Ignore the Extra Zeroes:
Variance-Optimal Mining Pools

Tim Roughgardenl[0000—0002—7163—8306] and Clara
Shikhelman?2[0000—0002—-0587—7181]

! Columbia University, New York, NY, 10027, USA
tim.roughgarden@gmail.com
? Chaincode Labs, New York, NY, 10017, USA

clara.shikhelman@gmail.com

Abstract. Mining pools decrease the variance in the income of cryp-
tocurrency miners (compared to solo mining) by distributing rewards to
participating miners according to the shares submitted over a period of
time. The most common definition of a “share” is a proof-of-work for
a difficulty level lower than that required for block authorization—for
example, a hash with at least 65 leading zeroes (in binary) rather than
at least 75.

The first contribution of this paper is to investigate more sophisticated
approaches to pool reward distribution that use multiple classes of shares—
for example, corresponding to differing numbers of leading zeroes—and
assign different rewards to shares from different classes. What’s the best
way to use such finer-grained information, and how much can it help?
We prove that the answer is not at all: using the additional information
can only increase the variance in rewards experienced by every miner.
Our second contribution is to identify variance-optimal reward-sharing
schemes. Here, we first prove that pay-per-share rewards simultaneously
minimize the variance of all miners over all reward-sharing schemes
with long-run rewards proportional to miners’ hash rates. We then show
that, if we impose natural restrictions including a no-deficit condition on
reward-sharing schemes, then the pay-per-last-N-shares method is opti-
mal.

Keywords: Blockchains - cryptocurrencies - mining pools - variance-
minimization.

1 Introduction

In Bitcoin [13] and many other cryptocurrencies (Ethereum [3], for example),
miners produce proofs-of-work to authorize blocks of transactions in exchange
for rewards. A solo miner controlling a small fraction of the overall hashrate will
receive no reward for long stretches of time (e.g., for a Bitcoin miner with 0.1%
of the overall hashrate, for roughly a week on average). To spread payouts more
evenly over time, many miners join mining pools in which multiple miners join
forces and work to authorize a block in tandem.
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When a mining pool successfully authorizes a block (e.g., finding a nonce so
that the block hashes to a number with at least 75 leading zeroes in binary?),
the reward collected by the pool owner must be distributed to the participating
miners (perhaps less a commission) so that they continue to contribute. There
are many ways to distribute rewards (as evident already from the early survey
of Rosenfeld [16]); here, we isolate two of the design decisions involved.

Design decision #1: What information from miners should be the basis for
their rewards?

Typically, rewards are based on the shares submitted by each miner over a
period of time, where a “share” is a proof-of-work for a difficulty level lower
than that required for block authorization (e.g., 65 leading zeroes instead of 75).
This difficulty level is chosen to be low enough that a typical miner can produce
shares reasonably frequently (thereby receiving a somewhat steady payout) but
high enough that neither miners nor the pool are overwhelmed by the number
of shares that must be communicated. There is no obvious reason to restrict
designs to a simple uniform notion of shares, however. An example of a more
sophisticated approach would be to use multiple classes of shares—for example,
differing numbers of leading zeroes—and assign different rewards to shares from
different classes.

Design decision #2: How should the information submitted by miners deter-
mine their rewards?

For example, with a single class of shares, two of the approaches common
in practice are pay-per-share (PPS), in which there is a fixed reward for each
share (independent of any block authorization events); and pay-per-last-N -shares
(PPLNS), in which the reward associated with each successful block authoriza-
tion is distributed equally among the most recently submitted N shares. Is there
a good reason to prefer one of these approaches over the other? Is some other
way of distributing rewards “better” than both of them?

The goal of this paper is to identify mining pool reward-sharing schemes
that are “optimal” in a precise sense.

1.1 Owur Contributions

Model for identifying variance-optimal reward-sharing schemes. Given that the
primary raison d’étre of mining pools is to reduce the variance in miners’ re-
wards [16], we focus on the objective of minimizing variance.* Our first con-
tribution is the definition of a formal model that allows us to identify every

3 Technically, in Bitcoin this is defined by finding a hash that is smaller than a number
that gets adjusted over time. For ease of discussion we will continue to refer to the
number of leading zeros.

