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1. Introduction

Suppose you own a set of goods and want to make money by selling them. What is the best way to do it? This question
is non-trivial even in digital goods auctions, where the seller has an unlimited supply of identical goods (like mp3s), and
there are n bidders, each of whom wants only one good and has a private valuation (i.e., maximum willingness-to-pay) for
it.

The question becomes easy if the seller has a prior product distribution on bidders’ valuations. Since supply is un-
limited and valuations are independent, the seller can optimize for each bidder separately. For a bidder i with valuation
distribution F;, the expected revenue is maximized by posting a monopoly price — a “take-it-or-leave-it” offer at a price in
argmax,[p - (1 — Fi(p))].

What if good prior information is expensive or impossible to acquire? What if a single auction is to be re-used several
times, in settings with different or not-yet-known bidder valuations? Are there prior-free auctions that admit more robust,
“worst-case” revenue guarantees? Particularly germane to this paper, do such auctions exist when none of the bidders are
identical?

1.1. Revenue benchmarks

Goldberg et al. [11,12] were the first to pursue prior-free auctions, and they proposed a competitive analysis framework
based on revenue benchmarks [6,20]; see also the survey by Hartline and Karlin [15].°> The idea is to define a real-valued
function on inputs (i.e., bid vectors) that represents an upper bound on the maximum revenue achievable by any “rea-
sonable” auction on each input. They proposed the fixed-price benchmark F® for digital goods auctions, defined as the
maximum revenue that can be obtained from a given bid vector by offering every bidder a common posted price that is at
most the second-highest bid.

Comparing the revenue of an auction to F@ initially looks like an “apples vs. oranges” comparison — the auction does
not know bidders’ valuations but can employ arbitrary prices, while the benchmark is privy to all the private information
but handicapped in the prices it can use. Nevertheless, Goldberg et al. [11] demonstrated the effectiveness of the fixed-price
benchmark for meaningful competitive analysis: no auction achieves more than a ~ .42 fraction of F® for every bid vector,
and there are interesting auctions that obtain a constant fraction of this benchmark on every input.

1.2. The Bayesian thought experiment

To extend the revenue benchmark approach to new objective functions and asymmetric outcome spaces, Hartline and
Roughgarden [16] advocated a general framework based on a “Bayesian thought experiment.” Roughly, this framework works
as follows. The first step is to temporarily think of bidders’ valuations as drawn i.i.d. from some valuation distribution. The
second step is to characterize the collection C of all optimal auctions that can arise — those with maximum-possible ex-
pected objective function value with respect to some valuation distribution. For example, for revenue maximization in digital
goods auctions, C is the set of common posted prices (bidders are i.i.d. and hence have a common monopoly price). Finally,
given a bid vector b, the benchmark is defined as the maximum objective function value obtained by an auction in C on the
input b. In digital goods auctions, this is the maximum revenue that can be obtained by offering every bidder a common
posted price. Thus, modulo the restriction that prices are at most the second-highest bid, the Bayesian thought experiment
automatically regenerates the 7 benchmark. (For technical reasons, the upper bound on prices still needs to be added to
permit interesting results [11].) More importantly, all benchmarks generated by this framework are automatically well mo-
tivated: if the performance of an auction is within a constant factor of such a benchmark for every input, then in particular
it is simultaneously near-optimal in every Bayesian ii.d. environment.® In addition, if there is no distribution over inputs,
then the auction still provides a quantifiable input-by-input guarantee.

There are several analogs elsewhere in theoretical computer science: worst-case regret guarantees in online decision-
making (e.g., if cost vectors are drawn i.i.d. from a distribution, then the optimal action is time-invariant); and static
optimality in data structure design (e.g., if searches are i.i.d., then there is some fixed optimal binary search tree). The
framework in [16] and some variants of it have been used successfully to extend the reach of prior-free mechanism design
to new objective functions [16] and more complex environments [7,17,18].

1.3. Beyond LLD. bidders
The primary goal of this paper is the following.

To design good prior-free auctions for benchmarks derived from non-identical bidders.

5 For other recent approaches to the design and analysis of auctions with non-Bayesian sellers, see Chen and Micali [6] and Lopomo et al. [20].
6 This weaker goal of designing good prior-independent auctions — where a distribution over inputs is assumed and used in the analysis of a mechanism,
but not in its design — is now studied in its own right. See Dhangwatnotai et al. [9] and the references therein.
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Why is this non-trivial? Let’s apply the Bayesian thought experiment to a digital goods auction, now assuming that bidder i’s
valuation is drawn (independently) from its own distribution F;. For fixed distributions F1, ..., F,, the optimal auction offers
each bidder its respective monopoly price. Ranging over all choices of Fq, ..., F;, we find that the collection C corresponds
to the set of all posted price vectors.” Thus, for every bid vector b, there is an auction Ap, € C that uses the price vector b and
hence obtains the full welfare Z?:l b; as revenue. There is no digital goods auction that always obtains a constant fraction
of the optimal welfare [11], so the Bayesian thought experiment with non-i.i.d. bidders generates a benchmark that is far
too strong for meaningful competitive analysis.
The exercise above suggests the following principle for prior-free auction design with non-identical bidders.

Prior-free auctions can approximate benchmarks derived from non-identical bidders only if “sufficient qualitative information”
about bidder asymmetry is publicly known.

