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Most results in revenue-maximizing mechanism design hinge on “getting the price right” — offering to sell

a good to bidders at a price low enough to encourage a sale, but high enough to garner non-trivial revenue.

Getting the price right can be hard work, especially when the seller has little or no a priori information

about bidders’ valuations. Moreover, this approach becomes prohibitively challenging when there are multiple

indivisible goods on the market, in which case getting the prices right is a long-standing open problem, even

for matching markets with symmetric bidders (each of whom seeks a single good).

In this paper we apply a robust approach to designing auctions for revenue. Instead of relying on prior

knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competi-

tion for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations

of this idea: first, enhance competition in the market, whether by increasing demand or by limiting supply;

second, run a standard second-price (Vickrey) auction. Enhancing competition is a natural way to bypass

lack of knowledge — a seller who does not know how to set prices can instead set quantities (of bidders

and/or goods on the market). We prove that simultaneously for many valuation distributions, this achieves

expected revenue at least as good as the optimal revenue in the original market or guarantees a constant

approximation to it.

Our robust and simple approach thus provides a handle on the elusive optimal revenue in multi-item

matching markets, and shows when the use of welfare-maximizing Vickrey auctions is justified even if revenue

is a priority. By establishing quantitative trade-offs, our work provides guidelines for a seller in choosing

among alternative revenue-extracting strategies: sophisticated pricing based on market research, advertising

to draw additional bidders, and limiting supply to create scarcity on the market.
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1. Introduction

1.1. The Revenue-Maximization Problem

Consider a set of m indivisible goods for sale, and the problem of matching them to n buyers with

private values, each of whom wants no more than a single good. This problem has been studied

extensively with respect to the goal of maximizing economic efficiency; e.g., this is the topic of the

classic paper on “Multi-Item Auctions” of Demange et al. (1986). In this paper we focus on an

alternative important goal — maximizing the seller’s revenue.

To demonstrate our setting, consider a for-profit travel website selling overnight accommodation

faced with the task of assigning m available rooms to n interested buyers. Each buyer needs a single

room for the night, and has different private values for different rooms based on their location,

size etc. Uncertainty of the seller regarding buyer values is captured by a probabilistic (Bayesian)

model, in which the values for every good j ∈ [m] are assumed to be independent draws from a

distribution Fj (where Fj satisfies a standard regularity condition). The fact that Fj is common to

all buyers makes our model symmetric with respect to buyers (but not with respect to goods). The

seller wishes to maximize its expected revenue by designing a deterministic auction in which no

buyer can do better than to participate and reveal his true values (i.e., dominant strategy truthful).1

When m= 1, that is when there is a single good on the market, Myerson (1981) characterizes

the revenue-optimal truthful auction under the assumption that the distribution F1 from which

values for the good are drawn is fully known to the seller. The optimal auction in this case turns

out to be the well-known second-price auction (Vickrey 1961), with an additional reserve price r

tailored to the distribution F1. The resulting auction is very simple: the bidders report their values

to the seller, the bidder with the highest bid above r wins, and the winner pays the second-highest

bid above r if there is one or r otherwise. Myerson’s characterization of optimal mechanisms also

applies to markets with multiple copies (units) of the single good, where each bidder seeks at most

one copy. More generally, it applies to all single-parameter markets, in which every bidder can

either win or lose and has a single private value for winning.2

Since Myerson’s seminal work there have been efforts to extend it in several directions. A direction

that has attracted much attention is to generalize the optimal auction characterization beyond the

m = 1 case, to multi-parameter markets (e.g., Vincent and Manelli 2007). In particular, there is

no known characterization for the matching markets described above, in which there are multiple

goods and each buyer seeks at most one good. Another important direction that has become known

as “Wilson’s doctrine” is to design alternative, robust auctions for revenue, in the sense that they

do not depend on the seller’s full knowledge of the value distributions (Wilson 1987). A third

direction is inspired by the simplicity of Myerson’s auction — a second-price auction with reserve
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— and aims to design similarly simple auctions for revenue in more general settings (e.g., Hartline

and Roughgarden 2009).

In this paper we contribute to all three goals above by applying a robust approach to revenue

maximization. We develop a framework for designing mechanisms that are robust, simple, and

guaranteed to work well for a variety of market environments including matching markets. Our

mechanisms are based on the natural idea of enhancing bidder competition3 for the goods, either by

adding competing bidders in the manner of Bulow and Klemperer (1996) or by artificially limiting

the supply, and then running a variant of the Vickrey auction. Despite avoiding any reference to the

value distributions, the expected revenue achieved by these mechanisms exceeds or approximates

the expected revenue of the optimal mechanisms tailored to the distributions. Besides leading to

good mechanisms, our approach sheds light on trade-offs among possible seller strategies, including

how many more buyers are needed, or how many units of a good to produce relative to the market

size, in order to replace the need to rigorously learn the preferences of existing buyers.

We now demonstrate our approach via a simple motivating example. Our treatment of robustness

in the remainder of this introduction is intuitive; for a formal discussion of how we define robustness

and a comparison to other robustness notions see Section 2.

1.2. Motivating Example: Multi-Unit Markets

As a simple motivating example we consider symmetric multi-unit markets (Example 1), and in

particular a special case in Example 2 and a generalization in Example 3.

Example 1 (Multi-unit). There are k identical copies, or units, of a single good for sale, and

n ≥ k bidders who each want at most one unit. The bidders’ values for a unit are i.i.d. samples

from the value distribution.

For a survey on multi-unit auctions see Nisan (2014).4 For example, the units can be identical

rooms at a large hotel. Another example is copies of a digital good such as an e-book, in which

case there is no limit on the number of copies that can be made.

Example 2 (Digital goods). A multi-unit market with k = n units, where n is the number of

bidders.

We also consider a generalization in which there are feasibility constraints, i.e., not all sets of

bidders can feasibly be allocated units, even if they include less bidders than the number of available

units. The next example demonstrates the kind of feasibility constraints we consider (additional

such matroid constraints appear in Bikhchandani et al. 2011):
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Example 3 (Job Scheduling). A multi-unit market where the units are slots for running jobs

on a machine, and a subset of bidders is feasible if each bidder’s job can be matched to a slot

between its arrival time and deadline.

Technically, a multi-unit market with no constraints can be thought of as finding a matching

of bidders to units in a complete bipartite graph, while in the job scheduling example the corre-

sponding bipartite graph has some suitable structure.

Our Approach We present two approaches to robust revenue maximization in the above

examples: augmenting demand and limiting supply. Both approaches are inspired by common

business practices — augmenting demand corresponds to advertising the auction and drawing

more participants, and limiting supply corresponds to practices like “limited editions”, limited runs

of artwork, or artificial scarcity (for an example of this phenomenon in the diamond market see

McEachern 2012, other examples include scarcity of newly-launched technology products etc.). On

a theoretical level, both approaches rethink the standard definition of an auction environment, in

which the demand and supply are considered exogenous, treating these instead as an endogenous

part of the mechanism design problem.

Augmenting Demand in Multi-Unit Markets A well-known result states the following:

Theorem 1 (Bulow and Klemperer (1996)). When selling a single good to bidders whose val-

ues are i.i.d. draws from a distribution satisfying regularity, the expected revenue of the revenue-

optimal mechanism with n bidders is at most that of the Vickrey auction with n+ 1 bidders.

In other words, when the demand is augmented by adding a single additional bidder competing

for the good, the simple Vickrey auction achieves at least the maximum revenue possible with the

original demand. This is despite being oblivious to the value distribution, whereas the optimal

Myerson mechanism for n bidders depends on this knowledge to set the reserve price.

We remark that the regularity constraint on the distribution is standard; for a bidder whose value

is drawn from the distribution, regularity means that the revenue curve describing the trade-off

between selling to the bidder often at a low price and selling less often at a higher price is concave.

This is satisfied by all common distributions (uniform, normal, power-law, etc.), and without it no

result along the lines of Theorem 1 is possible — see Section 3 for details.

The Bulow and Klemperer theorem generalizes to the multi-unit setting in Example 1: When

there are k units of the good, the expected revenue of the revenue-optimal mechanism with n

bidders is at most that of the Vickrey auction with n+ k bidders (Bulow and Klemperer 1996). It

also applies to constrained settings such as the job scheduling example (Example 3): When the best

schedule is able to match ρ≤ k bidders to the k slots without violating an arrival time/deadline,
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the expected revenue of the revenue-optimal mechanism with n bidders is at most that of the

Vickrey auction with n+ρ bidders, where the ρ additional bidders can be scheduled simultaneously

(Dughmi et al. 2012).

In general, a Bulow-Klemperer-type theorem states that instead of running the optimal mecha-

nism on the original auction environment, we can get as much revenue in expectation by running a

variant of the Vickrey auction on an environment suitably augmented with additional bidders. This

can be seen as a theoretical justification to treat bidder participation in auctions as a first-order

concern when aiming for revenue, perhaps even at the expense of sophisticated pricing.

Limiting Supply in Multi-Unit Markets The flip side of increasing demand is limiting

supply.

Mechanism 1 Supply-Limiting Mechanism

1. Set a supply limit `= n/2 equal to half the number of bidders.

2. Run the Vickrey auction subject to supply limit `.

Mechanism 1 is a supply-limiting mechanism for digital goods (Example 2). In the second step

of the algorithm, the Vickrey auction subject to supply limit ` is a simple variation on the standard

second-price auction: it assigns copies to the ` buyers with highest bids (even though there are

enough copies for all buyers), and charges them each the (` + 1)th highest bid. The resulting

mechanism is simple and natural, and does not rely on knowledge of value distributions.

Intuitively, enhancing competition by limiting the supply has a similar effect on revenue as

enhancing competition by adding bidders in Bulow-Klemperer-type theorems. The difference

between the two approaches is that the former requires augmenting the resources — in this case

bidders — available to the auction, while the latter requires the ability to withhold supply (many

sellers, e.g. companies like Apple Inc., have the ability to do both). This difference translates

into different revenue guarantees: while in Bulow-Klemperer-type theorems the expected revenue

of the augmented Vickrey auction usually exceeds that of the optimal mechanism, the expected

revenue of the supply-limiting mechanism approximates that of the optimal mechanism. In par-

ticular, the supply-limiting mechanism achieves at least half of the optimal revenue in expectation,

despite remaining oblivious to the value distribution on which the optimal mechanism depends.

