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Prior-free auctions are robust auctions that assume no distribution over bidders’ valuations 
and provide worst-case (input-by-input) approximation guarantees. In contrast to previous 
work on this topic, we pursue good prior-free auctions with non-identical bidders.
Prior-free auctions can approximate meaningful benchmarks for non-identical bidders only 
when sufficient qualitative information about the bidder asymmetry is publicly known. We 
consider digital goods auctions where there is a total ordering of the bidders that is known 
to the seller, where earlier bidders are in some sense thought to have higher valuations. 
We use the framework of Hartline and Roughgarden (STOC’08) to define an appropriate 
revenue benchmark: the maximum revenue that can be obtained from a bid vector using 
prices that are nonincreasing in the bidder ordering and bounded above by the second-
highest bid. This monotone-price benchmark is always as large as the well-known fixed-price 
benchmark F (2) , so designing prior-free auctions with good approximation guarantees 
is only harder. By design, an auction that approximates the monotone-price benchmark 
satisfies a very strong guarantee: it is, in particular, simultaneously near-optimal for 
essentially every Bayesian environment in which bidders’ valuation distributions have 
nonincreasing monopoly prices, or in which the distribution of each bidder stochastically 
dominates that of the next. Even when there is no distribution over bidders’ valuations, 
such an auction still provides a quantifiable input-by-input performance guarantee.
In this paper, we design a simple O (1)-competitive prior-free auction for digital goods with 
ordered bidders. We also extend the monotone-price benchmark and our O (1)-competitive 
prior-free auction to multi-unit settings with limited supply.
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1. Introduction

Suppose you own a set of goods and want to make money by selling them. What is the best way to do it? This question 
is non-trivial even in digital goods auctions, where the seller has an unlimited supply of identical goods (like mp3s), and 
there are n bidders, each of whom wants only one good and has a private valuation (i.e., maximum willingness-to-pay) for 
it.

The question becomes easy if the seller has a prior product distribution on bidders’ valuations. Since supply is un-
limited and valuations are independent, the seller can optimize for each bidder separately. For a bidder i with valuation 
distribution Fi , the expected revenue is maximized by posting a monopoly price — a “take-it-or-leave-it” offer at a price in 
argmaxp[p · (1 − Fi(p))].

What if good prior information is expensive or impossible to acquire? What if a single auction is to be re-used several 
times, in settings with different or not-yet-known bidder valuations? Are there prior-free auctions that admit more robust, 
“worst-case” revenue guarantees? Particularly germane to this paper, do such auctions exist when none of the bidders are 
identical?

1.1. Revenue benchmarks

Goldberg et al. [11,12] were the first to pursue prior-free auctions, and they proposed a competitive analysis framework 
based on revenue benchmarks [6,20]; see also the survey by Hartline and Karlin [15].5 The idea is to define a real-valued 
function on inputs (i.e., bid vectors) that represents an upper bound on the maximum revenue achievable by any “rea-
sonable” auction on each input. They proposed the fixed-price benchmark F (2) for digital goods auctions, defined as the 
maximum revenue that can be obtained from a given bid vector by offering every bidder a common posted price that is at 
most the second-highest bid.

Comparing the revenue of an auction to F (2) initially looks like an “apples vs. oranges” comparison — the auction does 
not know bidders’ valuations but can employ arbitrary prices, while the benchmark is privy to all the private information 
but handicapped in the prices it can use. Nevertheless, Goldberg et al. [11] demonstrated the effectiveness of the fixed-price 
benchmark for meaningful competitive analysis: no auction achieves more than a ≈ .42 fraction of F (2) for every bid vector, 
and there are interesting auctions that obtain a constant fraction of this benchmark on every input.

1.2. The Bayesian thought experiment

To extend the revenue benchmark approach to new objective functions and asymmetric outcome spaces, Hartline and 
Roughgarden [16] advocated a general framework based on a “Bayesian thought experiment.” Roughly, this framework works 
as follows. The first step is to temporarily think of bidders’ valuations as drawn i.i.d. from some valuation distribution. The 
second step is to characterize the collection C of all optimal auctions that can arise — those with maximum-possible ex-
pected objective function value with respect to some valuation distribution. For example, for revenue maximization in digital 
goods auctions, C is the set of common posted prices (bidders are i.i.d. and hence have a common monopoly price). Finally, 
given a bid vector b, the benchmark is defined as the maximum objective function value obtained by an auction in C on the 
input b. In digital goods auctions, this is the maximum revenue that can be obtained by offering every bidder a common 
posted price. Thus, modulo the restriction that prices are at most the second-highest bid, the Bayesian thought experiment 
automatically regenerates the F (2) benchmark. (For technical reasons, the upper bound on prices still needs to be added to 
permit interesting results [11].) More importantly, all benchmarks generated by this framework are automatically well mo-
tivated: if the performance of an auction is within a constant factor of such a benchmark for every input, then in particular 
it is simultaneously near-optimal in every Bayesian i.i.d. environment.6 In addition, if there is no distribution over inputs, 
then the auction still provides a quantifiable input-by-input guarantee.

There are several analogs elsewhere in theoretical computer science: worst-case regret guarantees in online decision-
making (e.g., if cost vectors are drawn i.i.d. from a distribution, then the optimal action is time-invariant); and static 
optimality in data structure design (e.g., if searches are i.i.d., then there is some fixed optimal binary search tree). The 
framework in [16] and some variants of it have been used successfully to extend the reach of prior-free mechanism design 
to new objective functions [16] and more complex environments [7,17,18].

1.3. Beyond I.I.D. bidders

The primary goal of this paper is the following.

To design good prior-free auctions for benchmarks derived from non-identical bidders.

