAX-3SAT. In his landmark paper, Hastad [33] shows that it is NP-hard
to distinguish between a satisfiable MAX-3SAT instance and one in which there is
no assignment satisfying more than 7/8 + « of the clauses, where « is an arbitrarily
small constant (Theorems 5.6 and 8.3 in [33]). We build upon this to prove our main
technical contribution stated in Theorem 4.1, which immediately leads to our main
results for this section in Corollaries 4.2 and 4.3.

THEOREM 4.1. Let ¢ € Z, ¢ > 3, be an (arbitrarily large) constant integer. Let

A ER, >0, Ac0,5:] be such that % € (0, %] and (%)c is an
(arbitrarily small) constant. Then it is NP-hard to determine whether a principal-
agent setting has an IC contract extracting full expected welfare, or whether there is

no A-IC contract extracting > % + € of the expected welfare.

We present two direct implications of Theorem 4.1. First, Corollary 4.2 applies
to the OPT-CONTRACT problem and states hardness of approximation within any
constant of the optimal expected payoff by an IC contract. (A similar result can be
shown for MIN-PAYMENT; see Appendix F.)

COROLLARY 4.2. For any constant ¢ € R, ¢ > 1, it is NP-hard to approzimate
the optimal expected payoff achievable by an IC contract to within a multiplicative
factor c.

Corollary 4.2 suggests that in order to achieve positive results, we may want to
follow the approach of the CDW framework and relax IC to A-IC. That is, instead
of trying to compute in polynomial time an approximately optimal IC contract, we
should try to compute in polynomial time a A-IC contract with expected payoff that
is guaranteed to approximately exceed that of the optimal IC contract. The next
corollary establishes a computational limitation on this approach: Corollary 4.3 fixes
a constant approximation factor ¢ and derives A for which a c-approximation by a
A-IC contract is NP-hard to find. (It is also possible to reverse the roles—fix A
and derive a constant approximation factor for which NP-hardness holds.) We shall
complement this limitation with a positive result in section 5.

COROLLARY 4.3. For any constant ¢ € R, ¢ > 5, and A < (ﬁ)c, it 1s NP-hard
to find a A-IC contract that guarantees > %OPT, where OPT is the optimal expected
payoff achievable by an IC contract.'!

Proof. The corollary follows from Theorem 4.1 by setting e = 1 |

C

It also follows from Theorem 4.1 and Corollary 4.3 that for every ¢, A as speci-
fied, it is NP-hard to approximate the optimal expected payoff achievable by a A-IC
contract to within a multiplicative factor ¢/2. That is, hardness of approximation
also holds for -OPT-CONTRACT.

In the remainder of the section we prove Theorem 4.1. After a brief overview, we
set up some tools in section 4.2 for the proof, in section 4.3 we focus on the special case
of ¢ =2, and in section 4.4 we prove the more general statement for any constant c.

4.1. Proof overview. It will be instructive to consider first a version of Theo-
rem 4.1 for the case of ¢ = 2.

11 The relevant hardness notion is more accurately FNP-hardness.
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SAT item 1 SAT itemm | Gap item
SAT action 1, c
gap action 1
SAT setting probabilities
SAT action n,
gap action 1 €
Gap action 2 05 ] HE 1

Fic. 1. Outline of a product setting for ¢ = 2.

THEOREM 4.4. Let ¢, A € Roe > 0,A € [0, 545 be such that =22 ¢ (0, k]

and (#)2 is an (arbitrarily small) constant. Then it is NP-hard to determine
whether a principal-agent setting has an IC contract extracting full expected welfare,
or whether there is no A-IC contract extracting > % + € of the expected welfare.

This theorem is already interesting as it shows that even relaxing IC to A-IC,
where A > 0, approximating the optimal expected payoff within 65% is computa-
tionally hard.

COROLLARY 4.5. For any A < ﬁ, it is NP-hard to find a A-IC contract that
guarantees > 0.65 - OPT, where OPT is the optimal expected payoff achievable by an
IC contract.

Proof. The corollary follows from Theorem 4.4 by setting € = 23—0. a

To establish Theorem 4.4 we present a gap-preserving reduction from any MAX-
3SAT instance ¢ to a principal-agent setting that we call the “product setting” (the
reduction appears in Algorithm 4.2 and is analyzed in Proposition 4.15). The product
setting encompasses a 2-action, 1-item principal-agent “gap setting,” in which any 6-
IC contract for sufficiently small § cannot extract much more than % of the expected
welfare (Proposition 4.8). The “gap setting” is coupled with a useful gadget that we
call the “SAT setting,” which is a principal-agent setting with n actions and m items
whose probabilities depend on the 3SAT instance . Figure 1 shows how the gap and
SAT settings are combined to form the product setting.

The important property of the SAT setting is the following: If assigning TRUE
to exactly the variable subset S satisfies the 3SAT formula, then item subset S occurs
in the SAT setting with probability zero for every action. This property becomes
useful once the gap actions are added to this gadget (see Figure 1). In particular,
“gap action 2”7 achieves set S with nonzero probability, and so a contract paying only
for set S can incentivize this action by just covering its cost, thus extracting the full
welfare. If, on the other hand, the 3SAT formula is unsatisfiable, then the “gap” in
the gap setting kicks in and prevents any contract from extracting more than % of the
expected welfare.

Constant ¢ > 2. The special case of ¢ = 2 captures most ideas behind the proof
of the more general Theorem 4.1, but the analysis is simplified by the fact that to
extract more than roughly % of the expected welfare in the 2-action gap setting, there
is a single action that the contract could potentially incentivize. The more general
case involves gap settings with more actions (the reduction appears in Algorithm 4.3
and is analyzed in Proposition 4.17). To extract more than = % of the expected
welfare, the contract could potentially incentivize almost any one of these actions
(Proposition 4.9).
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Barrier to going beyond constant c. Our techniques for establishing Theorem
4.1 do not generalize beyond constant values of ¢ (the approximation factor). The
reason for this is that we do not know of (¢, ¢, f)-gap settings (Definition 4.6) where
fle,e) = o(e%). As long as f(c,€) is of order €, the gap in the MAX-3SAT instance
we reduce from must be between 7/8 + ¢ and 1, and this gap problem is known
to be NP-hard only for constant c. As [33] notes, significantly stronger complexity
assumptions may lead to hardness for slightly (but not significantly) larger values of c.

4.2. Main tools used in the proof. In this section we formalize the notions of
“gap” and “SAT” principal-agent settings as well as the notion of an “average action,”
which will be useful in proving Theorems 4.1 and 4.4. The term “gap setting” reflects
the gap between the first-best solution (i.e., the expected welfare), and the second-
best solution (i.e., the expected payoff to the principal from the optimal contract). It
will be convenient not to normalize gap settings (and thus also the product settings
encompassing them). This makes our negative results only stronger, as we show next.

Unnormalized settings and a stronger §-IC notion. Before proceeding we
must define what we mean by a §-IC contract in an unnormalized setting. Moreover
we show that if Theorem 4.1 or 4.4 holds for unnormalized settings with the new §-1C
notion, then it also holds for normalized settings with the standard 6-IC notion.

Recall that in a normalized setting, action a; that is §-incentivized by the contract
must satisfy §-IC constraints of the form p; — ¢; + 8 > py — ¢y for every i/ # i. In
an unnormalized setting, an additive d-deviation from optimality is too weak of a
requirement; we require instead that a; satisfy §-IC constraints of the form

Two key observations: (i) The constraints in (4.1) imply the standard 4-IC constraints
if p; <1, as is the case if the setting is normalized. (ii) The constraints in (4.1) are
invariant to scaling of the setting and contract (i.e., to a change of currency of the
rewards, costs, and payments). By these observations, a 0-IC contract according to
the new notion in an unnormalized setting becomes a standard §-IC contract after
normalization of the setting and payments, with the same fraction of optimal expected
welfare extracted as payoff to the principal.

Assume a negative result holds for unnormalized settings, i.e., it is NP-hard to
determine between the two cases stated in Theorem 4.1 (or Theorem 4.4). Assume for
contradiction this does not hold for normalized settings. Then, given an unnormalized
setting, we can simply scale the expected rewards and costs to normalize it, and then
determine whether or not there is an IC contract extracting full expected welfare. If
such a contract exists, it is also IC and full-welfare-extracting in the unnormalized
setting after scaling back the payments. On the other hand, by the discussion above, if
there is no standard-notion A-IC contract extracting a given fraction of the expected
welfare in the normalized setting, there can also be no such contract with the new
A-IC notion in any scaling of the setting. We have thus reached a contradiction to
NP-hardness. We conclude that proving our negative results for unnormalized settings
only strengthens these results.

Gap settings and their construction. We now turn to the definition of gap
settings.

DEFINITION 4.6 (unstructured gap setting). Let f(c,€) € Rx>q be an increasing
function where ¢ € Zso and € € Rsg. An unstructured (c, e, f)-gap setting is a
principal-agent setting such that for every 0 < 6 < f(c,€), the optimal §-IC contract
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can extract no more than % + € of the expected welfare as the principal’s expected
payoff.
For convenience we focus on (structured) gap settings as follows.

DEFINITION 4.7 (gap setting). A (c, e, f)-gap setting is a setting as in Defini-
tion 4.6 with the following structure: there are a single item and c actions; the first
action has zero cost; the last action has probability 1 for the item and maximum
expected welfare among all actions.

To construct a gap setting, we construct a principal-agent setting with a single
item, ¢ actions, and parameter v € R<g,y < 1. The construction is similar to [23],
but requires a different analysis. For every 4 € [c], set the probability of action a; for
the item to y°~%, and set a;’s cost to ¢; = (1/9°71) —i+ (i — 1)7. Set the reward for
the item to be 1/74¢~1. Observe that the expected welfare of action a; is i — (i — 1),
so the last action has the maximum expected welfare ¢ — (¢—1)~. This establishes the
structural requirements from a gap setting (Definition 4.7). Propositions 4.8 and 4.9
establish the gap requirements from a gap setting (Definition 4.6) for ¢ = 2 and ¢ > 3,
respectively—the separation between these cases is for clarity of presentation. We use
the former in section 4.3, in which we show hardness for the ¢ = 2 case; the latter is
a generalization to arbitrarily large constant c. See Appendix G for proofs.