As an example, suppose there is a publicly known partition of the bidders into groups of otherwise indistinguishable bidders.
We then require the Bayesian thought experiment to conform to the public information, meaning that the valuations of
bidders in the same group are i.i.d. draws from a distribution. Then, the optimal auctions C are the price vectors that
offer a common posted price to each group of bidders. The induced prior-free benchmark is the maximum revenue that
can be obtained from the given bid vector using such a price vector. This is essentially the same benchmark proposed in
work on attribute auctions [3,4] that predates the benchmark framework in [16]. There are prior-free digital goods auctions
with expected revenue at least a constant fraction of this benchmark when every group has at least 2 bidders (by an easy
reduction to the standard setup) and when there is a constant number of groups [3,4].

1.4. Ordered bidders and stochastic dominance

What about the general case when all bidders are distinguishable? We initially consider digital goods (unlimited supply)
auctions where there is a total ordering of the bidders that is known to the seller. Without loss of generality, we assume
that bidders are ordered 1,2, ...,n.2 Earlier bidders are in some sense expected to have higher valuations. This information
could be derived from, for example, zip codes, eBay bidding histories, credit history, previous transactions with the seller,
and so on. We emphasize that the known information is only qualitative, and is not quantitative or distributional, as is
standard in Bayesian auction design.

To generate a prior-free benchmark, we consider Bayesian thought experiments that conform to the known information.
Call the distributions Fq, ..., F, ordered if the corresponding monopoly prices are nonincreasing. For example, the F;’s could
be:

1. Uniform distributions on intervals [0, h;] with nonincreasing h;’s.
2. Exponential distributions with nondecreasing rates.
3. Lognormal distributions with nonincreasing means.

Letting (Fq,..., Fp) range over all ordered distributions, the corresponding collection C of optimal auctions is the set of
monotone price vectors p, where p; > --- > p,. We denote the induced revenue benchmark by M@, the maximum revenue
that can be obtained from a given bid vector from a monotone price vector. For example, if a bid vector b is itself monotone,
with by > --- > by, then setting p=b shows that MM (b) is the full welfare Z?:1 b;. If by <--- < by, however, then the
revenue-maximizing monotone price vector is simply a constant price — equal to the bid b; that maximizes j-bj. We
emphasize that the benchmark M (b) is defined, and we demand a good approximation to it, on every bid vector b,
including those that defy the semantics of the bidder ordering.

By definition, an auction with revenue at least a constant fraction of M on every input is simultaneously near-optimal
in every Bayesian digital goods auction with independent and ordered distributions. A similar simultaneous approximation
result holds under the standard notion of stochastic dominance. Recall that a distribution F; stochastically dominates an-
other Fjy1 if Fij(x) < Fi;1(x) for every x > 0. Proposition A.1 shows that if F; stochastically dominates F;;i for every
i=1,2,...,n—1, and every distribution is regular,’ then there is a monotone price vector with expected revenue at least
50% of that of an optimal price vector. It follows that an auction with revenue at least a constant fraction of M@ on
every input is simultaneously near-optimal in every Bayesian digital goods auction in which the distribution of each bidder
stochastically dominates that of the next.

7 This fact holds even if we restrict the F;’s to be, say, uniform distributions with supports [0, h;] (and hence monopoly prices h;/2).

8 Ties between bidders can also be accommodated easily, either with cosmetic changes to the auction and analysis in this paper, or by handling groups
of indistinguishable bidders separately using known techniques.

9 A distribution F is regular [22] if v — (1 — F(v))/f(v) is nondecreasing in v.
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1.5. The monotone price benchmark M@

Given a digital goods environment with ordered bidders, we define the monotone price benchmark M@ (b) for every bid
vector b as the maximum revenue obtainable via a monotone price vector in which every price is at most the second-
highest bid. As in the standard model with indistinguishable bidders [11], the upper bound on prices is necessary for
the existence of prior-free auctions with non-trivial approximation guarantees.'’ Indeed, since a constant price vector is
monotone, M@ (b) > F@ (b) for every b and so designing auctions competitive with the monotone-price benchmark is
at least as difficult as with the fixed-price benchmark. Taking b; = % for i=1,2,...,n shows that there exist bid vectors
for which M®@ (b) exceeds F@ (b) by an Q(logn) factor. As far as we know, all prior-free auctions proposed prior to the
present work are Q(logn)-competitive with M@,

The monotone-price benchmark was previously considered, with a completely different motivation, by Aggarwal and
Hartline [1]. In [1], which predates the benchmark framework in [16], M@ was one of three ad hoc benchmarks proposed
for “knapsack auctions,” where bidders have a public size and feasible solutions correspond to subsets of bidders with total
size at most a publicly known budget. Aggarwal and Hartline [1] gave a digital goods auction that, for every bid vector b, has
expected revenue at least %M(z)(b) — O(hlogloglogh), where ¢ > 0 is a constant and h is the ratio between the maximum
and minimum bids. Our results improve over those in [1] in several respects: we obtain a constant-factor approximation
guarantee without an additive loss term and without any dependence on the magnitude of the valuations, and we also
obtain results for limited-supply auctions.