5 For other recent approaches to the design and analysis of auctions with non-Bayesian sellers, see Chen and Micali [6] and Lopomo et al. [20].
6 This weaker goal of designing good prior-independent auctions — where a distribution over inputs is assumed and used in the analysis of a mechanism, 

but not in its design — is now studied in its own right. See Dhangwatnotai et al. [9] and the references therein.
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Why is this non-trivial? Let’s apply the Bayesian thought experiment to a digital goods auction, now assuming that bidder i’s 
valuation is drawn (independently) from its own distribution Fi . For fixed distributions F1, . . . , Fn , the optimal auction offers 
each bidder its respective monopoly price. Ranging over all choices of F1, . . . , Fn , we find that the collection C corresponds 
to the set of all posted price vectors.7 Thus, for every bid vector b, there is an auction Ab ∈ C that uses the price vector b and 
hence obtains the full welfare 

∑n
i=1 bi as revenue. There is no digital goods auction that always obtains a constant fraction 

of the optimal welfare [11], so the Bayesian thought experiment with non-i.i.d. bidders generates a benchmark that is far 
too strong for meaningful competitive analysis.

The exercise above suggests the following principle for prior-free auction design with non-identical bidders.

Prior-free auctions can approximate benchmarks derived from non-identical bidders only if “sufficient qualitative information” 
about bidder asymmetry is publicly known.

As an example, suppose there is a publicly known partition of the bidders into groups of otherwise indistinguishable bidders. 
We then require the Bayesian thought experiment to conform to the public information, meaning that the valuations of 
bidders in the same group are i.i.d. draws from a distribution. Then, the optimal auctions C are the price vectors that 
offer a common posted price to each group of bidders. The induced prior-free benchmark is the maximum revenue that 
can be obtained from the given bid vector using such a price vector. This is essentially the same benchmark proposed in 
work on attribute auctions [3,4] that predates the benchmark framework in [16]. There are prior-free digital goods auctions 
with expected revenue at least a constant fraction of this benchmark when every group has at least 2 bidders (by an easy 
reduction to the standard setup) and when there is a constant number of groups [3,4].

1.4. Ordered bidders and stochastic dominance

What about the general case when all bidders are distinguishable? We initially consider digital goods (unlimited supply) 
auctions where there is a total ordering of the bidders that is known to the seller. Without loss of generality, we assume 
that bidders are ordered 1, 2, . . . , n.8 Earlier bidders are in some sense expected to have higher valuations. This information 
could be derived from, for example, zip codes, eBay bidding histories, credit history, previous transactions with the seller, 
and so on. We emphasize that the known information is only qualitative, and is not quantitative or distributional, as is 
standard in Bayesian auction design.

To generate a prior-free benchmark, we consider Bayesian thought experiments that conform to the known information. 
Call the distributions F1, . . . , Fn ordered if the corresponding monopoly prices are nonincreasing. For example, the Fi ’s could 
be:

1. Uniform distributions on intervals [0, hi] with nonincreasing hi ’s.
2. Exponential distributions with nondecreasing rates.
3. Lognormal distributions with nonincreasing means.

Letting (F1, . . . , Fn) range over all ordered distributions, the corresponding collection C of optimal auctions is the set of 
monotone price vectors p, where p1 ≥ · · · ≥ pn . We denote the induced revenue benchmark by M(1) , the maximum revenue 
that can be obtained from a given bid vector from a monotone price vector. For example, if a bid vector b is itself monotone, 
with b1 ≥ · · · ≥ bn , then setting p = b shows that M(1)(b) is the full welfare 

∑n
i=1 bi . If b1 ≤ · · · ≤ bn , however, then the 

revenue-maximizing monotone price vector is simply a constant price — equal to the bid bi that maximizes j · b j . We 
emphasize that the benchmark M(1)(b) is defined, and we demand a good approximation to it, on every bid vector b, 
including those that defy the semantics of the bidder ordering.

By definition, an auction with revenue at least a constant fraction of M(1) on every input is simultaneously near-optimal 
in every Bayesian digital goods auction with independent and ordered distributions. A similar simultaneous approximation 
result holds under the standard notion of stochastic dominance. Recall that a distribution Fi stochastically dominates an-
other Fi+1 if Fi(x) ≤ Fi+1(x) for every x ≥ 0. Proposition A.1 shows that if Fi stochastically dominates Fi+1 for every 
i = 1, 2, . . . , n − 1, and every distribution is regular,9 then there is a monotone price vector with expected revenue at least 
50% of that of an optimal price vector. It follows that an auction with revenue at least a constant fraction of M(1) on 
every input is simultaneously near-optimal in every Bayesian digital goods auction in which the distribution of each bidder 
stochastically dominates that of the next.

7 This fact holds even if we restrict the Fi ’s to be, say, uniform distributions with supports [0, hi ] (and hence monopoly prices hi/2).
8 Ties between bidders can also be accommodated easily, either with cosmetic changes to the auction and analysis in this paper, or by handling groups 

of indistinguishable bidders separately using known techniques.
9 A distribution F is regular [22] if v − (1 − F (v))/ f (v) is nondecreasing in v .
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1.5. The monotone price benchmarkM(2)

Given a digital goods environment with ordered bidders, we define the monotone price benchmark M(2)(b) for every bid 
vector b as the maximum revenue obtainable via a monotone price vector in which every price is at most the second-
highest bid. As in the standard model with indistinguishable bidders [11], the upper bound on prices is necessary for 
the existence of prior-free auctions with non-trivial approximation guarantees.10 Indeed, since a constant price vector is 
monotone, M(2)(b) ≥ F (2)(b) for every b and so designing auctions competitive with the monotone-price benchmark is 
at least as difficult as with the fixed-price benchmark. Taking bi = 1

i for i = 1, 2, . . . , n shows that there exist bid vectors 
for which M(2)(b) exceeds F (2)(b) by an �(logn) factor. As far as we know, all prior-free auctions proposed prior to the 
present work are �(logn)-competitive with M(2) .