The performance guarantee for Mechanism 1 can be seen as justification to the following “rule

of thumb” for sellers: assuming no production costs and buyers whose values are distributed simi-

larly, produce a number of units equal to a constant fraction of the market size. I.e., when sellers

lack the necessary information to set prices, they can set quantities instead, and this works well

simultaneously for many value distributions.
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The Connection between Augmenting Demand and Limiting Supply Our technical

approach to establishing approximation guarantees of supply-limiting mechanisms utilizes the intu-

ition above, by which limiting supply has a similar effect as increasing demand. This intuition is

formulated by basing the proofs of the approximation factors on a reduction among markets, which

enables the application of an appropriate Bulow-Klemperer-type theorem.

Reduction 2 Digital Goods

0. Start with original market with n buyers and n units

Denote the optimal expected revenue by OPT.

1. Restrict to market with n/2 buyers and supply limit n/2

The optimal expected revenue is OPT /2, by subadditivity of revenue in the buyers (Lemma 6

below) and since the supply limit has no effect here.

2. Augment to get market with n buyers and supply limit n/2

The expected revenue of the Vickrey auction is OPT /2, by the Bulow-Klemperer-type theorem

for multi-unit markets applied to the restricted market.

In particular, Reduction 2 shows that Mechanism 1 guarantees half the optimal revenue in

expectation as follows: Starting with the original market, define a new market by dropping half of

the bidders and setting a supply limit of `= n/2. Consider the resulting restricted market with half

of the original bidders and corresponding supply limit. One can show that if we were to restrict

the optimal mechanism to run on this market instead of the original one, its expected revenue

would have been at least half of its original expected revenue. Now conceptually add back the

n/2 removed bidders but without changing the supply to get the augmented market, and run the

Vickrey auction. It follows from the Bulow-Klemperer theorem for multi-unit markets that the

expected revenue is at least as high as the optimal expected revenue for the restricted market.

Therefore the supply-limiting mechanism guarantees at least half of the optimal expected revenue

in the original market.

1.3. Our Contribution

As demonstrated in Section 1.2, our main contribution is in formulating and proving robust revenue

guarantees of competition enhancement in auctions, through increased demand or limited supply,

for a variety of markets, including types of markets where the optimal mechanism remains unknown

(and is presumably very complex). We show that under minimal regularity assumptions, the simple

and robust mechanisms above and their revenue guarantees — Vickrey with additional bidders and

Vickrey with a supply limit — generalize to significantly more complex settings. In other words, we
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identify markets in which such mechanisms are guaranteed to achieve optimal or approximately-

optimal expected revenue. We remark that by using these mechanisms for revenue, the seller also

guarantees that the welfare is approximately optimal, and in fact one can achieve other trade-offs

between revenue and welfare by setting suitable supply limits.

Our technical contribution is in proving novel Bulow-Klemperer-type theorems for different mar-

kets, and designing supply-limiting mechanisms whose approximation guarantees follow from the

Bulow-Klemperer-type theorems. While Bulow-Klemperer-type theorems have been studied before,

they have never been attempted beyond single-parameter buyers, i.e., for multiple different goods.

To our knowledge, supply-limiting mechanisms have also not been studied before, nor has the

connection between increasing demand and limiting supply been explicitly formulated as in our

reductions.

Proving Bulow-Klemperer-type theorems for matching markets is the most technically chal-

lenging component of this work. The analysis for multi-parameter settings is challenging due to

dependency issues — the competition for item j that drives its price depends on the buyers’ val-

ues for the other items. We overcome dependency challenges via a technique from the analysis of

randomized algorithms called the principle of deferred decision, combined with the combinatorial

properties of optimal matchings.

Results: Augmented Demand We prove the first generalization of Bulow and Klemperer’s

theorem (Theorem 1) to multi-parameter markets.

Theorem 2 (Bulow-Klemperer-Type Theorem for Matching Markets (Informal)).

For every matching market with n bidders and m goods, assuming symmetry and regularity, the

expected revenue of the Vickrey auction with m additional bidders is at least the optimal expected

revenue in the original market.

The formal statement appears in Theorem 6. We emphasize that the symmetry assumption in this

theorem is across bidders, not goods. That is, values of different bidders for the same good are

i.i.d. samples from the same distribution, but different goods can have different value distributions.

This kind of symmetry makes sense in practical applications, where the seller knows it is selling very

different kinds of goods, but sees the bidders — whose identities and characteristics are unknown

— as homogeneous (Chung and Ely 2007).

In addition to Theorem 2, we prove Bulow-Klemperer-type theorems that achieve better guaran-

tees for matching markets with more supply than demand (n≤m), and that apply to asymmetric

markets where bidders’ values for a good may belong to different distributions (see Section 7).
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Results: Limited Supply We design supply-limiting mechanisms for both single-parameter

and multi-item markets. The former include digital good markets (recall Mechanism 1), as well as

more general multi-unit markets, possibly with constraints or asymmetric bidders (see Section 4).

For multi-item matching markets, we first define a notion of setting a limit on supply where the

supply is heterogeneous rather than homogeneous. A multi-item auction subject to supply limit `

means that no more than ` goods may be assigned, with no limitation on which ` goods these shall

be. Intuitively, this lets the market do the work of choosing which part of the supply to limit. This

is in line with our robust approach, as a seller with no knowledge of how the values for the different

goods are distributed cannot make this decision without risking a big loss in revenue. Notice that

the simple supply-limiting mechanism we designed for multi-unit markets (Mechanism 1) is now

well-defined for multi-item markets as well, and we can prove the following theorem:

Theorem 3 (Supply-Limiting Mechanism for Matching Markets (Informal)). For

every matching market with n≥ 2 bidders and m goods, the expected revenue of Mechanism 1 is

at least a constant fraction of the optimal expected revenue.

Qualitatively, Theorem 3 is interesting since it shows that a simple robust mechanism can achieve

a fraction of the optimal expected revenue that is independent of the size of the market, as measured

by parameters n and m. Moreover, the constant fractions we achieve are quite good in many cases,

e.g., we achieve a fraction of 1/4 when the number of bidders equals the number of goods (Theorem

8). An interesting open problem is whether this is the best possible by any robust mechanism. The

analysis of the approximation guarantees are via a general reduction (Reduction 3) along the lines

of Reduction 2, instantiated with appropriate Bulow-Klemperer-type theorems.

Reduction 3 Approximation Guarantees via Bulow-Klemperer-Type Theorems

0. Start with original market with n buyers

Denote the optimal expected revenue by OPT.

1. Restrict to market with <n buyers and supply limit `

The optimal expected revenue is a constant fraction of OPT, by subadditivity.

2. Augment to get market with n buyers and supply limit `

The expected revenue of the Vickrey auction is a constant fraction of OPT, by a suitable Bulow-

Klemperer-type theorem.
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1.4. Organization

In Section 2 we discuss our approach to robustness and survey related literature. In Section 3

we formally present our model and preliminaries. Section 4 includes our analysis of competition

enhancement for multi-unit markets. Sections 5 and 6 analyze multi-item matching markets where

n is proportional to m and contain our main technical results for increasing demand and limiting

supply, respectively. Extensions and generalizations can be found in Section 7. Section 8 concludes.

2. Prior-Independent Robustness and Related Work

In this section we discuss our approach to robust revenue guarantees, and present related work.

2.1. Definition

Robustness has been a long-time goal of mechanism and market design. Intuitively, robust mech-

anisms are mechanisms that “perform well” for a “large range” of economic environments. Their

performance is insensitive to the environment’s precise details and for this reason robustness is also

referred to as detail-freeness. To formulate robustness one must specify what it means to perform

well and for which range of environments should the performance guarantee hold. There are several

alternative formulations in the literature, including robust optimization and others, and we discuss

these in Section 2.3.

To define the prior-independent notion of robustness, we focus for simplicity on the single good

case. Consider first a particular distribution F from which the buyers’ i.i.d. values for the good

are drawn. Let OPTF be the optimal expected revenue that a truthful deterministic mechanism

with full knowledge of F can achieve in this market. Let α ∈ (0,1] be an approximation factor. A

mechanism is α-optimal with respect to F if its expected revenue is at least αOPTF . This is similar

to average-case approximation in combinatorial optimization, where an algorithm’s approximation

guarantee holds for inputs drawn from a known distribution; the difference is that the benchmark

OPTF is with respect to a truthful mechanism instead of an algorithm.

Now let F be a set of value distributions, called the priors. A mechanism is robustly α-optimal

with respect to F if for every distribution F in this set, the mechanism is α-optimal with respect

to F . In this case we also say that it gives an α-approximation to the optimal expected revenue.

We have thus defined what it means for a robust mechanism to “perform well”: it must achieve

expected revenue that either exceeds or approximates the optimal expected revenue simultaneously

for every distribution in a class of distributions F .

In this paper we set the “large range” of distributions F to be all regular distributions. Roughly

these are distributions whose tail is no heavier than that of a power law distribution. Regularity is

a standard assumption in auction theory, analogous to that of downward-sloping marginal revenue
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in monopoly theory, and without it no good robust revenue guarantees are possible (see Bulow and

Klemperer 1996, and Section 3 for a precise definition and negative examples).

The above definition of robustness is an interesting mixture of average- and worst-case guaran-

tees. On one hand, performance is measured in expectation over the random input; on the other it

is measured in the worst case over all distributions that belong to F . Such robustness is referred

to as prior-independence, since there is an underlying assumption that values are sampled from

priors, and yet the robust mechanism must be independent of the priors as it must work well for

all of them.

2.2. Rationales

What are the rationales behind prior-independent robustness? In particular, why measure whether

a robust auction is performing well by comparing it to the optimal mechanism with access to the

prior distribution? And why choose a large range of distributions with minimal assumptions (rather

than incorporate partial information that the seller may have about the distributions in order to

narrow it down)?