PROPOSITION 4.8 (2-action gap settings). For every ¢ € (0, %], there exists a
(2,€,€%)-gap setting.

PROPOSITION 4.9 (c-action gap settings). For every ¢ > 3 and € € (0, i], there
exists a (c, €, €°)-gap setting.

For concreteness we describe the 2-action gap setting: The agent has ¢ = 2
actions, which can be thought of as “effort” and “no effort.” Effort has cost % —2+e¢,
and no effort has cost 0. Without effort the item has probability €, and with effort the
probability is 1. The reward associated with the item is % It is immediate to see that
the maximum expected welfare (first-best) is 2 —e. In the proof of Proposition 4.8 we
show that the best an €2-IC contract can extract is ~ 1.

Average actions and SAT settings. The motivation for the next definition is
that, given a contract, for an action to be IC or §-IC it must yield higher expected
utility for the agent in comparison to the “average action.” Average actions are thus
a useful tool for analyzing contracts.

DEFINITION 4.10 (average action). Given a principal-agent setting and a subset
of actions, by average action we refer to a hypothetical action with the average of the
subset’s distributions, and average cost. (If a particular subset is not specified, the
average is taken over all actions in the setting.)

Another useful ingredient will be SAT settings defined as follows.

DEFINITION 4.11 (SAT setting). A SAT principal-agent setting corresponds to a
MAX-3SAT instance . If ¢ has n clauses and m variables, then the SAT setting has
n actions and m items. Two conditions hold: (1) ¢ is satisfiable if and only if there
is an item set in the SAT setting that the average action leads to with zero probability.
(2) If every assignment to ¢ satisfies at most 7/8 + « of the clauses, then for every

item set S the average action leads to S with probability at least lg,fa.

The following proposition provides a reduction from MAX-3SAT instances to SAT
settings.
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PROPOSITION 4.12. For every ¢ the reduction in Algorithm 4.1 runs in polyno-
mial time on input ¢ and returns a SAT setting corresponding to .

Algorithm 4.1 SAT setting construction in polytime.

Input : A MAX-3SAT instance ¢ with n clauses and m variables.

Output: A principal-agent SAT setting (Definition 4.11) corresponding to ¢.

begin

Given ¢, construct a principal-agent setting in which every clause corresponds to

an action with a product distribution, and for every variable there is a corre-
sponding item. If variable j appears in clause 7 of ¢ as a positive literal, then let
item j’s probability in the ith product distribution be 0, and if it appears as a
negative literal, then let item j’s probability be 1. Set all other probabilities to
%. We set the costs of all actions and the rewards for all items to 0.

end

Proof of Proposition 4.12. We first argue that there is a satisfying assignment to
the MAX-3SAT instance if and only if there is a set S with O-probability in every one
of the product distributions. First note that there is a natural 1-to-1 correspondence
between subsets {S} of items and truth assignments to the variables: For every vari-
able j, if item j € S, then assign TRUE and otherwise FALSE. Now consider a set S
and its corresponding assignment. S has 0-probability in the ith product distribution
if and only if either an item in S has probability 0 or an item in S has probability
1 according to this distribution. Therefore, in clause i, either one of the TRUE vari-
ables appears as a positive literal or one of the FALSE variables appears as a negative
literal. And this is a necessary and sufficient condition for the clause to be satisfied.
We conclude that S has 0-probability in every product distribution if and only if the
corresponding assignment satisfies every clause, establishing condition (1) of Defini-
tion 4.11. To show condition (2), assume that at most % + « of the clauses can be
satisfied. Consider the average action whose distribution results from averaging over
all actions. This distribution has for every S a probability at least (§ —a)- 2 = 1532,
since the probability of S is % in every distribution corresponding to a clause which
the assignment corresponding to S does not satisfy. This completes the proof. ]

4.3. The ¢ = 2 case: Proof of Theorem 4.4. In this section we present a
polynomial-time reduction from MAX-3SAT to a product setting, which combines
gap and SAT settings. The reduction appears in Algorithm 4.2. We then analyze
the guarantees of the reduction and use them to prove Theorem 4.4. Most of the
analysis appears in Proposition 4.15, which shows that the reduction in Algorithm
4.2 is gap-preserving. Some of the results are formulated in general terms so they can
be reused in the next section (section 4.4).

Before turning to Proposition 4.15, we begin with two simple observations about
the product setting resulting from the reduction.

OBSERVATION 4.13. Partition all actions of the product setting but the last one
into blocks of n actions each.'> Every action in the ith block has the same expected
reward for the principal as action a; in the gap setting, and the last action in the
product setting has the same expected reward as the last action in the gap setting.

12]If the number of actions in the gap setting is 2, there is a single such block.
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Algorithm 4.2 Polytime reduction from MAX-3SAT to principal-agent.

Input : A MAX-3SAT instance ¢ with n clauses and m variables; a parameter
(S RZO'
Output: A principal-agent product setting combining a SAT setting and a gap setting.
begin
Combine the SAT setting corresponding to ¢ (attainable in polytime by Propo-
sition 4.12) with a poly-sized (2, ¢, €2)-gap setting (exists by Proposition 4.8) to
get the product setting, as follows:

e The product setting has n + 1 actions and m + 1 items: m “SAT items”
correspond to the SAT setting items, and the last “gap item” corresponds
to the gap setting item.

e The upper-left block of the product setting’s (n + 1) x (m + 1) matrix
of probabilities is the SAT setting’s n X m matrix of probabilities. The
entire lower-left 1 x m block is set to % The entire upper-right n x 1
block is set to the probability that action a; in the gap setting results in
the item. The remaining lower-right 1 x 1 block is set to the probability
that the last action (i.e., action as) in the gap setting results in the item
(recall that this probability is 1).

e In the product setting, the rewards for the m SAT items are set to 0,
and the reward for the gap item is set as in the gap setting.

e The costs of the first n actions in the product setting are the cost of
action ap in the gap setting; the cost of the last action in the product
setting is the cost of the last action (i.e., action as) in the gap setting.

end

COROLLARY 4.14. The optimal expected welfares of the product and gap settings
are the same and are determined by their respective last actions.

PROPOSITION 4.15 (gap preservation by Algorithm 4.2). Let ¢ be a MAX-3SAT
instance for which either there is a satisfying assignment or every assignment satisfies
at most T/8 + a of the clauses for a < (0.05)%. Let A < (0.05)2. Consider the
product setting resulting from the reduction in Algorithm 4.2 run on input p,e =
302 £ 2A1/2 < i. Then the following hold:

1. If ¢ has a satisfying assignment, the product setting has an IC contract that
extracts full expected welfare.

2. If every assignment to ¢ satisfies at most 7/8 + « of the clauses, the optimal
A-IC contract can extract no more than % + € of the expected welfare.

Proof. First, if ¢ has a satisfying assignment, then there is a subset of SAT items
that has zero probability according to every one of the first n actions. Consider
the outcome S* combining this subset together with the gap item. We construct a
full-welfare extracting contract: the contract’s payment for S* is the cost of the last
action in the product setting multiplied by 2™ (since the probability of S* according
to the last action is 1/2™), and all other payments are set to zero. It is not hard to
see that the resulting contract makes the agent indifferent among all actions, so by
tie-breaking in favor of the principal, the principal receives the full expected welfare
as her payoff.

Now consider the case that every assignment to ¢ satisfies at most 7/8 + « of the
clauses, and assume for contradiction that there is a A-IC contract p for the product
setting that extracts more than %Jr € of the expected welfare. We derive from p a §-1C
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contract p’ for the (2, ¢, €?)-gap setting where § < €2, which extracts more than % +e€
of the expected welfare. This is a contradiction of the properties of the gap setting
(Definition 4.6).

It remains to specify and analyze contract p’ : For brevity we denote the singleton
containing the gap item by M’ and define

1 -8«

(4.2) P8 = —m

> p(Sus) vs'cM,
SCim]

where S’ is either the singleton containing the gap item or the empty set. The starting
point of the analysis is the observation that to extract > % + € of the expected welfare
in the product setting, contract p must A-incentivize the last action (this follows
since the expected rewards and costs of the actions are as in the gap setting by
Observation 4.13, and so the same argument as in the proof of Proposition 4.8 holds).

Claim 4.16 below establishes that if contract p A-incentivizes the last action in
the product setting, then contract p’ d-incentivizes the last action in the gap setting
for § = %. So indeed

5 8« n A
T 1—-8x 1-8a
< 9a +4A

_ (3a1/2)2 + (2A1/2)2
< (3041/2 —|—2A1/2)2 — 2

using that a, A < (0.05)2 for the first inequality.

Now observe that the expected payoff to the principal from contract p’ that o-
incentivizes the last gap setting action is at least that of contract p that A-incentivizes
the last product setting action: the payments of p’ as defined in (4.2) are the average
payments of p lowered by a factor of (1 — 8¢), and the expected rewards in the two
settings are the same (Observation 4.13). The expected welfares in the two settings
are also equal (Corollary 4.14). We conclude that, like contract p in the product
setting, contract p’ guarantees extraction of > % + € of the expected welfare in the
gap setting. This leads to a contradiction and completes the proof of Proposition 4.15
(up to Claim 4.16 proved below). O

The next claim is formulated in general terms so that it can also be used in section
4.4. Tt references the contract p’ defined in (4.2).

CLAIM 4.16. Assume every assignment to the MAX-3SAT instance @ satisfies at
most 7/8 + a of its clauses where o < %, and consider the product and gap settings
returned by the reduction in Algorithm 4.2 (resp., Algorithm 4.3). If in the product
setting the last action is A-incentivized by contract p, then in the gap setting the last

action is §-incentivized by contract p' for § = 8L

Proof. Let g; denote the distribution of action a; in the gap setting, and let ¢ be

the number of actions in this setting. In the product setting, by construction its last
action assigns probability gCQ(;S ) to every set S U S’ such that S contains SAT items
and S’ C M’. Thus the expected payment for the last action given contract p is

(43) > 0 sus) = L S s,

SC[m] 8’CM’ S'CM/

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/23/21 to 128.59.11.34 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

THE COMPLEXITY OF CONTRACTS 231

where the equality follows from the definition of p’ in (4.2). Note that the resulting
expression in (4.3) is precisely the expected payment for the last action in the gap
setting given contract p’, multiplied by factor 1/(1 — 8«).