The monotone-price benchmark was previously considered, with a completely different motivation, by Aggarwal and 
Hartline [1]. In [1], which predates the benchmark framework in [16], M(2) was one of three ad hoc benchmarks proposed 
for “knapsack auctions,” where bidders have a public size and feasible solutions correspond to subsets of bidders with total 
size at most a publicly known budget. Aggarwal and Hartline [1] gave a digital goods auction that, for every bid vector b, has 
expected revenue at least 1cM(2)(b) − O (h log log logh), where c > 0 is a constant and h is the ratio between the maximum 
and minimum bids. Our results improve over those in [1] in several respects: we obtain a constant-factor approximation 
guarantee without an additive loss term and without any dependence on the magnitude of the valuations, and we also 
obtain results for limited-supply auctions.

1.6. Our results: unlimited supply

Section 3 gives a digital goods auction that is O (1)-competitive with the monotone price benchmark M(2) . Our auction 
is simple and natural. It follows the standard approach of randomly partitioning the bidders into two groups, and using 
one group of bidders to set prices for the other. It computes an optimal monotone price vector for the “training set” of 
bidders, subject to using prices that are powers of 2, and extends this price vector to the “test set” of bidders. To handle 
inputs where the monotone price benchmark derives most of its revenue from a small number of bidders, with constant 
probability we invoke an auction that is O (1)-competitive with the fixed-price benchmark F (2) .

1.7. Our results: limited supply

Section 4 extends our results to multi-unit auctions, where the number of items k can be less than the number of 
bidders. We consider the analog M(2,k) of the monotone price benchmark, which maximizes only over (monotone) price 
vectors that sell at most k units. We prove that every auction that is O (1)-competitive with the benchmark M(2,k) is 
simultaneously near-optimal for a range of Bayesian multi-unit environments — roughly, those in which the (ironed) virtual 
valuation functions of the bidders form a pointwise total ordering. We adapt a reduction from [1] to show how to build 
a limited-supply auction that is O (1)-competitive with respect to M(2,k) from an unlimited-supply auction that is O (1)-
competitive with respect to M(2) .

2. Preliminaries

This section reviews mechanism design basics and digital goods auctions; the expert can skip to Section 3. Section 4
describes the changes needed to accommodate limited-supply settings.

In a digital goods auction, there is one seller and n bidders. There is an unlimited supply of identical goods. Each bidder 
wants only one good, and has a private — i.e., unknown to the seller — valuation vi . We study direct-revelation auctions, 
in which the bidders report bids b to the seller, and the seller then decides who wins a good and at what price.11 For a 
fixed (randomized) auction, we use Xi(b) and Pi(b) to denote the winning probability and expected payment of bidder i
when the bid profile is b. As in previous works on prior-free auction design, we consider only auctions that are individually 
rational — meaning Pi(b) ≤ bi · Xi(b) for every i and b — and truthful, meaning that for each bidder i and fixed bids b−i by 
the other bidders, bidder i maximizes its quasi-linear utility vi · Xi(bi, b−i) − Pi(bi, b−i) by setting bi = vi . Since we consider 
only truthful auctions, from now on we use bids b and valuations v interchangeably.

Truthful and individually rational digital goods auctions have a nice canonical form: for every bidder i there is a (possibly 
randomized) function ti(v−i) that, given the valuations v−i of the other bidders, gives bidder i a “take-it-or-leave-it offer” 
at the price ti(v−i). This means that bidder i is given a good if and only if vi ≥ ti(v−i), in which case it is charged the 
price ti(v−i). It is clear that every choice (t1, . . . , tn) of such functions defines a truthful, individually rational digital goods 
auction; conversely, every such auction is equivalent to a choice of (t1, . . . , tn) [11]. A special case of such an auction 

10 An auction that always has revenue at least a constant fraction of M(2) is still simultaneously near-optimal in every Bayesian environment with 
ordered or stochastically dominating distributions, with somewhat worse constant factors, provided these distributions satisfy some mild extra conditions. 
See Section 4.1 for further discussion.
11 For the questions we ask, the “Revelation Principle” (see, e.g., Nisan [23]) ensures that there is no loss of generality by considering only direct-revelation 
auctions.
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is a price vector p, where each ti is the constant function ti(v−i) = pi . As noted in Section 1, in Bayesian settings with 
independent valuations, price vectors maximize expected revenue over all truthful and individually rational auctions.

The revenue of an auction on the valuation profile v is the sum of the payments collected from the winners. Let v(2)

denote the second-highest valuation of a profile v. The fixed-price benchmark F (2) is defined, for each valuation profile v, as 
the maximum revenue that can be obtained from a constant price vector whose price is at most v(2):

F (2)(v) = max
p≤v(2)

⎛
⎝ ∑

i : vi≥p

p

⎞
⎠ .

Now suppose there is a known ordering on the bidders, say 1, 2, . . . , n. The monotone-price benchmark M(2) is defined 
analogously to F (2) , except that non-constant monotone price vectors are also permitted:

M(2)(v) = max
v(2)≥p1≥p2≥···≥pn

⎛
⎝ ∑

i : vi≥pi

pi

⎞
⎠ . (1)

Clearly, M(2)(v) ≥F (2)(v) for every input v.
We reiterate that the monotonicity and upper-bound constraints are enforced only in the computation of the bench-

mark M(2) . Auctions, while obviously not privy to the private valuations, can employ whatever prices they see fit. This is 
natural for prior-free auctions and also necessary for non-trivial results [10].

Finally, when we say that an auction is α-competitive with or has approximation factor α for a benchmark, we mean that 
the auction’s expected revenue is at least a 1/α fraction of the benchmark for every input v.