First, our main results show that for a large range of distributions on which little is assumed,

we can get a constant approximation to the ambitious benchmark of OPTF , even in challenging

environments like multi-item markets for which the optimal mechanism remains elusive: Theorem

2 can be rephrased as stating that Vickrey with m additional bidders is robustly 1-optimal, and

Theorem 3 can be rephrased as stating that Vickrey with supply limit n/2 is robustly α-optimal

for some constant 1/α. The two choices above thus serve to strengthen our results.

An alternative approach to robustness could be, rather than to approximate the optimal mech-

anism for every distribution in F , to design a mechanism that maximizes the minimum expected

revenue where the minimum is taken over all distributions in the set F . Such an approach would

run into the open problem of finding the optimal mechanism for multi-item markets, even in the

degenerate case where F contains only one distribution. Seeking approximation rather than max-

imization is what enables us to circumvent the open problem. In addition, choosing OPTF as a

benchmark allows the seller to make informed decisions regarding how much to invest in obtaining

information on F .

The choice of setting F to be the class of all regular distributions has the advantage of capturing

situations in which the seller has no information about the value distribution, as is the case for

a new seller or new good on the market and for goods whose distribution is constantly shifting,

as well as situations in which the seller’s information is prohibitively expensive or highly noisy

and thus too risky to rely upon. In other words, the same reason for avoiding dependence on

prior distributions in mechanism design — lack of reliable, accessible information — also justifies
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avoiding dependence on prior information about the distributions. Moreover, assuming no partial

information leads to simple and natural mechanisms, thus reinforcing our chosen robustness notion.

2.3. Robustness in the Literature

Robustness in mechanism design has been studied from three different perspectives — economics,

operations research and computer science. The Wilson (1987) doctrine in economics calls for the

development of mechanisms independent of the details of the economic environment, as far as these

are not really common knowledge among the buyers and seller. Wilson writes that the importance of

“repeated weakening of the common knowledge assumption” is that only in this way “will the theory

approximate reality.” In operations research, Scarf (1958) observed that “we may have reason to

suspect that the future demand will come from a distribution that differs from that governing past

history in an unpredictable way”. In this context, Bertsimas and Thiele (2014) note in their essay

on “Modern Decision-Making Under Uncertainty” that the need for a non-probabilistic theory

has become pressing. In computer science, the dominant paradigm of worst-case analysis has been

extended to mechanism design, reflecting the expectancy that mechanisms (like algorithms) should

work well across a range of settings, as well as a general mistrust in designers’ ability to accurately

capture real-world distributions (Nisan 2014).

Given its importance, it is not surprising that there is a rich literature on robustness in mechanism

design. Our approach contributes to this literature by simultaneously achieving robustness and

simplicity while being applicable to multi-item environments.

Prior-Independence for Single-Parameter Markets For single-item and other single-

parameter markets, Bulow and Klemperer (1996) were the first to study the effect of augmented

demand. A simplified proof of their main result was given by Kirkegaard (2006). Dughmi et al.

(2012) generalize this result to markets with matroid-based constraints, and use the generalized ver-

sion to investigate conditions under which the Vickrey auction inadvertently yields approximately-

optimal revenue. Hartline and Roughgarden (2009) develop a similar result for asymmetric buyers

who do not share the same value distributions. Fu et al. (2015) study the tightness of the Bulow

and Klemperer result. Using techniques related to an early version of this work (Roughgarden et al.

2012), Sivan and Syrgkanis (2013) develop a version of Bulow and Klemperer’s result for convex

combinations of distributions satisfying regularity.

A natural approach to prior-independent robustness is to instantiate the optimal mechanism

developed by Myerson (1981) with an empirical rather than known distribution, where the samples

come from the buyers’ bids. This approach is explored by Segal (2003) and Baliga and Vohra

(2003), and is asymptotically optimal as the size of the market goes to infinity. It also allows
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the seller to incorporate into the mechanism prior information about the class of possible value

distributions (a “higher level” of prior information — not about the possible values but rather about

their possible distributions). Dhangwatnotai et al. (2010) take the sampling approach further by

designing simple mechanisms using only a single sample, which are nevertheless robustly α-optimal

for small constant 1/α parameters.

Other Robustness Notions for Single-Parameter Markets Value distributions are not

used in the design of prior-independent auctions, but they are used in their analysis, namely in the

definition of “robustly α-optimal” which is based on comparison to the optimal expected revenue.

In prior-free auction design, distributions are not even used to evaluate the performance of an

auction. This raises the question of which benchmark to use. Neeman (2003) studies the revenue

performance of the English auction — in our setting an ascending-auction version of the Vickrey

auction — comparing it to the benchmark of welfare, which is clearly an upper bound on revenue in

auctions in which buyers have no better choice than to participate. A different approach is initiated

by Goldberg et al. (2006), who define a notion of “reasonable” auctions to compete against. The

relations between the different notions of robustness has also been studied (see, e.g., Hartline and

Roughgarden 2014).

Multi-Parameter Markets In contemporaneous work with an early version of this paper,

Devanur et al. independently consider a similar set of problems as us, but using different mecha-

nisms and analyses (2011). Their mechanisms are arguably more complex and less natural since

they are based on carefully-constructed price menus (rather than on enhanced competition). Fol-

lowing our early version, Azar et al. (2014) studied matching markets in which partial information

about the value distributions is available to the seller in the form of a limited number of samples.

Closely related to our work, Bandi and Bertsimas (2014) apply the robust optimization approach

to optimal mechanism design in multi-item markets. Their model differs from our model in several

important aspects, including consideration of additive valuations rather than matching markets,

and divisible rather than indivisible goods. A main goal of their paper is orthogonal to ours — to

study the important issues of budgets and correlated values in mechanism design. They also address

auctions without budget constraints but in their setting these reduce to single-item auctions, which

is far from the case in our model.

It is also interesting to compare our robustness notion to theirs, where the latter is inspired by

the robust optimization paradigm. Bandi and Bertsimas model the seller’s knowledge about the

values by an uncertainty set, thus accommodating for partial knowledge based on historical bidding

data, and then optimally solve the related robust optimization problem. They use simulations to

show that their robust optimization approach improves upon the revenue performance of Myerson’s
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mechanism for single items, when the seller’s knowledge of the prior distribution is inaccurate. We

use a different notion of robustness inspired by approximation algorithms for combinatorial opti-

mization, and our goal for single items is to surpass or approximate the performance of Myerson’s

mechanism tailored to the accurate distribution (which our mechanism is oblivious to).

Recently there have been significant advances on the problem of prior-dependent optimal mech-

anism characterization for multi-item markets. Cai et al. (2013) give a characterization for optimal

mechanisms given access to the prior distributions, and with the relaxed requirement of Bayesian,

rather than dominant strategy, truthfulness. The relaxed truthfulness notion requires that no buyer

can do better in expectation over the other buyers’ valuations than to participate and bid truthfully

in the auction. It thus relies on common knowledge of the prior distributions among the buyers as

well as for the seller (cf. Chung and Ely 2007).

Chawla et al. (2010a) give an upper bound on the optimal expected revenue for matching mar-

kets, and our techniques utilize one of their reductions. They achieve a prior-dependent 1/6.75-

approximation for matching markets with multiple units and asymmetric buyers, and also a 3/32-

approximation for an even more general environment (namely a graphical matroid with unit-

demand buyers).

Simplicity in Mechanism Design Another mechanism design consideration that has drawn

attention in recent years is simplicity. Chawla et al. (2007, 2010a) study (prior-dependent) posted-

price mechanisms, where buyers simply choose from a menu of priced allocations. Hartline and

Roughgarden (2009) seek conditions on single-parameter markets such that the simple Vickrey

auction with (prior-dependent) reserves achieves near-optimal revenue. This simple auction format

or a generalized version of it are common in online advertising and sponsored search, the main

source of revenue for companies like Google Inc. or Yahoo! Inc. (Lahaie et al. 2007, Celis et al.

2014).

The extension of the Vickrey auction to multi-item markets, called the VCG mechanism (Vickrey

1961, Clarke 1971, Groves 1973), is arguably not as simple (Ausubel and Milgrom 2006, Rothkopf

2007). Yet in the matching markets we consider, many of the complications of VCG do not occur,

namely, communicating the bids and running the auction are both computationally tractable, and

our competition enhancement methods ensure that the revenue does not collapse. Chawla et al.

(2013) analyze the VCG mechanism’s performance in a job scheduling context, and some of our

techniques are inspired by their analysis.

Another simple mechanism format that has been proposed recently (Babaioff et al. 2014) is a

lottery between running Myerson’s mechanism for the grand bundle of all goods, and between

separate runs of Myerson’s mechanism for every good.
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3. Preliminaries

In Section 3.1 we describe our model including multi-unit and matching environments, in Section

3.2 we review the basics of optimal mechanism design and in Section 3.3 we discuss two technical

tools (regularity and representative environments).

3.1. Model

An auction environment (or market) has as set {1, . . . ,m} of m goods (or items) for sale to a set

{1, . . . , n} of n bidders (or buyers). As a convention we use the index i for bidders and j for items.

Throughout we make the distinction between items and units, where the latter are different copies

of the same item so bidders have the same value for them.

We describe two main environments of interest; two extensions appear in Section 7.

Multi-Unit and Other Single-Parameter Environments Consider a general model of

single-parameter environments: An environment is defined by a non-empty collection I ⊆ 2[n] of

bidder sets, each containing bidders who can win simultaneously. The sets in I are called feasible

allocations. Every subset of a feasible allocation is also feasible (i.e., the set system ([n],I) is

downward-closed). We assume that every bidder belongs to at least one feasible allocation.

Every bidder i has a private value vi ∈ [0,∞) for winning, which is drawn independently at

random from a distribution Fi with a density function fi positive over a nonzero interval support.

The density function is smooth with one exception — a constant amount of probability mass can

concentrate on the highest point in the support. This exception is useful for Proposition 1. The

described environment is called single-parameter since the value for winning is fully described by vi.