Similarly, for every 7 € c consider the average action over the ith block of n actions
in the product setting.'® Again by construction, the probability this ith average action
assigns to S U S’ is > M}f&"), where we use that the average action of the SAT
setting has probability > 1;7%0‘ for S (Definition 4.11). Thus the expected payment
for the ith average action given contract p is at least

wy Y > NI 60 = Y aews)  vield

SC[m] S’CM’ S'CM’

where again the equality follows from (4.2). Note that the resulting expression in (4.4)
is precisely the expected payment for action a; in the gap setting given contract p’.

We now use the assumption that in the product setting, contract p A-incentivizes
the last action. This means the agent A-prefers the last action to the ith average
action, which has cost zero. Combining (4.3) and (4.4), we get

1+A

(4.5) 1~ %0

D 9SS —C= > g(SW(S) Vi € [d,

S'CM’ S'CM’

where C denotes the cost of the last action in the product and gap settings. By
definition of 6-IC, inequality (4.5) immediately implies that in the gap setting, the
last action is 6-IC given contract p’ where § = %afsﬁ, thus completing the proof of
Claim 4.16. |

We can now use Proposition 4.15 to prove Theorem 4.4.

Proof of Theorem 4.4. Recall that % is a constant < (0.05)2. Assume
a polynomial-time algorithm for determining whether a principal-agent setting has a
(fully IC) contract that extracts the full expected welfare, or whether no A-IC contract
can extract more than % + ¢e. Then given a MAX-3SAT instance ¢ for which either

_oAl/2y2
there is a satisfying assignment or every assignment satisfies at most %—l— % of

the clauses, by Proposition 4.15 the product setting (constructed in polynomial time)
either has a full-welfare extracting contract or has no A-IC contract that can extract
more than % + €. Since the algorithm can distinguish between these two cases, it

can solve the MAX-3SAT instance . But by [33] and since % is a constant,

we know that there is no polynomial-time algorithm for solving such MAX-3SAT
instances unless P = NP. This completes the proof of Theorem 4.4. 0

4.4. The general case: Proof of Theorem 4.1. In this section we formulate
and analyze the guarantees of the reduction in Algorithm 4.3.

PROPOSITION 4.17 (gap preservation by Algorithm 4.3). Let ¢ € Z,c > 3. Let ¢
be a MAX-3SAT instance for which either there is a satisfying assignment or every
assignment satisfies at most 7/8 + « of the clauses for a < (0.05)°. Let A < (0.05)°.
Consider the product setting resulting from the reduction in Algorithm 4.3 run on
input @, c,e = 3a/¢ 4+ 2A ¢ < %. Then the following hold:

1. If ¢ has a satisfying assignment, the product setting has an IC contract that
extracts full expected welfare.

13If ¢ = 2, there is a single such block.
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Algorithm 4.3 Generalized polytime reduction from MAX-3SAT to principal-agent.

Input : A MAX-3SAT instance ¢ with n clauses and m variables; parameters ¢ €
R>o and ¢ € Z~(, where ¢ > 3.
Output: A principal-agent product setting combining copies of a SAT setting and a
gap setting.
begin
Combine multiple copies of the SAT setting corresponding to ¢ (attainable in
polytime by Proposition 4.12) with a poly-sized (c, ¢, €)-gap setting (exists by
Proposition 4.9) to get the product setting, as follows:

e The product setting has cn + 1 actions and m + 1 items: m “SAT items”
correspond to the SAT setting items, and the last “gap item” corresponds
to the gap setting item.

e For every ¢ € [¢], consider the ith block of n rows of the product setting’s
(ecn+ 1) x (m + 1) matrix of probabilities. The ith block consists of row
(¢—1)-n+1 torow i-n and forms a submatrix of size n x (m+1). The
first m columns of the submatrix are set to a copy of the SAT setting’s
n X m matrix of probabilities, and the entire last column is set to the
probability that action a; in the gap setting results in the item. Finally,
the first m entries of the last row of the product setting’s matrix (i.e.,

row cn+ 1) are set to %, and the last entry (the lower-right corner of the
matrix) is set to the probability that the last action in the gap setting
results in the item.

e In the product setting, the rewards for the m SAT items are set to 0,
and the reward for the gap item is set as in the gap setting.

e For every i € [c], the costs of the n actions in block ¢ are the cost of
action a; in the gap setting; the cost of the last action in the product
setting is the cost of the last action in the gap setting.

end

2. If every assignment to ¢ satisfies at most 7/8 + a of the clauses, the optimal
A-IC contract can extract no more than % + € of the expected welfare.

Proof. First, if ¢ has a satisfying assignment, then there is a subset of SAT items
that has zero probability according to every one of the actions in the product setting
except for the last action, and so we can construct a full-welfare extracting contract as
in the proof of Proposition 4.15. From now on consider the case that every assignment
to ¢ satisfies at most 7/8 4+ « of the clauses, and assume for contradiction there is a
A-IC contract p for the product setting that extracts more than % + € of the expected
welfare.

Consider the case that p A-incentivizes the last action in the product setting.
Then we can derive from it a §-IC contract p’ for the (¢, €, €©)-gap setting where ¢ < €°,
which extracts more than % + € of the expected welfare. This is a contradiction of the
properties of the gap setting (Definition 4.6). The construction of p’ and its analysis
are as in the proof of Proposition 4.15 (where (4.2) defines p’), and so are omitted
here except for the following verification: we must verify that indeed ¢ < €°. We know
from Claim 4.16 that § = 825 As in the proof of Proposition 4.15 this is < 9a+4A,

1—8a
and it is not hard to see that

9o + 4A < (3a/€)° + (2AY/9)¢ < (3al/¢ + 2A1/¢)e = ¢,

where the first inequality uses that ¢ > 3.
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In the remaining case, p A-incentivizes an action a;« in the product setting which
is the kth action in block ¢* € [¢] (recall that each block has n actions). We derive
from p a contract pj, (depending on k) for the gap setting that A-incentivizes a;- at
the same expected payment. As in the proof of Proposition 4.17, this means that pj,
extracts > % + € of the expected welfare in the gap setting. Since A < § = % it
follows from the argument above that A < €, and so we have reached a contradiction
to the properties of the gap setting (Definition 4.6).

We define pj; as follows: Let s; denote the distribution of action aj in the SAT

setting. For every subset S’ C M’ of gap items,

(4.6) pR(S) = D p(SUS)sk(S) VS C M,
sCm]

where S’ is either the singleton containing the gap item or the empty set.

For the analysis, let g; denote the distribution of action a; in the gap setting. In
the product setting, for every i € [¢],k < n the expected payment for action a;; by
contract p is

(4.7) YooY sS)aSHwsus).

Se[m] S'CM’

In the gap setting, the expected payment for a; by contract pj, is > ¢, 9:(S)P'(S7),
and by definition of p in (4.6) this coincides with the expected payment in (4.7). We
know that contract p A-incentivizes a;~j in the product setting, in particular against
any action a;; where i € [c] \ {i*} (i.e., against actions in the same position k but in
different blocks). This implies that contract pj, A-incentivizes a;+ in the gap setting
against any action a,;, completing the proof. 0

We can now use Proposition 4.17 to prove Theorem 4.1. The proof is identical to
that of Theorem 4.4 and so is omitted here.

5. Approximation guarantees. In this section we show that for any constant
0 there is a simple, namely, linear, §-IC contract that extracts as expected payoff for
the principal a cs-fraction of the optimal welfare, where c; is a constant that depends
only on §. Recall that a linear contract is defined by a parameter « € [0, 1] and pays
the agent pg = « ZjeS r; for every outcome S C M.

THEOREM b5.1. Consider a principal-agent setting with n actions. For everyd > 0
let ¢s = max,c(,1)(1 — 'y)(floglw(%ﬂ +1)~L. Then there is a §-IC linear contract
with expected payoff ALG, where

ALG > cs - r_n:[a>]<{Ri — ¢}
1e|n

An immediate corollary of Theorem 5.1 is that we can compute a 0-IC linear
contract that achieves a constant-factor approximation in polynomial time. By Corol-
lary 4.2 we cannot achieve a similar result for IC (rather than §-IC) contracts unless
P = NP. In fact, an even stronger lower bound holds for the class of exactly IC
linear (or, more generally, separable) contracts. These contracts cannot achieve an
approximation ratio better than n (see [23] and Appendix H for details).

5.1. Geometric understanding of linear contracts. To prove Theorem 5.1
we will rely on the following geometric understanding of linear contracts developed in
[23]. Fix a principal-agent setting. For a linear contract with parameter « € [0, 1] and
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OéRi — C;
r Rz —c3
r Ry —co
r Ry —c
-1 —_— ' «
ag ag
—co 1

Fic. 2. Upper envelope diagram for linear contracts.

an action a;, the expected reward R; = )¢ q; s7s is split between the principal and
the agent, leaving the principal with (1 — «)R; in expected utility and the agent with
aR; — ¢; (the sum of the players’ expected utilities is action a;’s expected welfare).
The agent’s expected utility for choosing action a; as a function of a is thus a line
from —¢; (for o = 0) to R; — ¢; (for @« = 1). Drawing these lines for each of the n
actions, we trace the maximum the agent’s utility for his best action as « goes from
0 to 1. This gives us the upper envelope diagram for linear contracts in the given
principal-agent setting.

Figure 2 illustrates the construction and enables a few key observations that hold
in general. A first observation is that only actions that appear on the upper envelope
can be incentivized, and for each action that can be incentivized the smallest o for
which this action is part of the upper envelope is the one that yields the highest
expected payoff for the principal. Moreover, if we index actions from left to right as
they appear on the upper envelope, then they will be sorted by increasing welfare
R; — ¢;, increasing expected reward R;, and increasing cost ¢; as these correspond to
the intercept of aR; — ¢; with the y-axis at a = 1, the slope of aR; — ¢;, and the
intercept of aR; — ¢; with the y-axis at a = 0.