3. A prior-free O (1)-approximate digital goods auction with ordered bidders

3.1. The auction

We propose the auction A∗ , displayed in Fig. 1. We next elaborate on the steps of the auction. In the first step, we 
run an arbitrary digital goods auction that is O (1)-competitive with respect to the fixed-price benchmark F (2) . The best-
known approximation factor is 3.12 [19]; there are also very simple auctions with approximation factors 4 [11] and 4.68 [2]. 
Intuitively, this step is meant to extract good revenue from the set of bidders with valuations almost as high as the second-
highest valuation.

The second step of the algorithm randomly partitions the bidders into a “training set” A and a “test set” B . Almost 
all prior-free auctions have this structure, with the bidders in the training set setting prices for those in the test set. For 
simplicity, we sell (in the fourth step) only to bidders in the test set B . An obvious optimization is to sell simultaneously to 
bidders in A, using the bids of B; this would improve the hidden constant in our approximation guarantee by a factor of 2.

The second step also defines the valuation profile vA . This profile has the same length of v, with the valuations of the 
bidders in B zeroed out.

The third step computes the monotone price vector that maximizes revenue with respect to the valuation profile vA , 
subject to the extra constraint that every price is a (possibly negative) integer power of 2 bounded above by the second-
highest valuation of vA . Using dynamic programming, this step (and hence the entire auction) can be implemented in 
polynomial time.

Let p be the price vector computed in the third step. In the language of Section 2, the fourth step sets the take-it-or-
leave-it offer ti(v−i) to +∞ for bidders i ∈ A and to pi for bidders i ∈ B . Since p is computed using only the valuations of 
the bidders in A, these ti(v−i)’s are well defined and the auction A∗ is truthful and individually rational.

We prove the following.

Theorem 3.1. There is a constant c > 0 such that, for every input v, the expected revenue of the auction A∗ is at least c ·M(2)(v).

Very roughly, the intuition behind the auction A∗ and Theorem 3.1 is the following. Consider first a valuation profile v in 
which a constant fraction of the revenue in M(2)(v) is provided by (a constant number of) bidders with valuation at least a 
constant times M(2)(v). In this case, the fixed-price benchmark F (2)(v) is within a constant factor of M(2)(v), and the first 
step of A∗ ensures that the auction is constant-competitive. Thus, the difficult inputs are those in which a large number 
of bidders contribute to M(2)(v). For these inputs, however, concentration bounds should imply that the training set A
strongly resembles the test set B , and hence the computed price vector p should generalize well. We note, however, that 
this high-level intuition appears also in previous works [1] that obtained worse bounds; to prove a constant-competitive 
guarantee, the analysis has to be executed with some care.
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Input: a valuation profile v for a totally ordered set N = {1, 2, . . . , n} of bidders.
1. With probability 1/2, run a digital goods auction on v that is O (1)-competitive with respect to the benchmark F (2), and halt.
2. Choose a subset A ⊆ N uniformly at random, and partition N into the two sets A and B = N \ A. Let vA denote the valuation profile v in which we 

set the valuations in B to 0.
3. Compute the revenue-maximizing price vector p for vA that is monotone and that uses prices restricted to be values in {2t : t ∈ Z} that are at most 

the second-highest valuation in vA .
4. Sell items to bidders in B only, uses the prices p.

Fig. 1. The auction A∗ .

3.2. Analysis preliminaries: some important events

This section identifies some important probabilistic events and proves that, for every valuation profile, they hold with 
constant probability over the coin flips of A∗ (i.e., the random choice of A). The next section shows that the revenue of A∗
is close to M(2)(v) whenever these events hold, which implies Theorem 3.1.

For the rest of this section, fix an arbitrary valuation profile v. Let RevA(p) denote the revenue extracted by the prices p
from the bidders in A in the third step of A∗ . Let RevB(p) denote the revenue extracted by p from the bidders in B in the 
fourth step of A∗ . Define Rev(p) = Rev

A(p) + Rev
B(p).

By definition, event E1 occurs when Rev(p) ≥M(2)(v)/6.

Lemma 3.2. The event E1 holds with probability at least 1/16.

Proof. Let p∗ achieve the maximum in (1) for v. With probability 1/4, the bidders with the highest and second-highest 
valuations lie in A. Given this event, the conditional expected revenue from bidders in A and in B under the price vector p∗
is, respectively, at least M(2)(v)/2 and at most M(2)(v)/2. The conditional expected revenue from bidders in A under p∗
is at least M(2)(v)/3 with probability at least 1

4 . This follows by applying Markov’s inequality to bound the probability that 
the conditional expected revenue from bidders in B is more than 2M(2)(v)/3. Since the bidders with highest and second-
highest valuations lie in A, rounding every price of p∗ down to the nearest power of 2 yields a candidate for the price 
vector p computed by the auction A∗ in its third step, and the revenue extracted by this candidate is at least half that of 
p∗ . Thus, RevA(p) ≥ M(2)(v)/6 with probability at least 1

4 · 1
4 = 1

16 . Since Rev(p) ≥ Rev
A(p) with probability 1, the lemma 

follows. �
Identifying the next collection of important events requires some definitions.

Definition 3.1. For every integer l ≥ 0, the l-th price level is the (unique) price q in {2t : t ∈ Z} such that M(2)(v)/2l+1 < q ≤
M(2)(v)/2l .

We use p(l) to denote the l-th price level.

Definition 3.2. For a nonnegative integer l, a level-l triple (i, j, l) is two bidders i < j with vi, v j ≥ p(l) .

We denote by Wijl the bidders between i and j (inclusive) that would win at a price of p(l):

Wijl = {k ∈ N : i ≤ k ≤ j and vk ≥ p(l)}.
We call a level-l triple (i, j, l) large if |Wijl| ≥ 288l. We call a level-l triple (i, j, l) balanced under a partition of the bidders 
into A and B if its winners are split 13 -

2
3 or better between the two sets:

1

3
× |Wijl| ≤ |A ∩ Wijl|, |B ∩ Wijl| ≤ 2

3
× |Wijl|.