Throughout we assume a risk-neutral quasi-linear utility model, in which a bidder’s utility for

winning is his value minus the payment he is charged, and bidders aim to maximize their expected

utilities. We say that single-parameter bidders are i.i.d. (or symmetric) if their value distributions

are identical. The environment is i.i.d. if the bidders are i.i.d.

We can now define a multi-unit (or k-unit) environment: It is a single-parameter environment

in which a subset of bidders is a feasible allocation if and only if its size is at most k. This models

k units for sale to n ≥ k unit-demand bidders who are interested in at most one unit. We will

sometimes impose an additional supply limit of ` ≤ k, restricting feasible allocations to size at

most `.

A matroid environment is a single-parameter environment in which the set system ([n],I) of

bidders and feasible allocations forms a matroid (Oxley 1992). Job scheduling markets (Example 3)

are an example of matroid environments, and k-unit environments are a special case (corresponding

to the k-uniform matroid). See Section 7.1 for further details.
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Multi-Item Matching Environments In a matching environment there are m different

items for sale with one unit available of each item. Feasible allocations are all matchings of items

to bidders (each bidder wins at most one item and each item is allocated to at most one bidder).

This models unit-demand bidders. We will sometimes impose an additional supply limit of `≤m,

restricting the matchings to size at most `. Every bidder i has a private value vi,j ∈ [0,∞) for

winning item j, which is drawn independently at random from a distribution Fi,j with a smooth

density function fi,j positive over a nonzero interval support. A matching environment is thus

multi-parameter. We again assume a risk-neutral quasi-linear utility model.

We say the bidders are i.i.d. (or symmetric) if Fi,j does not depend on the identity of bidder i,

i.e., each item j has an associated distribution Fj and Fi,j = Fj. In other words, for every item j the

values {vi,j}i∈[n] are i.i.d. samples from Fj. Note that different items j, j′ have different distributions

Fj,Fj′ , as necessary for applications such as the travel website in Section 1. Independence of the

values is maintained across both bidders and items. For a treatment of asymmetric bidders see

Sections 7.2 and 7.3.

3.2. Optimal Mechanism Design

Mechanisms By the revelation principle, without loss of generality we may restrict attention

to direct mechanisms, which receive a vector of bids b. In the single-parameter case b∈Rn≥0 where

bi is bidder i’s bid for winning, and in the matching case b ∈ Rnm≥0 where bi,j is bidder i’s bid for

winning item j. We focus on deterministic mechanisms, comprised of:

1. An allocation rule x = x(b), which maps a bid vector b to a feasible allocation; in the single-

parameter case x∈ {0,1}n, where xi = xi(b) indicates whether bidder i wins, and in the matching

case x∈ {0,1}nm, where xi,j = xi,j(b) indicates whether bidder i wins item j.

2. A payment rule p = p(b), which maps a bid vector b to a payment vector. The payment

vector p belongs to Rn≥0, where pi = pi(b) is the payment charged to bidder i.

Fixing a bid vector b, the mechanism’s welfare in the single-parameter case is
∑

i xivi, and in

the matching case
∑

i,j xi,jvi,j. The mechanism’s revenue is
∑

i pi. Bidder i’s utility in the single-

parameter case is xivi − pi, and in the matching case
∑

j xi,jvi,j − pi. A mechanism is (dominant

strategy) truthful if for every bidder i and bid profile b−i of the other bidders, i maximizes his

utility by participating and bidding truthfully, i.e., bidding bi = vi in the single-parameter case and

bi,j = vi,j for all j in the matching case. All the mechanisms we study are truthful, so from now on

we no longer distinguish between bids and values and use vi or vi,j to denote both. We will mainly

be interested in a mechanism’s expected revenue Ev[
∑

i pi], where p = p(v) and the expectation is

taken over i.i.d. values drawn from the value distributions.
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The revenue benchmark against which we measure the performance of our mechanisms is the

following: By optimal expected revenue we mean the maximum expected revenue over all (domi-

nant strategy) truthful, deterministic mechanisms. Chawla et al. (2010b) show that for matching

environments, the expected revenue from the optimal deterministic mechanism is within a con-

stant factor of the expected revenue from the optimal randomized mechanism. Thus our results for

deterministic mechanisms apply to randomized mechanisms up to a constant factor.

Maximizing Welfare and the Vickrey Auction The general form of the Vickrey auction

is called the VCG mechanism, and it works for any market whether single-parameter or multi-item.

VCG is remarkable in being both truthful and welfare-maximizing for every value profile v. Its

allocation rule chooses a feasible allocation that maximizes welfare; its payment rule charges every

bidder i a payment equal to i’s externality — the difference in the maximum welfare of the other

bidders when i does not participate in the auction and when i does participate in it.

In the context of matching environments, the VCG allocation rule can be implemented as a

maximum weighted matching over a bipartite graph, where vertices on one side are the bidders,

vertices on the other side are the items, and the weight of every edge (i, j) is vi,j (Bertsekas 1991).

The payment rule also solves bipartite matching problems to compute the payments. For single-

parameter k-unit environments, Vickrey’s allocation rule finds k bidders with highest values, and

for matroid environments it uses a simple greedy algorithm to find a feasible allocation with highest

welfare (and similarly for the Vickrey payment rules).

For our supply-limiting mechanisms, we add to the VCG or Vickrey mechanisms a supply limit

` and denote them by VCG≤` and Vic≤`, respectively.

Maximizing Revenue and Myerson’s Mechanism For single-parameter environments,

Myerson (1981) characterized the optimal mechanism that maximizes expected revenue. (In fact,

Myerson showed an even stronger result — his mechanism maximizes the expected revenue over

all Bayesian truthful, randomized mechanisms!) Let F be a regular distribution with density f

(see Section 3.3 for discussion of regularity). Define its virtual value function φF : R≥0→R to be

φF (v) = v− 1−F (v)

f(v)
. Myerson showed the following.

Lemma 1 (Myerson). Given a single-parameter environment and a truthful mechanism (x,p),

for every bidder i and value profile v−i of the other bidders, Evi∼Fi [pi(v)] = Evi∼Fi [xi(v)φFi(vi)].

Myerson’s lemma says that in expectation over bidder i’s value, his payment is equal to his virtual

value when he is allocated. By summing over all bidders, this lemma implies that in expectation

over the value profile, maximizing the revenue is equivalent to maximizing the total virtual value

of allocated bidders, a quantity known as the virtual surplus. Myerson’s mechanism maximizes

expected revenue by finding the feasible allocation with maximum virtual surplus. For example, in

a k-unit environment this will be the set of ≤ k bidders with the highest positive virtual values.
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3.3. Technical Tools

Regularity We say that bidders are regular if their values are drawn from regular distributions.

Definition 1 (Regular Distribution). A distribution F is regular if its virtual value function

is monotone non-decreasing.

Most commonly-studied distributions are regular, including the uniform, exponential and normal

distributions, and distributions with log-concave densities. The assumption that bidders are regular

is standard in optimal mechanism design and is necessary for designing good prior-independent

mechanisms, as demonstrated by Dhangwatnotai et al. (2010): Fix a value z and a number n of

bidders, and define an irregular, long-tailed value distribution Fz such that the probability for z

is 1/n2 and otherwise the value is zero. Consider a single-item environment with n bidders whose

values are drawn from Fz. The optimal auction has expected revenue at least z/n. But any prior-

independent truthful auction essentially has to “guess” the value of z, since the probability that

the non-winning bids provide information about z is small. Thus its expected revenue cannot be

within a constant factor of z/n for every Fz.

Representative Environments A representative environment is the “single-parameter coun-

terpart” of a matching environment. Consider a matching environment with m items, n symmetric

bidders and value distributions {Fj}mj=1. The corresponding representative environment has the

same m items, but nm single-parameter bidders — every bidder in the matching environment has

m representatives in the representative environment. The jth representative of bidder i is only

interested in item j and has a value vi,j ∼ Fj for winning it. Every allocation in the representative

environment can be translated to an allocation in the matching environment — if the jth repre-

sentative of i wins, then item j is allocated to bidder i in the matching environment — and vice

versa. An allocation in the representative environment is feasible if the corresponding allocation

in the matching environment forms a matching, meaning that only one representative per bidder

wins.

Intuitively, the representative environment is more competitive than the matching one, since

representatives of the same bidder compete against each other on who will be the winner. Thus

the expected revenue achievable in the representative environment should be at least the optimal

expected revenue in the matching environment. Chawla et al. (2010a) formalize this intuition by

showing that any truthful mechanism M for the matching environment translates to a truthful

mechanism M rep for the representative environment, such that the expected revenue of M rep is only

higher. Roughly this is by translating the allocation rule of M to an allocation rule in the represen-

tative environment as above, and viewing the payment rule of M as a price menu, whose prices are

exceeded in the representative environment by charging every representative the minimum value

it needs to bid in order to win.
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Lemma 2 (Chawla et al. (2010a)). The expected revenue of M rep in the single-parameter rep-

resentative environment is at least the expected revenue of M in the matching environment.

4. Multi-Unit Markets

In this section we formally prove the results presented in Section 1.2, demonstrating our general

framework. The approach of augmenting demand has been studied for multi-unit auctions, and a

slightly generalized version of a result by Bulow and Klemperer (1996) is the following:

Theorem 4 (Bulow-Klemperer-Type Theorem for Multi-Unit Markets). For every k-

unit environment with i.i.d. regular bidders and supply limit `, the expected revenue of the Vickrey

auction with min{k, `} additional bidders is at least the optimal expected revenue in the original

market. In other words, Vickrey with min{k, `} additional bidders is robustly 1-optimal.

As for limiting supply, we instantiate our general reduction (Reduction 3) with the above Bulow-

Klemperer-type theorem to prove the following. For simplicity of presentation assume the number

of bidders n is even.5

Theorem 5 (Supply-Limiting Mechanism for Multi-Unit Markets). For every k-unit

environment with n ≥ 2 i.i.d. regular bidders, the expected revenue of the supply-limiting mecha-

nism Vic≤n/2 is at least a max{ 1
2
, n−k

n
}-fraction of the optimal expected revenue. In other words,

Vickrey with supply limit n/2 is robustly α-optimal for α= max{ 1
2
, n−k

n
}.