1.6. Our results: unlimited supply

Section 3 gives a digital goods auction that is O (1)-competitive with the monotone price benchmark M®. Our auction
is simple and natural. It follows the standard approach of randomly partitioning the bidders into two groups, and using
one group of bidders to set prices for the other. It computes an optimal monotone price vector for the “training set” of
bidders, subject to using prices that are powers of 2, and extends this price vector to the “test set” of bidders. To handle
inputs where the monotone price benchmark derives most of its revenue from a small number of bidders, with constant
probability we invoke an auction that is O (1)-competitive with the fixed-price benchmark F,

1.7. Our results: limited supply

Section 4 extends our results to multi-unit auctions, where the number of items k can be less than the number of
bidders. We consider the analog M@% of the monotone price benchmark, which maximizes only over (monotone) price
vectors that sell at most k units. We prove that every auction that is O(1)-competitive with the benchmark M@ is
simultaneously near-optimal for a range of Bayesian multi-unit environments — roughly, those in which the (ironed) virtual
valuation functions of the bidders form a pointwise total ordering. We adapt a reduction from [1] to show how to build
a limited-supply auction that is O(1)-competitive with respect to M@® from an unlimited-supply auction that is O(1)-
competitive with respect to M@,

2. Preliminaries

This section reviews mechanism design basics and digital goods auctions; the expert can skip to Section 3. Section 4
describes the changes needed to accommodate limited-supply settings.

In a digital goods auction, there is one seller and n bidders. There is an unlimited supply of identical goods. Each bidder
wants only one good, and has a private — i.e., unknown to the seller — valuation v;. We study direct-revelation auctions,
in which the bidders report bids b to the seller, and the seller then decides who wins a good and at what price."' For a
fixed (randomized) auction, we use Xj(b) and P;(b) to denote the winning probability and expected payment of bidder i
when the bid profile is b. As in previous works on prior-free auction design, we consider only auctions that are individually
rational — meaning P;(b) < b; - Xj(b) for every i and b — and truthful, meaning that for each bidder i and fixed bids b_; by
the other bidders, bidder i maximizes its quasi-linear utility v; - Xj(b;, b_;) — Pj(b;, b_;) by setting b; = v;. Since we consider
only truthful auctions, from now on we use bids b and valuations v interchangeably.

Truthful and individually rational digital goods auctions have a nice canonical form: for every bidder i there is a (possibly
randomized) function t;(v_;) that, given the valuations v_; of the other bidders, gives bidder i a “take-it-or-leave-it offer”
at the price tj(v_;). This means that bidder i is given a good if and only if v; > tj(v_;), in which case it is charged the
price tij(v_;). It is clear that every choice (t1, ..., t;) of such functions defines a truthful, individually rational digital goods
auction; conversely, every such auction is equivalent to a choice of (t1,...,t;) [11]. A special case of such an auction

10 An auction that always has revenue at least a constant fraction of M® is still simultaneously near-optimal in every Bayesian environment with
ordered or stochastically dominating distributions, with somewhat worse constant factors, provided these distributions satisfy some mild extra conditions.
See Section 4.1 for further discussion.

11 For the questions we ask, the “Revelation Principle” (see, e.g., Nisan [23]) ensures that there is no loss of generality by considering only direct-revelation
auctions.

163



S. Bhattacharya, E. Koutsoupias, J. Kulkarni et al. Theoretical Computer Science 846 (2020) 160-171

is a price vector p, where each t; is the constant function t;(v_;) = p;. As noted in Section 1, in Bayesian settings with
independent valuations, price vectors maximize expected revenue over all truthful and individually rational auctions.

The revenue of an auction on the valuation profile v is the sum of the payments collected from the winners. Let v
denote the second-highest valuation of a profile v. The fixed-price benchmark F® is defined, for each valuation profile v, as
the maximum revenue that can be obtained from a constant price vector whose price is at most v®:

F@(v) = max Z p

)
P=V \itvizp

Now suppose there is a known ordering on the bidders, say 1,2,...,n. The monotone-price benchmark M® is defined
analogously to F®, except that non-constant monotone price vectors are also permitted:

MP () = max Z pil. (1)

v@zpizpazzpn \ ;D

Clearly, M®@ (v) > F@ (v) for every input v.

We reiterate that the monotonicity and upper-bound constraints are enforced only in the computation of the bench-
mark M®. Auctions, while obviously not privy to the private valuations, can employ whatever prices they see fit. This is
natural for prior-free auctions and also necessary for non-trivial results [10].

Finally, when we say that an auction is a-competitive with or has approximation factor o for a benchmark, we mean that
the auction’s expected revenue is at least a 1/« fraction of the benchmark for every input v.

3. Aprior-free O (1)-approximate digital goods auction with ordered bidders
3.1. The auction

We propose the auction A*, displayed in Fig. 1. We next elaborate on the steps of the auction. In the first step, we
run an arbitrary digital goods auction that is O(1)-competitive with respect to the fixed-price benchmark F®@. The best-
known approximation factor is 3.12 [19]; there are also very simple auctions with approximation factors 4 [11] and 4.68 [2].
Intuitively, this step is meant to extract good revenue from the set of bidders with valuations almost as high as the second-
highest valuation.

The second step of the algorithm randomly partitions the bidders into a “training set” A and a “test set” B. Almost
all prior-free auctions have this structure, with the bidders in the training set setting prices for those in the test set. For
simplicity, we sell (in the fourth step) only to bidders in the test set B. An obvious optimization is to sell simultaneously to
bidders in A, using the bids of B; this would improve the hidden constant in our approximation guarantee by a factor of 2.