By definition, event E2(l) occurs when every large level-l-triple is balanced. We let E2 denote ∩l≥24E2(l). We proceed to 
lower bound the probability of this event.

Claim 3.1. For every integer l ≥ 0, the number of level-l-triples is at most 22l+2.

Proof. Consider a bidder k with valuation vk ≥ p(l) > M(2)(v)/2l+1. The definition of M(2)(v) implies that there are at 
most 2l+1 such bidders. Since a level-l-triple (i, j, l) is uniquely determined by two bidders with valuation at least p(l) , 
there are at most (2l+1)2 = 22l+2 level-l-triples. �

We use the following version of the Chernoff bound (see e.g. [21]).
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Theorem 3.3. Let T1, . . . , Tm be i.i.d. random variables such that Ti ∈ {0, 1} for all i ∈ {1, . . . , m}. Define T = ∑m
i=1 Ti and μ = E[T ]. 

For all 0 < δ < 1:

Pr[(1 − δ)μ ≤ T ≤ (1 + δ)μ] ≥ 1− 2× exp

(
−μδ2

4

)
.

Claim 3.2. For every l ≥ 24, Pr[E2(l)] ≥ 1 − 1/2l .

Proof. Fix a large level-l-triple (i, j, l). By definition, the number of winning bidders in (i, j, l) is at least 288l. Since each of 
these bidders is included in the set A independently and uniformly at random, Theorem 3.3 implies that the triple (i, j, l)
is not balanced with probability at most 2/e4l . By Claim 3.1, there are at most 22l+2 level-l-triples. By the union bound, the 
probability that some large level-l-triple is not balanced is at most 22l+2 × 2/e4l ≤ 1/2l when l ≥ 24. �
Lemma 3.4. The event E2 holds with probability at least 31/32.

Proof. By Claim 3.2 and the union bound,

1 − Pr[E2] ≤
∑
l≥24

(1− Pr[E2(l)]) ≤
∑
l≥24

1

2l
≤ 1

32
. �

Lemmas 3.2 and 3.4 imply the following.

Corollary 3.5. Pr[E1 ∩ E2] ≥ 1/32.

3.3. The main analysis

Fix a valuation profile v. Let Il(p) = { j ∈ N : p j = p(l)} denote the bidders offered the price p(l) in p. Since p in a 
monotone price vector, Il(p) is an interval of bidders. Let Wl(p) = {i ∈ Il(p) : vi ≥ p(l)} denote the bidders of Il(p) that win 
under the price vector p. The interval Il(p) is good if |Wl(p)| ≥ 288l and bad otherwise. Let Revl(p) = |Wl(p)| × p(l) denote 
the contribution of these bidders toward Rev(p). Since every bidder belongs to exactly one interval, Rev(p) = ∑

l≥0 Revl(p).
The next claim shows that the bad intervals Il(p) with l ≥ 24 contribute relatively little revenue.

Claim 3.3. With probability 1,
∑

l≥24 : Il(p) is bad

Revl(p) ≤ 1

18
×M(2)(v).

Proof. Fix a bad interval Il(p). Since |Wl(p)| < 288l and p(l) ≤M(2)(v)/2l ,

Revl(p) = |Wl(p)| × p(l) <
288l

2l
×M(2)(v).

Summing over all bad intervals Il(p) with l ≥ 24, we obtain
∑

l≥24 : Il(p) is bad

Revl(p) ≤
∑
l≥24

288l

2l
×M(2)(v) ≤ 1

18
×M(2)(v). �

We can now prove our main result.

Proof Theorem 3.1. Fix a valuation profile v. First suppose that M(2)(v) ≤ 432 · F (2)(v). With 50% probability, the auction 
A∗ executes an auction that is α-competitive with F (2) for a constant α. Thus, the expected revenue of A∗ on this input is 
at least F (2)(v)/2α ≥M(2)(v)/864α.

For the rest of the proof, we assume that M(2)(v) > 432 ·F (2)(v). We claim that in this case, with probability 1, the first 
few intervals contribute little revenue:

23∑
l=0

Revl(p) ≤ M(2)(v)/18. (2)

For otherwise, there is an interval Ih(p) with h ∈ [0, 23] with
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Revh(p) = |Wh(p)| × p(h) > M(2)(v)/(18 × 24).

Consider the fixed-price vector p′ with common offer price p(h) . Since every price of p is at most the second-highest 
valuation in vA (and hence in v), the same holds for p′ . The fixed-price benchmark F (2)(v) is at least the revenue extracted 
by p′ , which is at least |Wh(p)| × p(h) >M(2)(v)/432; this contradicts our initial assumption.

Assume now that E1 ∩ E2 holds. Since E1 holds, Rev(p) ≥ M(2)(v)/6. Combining this with Claim 3.3 and (2), the good 
intervals from the bigger levels provide large revenue:

∑
l≥24 : Il(p) is good

Revl(p) ≥
(

1

18

)
×M(2)(v). (3)

Consider a good interval Il(p) with l ≥ 24. Denote by i and j the first and last bidders in Wl(p), respectively, so that for 
all k ∈ Wl(p) we have i ≤ k ≤ j. Since pi = p j = p(l) and vi, v j ≥ p(l) , (i, j, l) is a level-l-triple. Because the interval is good, 
|Wl(p)| ≥ 288l, and hence the triple (i, j, l) is large. Since E2 holds and l ≥ 24, the triple (i, j, l) is balanced. Hence,

|Wl(p) ∩ B| ≥
(
1

3

)
× |Wl(p)|

and the revenue from the bidders in Il(p) ∩ B under p is at least (1/3) × Revl(p). Summing over all good intervals Il(p)

with l ≥ 24 and applying (3) yields

Rev
B(p) ≥

∑
l≥24 : Il(p) is good

(
1

3

)
× Revl(p) ≥

(
1

54

)
×M(2)(v). (4)

Since the auction A∗ executes steps 2–4 with 50% probability, and since Pr[E1 ∩ E2] ≥ 1/32 (Corollary 3.5), the expected 
revenue of A∗ on such an input v is at least

1

2
× 1

32
× E

[
Rev

B(p) |E1 ∩ E2
]

≥ M(2)(v)

3456
.