In the remainder of this section, we will use Iy for the subset of N < n actions
that are implementable by some linear contract, and we will index them in the order
in which they appear on the upper envelope. Note that then ¢ < ¢’ implies that
¢i < ¢y, Ry < Ry, and R; — ¢; < Ry — ¢yr. Moreover, max;{R; — ¢;} = Ry — ¢, as
the action with the highest welfare must appear on the upper envelope.

For every action a; € Iy, we denote by «; the smallest parameter « of a linear
contract that incentivizes a;. Note that because of our assumption that the minimum
cost of any action is 0, we have that a; = 0.

5.2. Bucketing construction. Our proof of Theorem 5.1 relies on a bucket-
ing construction that is parametrized by 6 > 0 and v € (0,1). We describe this
construction below and visualize it in Figure 3.

For a fixed ¢ > 0 and fixed 7 € (0, 1) we subdivide the range [0, 1] of a-parameters
intok+1= f10g1+6(%)] + 1 buckets as follows:

By = [0,7(1 +6)%),
B =[(146)" % 4(1+6)"") for k € {2,...,K},
Beor = (148 1]

For each bucket By, with k € [k + 1] we now specify an action ay). If bucket By,
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B1 | Bg | Bg OéRi — C;
I | Oh(3) = a4
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| Gn(2) = a2 |
1 1
: 1
an) =az I
1
. I
1 1
' «
(1) ! '
n(0), (1) On(1),h(2) n(2),(3)

Fic. 3. Bucketing construction.

has a single action a; that is implementable with an o € By, then we let ap ) = as.
Otherwise, if bucket By has more than one action a; that is implementable with an
a € By, then we let ay1) be the action a; with the highest expected reward that is
implementable with an « € By.

Next for each bucket By and associated action aj ) we define a value of o, which
we will denote by apk—1),nk)- For k = 1 we set ap—1)nk) = 0. For k > 2 we
distinguish between the case where B} has exactly one implementable action, and the
case where it has more than one. If it has exactly one implementable action, we set
Uh(e—1),h(k) = V(1 + 8)k=2 i.e., we define Qp(k—1),h(k) to be the left endpoint of By.
Note that in this case h(k) = h(k — 1), and so

Rik) — chk) = Bak—1) — Ch(k—1)-

Otherwise, if By has more than one implementable action, then we have h(k) >
h(k —1) and therefore also R,y > Rp—1), and we set

Ch(k) — Ch(k—1)

Qe = ,
h(k—1),h(k) iy — R

i.e., in this case aj(k—1),n(k) is the o that makes the agent indifferent between actions
ah(k_l) and ah(k).

5.3. Upper bound on the optimal welfare. The first key ingredient in our
proof of Theorem 5.1 will be the following upper bound on the optimal welfare
max;e(,) (R; —¢;) = Ry —cn in terms of the parameters of the bucketing construction
in section 5.2 for any 6 > 0 and v € (0,1).

LEMMA 5.2. Fiz 6 > 0 and v € (0,1) and consider the bucketing construction
from section 5.2. Then

k41
?61%(31 —c¢) =Ry —cn < Z(l — QU (k=1),h (k) ) Rh(r)-
k=1

To prove Lemma 5.2 we rely on the following observation from [23].
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OBSERVATION 5.3. Consider two actions a;,a; such that a; has higher erpected
reward and higher welfare than a;, i.e., R; > Ry and R; — ¢; > Ry — ¢, and let
Qg j = (Ci - CZ/)/(Rl - Rz’) Then

(Ri —¢i) = (Rir —ci) < (1 — iy 5) Ry

Proof of Lemma 5.2. We argue by induction that for all k > 1, Ry — cpp) <
Zle(l ap(i—1),h(i)) Bui)- For k =1, recall that ay,g) 1) = 0 by definition, and it
trivially holds that Rh(l) — ¢cp(1) < Rp(1)- Now assume that the inequality holds for
k—1,ie.,

k-
(5.1) Ryk-1) = ehr—1) < Z (1 = angi—1),n(:)) Bh(i)-

If By, is a bucket that contains only one implementable action, then h(k) = h(k—1)
and thus (Rh(k) — Ch(k)) — (Rh(kfl) — Ch(k—l)) = 0. So, in particular, (Rh(k) — Ch(k:)) —
(Ruk—1) = cnrk—1)) < (1 = Qpr—1),n(k)) Br(r)-

Otherwise, if By is a bucket that contains more than one implementable action,
then h(/ﬂ) > h(k — ].) and thus Rh(k) > Rh(k—l) and Rh(k) — Ch(k) > Rh(k—l) — Ch(k—1)-
So we can apply Observation 5.3 to actions ap(x) and aj(x—1). This shows (Rh(k) -
chky) = (Rhe—1) = Chih—1)) < (1 = Qpe—1),n0k)) Ru(r)-

We conclude that in both cases (Ruk) — chk)) — (Brk—1) — Chh—1)) < (1 —
Qh(k—1),h(k)) Ru(k)- Adding this inequality to inequality (5.1), we obtain

k
Ryry — chry < Z 1 — ani—1),h()) Bh(iys

as claimed. ]

5.4. Approximate implementability. The second crucial observation con-
cerning the bucketing construction in section 5.2 for any fixed § > 0 and v € (0,1)
concerns the (approximate) implementability of the actions aj ) for k € [x 4 1].

For k = 1, action ay(q) is incentivized exactly at a;. For k > 2 and buckets By
that contain only one implementable action, action ap) is incentivized exactly at
Qp(k—1),h(k)- For k > 2 and buckets By that contain more than one implementable
action, action (k) is not incentivized exactly at ap—1),n(k), but—as the following
lemma shows—it is d-incentivized.

LEMMA 5.4. Fiz § > 0 and v € (0,1) and consider the bucketing construction
from section 5.2. For any k € {2,...,k + 1} such that By contains more than one
implementable action, the linear contract with o = apx—1)n(k) ensures that

aRpy — chpy +0 > aR; —¢; for every i € [n].

Proof. The lines Ry, ) — cpk) and Rp(x—1) — chx—1) intersect at app—1y,n(k). By
construction, their intersection must fall between, on the one hand, the left endpoint
(1 + §)%=2 of the bucket in which apky falls, and apx) on the other hand. This
shows that (1 + &)ak—1)nk) = (14 8)y(1+ 82 = 4(1 =8 ! > app). Com-
bining this with the fact that aj () is incentivized exactly at aj ), we obtain that
U (k—1),h(k) Brk) = Ch(r) +0 = (L4 0)ank—1),nk) Brik) = Chik) = Qi) Rur) = Chir) =
apryRi — c; for all i € [n], where the first inequality holds since Ry, ) < 1 by normal-
ization. 0
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5.5. Proof of the approximation guarantee. We are now ready to prove
Theorem 5.1. We will use the bucketing construction from section 5.2, and we will
use Lemma 5.2 to derive an upper bound on the optimal welfare and Lemma 5.4 to
derive a lower bound on what a §-IC linear contract can achieve.

Proof of Theorem 5.1. Fix some § > 0 and some v € (0,1), and consider the
bucketing construction from section 5.2 for these parameters. Write ALG for the
payoff achievable with a 0-IC linear contract, and OPT for the maximum welfare of
any action. For the linear contract we consider choosing the best o among ay,(1y and
Qh(k—1),h(k) for k > 2. We then have

ALG > max{(1 — ap)) Ru1), (1 — any,ne@) ) Ba@ys - - (1= Q) hnt 1) Bh(et1) b
> (1 =) max{(1 — an),n1)) Bra), (1 = an),ne) Rue)
ooy (T = i) h(st1) ) Bu(et1) }
k+1

Z(l — Qpk—1),m(k)) Bh(k)

i=1

>(1=7)

k+1
1
> (1—7)m0PT’

where for the first inequality we use Lemma 5.4, for the second inequality we use
that ap1) < v and that ap(g),n1) = 0, for the third inequality we lower bound the
maximum with the average, and for the final inequality we use Lemma 5.2.

The proof is completed by observing that for a fixed § > 0 the above argument
applies for all v € (0,1). We can thus conclude that

1
ALG > max (1 —

- orT
8T Mo + 1

as claimed. 0

6. Black-box model. We conclude by considering a black-box model which con-
cerns nonnecessarily succinct principal-agent settings. In this model, the principal
knows the set of actions A,,, the cost ¢; of each action a; € A, the set of items M,
and the rewards r; for each item j € M, but does not know the probabilities ¢; s
that action a; assigns to outcome S C M. Instead, the principal has query access to
the distributions {g;}. Upon querying distribution ¢; of action a;, a (random) set is
returned where S is selected with probability ¢; 5. Our goal is to study how well a
0-IC contract in this model can approximate the optimal IC contract if limited to a
polynomial number of queries (where the guarantees should hold with high probability
over the random samples). Black-box models have been studied in other algorithmic
game theory contexts such as signaling—see [22] for a successful example.

Let n = min{g; s | 7 € [n],S € M, ¢; s # 0} be the minimum nonzero probability
of any set of items under any of the actions. Note that then either ¢; s =0or ¢;.5 > 7
for every S. In section 6.1 we address the case in which 7 is inverse superpolynomial
and obtain a negative result; in section 6.2 we show a positive result for the case of
inverse polynomial 7.

6.1. Inverse superpolynomial probabilities. We show a negative result for
the case where the minimum probability 7 is inverse superpolynomial by proving that
poly(1/,/n) samples are required to obtain a constant factor multiplicative approxi-
mation better than = 1.15. The negative result holds even for succinct settings, in
which the unknown distributions are product distributions.
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The basic idea is to construct two nearby instances, which, with high probability,
cannot be distinguished with polynomially many samples, and for which no single
contract can simultaneously be good for both settings.