The second step also defines the valuation profile vA. This profile has the same length of v, with the valuations of the
bidders in B zeroed out.

The third step computes the monotone price vector that maximizes revenue with respect to the valuation profile v#,
subject to the extra constraint that every price is a (possibly negative) integer power of 2 bounded above by the second-
highest valuation of vA. Using dynamic programming, this step (and hence the entire auction) can be implemented in
polynomial time.

Let p be the price vector computed in the third step. In the language of Section 2, the fourth step sets the take-it-or-
leave-it offer t;(v_;) to +oo for bidders i € A and to p; for bidders i € B. Since p is computed using only the valuations of
the bidders in A, these t;(v_;)’s are well defined and the auction A* is truthful and individually rational.

We prove the following.

Theorem 3.1. There is a constant ¢ > 0 such that, for every input v, the expected revenue of the auction A* is at least ¢ - M@ (v).

Very roughly, the intuition behind the auction .4* and Theorem 3.1 is the following. Consider first a valuation profile v in
which a constant fraction of the revenue in M® (v) is provided by (a constant number of) bidders with valuation at least a
constant times M@ (v). In this case, the fixed-price benchmark F@ (v) is within a constant factor of M) (v), and the first
step of A* ensures that the auction is constant-competitive. Thus, the difficult inputs are those in which a large number
of bidders contribute to M@ (v). For these inputs, however, concentration bounds should imply that the training set A
strongly resembles the test set B, and hence the computed price vector p should generalize well. We note, however, that
this high-level intuition appears also in previous works [1] that obtained worse bounds; to prove a constant-competitive
guarantee, the analysis has to be executed with some care.
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Input: a valuation profile v for a totally ordered set N={1,2,..., n} of bidders.

1. With probability 1/2, run a digital goods auction on v that is O (1)-competitive with respect to the benchmark F®, and halt.

2. Choose a subset A C N uniformly at random, and partition N into the two sets A and B = N\ A. Let v# denote the valuation profile v in which we
set the valuations in B to 0.

3. Compute the revenue-maximizing price vector p for v# that is monotone and that uses prices restricted to be values in {2¢ : t € Z} that are at most
the second-highest valuation in v/,

4. Sell items to bidders in B only, uses the prices p.

Fig. 1. The auction .A*.

3.2. Analysis preliminaries: some important events

This section identifies some important probabilistic events and proves that, for every valuation profile, they hold with
constant probability over the coin flips of .A* (i.e., the random choice of A). The next section shows that the revenue of A4*
is close to M@ (v) whenever these events hold, which implies Theorem 3.1.

For the rest of this section, fix an arbitrary valuation profile v. Let REv”(p) denote the revenue extracted by the prices p
from the bidders in A in the third step of .A*. Let REVE(p) denote the revenue extracted by p from the bidders in B in the
fourth step of A*. Define Rev(p) = Rev® (p) + RevE (p).

By definition, event £; occurs when Rev(p) > M@ (v)/6.

Lemma 3.2. The event £, holds with probability at least 1/16.

Proof. Let p* achieve the maximum in (1) for v. With probability 1/4, the bidders with the highest and second-highest
valuations lie in A. Given this event, the conditional expected revenue from bidders in A and in B under the price vector p*
is, respectively, at least M@ (v)/2 and at most M@ (v)/2. The conditional expected revenue from bidders in A under p*
is at least M@ (v)/3 with probability at least %. This follows by applying Markov’s inequality to bound the probability that

the conditional expected revenue from bidders in B is more than 2M? (v)/3. Since the bidders with highest and second-
highest valuations lie in A, rounding every price of p* down to the nearest power of 2 yields a candidate for the price
vector p computed by the auction .4* in its third step, and the revenue extracted by this candidate is at least half that of
p*. Thus, Rev/(p) > M@ (v)/6 with probability at least - X = {&. Since Rev(p) > Rev” (p) with probability 1, the lemma
follows. O

Identifying the next collection of important events requires some definitions.

Definition 3.1. For every integer [ > 0, the I-th price level is the (unique) price g in {2¢ : t € Z} such that M@ (v)/2+1 < ¢ <
M@ () /2.

We use pg to denote the I-th price level.
Definition 3.2. For a nonnegative integer I, a level-I triple (i, j,I) is two bidders i < j with v;, v; > p(,.

We denote by W;j; the bidders between i and j (inclusive) that would win at a price of p():

Wip={keN:i<k<jandvy>pg).

We call a level-I triple (i, j, 1) large if |W;j| > 288l. We call a level- triple (i, j,I) balanced under a partition of the bidders

into A and B if its winners are split %-% or better between the two sets:

1 2
3 X Wil < [ANWijl, IBNWij| < 3 X (Wil

By definition, event &£ (I) occurs when every large level-I-triple is balanced. We let & denote Nj>24&>(I). We proceed to
lower bound the probability of this event.

Claim 3.1. For every integer | > 0, the number of level-I-triples is at most 222,

most 241 such bidders. Since a level-I-triple (i, j,!) is uniquely determined by two bidders with valuation at least Py,
there are at most (2/71)2 = 221+2 Jevel-I-triples. O

Proof. Consider a bidder k with valuation v > pg) > M@ (v)/2!+1. The definition of M® (v) implies that there are at

We use the following version of the Chernoff bound (see e.g. [21]).
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Theorem 3.3. Let Ty, ..., Try be i.i.d. random variables such that T; € {0, 1} foralli € {1, ..., m}. Define T = Z;L T; and p = E[T].
Forall0 <6 < 1:

(-45)
P =u<T<(+dHul=1-2xexp( ).