This completes the proof. �
4. Limited-supply multi-unit auctions

This section extends our results to multi-unit auctions with limited supply. To develop this theory, we extend the mono-
tone price benchmark M(2) to the case of an arbitrary number k ≥ 2 of units for sale. We call a price vector p feasible for 
the valuation profile v and supply limit k if: (i) p1 ≥ p2 ≥ · · · ≥ pn; (ii) all prices are at most the second-highest valuation 
of v; and (iii) there are at most k bidders i with vi > pi . We allow our benchmark to break ties in an optimal way. Thus, the 
revenue earned by a feasible price vector is 

∑
i : vi>pi

pi plus, if there are � items remaining after these sales, the sum of the 
prices offered to up to � bidders i with vi = pi . We define the k-unit monotone price benchmark M(2,k)(v) as the maximum 
revenue obtained by a price vector that is feasible for v and k.

There are two main issues to address. The first issue is to identify a class of prior distributions such that approximat-
ing M(2,k) pointwise implies simultaneous approximation of the optimal expected revenue across all Bayesian multi-unit 
settings with priors belonging to the class. The challenge, relative to the unlimited-supply setting in Section 3, is that 
limited-supply Bayesian optimal auctions are considerably more complex than unlimited-supply ones. Section 4.1 shows, es-
sentially, that the benchmark M(2,k)(v) is meaningful whenever the valuation distributions have pointwise ordered ironed 
virtual valuations. The second issue is to design auctions competitive with the benchmark M(2,k)(v). Section 4.2 accom-
plishes this by adapting a reduction in [1] to show how to obtain a limited-supply auction that is O (1)-competitive with 
respect to M(2,k)(v) from a digital goods auction that is O (1)-competitive with respect to M(2) .

4.1. Justifying the k-unit monotone price benchmark

The goal of this section is to prove that every prior-free auction that is O (1)-competitive with the benchmark M(2,k)(v)
has expected revenue at least a constant fraction of optimal in every Bayesian multi-unit environment with valuation dis-
tributions lying in a prescribed class. Making this precise requires some terminology and facts from the theory of Bayesian 
optimal auction design, as developed by Myerson [22].

4.1.1. Optimal auction theory
Consider a bidder with valuation drawn from a prior distribution F with positive and continuous density f on some 

interval. The virtual value v at a point v in the support is defined as

φ(v) = v − 1−F(v)
.

f (v)
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For example, if F is the uniform distribution on [0, b], then the corresponding virtual valuation function is φ(v) = 2v − b.
For clarity, we first discuss the case of regular distributions, meaning distributions with nondecreasing virtual valuation 

functions. In this case, the Bayesian optimal auction awards items to the (at most k) bidders with the highest positive virtual 
valuations. The payment of a winning bidder is the minimum bid at which it would continue to win (keeping others’ bids 
the same). That is, if the (k + 1)th highest virtual valuation is z, then every winning bidder i pays φ−1

i (max{0, z}). For these 
prices to be related to the monotone price benchmark, we need to impose conditions on the φ−1

i (z)’s. This contrasts with 
the unlimited-supply setting, where restricting the φ−1

i (0)’s — that is, the monopoly reserve prices — to be nonincreasing 
in i is enough to justify the monotone-price benchmark (Section 1.4). Since the (k + 1)th highest virtual valuation could be 
anything, the natural requirement is to restrict φ−1

i (z) to be nonincreasing in i for every non-negative number z.
Accommodating irregular distributions, for which the optimal Bayesian auction is more complicated, presents additional 

complications. Each virtual valuation function φi is replaced by the “nearest nondecreasing approximation”, called the ironed 
virtual valuation function φ̄i . The optimal auction awards the items to the (at most k) bidders with the highest positive ironed 
virtual valuations. Since ironed virtual valuation functions typically have non-trivial constant regions, ties can occur, and we 
assume that ties are broken randomly. That is, if there are k items, a group S of bidders that all have ironed virtual valuation 
equal to z > 0, and � < k bidders with ironed virtual value greater than z with � + |S| > k, then k − � winners from S are 
chosen uniformly at random.

4.1.2. Pointwise ordered distributions
We call valuation distributions F1, . . . , Fn pointwise ordered if φ̄−1

i (z) is nonincreasing in i for every non-negative z.12

The motivating parametric examples discussed in Section 1.4 — uniform distributions with intervals [0, hi] and nonincreas-
ing hi ’s, exponential distributions with nondecreasing rates, and lognormal distributions with nonincreasing means — are 
pointwise ordered in this sense.

We also require a second condition, which we inherit from the standard i.i.d. unlimited-supply setting. The issue is that, 
with arbitrary irregular distributions, no prior-free auction can be simultaneously near-optimal in all Bayesian environments, 
even with i.i.d. bidders and unlimited supply.13 Various mild conditions are sufficient to rule out this problem; see [16] for 
a discussion. Here, for simplicity, we restrict attention to well-behaved Bayesian multi-unit environments, meaning that the 
Bayesian optimal auction derives at most a constant fraction (90%, say) of its revenue from outcomes in which some winner 
is charged a price higher than the second-highest valuation. (Such a winner is necessarily the bidder with the highest 
valuation.) Textbook distributions generally yield well-behaved environments.

4.1.3. Connecting M(2,k) to Bayesian multi-unit settings
The main result of this section is that approximating the k-unit monotone price benchmark M(2,k) guarantees simulta-

neous approximation of the optimal auction in all well-behaved Bayesian multi-unit environments with pointwise ordered 
distributions. We require the following lemma, which states that “projecting” onto a subset of bidders can only decrease the 
value of the benchmark M(2,k) .