THEOREM 6.1. Assume n < ng = 1/625 and 6 < dp = 1/100. Even with n = 2
actions and m = 2 items, achieving a multiplicative < 1.15 approximation to the
optimal IC contract through a §-IC' contract, where the approximation guarantee is
required to hold with probability at least 1 —-y, may require at least s > —log(vy)/(9y/n)
queries.

Proof. We consider a scenario with two settings, both of which have n = 2 actions
and m = 2 items, and which differ only in the probabilities of the items given the

second action. Let 7 be some constant > 2 (to be fixed later), and let p = @ Let
B =(1+ )" and note that 8 < 1.

= % T2 = Tgﬂ
Setting I: aj T T c1=0
as : 21 i co = %ﬁ
r = % To = %
Setting II:  q, : T T c1=0
as : 7 u | = T5 06

Note further that the minimum probability of any set of items in both settings is
q2,{1,2) = 7212 = 1, as required by definition of 7.

The expected reward achieved by the two actions in the two settings is Ry =
28/7 <1 and Ry = (1+ 1/7%)3 = 1. Moreover, the cost of action 2 is co < B/72. So
the welfare achieved by the two actions is Ry — ¢; < 8 and Ry — ¢ > .

In both settings the optimal IC contract incentivizes action 2 by paying only for
the set of items that maximizes the likelihood ratio. In Setting 1 this is {1}, in Setting
2 it is {2}. The payment for this set in both cases is co/(T2u(1 — p) — Tp(1 — 7)) =
c2/ (72 —7u). This leads to an expected payment of 72u(1—pu)-co/(T?u—71p) = 8/72.
The resulting payoff (and our benchmark) is therefore Ry — 3/7% = 3.

We now argue that if we cannot distinguish between the two settings, then we
can only achieve a ~ 1.1568 approximation. Of course, we can always pay nothing
and incentivize action 1, but this only yields a payoff of 28/7. We can also try to
d-incentivize action 2 in both settings by paying for outcome {1} and {2}. But (as we
show below) the payoff that we can achieve this way is (for § — 0 and g — 0) at most
1+1/72 = (72 +1)/((1 = 1)73))B. Now max{2/7,1+1/72 — (72 +1)/((r — 1)73)} is
minimized at 7 = 14 /2, where it is 2/(1 + v/2) ~ 0.8284. The upper bound on the
payoff from action 2 for this choice of 7 is actually increasing in both p and § and equal
to ~ 0.8644 -  at the upper bounds po = 1/70/(2%) = 1/100 and Jo = 1/100, implying
that the best we can achieve without knowing the setting is a &~ 1/0.8644 ~ 1.1568
approximation.

So if we want to achieve at least a < 1.15 approximation with probability at least
1 — =, then we need to be able to distinguish between the two settings with at least
this probability. A necessary condition for being able to distinguish between the two
settings is that we see at least some item in one of our queries to action 2. So,

L—y<1-(1-72p)%,
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which implies that s > log(7)/(2log(1—72p)) > —log(7)/(2-p-72) > —log(v)/(18k).
Plugging in 41 we get s > —log(y)/(18%2) > —log(y)/(9y/f).

We still need to prove our claims regarding the payoff that we can achieve if we
want to d-incentivize action 2 in both settings. To this end consider the IC constraints
for d-incentivizing action 2 over action 1 in Setting I and Setting II, respectively:

T2l = wpay + (1= T ) ppgz) — c2
> 7l = Tp)pgay + (L= 7)7ppi2y — 6,

(1= wuppy + 7°p(1 = wpgay — ¢
2 (1 — Tp)ppay + (1 — 7p)Tppi2y — 6.
Adding up these constraints yields

(Tl — p) + (1 = 72— 21p(1 — 7)) - (p(ay + pyay) > 202 — 26.

We maximize the minimum performance across the two settings by choosing pgy =
py2y- Letting p = pr1y = pyoy, we thus obtain

(T?u(l = )+ (1= p)p = 27p(1 — Tp))p > 3 — 6.
It follows that
Coy — 1
T2+ p— 21
The performance of the optimal contract that d-incentivizes action 2 in both settings
thus achieves an expected payoff of

P

c3— 90 B 72(1—2p) +1
72/¢+u—27p_R2 (1 —1)2 (c2 = 0).

Ry — (p(1 — p) + (1 = 7°p)p)
Plugging in Ry and ¢y and letting § — 0 and g — 0, we obtain the aforementioned
1+1/72 — (12 +1)/((r — 1)73)B. Finally, to see that the expected payoff evaluated
at 7 = 1 4+ v/2 > 2 is increasing in both ¢ and p, observe that the derivative in ¢ is
simply the probability term (72(1—2u) +1)/(7 —1)?, which is positive, and that both
this probability term and the cost ¢y are decreasing in u, implying that as p increases
we subtract less. O

6.2. Inverse polynomial probabilities. We show a positive result for the case
where the minimum probability 7 is inverse polynomial. Namely, let OPT denote the
expected payoff of the optimal IC contract; then with poly(n,m, %, %, %) queries it
is possible to find, with probability at least (1 — ), a 4¢-IC contract with expected
payoff at least OPT — be. The following theorem formally presents this.

THEOREM 6.2. Fiz € > 0, and assume € < 1/2. Fix distributions Q such that
¢i,s > 1 for alli € [n] and S C M. Denote the expected payoff of the optimal IC
contract for distributions Q by OPT. Then there is an algorithm that, with s =
(3 log(i—:))/(nEQ) queries to each action and probability at least 1 — vy, computes a
contract p which (i) is 4e-IC on the actual distributions Q, and (ii) has expected
payoff II on the actual distributions satisfying I > OPT — 5e.

We will show that the optimal 2¢-IC contract for the empirical distributions ob-
tained from s = (3 log(i—:)) /(ne?) queries to each action has the desired properties.*

I Note that this contract can be computed in polynomial time by solving n — 1 LPs similar to the
MIN-PAYMENT LP, with an appropriately relaxed IC constraint, because there will be at most ns
outcomes with a nonzero probability.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/23/21 to 128.59.11.34 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

240 P. DUTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

Our proof goes through a series of technical lemmas (Lemmas 6.3 to 6.7), which we
describe and state below, and whose proofs appear in Appendix I.

The first lemma (Lemma 6.3) establishes that s = (310g(f7—:))/(062) queries to
each action suffice to ensure that with probability at least 1 — « all empirical proba-
bilities are within an error of at most € of the actual probabilities.

LEMMA 6.3. Consider the algorithm that issues s queries to each action i € N,
and sets §; s to be the empirical probability of set S wunder action i. With s =
(3 log(f]—:))/(nez) queries to each action, with probability at least 1 — ~, for all i € [n]
and S C M,

(1-€)gis <dis < (1+e€)qs.

The remaining lemmas (Lemma 6.4 to Lemma 6.7) all operate on the assumption
that the empirical probabilities are close to the actual probabilities.

The first two of these lemmas—Lemmas 6.4 and 6.5—show that IC and §-IC are
approximately preserved when switching from the actual distributions to the empirical
distributions, and vice versa.

We will use Lemma 6.4 to relate the performance of the optimal 2¢-IC contract
for the empirical distributions to that of the optimal IC contract for the actual dis-
tributions. We will use Lemma 6.5 to show that the optimal 2¢-IC contract for the
empirical distributions is 4e-IC under the actual distributions.

LEMMA 6.4. Suppose that (1—€)g; s < §i,s < (1+€)g; s for alli € [n] and S C M.
Consider contract p. If a; is the action that is incentivized by this contract under the
actual probabilities Q, then the payoff of a; under the empirical distributions Q s at
least as high as that of any other action up to an additive term of 2e.

LEMMA 6.5. Suppose that (1—€)¢; s < Gi,s < (1+€)g; s for alli € [n] and S C M.
Consider contract p. If a; is the action that is d-incentivized by this contract under
the empirical probabilities Q, then the payoff of a; under the actual distributions is at
least as high as that of any other action up to an additive term of § + 2e.

The final two lemmas (Lemmas 6.6 and 6.7) relate the payoff of an action on the
actual distributions to that on the empirical distributions, and vice versa.

We will use these lemmas to connect the performance of the two aforementioned
contracts under the empirical and actual distributions.

S C M. If action a; achieves payoff 11 under contract p when evaluated on the
empirical distributions Q, then it achieves payoff I > II — 2e¢ when evaluated on the
actual distributions Q.

LEMMA 6.7. Assume € < 1/2. Suppose that (1 —€)g;,s < Gi,s < (L +€)g; s for all
1 € [n] and S C M. If action a; achieves payoff P under contract p when evaluated
on the actual distributions Q, then it achieves payoff P > P — 3¢ when evaluated on
the empirical distributions Q.

LEMMA 6.6. Suppose that (1 — €)gi.s < Gi.s < (14 €)gi,s for all i € [n] and

We are now ready to prove the theorem.

Proof of Theorem 6.2. Let @ denote the empirical distributions that result from
querying each action s times. By Lemma 6.3, with probability at least 1 — v, the
empirical probabilities obtained in this way will satisty (1 —€)gi.s < Gi.s < (1 +€)gi.s
for all i € [n] and S C M.

Denote the optimal 2¢-IC contract for the empirical distributions Q by 5. We will
use II for the expected payoff that this contract achieves under the empirical distribu-
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tions @, and II for the expected payoff that it achieves under the actual distributions
Q. Likewise, denote by p the optimal IC contract for the actual distributions Q). We
will write P for the expected payoff that it achieves under the actual distributions @,
and P for its expected payoff under the empirical distributions Q.

By Lemma 6.5, contract p which is 2¢-IC on Q is 4¢-IC on Q, as claimed. Fur-
thermore, by Lemma 6.4, contract p which is IC on Q is 2¢-IC on Q. Since p is the
optimal such contract, this implies that II > P. Together with Lemmas 6.6 and 6.7
we thus obtain

HZ].:.[—262P—262P—567

which completes the proof. 0

Appendix A. Tractability of linear and separable contracts. Proposi-
tion A.1 establishes that the problem of finding an optimal IC or §-IC linear, respec-
tively, separable, contract is tractable.

ProOPOSITION A.1. Let 6 > 0. Given a principal-agent setting, an optimal linear
(resp., separable) 0-IC contract can be found in polynomial time.