In the above theorem, the supply limit of n/2 “kicks in” when the number of units k exceeds n/2,

and in this case we get a 1/2-approximation. If the supply k is limited to n/2 to begin with, the

competition is inherently high and Vickrey with no supply limit provides an n−k
n

-approximation.

Proof. We instantiate Reduction 3 as follows. To go from the original market to the restricted

market, remove min{n
2
, k} bidders from the original market, and if k > n

2
set a supply limit of `= n

2
.

Analysis: We first claim that the restriction of the original market maintains at least a fraction of

max{ 1
2
, n−k

n
} of the optimal expected revenue in the original market. This is because, as shown by

Dughmi et al. (2012), the expected optimal revenue as a function of the bidder set is submodular.6

Revenue submodularity means decreasing marginal returns to the expected revenue as more bidders

are added, so the first max{n
2
, n− k} bidders already capture at least a max{ 1

2
, n−k

n
}-fraction of

the optimal expected revenue. Limiting the supply to n
2

when k > n
2

has no effect since in this case

the number of bidders remaining in the restricted environment is n
2
.

We can now apply the Bulow-Klemperer-type theorem for multi-unit markets (Theorem 4) to the

restricted environment. In the first case, k > n
2

and the restricted environment has n
2

bidders, k units

and supply limit `= n
2
. In the second case, k≤ n

2
and the restricted environment has n−k bidders,

k units and no supply limit (i.e., ` = k). In both cases, by Theorem 4 the expected revenue of
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Vickrey with min{n
2
, k} additional bidders is at least the optimal expected revenue in the restricted

environment. So running Vickrey with min{n
2
, k} additional bidders on the restricted environment

is a max{ 1
2
, n−k

n
}-approximation to the optimal expected revenue in the original environment. But

this is equivalent to running the supply-limiting mechanism Vic≤n/2 on the original environment,

completing the proof. �

The approximation factor in Theorem 5 is asymptotically tight:

Proposition 1. For every 0<γ < 1, consider the supply-limiting mechanism Vic≤γn. There exists

an n-unit environment with n i.i.d. regular bidders such that the expected revenue of Vic≤γn is at

most a ( 1
2

+ o(1))-fraction of the optimal expected revenue.

Proof. Consider first the case that 1/n ≤ γ ≤ 1/2, i.e., the supply limit is severe. Let the

value distribution F be the uniform distribution over the support [1,1 + ε] for a sufficiently small

parameter ε= ε(n). The optimal expected revenue is roughly n, while Vic≤γn can extract as revenue

at most γn(1 + ε)≤ n/2 + o(1).

Now suppose 1/2 < γ ≤ n−1
n

. For sufficiently large H, let the value distribution be F (z) = z
1+z

over the support [0,H] with a point mass of 1
1+H

at H. The optimal expected revenue is at least the

expected revenue achieved by offering a posted price H to every one of the n bidders, which extracts

H(1− H
1+H

) = H
1+H
≈ 1 from every bidder in expectation. In comparison, the expected revenue in

Vic≤γn comes from the (γn+1)st highest bid. This bid is concentrated around z = 1−γ
γ

, the value of

z such that F (z) = 1− γ. So VCG achieves an expected revenue of roughly 1−γ
γ
γn= (1− γ)n< n

2
.

�

5. Matching Markets: Augmenting Demand

In this section we prove a Bulow-Klemperer-type theorem for matching environments — the first

generalization of Bulow and Klemperer (1996) to a multi-item market. Recall what we mean by

i.i.d. bidders in a matching environment: different items have different distributions, but indepen-

dence is both across bidders and across items.

Theorem 6 (Bulow-Klemperer-Type Theorem for Matching Markets). For every

matching environment with i.i.d. regular bidders and m items, the expected revenue of the VCG

mechanism with m additional bidders is at least the optimal expected revenue in the original

market. In other words, VCG with m additional bidders is robustly optimal.

Theorem 6 provides a simple handle on the unknown optimal expected revenue in matching

markets. For example, in a market with two goods for sale, the best achievable revenue is at

most what VCG can achive with two more bidders. Note that in markets with plentiful supply,

i.e. markets in which m� n, the demand augmentation that is required is substantial. In Section
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5.5 we present an alternative Bulow-Klemperer-type theorem with weaker requirements for this

case.

5.1. Overview of the Proof

The proof is divided into two parts. In Section 5.2 we identify an upper bound on the optimal

expected revenue in the original environment, and a lower bound on the revenue of the VCG

mechanism in the augmented environment with m more bidders. These bounds are relatively simple

to analyze and are already similar, though not identical, in form. In Section 5.3 we carefully relate

the two bounds to establish the theorem.

Our proof is based on the following ideas. We first observe there is a simple upper bound on

the optimal expected revenue in the matching environment — the expected revenue from running

m Vickrey auctions to sell each of the m goods to m separate sets of n+ 1 representatives, who

are single-parameter bidders only interested in one particular good (Lemma 3). Our goal is now to

show that VCG with a total of m additional multi-parameter but unit-demand bidders does just

as well in terms of revenue.

Recall that in the VCG mechanism, the winner of a certain good pays the externality he inflicts

upon other bidders, which includes in particular the “damages” he causes the losing bidders who

are not allocated any good by the mechanism. Thus, the payment for every good j is at least the

highest value for j among the losers. In the augmented matching environment to which VCG is

applied, it is guaranteed that there will be n losers, since there are m goods and n+m bidders. The

expected revenue from running VCG on the augmented environment is thus at least the expected

welfare from running m Vickrey auctions to allocate each of the m goods separately to the n losers

(Lemma 4). This lower bound is similar to the above upper bound.

The remaining challenge is a dependency issue — by definition, the losers are likely to have

lower values for the goods than the n+ 1 representatives. We use the combinatorial structure of

maximum weighted matchings to show that a bidder’s values conditional on him losing in the VCG

mechanism are, while lower, not likely to be significantly so compared to the unconditional case.

Thus the losers’ damages are enough to cover the expected revenue from the representatives.

On a technical level what we show is that, quite remarkably, the only thing that can be deduced

about a bidder’s value for an item j from his losing the auction completely is that it is lower than

the value of the winner of item j. We establish this by introducing an auxiliary selling mechanism

for item j, conceptually and revenue-wise half-way between selling the item separately and selling

it as part of the VCG mechanism. The auxiliary mechanism runs a maximum weighted matching

algorithm as in VCG, but defers the sale of item j until all other goods have been sold and

exactly n+ 1 bidders remain unallocated. Thus, by construction, these bidders’ values for item j

are unaffected by the dependency issue described above.
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5.2. Basic Upper and Lower Bounds

Upper bound. To upper bound the expected optimal revenue we use the following notation: let

Vicj(η) be the expected revenue from selling item j to η i.i.d. single-parameter representatives with

value distribution Fj using the Vickrey auction. Then:

Lemma 3 (Upper Bound on Optimal Expected Revenue). For every matching environ-

ment with n i.i.d. regular bidders and m items,
∑

j Vicj(n+ 1) is at least the optimal expected

revenue in the original market.

Proof. Let {Fj}mj=1 be the regular value distributions of the matching environment. By Lemma

2, the optimal expected revenue in the matching environment is upper-bounded by the optimal

expected revenue in its single-parameter counterpart, the corresponding representative environ-

ment. Recall that in the representative environment there are n single-parameter representatives

per item j, whose values for j are i.i.d. draws from Fj. The representatives are grouped in n

sets of size m corresponding to the original bidders in the matching environment, and feasibility

constraints ensure that at most one representative from each set wins.

We now relax these feasibility constraints to get a new single-parameter environment in which

the optimal expected revenue has only increased. Relaxing feasibility only increases the optimal

expected revenue since by Meyerson’s lemma (Lemma 1), it is equal in expectation to the optimal

virtual surplus, and clearly the optimum subject to the constraints is bounded from above by the

optimum when these are relaxed.

The new environment is equivalent in terms of revenue to a collection of m single-item environ-

ments, where in the j-th environment item j is auctioned to its n single-parameter representatives

(values are i.i.d. draws from the regular distribution Fj). By Bulow and Klemperer’s result (Theo-

rem 1), the optimal expected revenue from the j-th environment is upper-bounded by Vicj(n+ 1).

Summing up over all items completes the proof. �

Lower bound. We now turn to the VCG mechanism applied to the augmented environment,

whose revenue is the sum of VCG payments for the items. The next lemma lower-bounds the VCG

payment for item j.

Lemma 4 (Lower Bound on VCG Revenue). For every matching environment, the VCG pay-

ment for item j is at least the value of any unallocated bidder for j.

Proof. Say bidder i wins item j. The VCG payment for j is equal to the externality that i

imposes on the rest of the bidders by winning j. In particular, i prevents an unallocated bidder i′

from being allocated j. Thus the payment is at least the value of i′ for j. �
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5.3. Relating the Upper and Lower Bounds via Deferred Allocation

The upper and lower bounds above share a similar form. On the one hand, by definition of the

Vickrey auction, the upper bound Vicj(n+ 1) on the expected revenue from separately auctioning

off item j is equal to the expected second-highest value for j among n+1 bidders with values drawn

independently from Fj. On the other hand, the lower bound on the VCG payment for item j in

the augmented environment is equal to the highest value for j among n unallocated bidders with

values drawn independently from Fj, where we use that in the augmented environment only m out

of n+m bidders are allocated. From this it may appear as if we have already shown that the lower

bound exceeds the upper bound. However, a dependency issue arises — conditioned on the event

that a bidder in the augmented environment is unallocated by VCG, his value for item j is no

longer distributed like a random sample from Fj. We address this issue by introducing a deferred

allocation selling procedure.

Algorithm 4 describes our selling procedure for item j.

Algorithm 4 Selling Item j by Deferred Allocation

Given a matching environment with n+m bidders and m items, and an item j:

1. Find a maximum matching of all m− 1 items other than j to the bidders. Let U be the set

of n+ 1 bidders who remain unallocated.