Claim 3.2. For every | > 24, Pr[&>2 (D] > 1 — 1/2’.

Proof. Fix a large level-I-triple (i, j,[). By definition, the number of winning bidders in (i, j,I) is at least 288I. Since each of
these bidders is included in the set A independently and uniformly at random, Theorem 3.3 implies that the triple (i, j,[)
is not balanced with probability at most 2/e%. By Claim 3.1, there are at most 22+2 level-I-triples. By the union bound, the
probability that some large level-I-triple is not balanced is at most 22+2 x 2/e# <1/2! when [>24. O

Lemma 3.4. The event &, holds with probability at least 31/32.

Proof. By Claim 3.2 and the union bound,

1-Pr&] < Y (1 —PHEON <Y 2 < . O

1>24 1>24
Lemmas 3.2 and 3.4 imply the following.
Corollary 3.5. Pr{&1 N &1 > 1/32.
3.3. The main analysis

Fix a valuation profile v. Let I;(p) ={j € N : pj = py} denote the bidders offered the price pg in p. Since p in a
monotone price vector, I;(p) is an interval of bidders. Let W(p) = {i € I;(p) : vi > p()} denote the bidders of I;(p) that win
under the price vector p. The interval I;(p) is good if |W;(p)| > 288l and bad otherwise. Let REv;(p) = |W;(p)| x pq) denote
the contribution of these bidders toward REv(p). Since every bidder belongs to exactly one interval, REv(p) = Y ;. o REV/(p).

The next claim shows that the bad intervals I;(p) with | > 24 contribute relatively little revenue. -

Claim 3.3. With probability 1,

1 @
> R < o x MPw).
[>24 : I)(p) is bad

Proof. Fix a bad interval I;(p). Since |W;(p)| < 288! and pgy < M@ (v)/2!,

2881 )
Revi(p) = Wi(P)| x pqy < EETRES ME(v).

Summing over all bad intervals I;(p) with [ > 24, we obtain

288l 1
2) )
> R =) S xMPw s x MPw. o

[>24:1;(p) is bad 1>24
We can now prove our main result.

Proof Theorem 3.1. Fix a valuation profile v. First suppose that M@ (v) < 432 . F@ (v). With 50% probability, the auction
A* executes an auction that is c-competitive with F@ for a constant «. Thus, the expected revenue of .A* on this input is
at least F@ (v)/2a = M@ (v)/864a.
For the rest of the proof, we assume that M® (v) > 432 . 7@ (v). We claim that in this case, with probability 1, the first
few intervals contribute little revenue:
23
> Revi(p) < MP (v)/18. )
=0

For otherwise, there is an interval I (p) with h € [0, 23] with
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REV, (D) = [Wh(P)| X py > M@ (v)/(18 x 24).

Consider the fixed-price vector p’ with common offer price p). Since every price of p is at most the second-highest
valuation in v# (and hence in v), the same holds for p’. The fixed-price benchmark F® (v) is at least the revenue extracted
by p’, which is at least |Wp(p)| x pp) > M (v)/432; this contradicts our initial assumption.

Assume now that £ N & holds. Since & holds, REv(p) > M@ (v)/6. Combining this with Claim 3.3 and (2), the good
intervals from the bigger levels provide large revenue:

> Revip) = (11—8> x M (v). 3)

[>24:1;(p) is good

Consider a good interval I;(p) with [ > 24. Denote by i and j the first and last bidders in W,(p), respectively, so that for
all k e Wi(p) we have i <k < j. Since pj=p;=pq and v, v; > pq), (i, j,D is a level-I-triple. Because the interval is good,
|W(p)| > 288l, and hence the triple (i, j,I) is large. Since & holds and [ > 24, the triple (i, j,[) is balanced. Hence,

1
IWi(p) N B| = <§) x [Wi(p)|

and the revenue from the bidders in I;(p) N B under p is at least (1/3) x REv;(p). Summing over all good intervals I;(p)
with [ > 24 and applying (3) yields

Revi@) > ) G) x REvi(p) > (51—4) x MP (). (4)

[>24:1;(p) is good

Since the auction .A* executes steps 2-4 with 50% probability, and since Pr[£1 N &,] > 1/32 (Corollary 3.5), the expected
revenue of .A* on such an input v is at least

M@ W)

LV XE[REVB(p)|€1 052] >
= "3256

2 32
This completes the proof. O

4. Limited-supply multi-unit auctions

This section extends our results to multi-unit auctions with limited supply. To develop this theory, we extend the mono-
tone price benchmark M@ to the case of an arbitrary number k > 2 of units for sale. We call a price vector p feasible for
the valuation profile v and supply limit k if: (i) p;1 > pp > --- > pp; (ii) all prices are at most the second-highest valuation
of v; and (iii) there are at most k bidders i with v; > p;. We allow our benchmark to break ties in an optimal way. Thus, the
revenue earned by a feasible price vector is Zi:w>m pi plus, if there are ¢ items remaining after these sales, the sum of the

prices offered to up to ¢ bidders i with v; = p;. We define the k-unit monotone price benchmark M2% (v) as the maximum
revenue obtained by a price vector that is feasible for v and k.