* Rosenfeld [16] computed the variance of some specific reward-sharing schemes and
briefly considered multi-class shares (in [16, §7.5]) but did not pursue optimality
results. A discussion on variance minimization can also be found in [17]
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reward-sharing scheme with a statistical estimator (of the miner hashrate distri-
bution) and formally compare the variance properties of different schemes. We
then use this model to investigate the two design decisions above. We focus on
schemes that are unbiased in the sense that the long-run rewards to a miner are
proportional to the fraction of the overall hashrate controlled by that miner (as
is the case for all of the most popular reward-sharing schemes).

Single-class shares are optimal. It is intuitively clear that, at least in some
scenarios, multi-class shares can lead to higher payoff variance than single-class
shares. For example, consider a sequence of ¢ consecutive messages, generated by
the miners, that qualify for some type of reward (say, because each starts with
at least 65 zeroes). In the extreme case in which there is only a single miner,
with 100% of the hashrate, the variance of that miner’s reward under standard
(single-class) PPS in such a sequence is zero (as all ¢ messages must have been
generated by that miner, and each pays the same reward). With multi-class
shares, by contrast, there would be positive variance in the miner’s payoff across
such sequences because of (say) the varying number of zeroes across different
messages.

Our second contribution shows that variance degredation from multiple classes
of shares is a fundamental phenomenon and not just an edge case: for every
possible miner hashrate vector, every deviation from the dominant-in-practice
single-class model can only increase the variance in rewards of every miner. For
example, a version of PPLNS or PPS that conditions rewards on the number of
leading zeroes in a hash (e.g., with a smaller reward for 65 zeroes and a larger
reward for 75) would be worse for all miners than PPLNS or PPS (respectively)
with all shares treated equally. As shown in Figure 1, the difference in variance
between single-class and multi-class shares can be significant.

Pay-per-share is optimal. Our third contribution identifies a sense in which
the pay-per-share method is variance-optimal: for every possible miner hashrate
vector, it simultaneously minimizes the variance of all miners over all unbiased
reward-sharing schemes. We stress that there is no a priori guarantee that a
scheme with such a guarantee exists—conceivably, small miners would be better
off under one scheme and larger miners under a different one. Our result shows
that no trade-offs between different miners are necessary—from the perspec-
tive of variance-minimization, all miners prefer pay-per-share. We also provide
a second statistical justification of the pay-per-share method by showing that it
corresponds to the maximum likehood estimator for the miner hashrate distri-
bution.

Pay-per-last-N-shares is optimal within a restricted class. One drawback of the
PPS scheme is that, in the short run, it might be obligated to pay out rewards
to miners that exceed the rewards that the pool has actually earned to date.
(Whereas, in the long run, the reward per share is set so that the pool can
almost surely cover its obligations with its earned rewards.) This issue motivates
our fourth contribution, in which we study practically motivated subclasses of
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Fig. 1. Example variances in miner reward (over sequences of messages of a fixed
length ¢) under the PSS RSS, as a function of the miner’s fraction of the overall
hashrate. For the single-class case, we use a reward of 1 per share. For the 2-class
cases, we assume every share belonging to the second class (e.g., with at least 66 or at
least 67 zeroes) belongs also to the first class (e.g., with at least 65 zeroes).

Let p denote the probability that a share that belongs to the first class also belongs
to the second (e.g., 3 or ). We use a reward of ; per share in the first class and
an additional bonus for each share in the second class. The bonus is set so that the
expected value of a share from the first class (which may or may not also belong to the
second) is 1 (e.g., a bonus of 1 for p = % and a bonus of 2 for p = %)

reward sharing schemes (RSSes), such as those that never run a deficit and
must distribute any block reward immediately. We prove that the pay-per-last-
N-shares method is variance-optimal among RSSes in a natural subclass (and
not variance-optimal if the subclass restrictions are relaxed).

1.2 Related Work

The goals of this paper are closely related to those of Fisch et al. [7], although the
model and conclusions differ. In [7], miner risk aversion is modeled via a concave
utility function of the form u(x) = z* (where z is the reward and a € (0,1));
here, we assume that each miner’s preference is to minimize reward variance
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(subject to the expected reward being proportional to their hashrate).® Fisch et
al. [7] then define “optimality” in terms of a global objective function, namely
maximizing the total discounted utility of all miners. Because our optimality
results apply to all miners simultaneously (and not just e.g. for the total variance
of all miners), we are not forced to choose any method of aggregating benefits
across miners. Finally, Fisch et al. [7] consider only what they call “pure” pooling
strategies which do not allocate any rewards prior to a block authorization event
(which have the advantage of never running a deficit) and thus the PPS scheme
is outside of their model. (PPS does not run a deficit in the long run, but it can in
the short run.) Because of these differences, the main result in [7] advocates for
a geometric reward scheme (with the reward-per-share decaying with the share’s
distance from the next block authorization) to maximize total discounted utility;
our theory singles out the pay-per-share scheme as variance-optimal. (Though
our Theorem 5 does incorporate a no-deficit constraint to prove a restricted
variance-optimality result for the pay-per-last-N-shares method.)