2. Run the Vickrey auction to sell item j to bidder set U .

The following two claims show how deferred allocation resolves the dependency issue; namely,

how the revenue from selling item j via the deferred allocation procedure bridges between the

upper and lower bounds in Lemmas 3 and 4. The relation is also depicted in Figures 1a to 1c.

Claim 1 (Deferred Allocation and Upper Bound). The revenue from selling item j by

deferred allocation (Algorithm 4) is equal in expectation to Vicj(n+ 1).

Proof. The revenue from selling item j to bidder set U by the Vickrey auction is the second-

highest value of a bidder in U for j. Since we exclude item j in step (1) of the deferred allocation

procedure and allocate it only in step (2), the allocation in step (1) does not depend on the bidders’

values for j. Therefore, the values of the unallocated bidders in U for item j are independent

random samples from Fj. The expected second-highest among n+ 1 values drawn independently

from Fj is equal to Vicj(n+ 1). �

To relate the revenue from deferred allocation to the lower bound in Lemma 4 we need the

following stability property.
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Lemma 5 (Stability of Maximum Matching). Consider an augmented matching environment

with n+m bidders and m items. Let bidder set U be as defined in Algorithm 4. If VCG is run on

this environment, the set of bidders left unallocated is U with at most one bidder removed.

Proof. First note that in the matching instances we consider, we may assume there is a unique

maximum weighted matching. This holds with probability 1 since the weights are sampled from

distributions as described in Section 3.1.7

The following is a well-known stability property of maximum weighted matchings (Lovász and

Plummer 2009): In a complete weighted bipartite graph with n+m nodes on one side and m− 1

nodes on the other, consider the maximum weighted matching of size m− 1. Now add a node to

the short side of the graph and find the maximum weighted matching of size m. The set of matched

nodes on the long side of the graph remains the same up to a single additional node.

The augmented matching environment corresponds to a complete bipartite graph with bidders

on one side and items on the other, with the bidders’ values for the items as edge weights. Algorithm

4 finds the maximum weighted matching of size m− 1 in this graph with item j removed. VCG

finds the maximum weighted matching of size m in this graph including item j. The lemma follows

by applying the above stability property. �

Claim 2 (Deferred Allocation and Lower Bound). Given an augmented matching environ-

ment with n + m bidders and m items, the revenue from selling item j by deferred allocation

(Algorithm 4) is at most the VCG payment for item j.

Proof. The revenue from selling item j by deferred allocation is the second-highest value of a

bidder in U for j. Let i1, i2 be the two bidders in U who value item j the most. By definition, these

bidders are left unallocated by the deferred allocation procedure, and by Lemma 5, one of them

(say i1) is also unallocated by the VCG mechanism. Recall that an unallocated bidder’s value for

item j gives a lower bound on the VCG payment for j (Lemma 4). So the VCG payment for j is

at least vi1,j, which in turn is at least the second-highest value of a bidder in U for item j. �

5.4. Proof of Theorem 6

Putting everything together, we can now complete the proof of the Bulow-Klemperer-type theorem

for matching markets.

Proof. We need to show that for every matching environment with n i.i.d. regular bidders and

m items, the expected revenue of the VCG mechanism with m additional bidders is at least the

optimal expected revneue. By Claim 2, the VCG payment for item j in the augmented environment

is at least the revenue from selling item j by deferred allocation, which by Claim 1 is equal in

expectation to Vicj(n+ 1). Summing up over all items, the total expected VCG revenue in the
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Figure 1 Relating bounds by deferred allocation

Let n = m = 2 and item j = 2.

(a) VCG: Solid edges correspond to the maximum matching. The payment for j is ≥max{v2,2, v4,2}

(Lemma 4), where v2,2, v4,2 are not i.i.d. samples from F2 given that bidders 2 and 4 are unallocated.

(b) Deferred allocation: Solid edges correspond to the maximum matching excluding j. Bidders

unallocated in (a) are a subset of the unallocated set U (Lemma 5). Since j is sold to U using Vickrey,

the payment for j is the 2nd-highest among v1,2, v2,2, v4,2, where these are i.i.d. samples from F2.

(c) Vickrey: The payment for j is the 2nd-highest among v1,2, v2,2, v3,2, where these are i.i.d. samples

from F2.

Comparing (a) to (b) and (b) to (c) shows that:

- the payment for j in (a) is at least the payment for j in (b) (Claim 2); and

- in expectation the payment for j in (b) equals the payment for j in (c) (Claim 1).

augmented environment is at least
∑

j Vicj(n+ 1), and by Lemma 3 this upper-bounds the optimal

expected revenue in the original environment. �

5.5. The m≥ n Case

In matching markets where items are more plentiful than bidders, the following Bulow-Klemperer-

type theorem provides an alternative to Theorem 6, in which the required demand augmentation is

n instead of m bidders.8 Two additional differences in comparison to previous Bulow-Klemperer-

type theorems are that the VCG mechanism is required to be supply-limiting, and the revenue

guarantee is an approximation.

Theorem 7 (Bulow-Klemperer-Type Theorem for Matching with m≥ n). For every

matching environment with n i.i.d. regular bidders and m≥ n items, the expected revenue of the

VCG≤n mechanism with n additional bidders is at least an n/m-fraction of the optimal expected

revenue in the original market. In other words, VCG≤n with n additional bidders is robustly

n/m-optimal.

Proof. The proof is similar to that of Theorem 6, with the following adjustments.

Consider the bounds in Section 5.2 above. While the upper bound on the optimal expected

revenue in Lemma 3 holds and is sufficient, the lower bound on VCG payments in Lemma 4 holds
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but needs to be strengthened. In the augmented environment, VCG≤n allocates n out of the m

items to n out of the 2n bidders. Therefore the VCG payment for item j not only exceeds the

value of any unallocated bidder for j, but also exceeds the value of any unallocated bidder for any

unallocated item. We shall refer to the highest such value among unallocated bidders and items as

the global lower bound on VCG payments, and denote it by G.

Now to relate the bounds as in Section 5.3, we use a slightly modified deferred allocation proce-

dure (Algorithm 5).

Algorithm 5 Selling Item j by Deferred Allocation: The Case of m≥ n

Given a matching environment with 2n bidders and m items, and an item j:

1. Find a maximum matching of n− 1 items other than j to the bidders. Let U be the set of

n+ 1 bidders who remain unallocated.

2. Run the Vickrey auction to sell item j to bidder set U .

Observe that Claims 1 and 2 continue to hold when Algorithm 4 is replaced by Algorithm 5. For

Theorem 6 these claims were sufficient to complete the proof, by the following chain of arguments:

All items are allocated by VCG in the augmented environment (since it is welfare-maximizing and

there are more bidders than items); the VCG payment for item j is at least the revenue from selling

j by deferred allocation (by Claim 2); the deferred allocation revenue is equal in expectation to

Vicj(n+ 1) (by Claim 1); and
∑

j Vicj(n+ 1) is at least the optimal expected revenue (by Lemma

3). For Theorem 7 we need an additional charging argument — and an approximation factor —

since only n out of m items are allocated by VCG≤n.

For every item j ∈ [m] there are two cases:

1. If j is allocated, then the VCG payment for j is at least the revenue from selling j by deferred

allocation (Claim 2).

2. If j is not allocated, then the VCG payment for any allocated item j′ is at least the global

lower bound G. A straightforward adaptation of the argument in Claim 2 shows that G is an upper

bound on the revenue from selling j by deferred allocation (Algorithm 5).

To complete the proof, we charge the VCG payments for the n allocated items against the

aggregate revenue from selling each of the m items by deferred allocation, where the latter is equal

in expectation to
∑

j Vicj(n+ 1). This leads to the approximation factor of n
m

. �

6. Matching Markets: Limiting Supply

In this section we present a supply-limiting mechanism for matching environments. For simplicity

of presentation assume that the number of bidders n is even.
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Theorem 8 (Supply-Limiting Mechanism for Matching Markets). For every matching

environment with n≥ 2 i.i.d. regular bidders and m items, let α = max{n−m
n
,min{ 1

2
, n
4m
}}. Then

the expected revenue of the supply-limiting mechanism VCG≤n/2 is at least an α-fraction of the

optimal expected revenue. In other words, VCG with supply limit n/2 is robustly α-optimal.

Intuitively, achieving a good revenue guarantee becomes more difficult as the number of items

m grows relatively to the number of bidders n, since the inherent competition among the bidders

is split across different items. Accordingly, the fraction α in Theorem 8 depends on the parameters

n and m of the environment as follows:

• If m ≤ n
2

then α = n−m
n

, i.e., the approximation gets better as m becomes smaller, and for

m= n
2

we get α= 1
2
.

• If m≥ n
2

then α= n
4m

, and in particular for m= n we get α= 1
4
.

Also note that when m ≤ n/2, the supply limit of VCG≤n/2 has no effect, that is, the revenue

guarantee is achieved by simply applying the VCG mechanism. For the case of m� n, Theorem

8 does not state a constant approximation. However it still holds in this case that VCG with a

supply limit is robustly α′-optimal where 1/α′ is a constant, albeit with a more involved proof (Yan

2012). Theorem 8 also applies without change to multi-unit matching markets, in which there are

kj copies of every item j, and a total of m=
∑

j kj units overall.

6.1. Subadditivity

The following lemma is used to prove Theorem 8 and may also be of independent interest. It states

that in any market environment, including one with asymmetric bidders whose values are drawn

independently but not identically, the optimal expected revenue achievable from bidder sets S,T

separately is at least the optimal expected revenue achievable from their union. Let OPT(·) map

a bidder set to its optimal expected revenue. Then:

Lemma 6 (Subadditivity of Optimal Expected Revenue in Bidder Set). For every auc-

tion environment with bidder subsets S and T , OPT(S) + OPT(T )≥OPT(S ∪T ).