Proof. The problem of finding an optimal linear (resp., separable) §-IC contract
for incentivizing any action a; can be formulated as a polynomial-sized LP with 1
variable (resp., m variables) representing the contract’s parameter « (resp., the item
payments {p;}), and n — 1 6-IC constraints. d

Appendix B. Intractability of the ellipsoid method. In this appendix we
establish the intractability of the ellipsoid method for MIN-PAYMENT, except for
the special case of n = 2. Recall LP (2.1) for the MIN-PAYMENT problem. Its dual
is as follows, where {\;} are n — 1 nonnegative variables (one for every action other
than 7):

max Z)\ i — Cir)

)
qi’,S
s.t. A | —1< A VS C FE,q. s >0,
(,Z ) ,Z qi,S 4.5
) #i
Ay >0 Vil £, € [n].

Consider applying the ellipsoid method to solve LP (2.1) for action a;. The sepa-
ration oracle problem is as follows: Given an instantiation of the dual variables {\; },
consider the combination distribution ), £i Airqi, which is a convex combination of
the product distributions {g;}. To find a violated constraint of the dual LP we need
to find a set S for which the likelihood ratio between the combination distribution
and the product distribution ¢; is sufficiently small.

Note that a combination distribution is not itself a product distribution.'® There-
fore solving the separation oracle is not easy, and in fact it is an NP-hard problem
even for n = 3, as formalized in Proposition B.1. In the special case of n = 2, the
combination distribution s a product distribution. By taking S to be all items that

15For example, consider a fifty-fifty mix between the following two product distributions over two

items: a point mass on the empty set, and a point mass on the grand bundle. This combination
distribution has probablhty for the empty set and probablllty for the grand bundle and the

item marginals are =. A product distribution with item marginals of 5 has probability 1 4 for every
set.
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are more likely according to ¢; than according to the combination distribution, we
minimize the likelihood ratio and solve the separation oracle. (This is one way to
conclude that OPT-CONTRACT with n = 2 is tractable.)

PROPOSITION B.1. Solving the separation oracle of dual LP (2.2) is NP-hard for
n > 3.

Proof. Rather than prove Proposition B.1 directly, it is enough to point the reader
to Corollary D.2, which establishes the NP-hardness of MIN-PAYMENT. ]

Remark B.2. Proposition B.1 immediately holds for §-IC as well, i.e., for the
separation oracle of dual LP (3.2). This dual corresponds to primal LP (3.4) solving
MIN-PAYMENT for §-IC contracts. This is simply because the separation oracle
problem of dual LP (3.2) is identical to that of dual LP (2.2).

Appendix C. Properties of §-IC contracts. In this appendix we give the
proofs that were omitted from section 2.4.

Proof of Proposition 2.3. Action a; can be J-implemented if and only if LP C.1
has a feasible solution.

(C.1)  min 0
st (1+ 5)< Z Qi,SpS> —Ci > Z qir,sps — cir Vi’ #1i,i" € [n],
SCE SCE

ps >0 VS CFE.

Consider the dual

(C.2) max Z Air(ci — cir)

"
st (14 0)gis » A <Y Aigins VS CE,qis >0,
i i i
A >0 Vil #,i' € [n].

Since ¢; and {g; } are distributions and § > 0, the only feasible solution to the dual
LP (C.2) is Ay = 0 for every ¢’ # i. The dual is feasible and bounded, and hence the
primal must be feasible, completing the proof. 0

Proof of Proposition 2.4. The expected payoff of action a; under the interpolation
contract p’ is

Ri — [(1 = Vo)pi + VOR,] = (1 — V8)(Ri — p).
We will argue that for every action a;; with i’ # 4, either ¢’ is not incentivized by p’
(Case 1) or its expected payoff is sufficiently high (Case 2).
Case 1: Assume R; — (1 + \/g)pZ > Ry — py. We claim that in this case a; is
preferred over a;; under contract p’. Namely,
(1= Vo)pi + VR, — c; = (14 8)pi — ¢ + VO(Ri — (1 + Vo)p)

> pir — cir + VO(Ri — (1+ Vé)p;)

> Dir — Cyr + \/g(Rl/ — p’L’)

= (1 — \/S)pl'/ + \/SRZ/ — Cyr,
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where we used that action a; is d-incentivized under p for the first inequality, and the
second inequality holds by assumption because we are in Case 1.

Case 2: Assume now that R; — (1 + \/g)pz < R;s — p;s. In this case the expected
payoff achieved by action a;s is high. Namely,

Ry — (1= Vo)py — VoRy = (1 — V3)(Ru; — par)
> (1 =V (R — (1+ Vo))
= (1 - VO)(R; —pi) — (1 — V&)V,

where the inequality holds by assumption because we are in Case 2. 0

Proof of Proposition 2.5. Consider the following principal-agent setting parame-
terized by ¢ and € > 0. Let M = ¢/§. There are n = 2 actions and m = 2 items. The
probabilities of the items given the actions is described by the matrix

1 2¢
1 3(M+e)
0 1 ’

where the first column corresponds to item 1 and the second column to item 2. Set
the rewards to be ry = % for item 1 and ro = M + ¢ for item 2 (notice m < 72),
and set the costs to be ¢; =0 and ¢ = M — > 0. Observe that the expected
rewards are R = € and Ry = M +e.

Cramm C.1. OPT =e.

Proof of Claim C.1. The expected payoff from letting the agent chose the zero-
cost action a; is Ry = e. Can we get any better by incentivizing as? The optimal
contract for incentivizing the costly action in a 2-action setting is well understood
(see, e.g., [23]): The only positive payment should be for the single subset of items
maximizing the likelihood that the agent has chosen action as; in our case this is
the subset {2} containing item 2 only. Observe that its probability given action 1 is

(M+e)

m. The 2-action characterization also specifies the payment for this outcome,
setting it at pgy = 02/(1 - 2(M+E ) M. Subtracted from Ry, we get expected
payoff of € from optimally incentivizing as. O

Cramm C.2. Contract p that pays M — § for outcome S = {2} and 0 otherwise
d-incentivizes action as with expected payoff Ry — pa = %e.

Proof of Claim C.2. We show action as is §-IC: The agent’s expected utility from
a1 is P = Eéf’//\‘/[ﬂr 7> and from ay given contract (I+0)pitis (14 )ps —co =

I+ 5 M=% -M+ 2(M+€) = E(zM 9 4 2(M+e) It can be verified that the
former is less than the latter for S . 0

Putting these claims together completes the proof of Proposition 2.5. O

Proof of Lemma 2.6. Fix a principal-agent setting. Let a; be the action that is J-
incentivized by contract p and assume a; is not IR. Observe that the agent’s expected
utility from a; is > —d (otherwise a; would not be 4-IC with respect to aq, which
has expected utility > 0 for the agent). First, if IT > 4, then let p’ be identical to p
except for an additional § payment for every outcome. Contract p’ still /-incentivizes
action a;, but now the agent’s expected utility from a; is > 0, as required. Otherwise
if IT < 6, let p’ be the contract with all-zero payments. The expected payoff to the
principal is zero, which is at most an additive § loss compared to II. 0
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Appendix D. Hardness with a constant number of actions. In this ap-
pendix we show NP-hardness of the two computational problems related to optimal
contracts when the number of actions n is constant. Appendices D.1 and D.2 prove
hardness of -OPT-CONTRACT (Proposition D.1), from which hardness of §-MIN-
PAYMENT follows by the reduction in section 2 (Corollary D.2).

ProposiTION D.1. §-OPT-CONTRACT is NP-hard even for n = 3 actions.
COROLLARY D.2. 6-MIN-PAYMENT 4is NP-hard even for n = 3 actions.

D.1. The computational problem MIN-MAX-PROB. It will be conve-
nient to reduce to §-OPT-CONTRACT from a computational problem we call MIN-
MAX-PROB, which is a variant of MIN-MAX PRODUCT PARTITION [40] and thus
NP-hard.

e Input: A product distribution ¢ over m items such that, for every item j, its
probability g; is equal to ﬁ, where a; is an integer € [3, amax] (108 amax 18
polynomial in m).
e Output: YES if and only if there exists a subset of items S* such that ¢g- =
(A, where A =, /[]; a; and £ =], g;.
We now take a closer look at MIN-MAX-PROB. Denote as = [[;.¢ a;-
OBSERVATION D.3. The probability of subset S is qs = lag.

Proof. For every item j, the probability it is excluded is

1 - aj
aj—|—17aj+1

17(]]':17 :qjaj.

So the probability of the outcome being precisely S is

o= (1) (0 )

JES Jgs

(1) (1)
JES Jgs
(1) (11) -
j=1 ji¢s
as claimed. O

Observation D.3 immediately implies the following.

OBSERVATION D.4. For every subset S, as +ag = ag + ‘(g > 2A, where equality
holds if and only if ag = ag = A. Equivalently, qs + qg > 20 A, where equality holds
if and only if g = qg = LA.

Proof. The inequality in the observation holds by the inequality of arithmetic
and geometric means (AM-GM inequality), which states that for any two nonnegative
numbers w, z, (w + 2)/2 > y/wz. Namely, for z = ag, w = A?/ag, and A = \/zw the
AM-GM inequality states that ag + A%/ag = z +w > 2y/wz = 2\/as - A%2/ag = 24,
as claimed. ]

Observation D.4 shows the connection between MIN-MAX-PROB and the NP-
hard problem MIN-MAX PRODUCT PARTITION: ¢ is a YES instance (there exists
a subset of items S such that ¢g¢ = ¢A) if and only if ag = A.

The following observation will be useful in the reduction to -OPT-CONTRACT.
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OBSERVATION D.5. Let A =1—¢A2™"1; then 0 < A < 1.
Proof. By definition,

oao Vo _IVa+ 1 11
M+ 1 = Tla + 1) Va1 2 S
where the second-to-last inequality follows since a; > 3, and so /a; +1 > 2. We
conclude that £A42™~! < 1, completing the proof. |

D.2. Proof of Proposition D.1. We now use hardness of MIN-MAX-PROB
to establish hardness of -OPT-CONTRACT.