Lemma 4.1. For every valuation profile v, k ≥ 2, and subset S of the bidders with induced profile vS , M(2,k)(v) ≥M(2,k)(vS ).

Proof. Fix an input v, with monotone prices p∗ determining M(2,k)(v). By induction, we only need to show that adding a 
single new bidder i to an arbitrary position in the ordering can only increase the value of the benchmark. Start by offering i
the same price r as its predecessor in the ordering (or the second-highest valuation, if there is no predecessor). If i rejects 
(i.e., vi < r), this extended price vector is feasible and we are done (the optimal feasible price vector is only better). If i
accepts (i.e., vi ≥ r) and the price vector is infeasible (with k +1 winners), then we argue as follows. Go through the bidders 
after i one by one, increasing the offer price to r. This preserves monotonicity. If a previously winning bidder ever rejects 
this higher offer price, we are done — feasibility is restored and the overall revenue is higher. If not, there is now a “suffix” 
of bidders with the common offer price r. We now increase the common offer price to the bidders in this suffix until it 
equals the price offered to the previous bidder in p∗ . This increases the number of bidders in the suffix, and the price-
increasing process continues. Eventually a bidder that was winning under p∗ will reject the new offer price — otherwise 
we contradict the optimality of p∗ . This leaves us with a feasible monotone price vector with revenue at least that of the 
original one. �
Theorem 4.2. If the expected revenue of a multi-unit auction A is at least a constant fraction of M(2,k)(v) on every input, then, in 
every well-behaved multi-unit Bayesian environment with pointwise ordered distributions, the expected revenue of A is at least a 
constant fraction of that of the optimal auction for the environment.

12 Since φ̄i is continuous and nondecreasing, φ̄−1
i (z) is an interval. If the inverse image has multiple points, we define φ̄−1

i (z) by the infimum. If the 
inverse image is empty, we define φ̄−1

i (z) as the left or right endpoint of the distribution’s support, as appropriate.
13 Informally, consider valuation distributions that take on only two values, one very large (say M) and the other 0. Suppose the probability of having 
a very large valuation is very small (say 1/n2). If the distribution is known, the optimal auction uses a reserve price of M for each bidder. Elementary 
arguments, as in [16], show that no single auction is near-optimal for all values of M .
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Input: A valuation profile v for a totally ordered set N = {1, 2, . . . , n} of bidders and k identical items. A denotes a truthful digital goods 
(unlimited-supply) auction with ordered bidders.

1. Let p achieve the optimum monotone price benchmark M(2,k)(v) for v and k. Let S = {i ∈ N : vi ≥ pi} be the set of winners under p.
2. Run the unlimited supply auction A on the bidders S , with the induced bidder ordering.
3. Charge suitable prices so that truthful reporting is a dominant strategy for every bidder.

Fig. 2. The auction Black-Box Reduction (BBR).

Proof. Fix an auction A that is β-competitive with M(2,k) . Fix a well-behaved Bayesian multi-unit environment with point-
wise ordered valuation distributions F1, . . . , Fn . Let OPT be the optimal auction for this environment. We claim that, for 
every input v in which the revenue collected by OPT from the bidder with the highest valuation is at most the second-
highest valuation, the benchmark M(2,k)(v) is at least half the expected revenue of OPT on v. This implies that the expected 
revenue of A is at least 1/2β times that of OPT on this input. Since the environment is well behaved, the theorem follows 
from this claim.

To prove the claim, fix an input v, as above. Recall that OPT , as a Bayesian optimal auction, awards items to the (at 
most k) bidders with the highest positive ironed virtual valuations, breaking ties randomly. The tricky case of the proof is 
when ties occur. Assume there are k items, a group S of bidders with common ironed virtual value z > 0, and a group T of 
� ∈ (k − |S|, k) bidders with ironed virtual value greater than z (so |S| > k − �). We next explicitly compute the payments 
collected by OPT on this input, using the standard payment formula for incentive-compatible mechanisms (see [22] or [14]). 
Let ai and bi denote the left and right endpoints, respectively, of the interval of values v that satisfy φ̄i(v) = z. Since the 
distributions are pointwise ordered, the ai ’s and the bi ’s are nonincreasing in i. Let q = (k − �)/|S| denote the winning 
probability of a bidder in S . Define q′ = (k − � + 1)/(|S| + 1) as the hypothetical winning probability of a bidder in T if 
it lowered its bid to the value φ̄−1

i (z). The expected payment of a bidder i in S is qai — ai in the event that it wins. The 
payment of a bidder i in T (who wins with certainty) is q′ai + (1 − q′)bi . To complete the proof, we argue that M(2,k)(v) is 
at least the revenue collected by OPT from the bidders in S , and also at least that from the bidders in T .

Recall from Lemma 4.1 that projecting onto a subset of bidders only decreases the value of M(2,k)(v). First, project onto 
the k bidders of S with the highest ai values. Consider charging each such bidder the price ai . This is a monotone price 
vector. By our assumption on the input v, all of these prices are at most the second-highest valuation in v. By the definitions, 
vi ≥ ai for every bidder i ∈ S so every offer will be accepted. The resulting revenue is at least the revenue collected by OPT
from bidders in S , and M(2,k)(v) is only higher.