Proof. It is not hard to see that OPT(·) is monotone, so without loss of generality we can

assume that S and T are disjoint. Let M be the optimal mechanism for S ∪ T . For every value

profile vT of the bidders in T , we define the mechanism MvT
, which gets bids from the bidders in S

and simulates M by using vT as the bids of bidders in T . By an averaging argument, there exists a

vector vT such that mechanism MvT
’s expected revenue is at least the part of the optimal expected

revenue of mechanism M that is charged to the bidders in S. On the other hand, the expected

revenue of MvT
is bounded above by OPT(S). Similarly, the part of the optimal expected revenue

that is charged to the bidders in T is bounded above by OPT(T ). This completes the proof. �
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A corollary of the subadditivity lemma is that removing bidders from an i.i.d. environment

until an α-fraction of the original bidders remains maintains an α-fraction of the optimal expected

revenue. By symmetry:

Corollary 1. For every auction environment with n i.i.d. bidders and for every integer c that

divides n, OPT(n/c)≥ 1
c

OPT(n).

6.2. Proof by Reduction

We prove Theorem 8 by instantiating our general reduction.

Proof of Theorem 8. Assume first that m≤ n/2. We instantiate Reduction 3 as follows: to go

from the original market to the restricted market, remove m bidders from the original market. By

Corollary 1, this restriction on the original market maintains at least an n−m
n

-fraction of the original

optimal expected revenue. We can now apply the Bulow-Klemperer-type theorem for matching

markets (Theorem 6) to the restricted market, which has n−m bidders and m items. The expected

revenue of VCG with m additional bidders is at least the optimal expected revenue in the restricted

market. But this is equivalent to running VCG on the original market, completing the proof for

m≤ n/2.

Now assume that m ≥ n/2. We instantiate Reduction 3 as follows: to go from the original

market to the restricted market, remove n/2 bidders from the original market. By Corollary 1, this

restriction on the original market maintains at least a 1
2
-fraction of the original optimal expected

revenue. We can now apply the Bulow-Klemperer-type theorem for matching markets with more

items than bidders (Theorem 7) to the restricted market, which has n/2 bidders and m ≥ n/2

items. The expected revenue of VCG≤n/2 with n/2 additional bidders is at least an n
2m

-fraction of

the optimal expected revenue in the restricted market, and so an n
4m

-fraction of the original optimal

expected revenue. But this is equivalent to running VCG≤n/2 on the original market, completing

the proof. �

7. Extensions

In this section we extend our results to markets with a matroid constraint on who can win simul-

taneously and to asymmetric markets.

7.1. Matroid Markets

Recall that a matroid environment is a single-parameter environment in which the set system

([n],I) of bidders and feasible allocations forms a matroid. A matroid satisfies three axioms (Oxley

1992): (A1) ∅ ∈ I, (A2) I is downward-closed, and (A3) if S,T ∈ I and |S|< |T | then there is a

bidder t∈ T \S that can be added to S such that S ∪{t} ∈ I. The rank ρ of a matroid is the size
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of its maximal independent sets or bases, and the packing number κ of a matroid is its maximum

number of disjoint bases. In the job scheduling example presented in Section 1.2, if there are four

jobs arriving at time 0 of which two must be finished by time 1 and two must be finished by time

2, then the rank is ρ= 2 and the packing number is κ= 2. We will use the fact that an intersection

of a matroid ([n],I) with a u-uniform matroid is a new matroid ([n],I ′), in which a set of bidders

S belongs to I ′ if and only if S ∈ I and |S| ≤ u.

Dughmi et al. (2012) show a Bulow-Klemperer-type result for matroid environments:

Theorem 9 (Bulow-Klemperer-Type Theorem for Matroid Markets). For every

matroid environment with i.i.d. regular bidders, the expected revenue of the Vickrey auction with

an additional basis of bidders is at least the optimal expected revenue in the original market. In

other words, Vickrey with an additional basis of bidders is robustly optimal.

We use Theorem 9 with our general reduction to prove the following result, in which the approxi-

mation depends on the inherent amount of competition in the market measured not by the number

of bidders n but rather by their packing number κ. For simplicity of presentation assume the rank

ρ is even. Then:

Theorem 10 (Supply-Limiting Mechanism for Matroid Markets). For every matroid

environment with n ≥ 2 i.i.d. regular bidders, rank ρ and packing number κ, let ` = ρ/2 if κ = 1

and ` = ρ otherwise. Then the expected revenue of the supply-limiting mechanism Vic≤` is at

least a max{ 1
4
, κ−1

κ
}-fraction of the optimal expected revenue. In other words, Vic≤` is robustly

max{ 1
4
, κ−1

κ
}-optimal.

Proof. We instantiate Reduction 3 as follows: If κ = 1, intersect the original matroid with a

ρ
2
-uniform matroid to get a new matroid ([n],I ′) with rank ρ′ = ρ

2
and packing number κ′ ≥ 2.

Otherwise, if κ ≥ 2, simply set the new matroid ([n],I ′) to be ([n],I). To go from the original

market to the restricted market, remove from the original market a basis of bidders of size ρ′

according to the matroid ([n],I ′), and set the matroid of the restricted market to be ([n],I ′).

Analysis: If κ = 1, intersecting with the uniform matroid maintains at least a 1
2
-fraction of

the original optimal expected revenue. Removing a basis of bidders maintains at least a κ′−1
κ′ -

fraction. We can now apply the Bulow-Klemperer-type theorem for matroids (Theorem 9) to the

restricted market with n− ρ′ bidders and matroid ([n],I ′). The expected revenue of Vickrey with

an additional basis of bidders is at least the optimal expected revenue in the restricted market,

and so a max{ 1
4
, κ−1

κ
}-fraction of the original optimal expected revenue. But this is equivalent to

running Vic≤` on the original market, completing the proof. �
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7.2. Asymmetric Bidders: Augmenting Demand

An attribute-based environment is a k-unit environment with n bidders, each of whom has a

publicly-observable attribute a= a(i) that determines a non-publicly-known value distribution Fa

(Dhangwatnotai et al. 2010). Bidders’ values in an attribute-based environment are thus indepen-

dently but not identically distributed. Attributes enable the incorporation of prior information

into our model regarding which bidders are alike, while still avoiding assumptions about the value

distributions themselves. In fact, our results can be interpreted as an encouragement to invest in

this particular kind of prior information, which entails grouping similar bidders together rather

than learning distributions. Examples of attributes are bidding styles such as “bargain-hunter”

or “aggressive” on eBay.com, or in sponsored search and online advertising, advertiser features

such as location. Throughout we assume non-singular attribute-based environments, where no bid-

der’s attribute is unique. I.e., for every attribute a, let na denote the number of bidders in the

environment with attribute a; then na > 0 =⇒ na ≥ 2.

In this section we prove a Bulow-Klemperer-type theorem for attribute-based environments.9 Let

Vic≤`a be the Vickrey mechanism with a local supply limit `a for every a, which limits the number

of bidders with attribute a who can win simultaneously. The proof of the following theorem uses a

commensuration argument of Hartline and Roughgarden (2009), and applies the FKG inequality

(Alon and Spencer 2008) to solve dependency issues.

Theorem 11 (Bulow-Klemperer-Type Theorem for Asymmetric Markets). For every

attribute-based environment with na regular bidders per attribute and k units, the expected revenue

of the Vic≤na auction with min{na, k} additional bidders per attribute is at least a 1
2
-fraction

of the optimal expected revenue in the original market. In other words, Vic≤na with min{na, k}

additional bidders per attribute is robustly 1
2
-optimal.

Proof. Let WOPT =WOPT(v),WVic =WVic(v) denote the winning bidders chosen by the opti-

mal mechanism in the original environment and by Vic≤na in the augmented environment, respec-

tively, given a value profile v of both original and augmenting bidders. Hartline and Roughgarden

(2009) show that to prove a 1/2-approximation it suffices to establish two commensuration condi-

tions among the two mechanisms:

(C1) Ev[
∑

i∈WVic\WOPT φi]≥ 0,

(C2) Ev[
∑

i∈WVic\WOPT pi(v)]≥Ev[
∑

i∈WOPT\WVic φi],

where φi is the virtual value of bidder i.

The proof of (C2) in (Hartline and Roughgarden 2009, Lemma 4.5) holds in our setting. In

contrast, proving (C1) in our setting turns out to be technically challenging due to dependencies
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among the random bidder sets WOPT and WVic. We use an auxiliary allocation procedure (Algo-

rithm 6), and rely on the fact that in our setting, Vic≤na applies a simple greedy algorithm: it

rejects all but the top na bidders per attribute, and allocates the units to the ≤ k highest remaining

bidders.

For the remainder of the proof, fix an attribute a, and let Ba be the set of na+min{na, k} bidders

with attribute a in the augmented environment. Fix the values of the original bidders in Ba as well

as the values of all bidders with different attributes, and let va denote the (random) value profile

of the augmenting bidders in Ba. Let WOPT
a =Ba∩WOPT denote the bidders in Ba who win in the

optimal mechanism, and let WVic
a = WVic

a (va) = Ba ∩WVic denote the bidders in Ba who win in

Vic≤na . We can now define our auxiliary procedure in Algorithm 6. Let WAux
a =WAux

a (va) denote

the bidders in Ba who win in this procedure, and observe WOPT
a ⊆WAux

a ⊆Ba.

Algorithm 6 Auxiliary Allocation Procedure

In the augmented environment, given WOPT
a , allocate the k units such that the welfare is maximized

subject to the constraint that all bidders in WOPT
a win.

We now establish two claims, the first of which relates the auxiliary procedure to Vic≤na and

the second of which relates it to the optimal mechanism.

Claim 3. For every a and every value profile va of the augmenting bidders with attribute a, the

bidders in WVic
a \WAux

a have non-negative virtual values.

Proof of Claim 3. Fix va and consider the allocation of Vic≤na in comparison to that of the

auxiliary procedure. Vic≤na is free to replace bidders in WOPT
a . Since Vic≤na is greedy, each replace-

ment from Ba will have a higher value than the replaced bidder in WOPT
a , and therefore (using

regularity) also a higher virtual value. The proof follows by noticing that all bidders in WOPT
a have

non-negative virtual values (Lemma 1). �

Claim 4. For every a, in expectation over the value profile va of the augmenting bidders with

attribute a, summing over the highest h≤min{na, k} virtual values of the bidders in WAux
a \WOPT

a

results in a non-negative total virtual value.