Proof of Proposition D.1. The proof is by reduction from MIN-MAX-PROB, as
follows.

Reduction. Given an instance ¢ of MIN-MAX-PROB, construct a principal-
agent setting with n = 3 actions.
e For action aq, set its product distribution ¢; to be gq.
e For action ag, set its product distribution g2 to be 1 — ¢ (i.e., ¢1,; + g2,; = 1
for every item j).
e For action as, set its product distribution ¢s to be such that ¢s; = 1 (i.e.,
this action’s outcome always includes item 1), and ¢3; = % for every other
item j > 1.
Set costs ¢1, ¢2 to zero and set ¢z to be ¢ = (amax + 1)_1. The only nonzero reward is
r = 1, for item 1; set r to be any number strictly greater than A~1.

Analysis. First notice that the reduction is polynomial in m; in particular, the
number of bits of precision required to describe the probabilities, cost ¢, and reward
r is polynomial.

The analysis will show that the expected payoff the principal can extract by a
0-1C contract if ¢ is a YES instance is strictly larger than if ¢ is a NO instance. We
introduce some notation: Let S* = {S C [m] | 1 € S}, i.e., S is the collection of
all item subsets containing item 1. Given a contract p, let P =) ¢ 1 ps (the total
payment for subsets in S'). Observe that the expected payment to the agent if he
chooses action ag is 2,,,%.

CraM D.6. Action a3 can be weakly d-incentivized with expected payment x (1+6)
if and only if q is a YES instance of MIN-MAX-PROB.

Proof of Claim D.6. Fix a 6-1C contract p that weakly J-incentivizes action as.
By Observation D.3, the agent’s expected utility from action a; is £ ¢ psag and from
action ag is EZS psas. The agent’s expected utility from action az (after boosting

by (1 +6)) is 208
Assume first that ¢ is a NO instance. If p weakly incentivizes action ag, then

P(1+0
;117—1) —c>€-max{ZpSaS,ZpsaS}

s s
g <ZPSGS + ZPS%)

14
= *Zps as + ag) >£AZpS > (AP,
s
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where the second-to-last inequality is by Observation D.4, and is strict by our as-

sumption that ¢ is a NO instance. Rearranging 2(1+5) c> (AP, we get
140 140 PA(1+96
c < %—EAP(l—i—é) %(1—&42’”_1) = %

By Observation D.5 we can divide both sides by A(1 4 §) > 0 to establish zm% >
m, completing the proof of the first direction.

Assume now that ¢ is a YES instance. Then there exists S* such that ag+ =
ag= = A, and without loss of generality S* € S! (otherwise take its complement).

Consider the following contract: Let pgx = and set all other payments to 0.

2m—1
£(1+5)
The expected payment to the agent for action ag is £ = m, as required, and
the agent’s expected utility (after boosting by (1 + §)) is w —c=5—c=
%. Plugging in A = 1 — £A2™~ ! we get that the expected utility from action

az is LA 022_1 = (Apg-. This is equal to the expected utility from action a;, since
0y ¢psag = {ps-age = (Apg- Similarly, the expected utility from action ay is also
(Apg-. We conclude that p weakly d-incentivizes ag, completing the proof of Claim
D.6. d

We now use Claim D.6 to complete the hardness proof by showing that the ex-
pected payoff the principal can extract if ¢ is a YES instance is strictly larger than if
q is a NO instance.

For a YES instance, by Claim D.6 action a3 can be weakly d-incentivized with
expected payment ﬁ. We argue that the values chosen in the reduction for ¢ and r
guarantee that action ag has the (strictly) highest expected payoff for the principal, so
the agent breaks ties in favor of as: Since the only positive reward is r1 = r and since
g3,1 = 1, the expected payoff from a3 is g3,171 — m =r— ﬁ The expected
reward (and thus also payoff) from a; is at most ¢;,171 < 7 (using that a;+1 > 4), and

the expected reward from a9 is at most g2 171 < (1— 1)7‘ Since § < (1— am: +1)r
(using that amax > 3), it suffices to show r — m r—x>1— ;—g)r, or

w. Since the reduction sets ¢ = (amax +1)7! and r > A™L,

simplifying, r» >
the argument is complete.

For a NO instance, by Claim D.6 the expected payoff from ag is strictly lower than
r— m. By the analysis of the YES case we know that the expected rewards from
ay,asy are strictly lower than r — % (and by limited liability the principal’s expected
payoff is bounded by the expected reward). This completes the proof of Proposition

D.1. O

Appendix E. An FPTAS for the separation oracle. In this appendix we
establish the FPTAS for MIN-LR stated in Lemma 3.3. Recall from the discussion
leading to Lemma 3.3 that the separation oracle problem reduces to MIN-LR.

Proof of Lemma 3.3. We adapt an FPTAS of Moran [41] (see also subsequent

papers such as [43]). Let
A =1+l

FPTAS algorithm. The algorithm proceeds in iterations from 0 to m. In
iteration j, the partial solutions in that iteration are subsets of the first j items. For
a partial solution S C {1,...,j}, recall that g¢ s is the marginal probability to draw
S among the first k items if the sample is distributed according to gy.
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The partial solutions in iteration j are partitioned into families Yj1,...,Y; ;.
The partition is such that for every family r € [r;] and partial solutions S, S’ € Y,
for every distribution ¢ € [k] U {3}, the ratio between ¢y s and g¢ g/ is at most A.

In the first iteration j = 0, the only solution is the empty set. The solutions in
iteration j + 1 are generated from the families in iteration j as follows: One arbitrary
partial solution S is chosen from every family Y, to “represent” it, and for each such
S two partial solutions SU{j+ 1} and S are added to the solutions of iteration j+ 1
(i.e., with and without the (j + 1)st item).

The algorithm outputs the minimum objective qi% >k Gk, s among the solutions
S in iteration m. ,

Analysis. We first argue that ALG < (1 + ¢)OPT. Let S* be the optimal
solution, and denote the subset of S* containing only items among the first j by S57.
By induction, in iteration j there is a partial solution SJ’- such that A7 . a5t <
sy < AJ - qqse for every distribution ¢ € [k] U {i}. Denote S = Sj,. Then
ALG < ﬁ Zk aRqr,sr < A2 Qi,ls* Zk Qpqi,s* = (1 + G)OPT.

It remains to show that the FPTAS runs in polynomial time. The running time
is O(Zj r;). In the input distributions {qx}, ¢;, denote the range of every nonzero
probability by [¢min, 1] (¢min can be exponentially small). For every distribution ¢ €
[k] U {i}, the probabilities that are not 0 are at least ¢l7;.. So a partition “in jumps

of A” requires O(t) parts, where ¢ is the smallest integer satisfying ¢, - A* > 1. So

o [m1o8(min) | _ [2m°108(0min) | _ [2m°108(dmin)
B log A | log(14¢€) |~ € ’

where the last inequality uses log(1 + €) > € for € € (0,1]. Since the partition to

r; families maintains “jumps of A” for n distributions, r, = O(t™). We invoke the
assumption that n is constant to complete the analysis and the proof of Lemma 3.3. O

Appendix F. Hardness of MIN-PAYMENT. In this appendix we show the
following counterpart to Corollary 4.2.

ProrosiTioN F.1. For any constant ¢ € R,c > 1, it is NP-hard to approrimate
the minimum expected payment for implementing a given action to within a multi-
plicative factor c.

Proof. The proof is by reduction from MAX-3SAT. Given an instance of MAX-
3SAT, the goal is to determine whether the instance is satisfiable or whether at most
g + € of the clauses can be satisfied, where € is an arbitrarily small constant.

Reduction. Given ¢, we obtain the SAT principal-agent setting corresponding
to ¢ (Proposition 4.12), but we set the reward for every item to be 1 rather than 0.
We add an action a, 41 with cost C and product distribution ¢,1 with probability %
for every item.

Analysis. Asin the analysis in the proof of Proposition 4.15, if ¢ has a satisfying
assignment, then we can implement a,, 11 at cost C. Otherwise recall that by Definition
4.11, the average action over the first n actions leads to every item set S with proba-
bility at least 12_7556. Consider a contract p, and let P =" ¢ ps. The expected utility
of the agent for choosing a,41 is P/2™ —C. Consider again the average action over the
first n actions. The expected payment to the agent for “choosing” this action (i.e.,

the expected payment over the average distribution) is at least 1;-8¢p = L. 8P

1
2’!17. 2m 2771 ?
and there is some action a; (with cost 0) for which the expected payment is as high.
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To incentivize a,4+1 over a; it must hold that 2% —-C > 2% — 826,,{3, ie., 2% > &.

We conclude that if there is no assignment satisfying more than % + € of the clauses,
the expected payment for implementing a,, 1 is % rather than C. Approximating the
expected payment within a multiplicative factor é would thus solve the MAX-3SAT
instance we started with, and we can make € as small a constant as we want. 0

Appendix G. Proofs omitted from section 4. In this appendix we provide
proofs for Propositions 4.8 and 4.9. In particular, we establish the existence of gap
settings for 2 actions (Proposition 4.8) and ¢ actions (Proposition 4.9).

Proof of Proposition 4.8. For the gap setting constructed above with ¢ = 2 actions
and v = ¢, consider a §-IC contract. Since the expected reward of the first action a;
is 1, and the maximum expected welfare is 2 —v > 2 — 11626, if a contract is to extract
W = % + € of the expected welfare, then it must J-incentivize
the last action a. (a limited liability contract cannot extract more than the expected
reward from an agent choosing ai, since ay is zero-cost). Let p be the payment for
the item, and let pg be the payment for the empty set. For any action a;« that the
contract d-incentivizes, the following inequality must hold for every i € [c]:

more than

—i* c—i* 1 - -
(40) (3ot (1= hpo) = g 0= @ - 1

(G.1) > (4 (=)o) — % +i—(i—1)y.