Similarly, project onto the (at most k) bidders of T , and considers charging each such bidder i the price q′ai + (1 − q′)bi . 
Again, this is a monotone price vector with all prices bounded above by the second-highest valuation of v, and every offer 
will be accepted. The value of the monotone price benchmark can only be larger, so M(2,k)(v) is also at least the revenue 
collected by OPT from bidders in T . The proof is complete. �
4.2. Reduction from limited to unlimited supply

Having justified the k-unit monotone price benchmark M(2,k)(v), we turn to designing auctions that approximate it 
well. We show that competing with this benchmark reduces to competing with the benchmark M(2) in unlimited-supply 
settings. The reduction from limited to unlimited supply for ordered bidders was given in [1] for knapsack auctions. This 
reduction is also a generalization of the one in [11] for identical bidders. The idea is to first identify the k “most valuable” 
bidders, and then run an unlimited-supply auction on them. Observe that the most valuable bidders with an ordering are 
not necessarily those with the highest valuations. For example, a high-valuation bidder late in the ordering need not be 
valuable, because extracting high revenue from it might necessitate excluding many moderate-valuation bidders earlier in 
the ordering. We report the “black-box reduction” of [1] in Fig. 2.

Theorem 4.3. If A is a truthful unlimited-supply auction with ordered bidders that is β-competitive with respect to M(2) , then the
Black-Box Reduction (BBR) auction is a truthful limited-supply auction with ordered bidders that is 2β-competitive withM(2,k)(v).

Proof. The analysis in [1] immediately implies that the Black-Box Reduction (BBR) auction is truthful, individually rational, 
and has at most k winners. We also note that the first step can be implemented efficiently using dynamic programming, so 
if A runs in polynomial time, then so does the Black-Box Reduction (BBR) auction.

We prove the performance guarantee by arguing two statements: (i) the unlimited supply benchmark M(2)(vS ) applied 
to S is at least half of the limited-supply benchmark M(2,k)(v) applied to the original bidder set; and (ii) the expected 
revenue of Black-Box Reduction (BBR) on the original bidder set is at least that of the auction A with the bidders S . 
The second statement follows immediately from the facts that the winners of Black-Box Reduction (BBR) are the same 
as those of A, and that the winners’ payments are only higher. For statement (i), consider prices p that determine the 
benchmark M(2,k)(v). The projection pS of this price vector onto the set S of bidders has revenue exactly M(2,k)(v). If pS

is feasible, then it certifies that the benchmark M(2)(vS ) is at least M(2,k)(v). The only issue is if pS uses a price larger 
than the second-highest valuation v(2,S) of v S . Setting p̂i = min{pi, v(2,S)} for each i ∈ S yields a monotone and feasible 
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price vector p̂. Every price of pS is at most the second-highest valuation v(2) of the original bidders, and pS extracts a price 
higher than v(2,S) from at most one bidder of S (the one with highest valuation). Thus, the revenue extracted by p̂S from 
vS is at least that of pS , less v(2) . Since M(2,k)(v) ≥ 2v(2) — consider the price vector that offers v(2) to everybody — p̂S

retains at least half the revenue of pS . Statement (i) and the theorem follow. �
Of course, we can use the auction A∗ from Section 3 in Theorem 4.3 to obtain a truthful limited-supply auction that 

is O (1)-competitive with the benchmark M(2,k)(v). Theorem 4.2 implies that the resulting auction enjoys a strong simulta-
neous approximation guarantee in Bayesian environments.

5. Conclusions

This paper introduced the problem of prior-free auction design with ordered bidders. The bidder ordering represents 
qualitative information about which bidders are in some sense expected to have higher valuations. We used the “Bayesian 
thought experiment” of [16] to prove that every auction that is O (1)-competitive with the monotone-price benchmark M(2)

of [1] is simultaneously near-optimal across a wide range of Bayesian settings. Our main result is a construction of such 
a prior-free auction. We also extend the monotone price benchmark, its connection to Bayesian auction design, and our 
O (1)-competitive prior-free auction to limited-supply settings.

There are a number of promising directions for future research.

1. For the problems studied in this paper, it would be interesting to design auctions with much better constant-factor 
approximation guarantees. The profit-extraction and consensus techniques, as in [13], could be useful for this purpose.

2. For settings more general than identical goods, it would be interesting to generalize all of the contributions of this 
paper — the prior-free benchmark, the connection to Bayesian settings, and the design of O (1)-competitive auctions. 
Matroid settings [18], where the feasible outcomes correspond to independent sets of a matroid on the bidder set, are 
a natural place to begin.

3. It would be interesting to incorporate budgets into the model. Thus far, all work on prior-free auction design with 
budgets handles only equal budgets [8]. Can any of our techniques for heterogeneous (ordered) bidders be transferred 
to deal with heterogeneous budgets?

4. Finally, it would be interesting to pursue prior-independent guarantees in the spirit of [9] in Bayesian environments 
with ordered or stochastically dominating distributions.
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Appendix A. Stochastically dominating distributions

Consider a digital goods environment in which the valuation distribution of bidder i is regular and stochastically dom-
inates that of bidder i + 1. The optimal auction need not use a monotone price vector, but there is always a near-optimal 
auction that does. The following result was communicated to us by Dhangwatnotai and Hartline (personal communication, 
November 2011), and we provide a proof for completeness.

Proposition A.1. In a digital goods auction with n bidders, if the valuation distribution Fi for bidder i stochastically dominates Fi+1
for every i = 1, 2, . . . , n −1, and if every distribution Fi is regular, then there is a monotone price vector with expected revenue at least 
50% of that of an optimal price vector.

Proof. We use the probabilistic method. Choose z ∈ [0, 1] uniformly at random and consider the price vector p(z) =
(F−1

1 (z), . . . , F−1
n ). Since each Fi stochastically dominates Fi+1, p(z) is monotone with probability 1. The expected revenue 

extracted from bidder i by this random price vector is the expected revenue of a random reserve price pi drawn from the 
valuation distribution Fi . Since Fi is regular, the Bulow-Klemperer theorem [5] implies that the expected revenue extracted 
from the ith bidder is at least 50% times that of a monopoly price; see also [9, Lemma 3.6]. By linearity of expectation, the 
expected revenue (over z and v) of p(z) is at least half that of the optimal auction. There exists a choice of z ∈ [0, 1] such 
that the (monotone) price vector p(z) obtains expected revenue at least half that of an optimal one. �
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