Proof of Claim 4. Given va, denote by ψ(1),ψ(2), . . . (where ψ(i) = ψ(i)(va)) the virtual values

of the bidders in Ba \WOPT
a , sorted in decreasing order of both values and virtual values. Let

1(i) = 1(i)(va) indicate whether the i-th bidder in Ba \WOPT
a wins in the auxiliary procedure, and

let q(i) be the probability that 1(i) = 1 over a random choice of va. The expected sum of the highest

min{na, k} virtual values of the bidders in WAux
a \WOPT

a can be written as
∑

i≤min{na,k}Eva [ψ(i) ·
1(i)]. To complete the proof of Claim 4 it is sufficient to show that this expression is non-negative.
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Notice that like Vic≤na , the auxiliary procedure is greedy in nature. Thus if the i-th bidder in

Ba \WOPT
a wins in the auxiliary procedure, and the values of bidders in Ba \WOPT

a increase, then

the i-th highest bidder will still win. Formally, for two value profiles va ≤ v′a we have 1(i)(va) ≤

1(i)(v
′
a) for every i. This positive correlation between how high the values and virtual values are

and between the probability of winning in the auxiliary procedure allows us to apply the FKG

inequality (Alon and Spencer 2008) as follows:

∑
i≤min{na,k}

Eva [ψ(i) ·1(i)] ≥
∑

i≤min{na,k}

Eva [ψ(i)] ·Eva [1(i)]

=
∑

i≤min{na,k}

Eva [ψ(i)] · q(i)

=
∑

i≤min{na,k}

(
Eva

[
i∑

i′=1

ψ(i′)

]
·
(
q(i)− q(i+1)

))
,

where the first inequality is by FKG, and where we set q(i+1) for i= min{na, k} to 0.

It is not hard to see that q(i) is decreasing in i. Therefore it suffices to prove that
∑i

i′=1Eva [ψ(i′)]≥

0 for every i≤min{na, k}. This is the sum of the expected virtual values of the top i bidders in

Ba \WOPT
a . Observe that the sum of the expected virtual values of any i augmented bidders in

Ba \WOPT
a equals 0, and there are at least min{na, k} such bidders. It follows that this sum for

the top i bidders is nonnegative. �

We now use Claims 3 and 4 to complete the proof of (C1). Still holding attribute a fixed, rewrite

Eva [
∑

i∈WVic
a \WOPT

a
φi] as Eva [

∑
i∈WVic

a \WAux
a

φi] + Eva [
∑

i∈WVic
a ∩(WAux

a \WOPT
a ) φi]. The left-hand side

is non-negative by Claim 3. We consider two cases for the right-hand side, which by greediness of

the auxiliary procedure and Vic≤na are the only possible cases:

1. (WAux
a \WOPT

a )⊆WVic
a : In this case WVic

a ∩(WAux
a \WOPT

a ) =WAux
a \WOPT

a , and so by Claim 4

the sum of virtual values is non-negative in expectation.

2. WVic
a ⊆WAux

a : In this case, WVic
a \WOPT

a is a subset of the highest min{na, k} bidders in

WAux
a \WOPT

a , and so by Claim 4 the sum of virtual values over this subset is non-negative in

expectation.

We have shown that Eva [
∑

i∈WVic
a \WOPT

a
φi] ≥ 0. Taking expectation and summing over all

attributes we get Ev[
∑

i∈WVic\WOPT φi]≥ 0, completing the proof of (C1) and Theorem 11. �

7.3. Asymmetric Bidders: Limiting Supply

Consider an attribute-based environment as defined in Section 7.2. For simplicity of presentation

assume that na, the number of bidders with attribute a, is even for every a. Recall that Vic≤na/2 is
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the Vickrey mechanism with a local supply limit na/2 for every a, meaning that no more than half

the bidders with the same attribute can win simultaneously. We now show that Vic≤na/2 is a good

supply-limiting mechanism for attribute-based environments. Note that it is considerably simpler

than Myerson’s optimal mechanism for asymmetric markets, which requires computing different

virtual value functions for different attributes.

Theorem 12 (Supply-Limiting Mechanism for Asymmetric Markets). For every

attribute-based environment with na regular bidders per attribute, the expected revenue of the

supply-limiting mechanism Vic≤na/2 is at least a 1
4
-fraction of the optimal expected revenue. In

other words, Vic≤na/2 is robustly 1
4
-optimal.

Proof. We instantiate Reduction 3 as follows: to go from the original market to the restricted

market, remove min{na
2
, k} bidders with attribute a from the original market. By submodularity

(Dughmi et al. 2012), this restriction on the original market maintains at least a 1
2
-fraction of the

original optimal expected revenue (since we removed at most half of the bidders). We can now apply

the Bulow-Klemperer-type theorem for asymmetric markets (Theorem 11) to the restricted market,

which has max{na
2
, na − k} bidders per attribute and k units. The expected revenue of Vic≤na/2

with min{na
2
, k} additional bidders is at least a 1

2
-fraction of the optimal expected revenue in the

restricted market. But this is equivalent to running Vic≤na/2 on the original market, completing

the proof. �

8. Conclusion and Discussion

Robustness has long been recognized as an important design principle in optimization; here we

apply it to optimal mechanism design. We study enhanced competition as a means for designing

robust and simple auctions, whose revenue guarantees provably exceed or approximate those of

the optimal auction, even when the latter is not well understood. Our main contributions are as

follows:

• The problem of designing optimal auctions in matching markets is challenging even given full

distributional information and regardless of robustness considerations. Yet the robust approach of

prior-independence can help us get a better understanding of the optimal auction.

• Prior-independence is similar to the standard approach in computationally-hard optimization:

let a polynomial-time algorithm approximate what can be achieved by an algorithm with unlimited

running time. Here we let a prior-independent mechanism approximate the revenue that can be

achieved by a mechanism with access to full distributional information.

• To achieve prior-independence we develop a framework of competition enhancement, which

encompasses the two complementary approaches of increasing demand and limiting supply and
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relates them via a general reduction. Within this framework we show that Vickrey with m more

bidders, or with n<m more bidders and a limit of n on the total number of allocations, guarantees

good revenue in both single- and multi-parameter markets and for many value distributions. Even

without adding bidders, limiting the number of allocations to half the size of the market and

running Vickrey has good revenue guarantees in a wide range of settings. The mechanisms we

design are computationally tractable and have constant approximation factors that often improve

as the inherent competition in the market grows. They also take advantage of the combinatorial

structure in the market — e.g., the properties of matching play a key role in our analysis.

• A revenue-driven seller may deliberate between acquiring information to carefully set prices for

existing buyers, drawing more potential buyers, and driving prices up by making what he’s selling

harder to get. Our results quantify the trade-offs between these strategies by answering questions

like the following: How many more buyers are needed to replace information acquisition? What is

a good balance between offering enough supply and extracting more revenue for every good sold?

And how does the approach of withholding supply measure up to the other two strategies?

• Our framework is flexible and extends to markets with allocation constraints and to mar-

kets with asymmetries among the buyers. This demonstrates that robustness and simplicity are

achievable even in complicated settings, and in fact are advisable when approaching such settings.

There are two main future research directions arising from our work. First, it is an interesting and

challenging direction to study the best possible revenue guarantee subject to robustness. One well-

defined quesiton is: given x additional bidders, what is the optimal prior-independent mechanism?

Second, we believe our techniques will be useful for even more general multi-parameter markets

— for instance, markets with gross substitutes preferences have combinatorial structure that can

possibly be utilized using our methods; or markets with positive correlation (affiliation) among

the bidders and thus inherently more competition that can be utilized.

Endnotes

1. By the revelation principle, this requirement is without loss of generality for a seller seeking a

dominant strategy implementation.

2. The Myerson characterization also extends to asymmetric environments, where there are mul-

tiple distributions {F i
1}i∈[n] and bidder i’s value for the good (good 1) is drawn from his distribu-

tion F i
1. However, in this case, the informational burden on the seller is even heavier, as it needs

to have full knowledge of the distributions of all buyers, and even getting only approximately close

to optimal revenue requires many samples from every distribution (Cole and Roughgarden 2014).
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3. Note that while we enhance competition among buyers in the market, we do not turn it into

a “competitive market” in which the buyers become price-takers. The focus of our work is not on

large markets and asymptotic results, rather we aim for our results to hold in markets of any size.

4. Multi-unit auctions are not to be confused with multi-item auctions in which there are multiple

heterogeneous goods.

5. If n is odd, one can first remove a bidder from the environment, losing at most a 1/n-fraction

of the optimal expected revenue.

6. Recall that a function f from sets of bidders to R is submodular if for every two sets S ⊂ T and

every bidder i /∈ T it holds that f(S ∪ {i})− f(S)≥ f(T ∪ {i})− f(T ). Equivalently, the marginal

contribution of a bidder to the value of f is decreasing.

7. It is not hard to adapt the proof to the case in which there are multiple maximum weighted

matchings, to show that one possible allocation of VCG run on the augmented matching environ-

ment leaves unallocated a set of bidders equal to U with at most one bidder removed.

8. Similarly, for every η ∈ [n,m] there is a Bulow-Klemperer-type theorem with η additional

bidders. This does not improve the guarantees in Section 6.

9. It is not hard to show that the Bulow-Klemperer-type theorem for asymmetric matroid environ-

ments of (Hartline and Roughgarden 2009, Theorem 4.4) applies to attribute-based environments.

This theorem requires augmenting the demand with an additional “duplicate” bidder for every

original bidder, and adding the constraint that at most one of each such pair wins simultaneously.

Our version in Theorem 11 utilizes the fact that many of the bidders in an attribute-based envi-

ronment are symmetric — namely all those with the same attribute — in order to avoid the pair

constraints, and when k is relatively small requires less bidders to be added to the environment.
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