Much of the previous theoretical work on mining pools has focused on incen-
tive aspects. For example, there are incentive issues both between different pools
(e.g., pool-hopping [16]) and within a single pool (e.g., the miner’s dilemma [5]
or the delayed reporting of shares [18]). Another game-theoretic analysis of min-
ing pools can be found in Lewenberg et al. [12], where the authors study the
dynamics of a network with several mining pools. They show that there exists
an instability in the choice of pools by miners, and that the miners will often
switch pools, given some natural topological assumptions on the network. Along
related lines, Laszka et al. [10] and Johnson et al. [8] examine the incentive of
mining pools to attack each other. They show that in certain cases pools can
benefit from such attacks.

We stress that while the present work does not focus on incentive issues per se
(excepting the discussion in Section 4.4), our main results nevertheless advocate
(on the basis of variance-minimization) for rules that happen to possess good
incentive properties (such as PPS, see e.g. [18]). That is, our results optimize
over all (not necessarily incentive-compatible) schemes and yet they champion
schemes with strong incentive-compatibility properties.

Another line of works considers the forces behind and consequences of central-
ization (either outside of a mining pool or within a mining pool). An empirical
study of this issue can be found in a recent paper by Romiti et al. [15]. The
results of this study point to centralization tendencies inside pools, with a small
number of miners reaping a large portion of the rewards. This raises incentive
and security concerns motivated by the power that a small group may hold. In [6]
Eyal and Sirer show that the Bitcoin protocol is not incentive compatible, in the
sense that colluding miners could gain profits larger than their proportional hash
power. As a counterpoint, in [9] the authors analyze mining as a stochastic game
and show that as long as all of the miners are small, honest mining is a Nash
equilibrium.

5 Variance-minimization has been regarded as a key objective function for mining pool
design since Rosenfeld’s seminal analysis of Bitcoin mining pools [16].
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Others have studied the setting where there are a few miners with large
mining power (one can think of them as mining pools, but this does not have
to be the case) and many small miners. For Bitcoin this was studied in [11].
For Ethereum, which has a slightly different reward allocation rule in which a
miner can be rewarded for finding a block that does not end up in the main
chain (known as “uncle” rewards), it was shown in [21] that powerful miners can
attack weak miners.

A different approach taken in [1] takes into account the cost of mining equip-
ment purchased by miners. There it is shown that with time one can expect that
there will only be a small set of strong miners. These strong miners again can
be interpreted as mining pools.

An axiomatic approach to reward allocation for miners was taken by Chen et
al. in [4]. They start by stating the desired properties of reward allocation rule,
such as symmetry, sybil-proofness, collusion-proofness, and others. They proceed
to study which allocation rules satisfy these properties, showing that Bitcoin’s
allocation rule is the unique solution that satisfies a strong set of properties and
that this is no longer the case for slightly weaker properties or if the miners are
risk-averse.

Finally, we point the reader to two surveys that may be of interest. The
first is a Systematization of Knowledge paper [2], where the authors examine
results in the fields of game theory, cryptography, and distributed systems. The
second [20] offers a systematic study of blockchain networks, focusing on the
incentive aspects in the design of such systems.

2 Preliminaries

2.1 Model of Miners

We assume there is a finite set of miners, and use [k] := {1,2,...,k} to de-
note their possible identities (public keys). (Any number of miner identities may
belong to the same actor.) We assume that there is a finite message space M,
such as {0,1}?%% (e.g., all possible hash function outputs). By a signed message
(s,m) we mean a miner s € [k] and a message m € M. The sets [k] and M are
known to all in advance. We assume that, due to capacity and communication
considerations, a mining pool is willing to accept only a subset A C M of the
possible messages (e.g., those with at least 65 leading zeroes).%

Each miner s has a nonnegative hashrate hs, not known a priori to the de-
signer, which controls the rate at which s can generate signed messages. We
model miner s as a Poisson process with rate hy, with each generated message of
the form (s,m) with m drawn uniformly at random from the message space M
(e.g., the output of SHA-256 on a block with a specific nonce, under the ran-

% Our results remain the same if each miner has its own subset A; of acceptable
messages, provided the A;’s all have the same size.
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dom oracle assumption).” We assume that a miner s sends one of its generated
messages (s, m) to the mining pool if and only if m € A (e.g., a miner doesn’t
bother to send hashes with less than 65 zeroes). We can assume without loss of
generality that the total hashrate is 1 (21521 hs = 1) and hence the vector h
of hashrates can be interpreted as a probability distribution, called the hashrate
distribution.