There are two main issues to address. The first issue is to identify a class of prior distributions such that approximat-
ing M@0 pointwise implies simultaneous approximation of the optimal expected revenue across all Bayesian multi-unit
settings with priors belonging to the class. The challenge, relative to the unlimited-supply setting in Section 3, is that
limited-supply Bayesian optimal auctions are considerably more complex than unlimited-supply ones. Section 4.1 shows, es-
sentially, that the benchmark M@ (v) is meaningful whenever the valuation distributions have pointwise ordered ironed
virtual valuations. The second issue is to design auctions competitive with the benchmark M @¥ (v). Section 4.2 accom-
plishes this by adapting a reduction in [1] to show how to obtain a limited-supply auction that is O (1)-competitive with
respect to M@ (v) from a digital goods auction that is O (1)-competitive with respect to M@,

4.1. Justifying the k-unit monotone price benchmark

The goal of this section is to prove that every prior-free auction that is O (1)-competitive with the benchmark M@K (v)
has expected revenue at least a constant fraction of optimal in every Bayesian multi-unit environment with valuation dis-
tributions lying in a prescribed class. Making this precise requires some terminology and facts from the theory of Bayesian
optimal auction design, as developed by Myerson [22].

4.1.1. Optimal auction theory
Consider a bidder with valuation drawn from a prior distribution F with positive and continuous density f on some
interval. The virtual value v at a point v in the support is defined as
1-F()

¢(V):V—W.
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For example, if F is the uniform distribution on [0, b], then the corresponding virtual valuation function is ¢(v) =2v —b.
For clarity, we first discuss the case of regular distributions, meaning distributions with nondecreasing virtual valuation
functions. In this case, the Bayesian optimal auction awards items to the (at most k) bidders with the highest positive virtual
valuations. The payment of a winning bidder is the minimum bid at which it would continue to win (keeping others’ bids
the same). That is, if the (k4 1)th highest virtual valuation is z, then every winning bidder i pays ¢>,._1 (max{0, z}). For these

prices to be related to the monotone price benchmark, we need to impose conditions on the ¢; 1(2)’s. This contrasts with

the unlimited-supply setting, where restricting the ¢i_1(0)'s — that is, the monopoly reserve prices — to be nonincreasing
in i is enough to justify the monotone-price benchmark (Section 1.4). Since the (k + 1)th highest virtual valuation could be
anything, the natural requirement is to restrict ¢, 1(2) to be nonincreasing in i for every non-negative number z.

Accommodating irregular distributions, for which the optimal Bayesian auction is more complicated, presents additional
complications. Each virtual valuation function ¢; is replaced by the “nearest nondecreasing approximation”, called the ironed
virtual valuation function ¢;. The optimal auction awards the items to the (at most k) bidders with the highest positive ironed
virtual valuations. Since ironed virtual valuation functions typically have non-trivial constant regions, ties can occur, and we
assume that ties are broken randomly. That is, if there are k items, a group S of bidders that all have ironed virtual valuation
equal to z > 0, and ¢ < k bidders with ironed virtual value greater than z with ¢ + |S| > k, then k — £ winners from S are
chosen uniformly at random.

4.1.2. Pointwise ordered distributions

We call valuation distributions Fq, ..., F, pointwise ordered if (13[ L) is nonincreasing in i for every non-negative z.'?
The motivating parametric examples discussed in Section 1.4 — uniform distributions with intervals [0, h;] and nonincreas-
ing h;'s, exponential distributions with nondecreasing rates, and lognormal distributions with nonincreasing means — are
pointwise ordered in this sense.

We also require a second condition, which we inherit from the standard i.i.d. unlimited-supply setting. The issue is that,
with arbitrary irregular distributions, no prior-free auction can be simultaneously near-optimal in all Bayesian environments,
even with i.i.d. bidders and unlimited supply.'® Various mild conditions are sufficient to rule out this problem; see [16] for
a discussion. Here, for simplicity, we restrict attention to well-behaved Bayesian multi-unit environments, meaning that the
Bayesian optimal auction derives at most a constant fraction (90%, say) of its revenue from outcomes in which some winner
is charged a price higher than the second-highest valuation. (Such a winner is necessarily the bidder with the highest
valuation.) Textbook distributions generally yield well-behaved environments.

4.1.3. Connecting M@ to Bayesian multi-unit settings

The main result of this section is that approximating the k-unit monotone price benchmark M@K guarantees simulta-
neous approximation of the optimal auction in all well-behaved Bayesian multi-unit environments with pointwise ordered
distributions. We require the following lemma, which states that “projecting” onto a subset of bidders can only decrease the
value of the benchmark M@K,

Lemma 4.1. For every valuation profile v, k > 2, and subset S of the bidders with induced profile v5, M@ (v) > M@0 (y5),