Observe that for the contract to §-incentivize a. at minimum expected payment, it
must hold that po = 0. We can now plug pp = 0 into inequality (G.1) and choose
* =c,i =1* — 1. We get a lower bound on the expected payment for d-incentivizing

ac:
e R
Tl +6-7)
The principal’s expected payoff is thus < % — ’Y((%;gi{) < 1+'712—w’
inequality uses § < f(e) = 2. We get an upper bound of ﬁ on what the best
0-IC contract can extract out of 2 —  for the principal. The ratio is thus at most
% + € (using v < i), and this completes the proof of Proposition 4.8. ]

where the last

Proof of Proposition 4.9. For the gap setting constructed above with ¢ actions
and v = ¢, consider a §-1C contract. As in the proof of Proposition 4.8, this contract
cannot extract more than % + € of the expected welfare by J-incentivizing action aj.
Assume from now on that the contract d-incentivizes action a;+ for ¢* > 2 at minimum
expected payment. As in the proof of Proposition 4.8, inequality (G.1) must hold for
i* and every i € [c].

Assume first that the contract’s payment py for the empty set is zero. (This
assumption is without loss of generality for the case of ¢ = 2 actions, as well as for
¢ > 3 and fully IC optimal contracts by Proposition 6 in [23].) Plugging po = 0
into inequality (G.1) and choosing i = i* — 1, we get a lower bound on the expected
payment for d-incentivizing a;« (in particular making it preferable to a;-_1):

S e e [ )

G.2 Thp>— .
(G2) TS E T s )

oD ; S € e 1€ ) P el € ) R
The principal’s expected payoff is thus < ST TIA40—y) = AT IAye=y) —

where the last inequality uses § < f(e) = v°. Maximizing

- '76 + 1—v
YT Ay —y) ey
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this expression by plugging in i* = ¢, we get an upper bound of on what the

1
Tryes
best 0-IC contract can extract out of ¢ — (¢ — 1)~ for the principal. rl:/he Z"atio can thus
be shown to be at most 1 + ¢, as required (using that ¢ > 3 and v < ; see Claim
G.1).

Now consider the case that pg > 0. We argue that in this case, plugging i =i*—1
into inequality (G.1) gives a lower bound on ~¢~"p that is only higher than that in
inequality (G.2). To see this, consider the contribution of py > 0 to the left-hand side
of inequality (G.1), which is (1 4+ 6)(1 —¢~* )po. Compare this to its contribution
to the right-hand side of inequality (G.1), which is (1 —~y"*)po. For 6 <~¢, v < 3
and i = i* — 1 it holds that (14 6)(1 — ¢ ) <1 — 'yc’i. This completes the proof
of Proposition 4.9 up to Claim G.1. 0

CLAM G.1. For every vy € (0,] and ¢ € Z,c > 3,

1 1
1+v—v c¢c—(c—1)y

Proof. We first establish the claim for ¢ = 3. We need to show ﬁ ﬁ <

% + ')1 Simplifying, we need to show 13y + 6v* < 4492 4 7+3, which holds for every
v <3
We now consider ¢ > 4: It is sufficient to show 1= - 24— < 14~ Multiplying

v c— c'y = ¢
by ¢, we get =z )2 < 1+ ¢v. This holds if and only if ¢ > (1 7)2. The right-hand
side is an increasing functlon in the range 0 < v < 2 , and so we can plug in v = %
and verify. Since ¢ >4 > 28 the proof is complete. ]

Appendix H. Approx1mati0n by separable contracts. In this appendix we
examine the gap between separable and optimal contracts.

Recall that a contract p is separable if there are payments pq,...,p, such that
p(S)=>] jes by for every S C M. By linearity of expectation, the expected payment
for action a; given a separable contract p is > ; 4i,iPj-

As we have shown in Proposition A.1 the optimal separable contract can be
computed in polynomial time via linear programming. Thus we know that separable
(and other simple computationally tractable) contracts cannot achieve a constant
approximation to OPT unless P = NP (Corollary 4.2).

In fact, an even stronger lower bound holds—they cannot achieve an approxima-
tion better than n, unless we relax the IC requirement to §-IC. We provide a proof of
this general lower bound for the case of n = 2.

ProroSITION H.1. For every e > 0 there is a principal-agent instance with n = 2
actions and m = 2 items, in which the best separable contract only provides a 2 — €
approximation to OPT.

Proof. For 6 € (0,1) consider the following n = 2 actions and m = 2 items
instance. The probabilities ¢; ; for the two actions i € {1,2} and items j € {1,2} are

0 1 1
q2=1—- and qi1=z, @2= >

qi1 = 2 5

ia
The rewards r; for the two items j € {1,2} are

1—-(1-2)

ry = 3 2 and 79 = 6.
2
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The resulting expected rewards R; for the two actions i € {1,2} are

§1—(1-2%) 5
RlQ1,1T1+Q1,27"2(62)+<12)51 and

2 3
11-(1=-%) 1. 1
RQ:(J2,17”1+Q2,27”2:§¥+55:g*1+5,
2

so that Ry > 1 for all § € (0,1) and Ry — oo as § — 0. The costs ¢; for the two
actions i € {1,2} are

01:0 and 02:(1—6)(R2—R1):(1—5)((];—2—%(5)

Note that on this instance
Rl—Clzl and R2—02:2—25+52.

We claim the following: (1) The optimal contract can incentivize action 2 with
an expected payment of co/(1 — §2), so that the expected payoff to the principal is
Ry —c2/(1—=6%)=(1/0—1+6)—(1/6§ —2+3)/(1+ ). (2) The optimal separable
contract can either incentivize action 1 by paying nothing or it can incentivize action
2 by setting p; = 2¢2/(1 — §) and py = 0. Since

1 1 282
Ry — q2,1p1 (5 + 5) 21 =0)

the expected payoff to the principal in both cases is 1.
Using (1) and (2) and setting § = (3 — e — Ve — 10e + 9) we have

OPT_(I )_§—2+5

VY7ci C R A

; =2 —e

It remains to show (1) and (2). For (1) denote the payments in the optimal
contract for outcomes (1,0), (0,1), and (1,1) by p1,p2,p1,2. The optimal contract can
incentivize action 2 via p; > 0 and py = p; 2 = 0 as long as

g21(1 —q22)p1 —c2 > qua(l —qu2)p1
Co 402

= > = .
YT () @i (l—qia) 162

Setting p1 = 4ca/(1—62) leads to an expected payment of g2 1 (1—q22)p1 = c2/(1—62).

For (2) denote the payments of the optimal separable contract by p; and py and
note that the optimal separable contract either has p; > 0 and ps = 0 or has p; =0
and py > 0. In the former case the incentive constraint is

q2,1P1 — C2 = q1,1P1,
and in the latter it is
G2,2P2 — C2 2 q1,2P2.

Note that since g1 =1—0/2 > 1/2 = ¢ 5 it is impossible to incentivize action
2 by having only pa > 0. In the other case, where only p; > 0, the smallest p; that
satisfies the incentive constraint is p1 = c2/(g2,1 — q1,1) = 2¢2/(1 — 9). 1]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/23/21 to 128.59.11.34 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

THE COMPLEXITY OF CONTRACTS 251

Appendix I. Proofs of technical lemmas in section 6. In this appendix we
provide proofs for Lemmas 6.3, 6.4, 6.5, and 6.7.

Proof of Lemma 6.3. Note that with s = (310g(727—:))/(7762) we have y = -
2 exp(—nse?/3). Further note that since g; s > n for all i € [n] and S C M, each action
can assign positive probability to at most 1/7 sets S. Finally, for all ¢ € [n],S C M
such that ¢; ¢ = 0 we have ¢; g = 0. So, by the union bound, it suffices to show that
for each of the at most n/n pairs ¢, S with ¢; s > 0 the probability with which §; s
does not fall into [(1 — €)g; s, (1 + €)g; 5] is at most 2 exp(—nse?/3).

Consider any such pair ¢, 5. Let X; g denote the random variable that counts the
number of times set S was returned in the s queries to action . Then §; s = X; g/s
and E[X] = sg; s. So, using Chernoff’s bound,

Pr(gi,s € [(1 — €)qi,s, (1 + €)q;,s]) = Pr[|X; 5 — E[X; s]| > €]
< 2exp(—nse?/3),

as claimed. O

Proof of Lemma 6.4. Let a; be the action that is incentivized by p under the
actual probabilities @, and let a;; be any other action. Then

Z Gi,spi,s —¢i +2¢> (1 —¢) Z Gi,5Pi,s — C; + 2¢€

SCM SCM
> E qi,sPi,s — Ci T+ €
SCM
> E qi’,spi’,s — Ciy + €
SCM

> (14€) Y gispis — ci
ScM

> E Gi’,SPir,§ — Cits
SCM

where we used the bounds on the probabilities in the first and last steps, and we are
considering normalized settings in the second and fourth steps, and the IC constraint
in the third step. O

Proof of Lemma 6.5. Let a; be the action that is incentivized by p under the
empirical probabilities @), and let a;s be any other action. Then

> Gispis—ci++2>(14+€¢) Y gispis—ci+o+te

SCM SCM
> Y Gispis—citOo+e
ScMm
> Z Qi .8Pir,s — Ci + €
SCM
> (1—€) Y qirspis —ci+e
SCM
2 Z 4i’,sPi’,s — Cit,
SCM
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where we are considering normalized settings in the first and last steps, and used the
bounds on the probabilities in the second and fourth steps, and the §-IC constraint
in the third step. ]

Proof of Lemma 6.6. We have

M=) Gisrs— > Gispis

SCM SCM
<(l1+¢) Z gi,sts — (1 —¢€) Z q3,SDi,S
SCM SCM
<D disTs— Y Gispis +2e
SCM SCM
= II + 2e,

where we used the bounds on the payments in the first step and that we are considering
normalized settings in the second. 0

Proof of Lemma 6.7. We have

P = Z qi,STS — Z qi,SPi,s

SCM SCM
1 _ 1 -
ST Z R Z i,sPi,S
SCM SCM
<1420 > Gisrs —(1—=€) > dispis
SCM SCM
= II 4 3¢,

where we used the bounds on the probability in the first step, and that 1/(1—e) < 142¢
and 1/(14+¢€) >1—e€foralle<1/2. 0
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