Proof. Fix an input v, with monotone prices p* determining MZ® (v). By induction, we only need to show that adding a
single new bidder i to an arbitrary position in the ordering can only increase the value of the benchmark. Start by offering i
the same price r as its predecessor in the ordering (or the second-highest valuation, if there is no predecessor). If i rejects
(i.e., vi <), this extended price vector is feasible and we are done (the optimal feasible price vector is only better). If i
accepts (i.e., vi >r) and the price vector is infeasible (with k+ 1 winners), then we argue as follows. Go through the bidders
after i one by one, increasing the offer price to r. This preserves monotonicity. If a previously winning bidder ever rejects
this higher offer price, we are done — feasibility is restored and the overall revenue is higher. If not, there is now a “suffix”
of bidders with the common offer price r. We now increase the common offer price to the bidders in this suffix until it
equals the price offered to the previous bidder in p*. This increases the number of bidders in the suffix, and the price-
increasing process continues. Eventually a bidder that was winning under p* will reject the new offer price — otherwise
we contradict the optimality of p*. This leaves us with a feasible monotone price vector with revenue at least that of the
original one. O

Theorem 4.2. If the expected revenue of a multi-unit auction A is at least a constant fraction of M2® (v) on every input, then, in
every well-behaved multi-unit Bayesian environment with pointwise ordered distributions, the expected revenue of A is at least a
constant fraction of that of the optimal auction for the environment.

12 Since ¢; is continuous and nondecreasing, 43,-_1(2) is an interval. If the inverse image has multiple points, we define ¢, '(z) by the infimum. If the
inverse image is empty, we define J)l.’l (z) as the left or right endpoint of the distribution’s support, as appropriate.

13 Informally, consider valuation distributions that take on only two values, one very large (say M) and the other 0. Suppose the probability of having
a very large valuation is very small (say 1/n?). If the distribution is known, the optimal auction uses a reserve price of M for each bidder. Elementary
arguments, as in [16], show that no single auction is near-optimal for all values of M.
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Input: A valuation profile v for a totally ordered set N ={1,2,...,n} of bidders and k identical items. .4 denotes a truthful digital goods
(unlimited-supply) auction with ordered bidders.

1. Let p achieve the optimum monotone price benchmark M@K (v) for v and k. Let S={i € N : v; > p;} be the set of winners under p.
2. Run the unlimited supply auction A on the bidders S, with the induced bidder ordering.
3. Charge suitable prices so that truthful reporting is a dominant strategy for every bidder.

Fig. 2. The auction BLACK-Box REDUCTION (BBR).

Proof. Fix an auction A that is f-competitive with M@K Fix a well-behaved Bayesian multi-unit environment with point-
wise ordered valuation distributions Fq,..., F,. Let OPT be the optimal auction for this environment. We claim that, for
every input v in which the revenue collected by OPT from the bidder with the highest valuation is at most the second-
highest valuation, the benchmark M@k (v) is at least half the expected revenue of OPT on v. This implies that the expected
revenue of A4 is at least 1/28 times that of OPT on this input. Since the environment is well behaved, the theorem follows
from this claim.

To prove the claim, fix an input v, as above. Recall that OPT, as a Bayesian optimal auction, awards items to the (at
most k) bidders with the highest positive ironed virtual valuations, breaking ties randomly. The tricky case of the proof is
when ties occur. Assume there are k items, a group S of bidders with common ironed virtual value z > 0, and a group T of
£ € (k —|S|, k) bidders with ironed virtual value greater than z (so |S| > k — £). We next explicitly compute the payments
collected by OPT on this input, using the standard payment formula for incentive-compatible mechanisms (see [22] or [14]).
Let a; and b; denote the left and right endpoints, respectively, of the interval of values v that satisfy ¢;(v) = z. Since the
distributions are pointwise ordered, the a;’s and the b;’s are nonincreasing in i. Let ¢ = (k — £)/|S| denote the winning
probability of a bidder in S. Define ¢’ = (k — ¢ + 1)/(|S| + 1) as the hypothetical winning probability of a bidder in T if
it lowered its bid to the value ¢_>,._1(z). The expected payment of a bidder i in S is ga; — a; in the event that it wins. The
payment of a bidder i in T (who wins with certainty) is q’a; + (1 — ¢')b;. To complete the proof, we argue that M@K (v) is
at least the revenue collected by OPT from the bidders in S, and also at least that from the bidders in T.

Recall from Lemma 4.1 that projecting onto a subset of bidders only decreases the value of M%) (v). First, project onto
the k bidders of S with the highest a; values. Consider charging each such bidder the price a;. This is a monotone price
vector. By our assumption on the input v, all of these prices are at most the second-highest valuation in v. By the definitions,
v; > a; for every bidder i € S so every offer will be accepted. The resulting revenue is at least the revenue collected by OPT
from bidders in S, and M@0 (v) is only higher.

Similarly, project onto the (at most k) bidders of T, and considers charging each such bidder i the price q’a; + (1 — q')b;.
Again, this is a monotone price vector with all prices bounded above by the second-highest valuation of v, and every offer
will be accepted. The value of the monotone price benchmark can only be larger, so M@K (v) is also at least the revenue
collected by OPT from bidders in T. The proof is complete. O

4.2. Reduction from limited to unlimited supply

Having justified the k-unit monotone price benchmark M@® (v), we turn to designing auctions that approximate it
well. We show that competing with this benchmark reduces to competing with the benchmark M® in unlimited-supply
settings. The reduction from limited to unlimited supply for ordered bidders was given in [1] for knapsack auctions. This
reduction is also a generalization of the one in [11] for identical bidders. The idea is to first identify the k “most valuable”
bidders, and then run an unlimited-supply auction on them. Observe that the most valuable bidders with an ordering are
not necessarily those with the highest valuations. For example, a high-valuation bidder late in the ordering need not be
valuable, because extracting high revenue from it might necessitate excluding many moderate-valuation bidders earlier in
the ordering. We report the “black-box reduction” of [1] in Fig. 2.

Theorem 4.3. If A is a truthful unlimited-supply auction with ordered bidders that is B-competitive with respect to M@, then the
BLACK-Box REDUCTION (BBR) auction is a truthful limited-supply auction with ordered bidders that is 2 8-competitive with M@K (v).

Proof. The analysis in [1] immediately implies that the BLAck-Box REDUcTION (BBR) auction is truthful, individually rational,
and has at most k winners. We also note that the first step can be implemented efficiently using dynamic programming, so
if A runs in polynomial time, then so does the BLAck-Box REDUCTION (BBR) auction.

We prove the performance guarantee by arguing two statements: (i) the unlimited supply benchmark M@ (v¥) applied
to S is at least half of the limited-supply benchmark M@ (v) applied to the original bidder set; and (ii) the expected
revenue of BLACK-Box REDUCTION (BBR) on the original bidder set is at least that of the auction A with the bidders S.
The second statement follows immediately from the facts that the winners of BLACK-Box REDuUCTION (BBR) are the same
as those of A, and that the winners’ payments are only higher. For statement (i), consider prices p that determine the
benchmark M@K (v). The projection p°® of this price vector onto the set S of bidders has revenue exactly M 20 (y). If pS
is feasible, then it certifies that the benchmark M® (vS) is at least M@® (v). The only issue is if p° uses a price larger
than the second-highest valuation v(*S) of vS. Setting p; = min{p;, v} for each i € S yields a monotone and feasible
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price vector p. Every price of p’ is at most the second-highest valuation v? of the original bidders, and p° extracts a price
higher than v(2S) from at most one bidder of S (the one with highest valuation). Thus, the revenue extracted by p5 from
v is at least that of p°, less v, Since M@X (v) > 2v® — consider the price vector that offers v?) to everybody — p°
retains at least half the revenue of p®. Statement (i) and the theorem follow. O

Of course, we can use the auction A* from Section 3 in Theorem 4.3 to obtain a truthful limited-supply auction that
is 0 (1)-competitive with the benchmark M@® (v). Theorem 4.2 implies that the resulting auction enjoys a strong simulta-
neous approximation guarantee in Bayesian environments.

5. Conclusions

This paper introduced the problem of prior-free auction design with ordered bidders. The bidder ordering represents
qualitative information about which bidders are in some sense expected to have higher valuations. We used the “Bayesian
thought experiment” of [16] to prove that every auction that is O (1)-competitive with the monotone-price benchmark M@
of [1] is simultaneously near-optimal across a wide range of Bayesian settings. Our main result is a construction of such
a prior-free auction. We also extend the monotone price benchmark, its connection to Bayesian auction design, and our
0 (1)-competitive prior-free auction to limited-supply settings.

There are a number of promising directions for future research.

1. For the problems studied in this paper, it would be interesting to design auctions with much better constant-factor
approximation guarantees. The profit-extraction and consensus techniques, as in [13], could be useful for this purpose.

2. For settings more general than identical goods, it would be interesting to generalize all of the contributions of this
paper — the prior-free benchmark, the connection to Bayesian settings, and the design of O (1)-competitive auctions.
Matroid settings [18], where the feasible outcomes correspond to independent sets of a matroid on the bidder set, are
a natural place to begin.

3. It would be interesting to incorporate budgets into the model. Thus far, all work on prior-free auction design with
budgets handles only equal budgets [8]. Can any of our techniques for heterogeneous (ordered) bidders be transferred
to deal with heterogeneous budgets?

4. Finally, it would be interesting to pursue prior-independent guarantees in the spirit of [9] in Bayesian environments
with ordered or stochastically dominating distributions.
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Appendix A. Stochastically dominating distributions

Consider a digital goods environment in which the valuation distribution of bidder i is regular and stochastically dom-
inates that of bidder i + 1. The optimal auction need not use a monotone price vector, but there is always a near-optimal
auction that does. The following result was communicated to us by Dhangwatnotai and Hartline (personal communication,
November 2011), and we provide a proof for completeness.

Proposition A.l. In a digital goods auction with n bidders, if the valuation distribution F; for bidder i stochastically dominates F; 1
foreveryi=1,2,...,n—1, and if every distribution F; is regular, then there is a monotone price vector with expected revenue at least
50% of that of an optimal price vector.

Proof. We use the probabilistic method. Choose z € [0, 1] uniformly at random and consider the price vector p(z) =
(Fy 1(z), L Fy 1y, Since each F; stochastically dominates F; , p(z) is monotone with probability 1. The expected revenue
extracted from bidder i by this random price vector is the expected revenue of a random reserve price p; drawn from the
valuation distribution F;. Since F; is regular, the Bulow-Klemperer theorem [5] implies that the expected revenue extracted
from the ith bidder is at least 50% times that of a monopoly price; see also [9, Lemma 3.6]. By linearity of expectation, the
expected revenue (over z and v) of p(z) is at least half that of the optimal auction. There exists a choice of z € [0, 1] such
that the (monotone) price vector p(z) obtains expected revenue at least half that of an optimal one. O
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