The message distribution M(h) induced by a hashrate distribution h is the
distribution over signed messages arriving at the mining pool. A sample (s,m)
from M(h) can be generated by independently choosing a miner identity s ac-
cording to the hashrate distribution and an acceptable message m uniformly at
random from A. Each signed message received by the mining pool is an i.i.d.
sample from the message distribution.

2.2 Reward Sharing Schemes

A reward sharing scheme (RSS) ascribes a (possibly random) reward to the
sender of each signed message, given the messages received thus far. Formally,
an RSS is a random function ¢ from finite sequences (s1,mq),..., (s¢,ms) of
signed messages to real-valued rewards (for the miner s;). An RSS is memoryless
if its output is independent of all but the most recent signed message. We write
(s, m) for the (random) output of a given memoryless RSS ¢ on a given signed
message (s,m).

For example, the pay-per-share (PPS) RSS deterministically pays a fixed
reward for each message received. That is,

PPS(s,m) =c¢

for some ¢ > 0.8

For a more involved example, consider the pay-per-last-N-shares (PPLNS)
RSS, which distributes a fixed reward to the most recent N messages leading
up to the pool’s successful authorization of a block. Here, a miner’s reward for
a message depends on the future—on the number of blocks mined by the pool
over the course of the next N messages. (Note, however, the miner’s reward is
independent of the past.) We can model this uncertainty in our RSS framework
using random rewards:

PPLNS(s,m) =c- X,

where ¢ > 0 is a constant and X ~ Bin(N,p) is a binomial random variable,
where the number of trials is NV and the success probability p is the probability
that a sample from the message distribution leads to a block authorization (e.g.,

" The Poisson assumption is for convenience. The important property is that the
identity of the sender of a new signed message is distributed proportionally to the
hashrate distribution, independent of the past.

8 The constant ¢ > 0 would typically be chosen so that the rate at which rewards
are granted to miners equals the rate at which the pool accrues block rewards (and
possibly transaction fees), less a commission.
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if the acceptable messages A have 65 leading zeroes and 75 are necessary to
authorize a block, then p = 2719).9

An example of a natural RSS that is not memoryless is the proportional RSS,
which upon a block authorization distributes the corresponding reward to miners
proportionally to the number of signed messages each miner sent since the most
recent successful block authorization. Here, the reward to a miner for a signed
message depends on the past, and specifically on how many signed messages the
pool has received since the most recent successful block authorization.

2.3 Message-Independence and Symmetrization

An RSS ¢ is message-independent if p((s1,m1),...,(st,mt)) is independent of
my, Mo, ..., My, that is, the RSS does not take into account the content of
the message myq, ..., m;.'? Message-independence corresponds to the notion of
“single-class shares” from the introduction—the RSS does not consider the con-
tents of a message beyond its acceptability (i.e., membership in A). Thus our
results about the optimality of single-class shares will be formalized as optimality
results for message-independent RSSes.

The PPS, PPLNS, and proportional RSSes are all message-independent. (To
avoid confusion, remember that every message reaching the RSS belongs to A;
non-acceptable messages are filtered out beforehand.) Conditioning a reward on,
for example, the number of leading zeroes in an acceptable message would lead
to a non-message-independent RSS.

For a (not necessarily message-independent) RSS ¢, define its symmetrization
Spsym by

wsym((shml)v ceey (stvmt)) = Euh---,utNA[(P(Sivmi)]a

where the u;’s are i.i.d. uniformly random messages from A. For the special case
of a memoryless RSS ¢, we can write

@*" (s,m) = Eunalp(s,m)].
We immediately have:

Proposition 1. For every RSS v, its symmetrization p*Y™ is message-independent.

9 Other schemes with future-dependent rewards can be similarly modeled. The key
requirement is that the probability distribution over the reward associated with a
share (with respect to future samples from the message distribution) is independent
of the hashrate distribution h. This is the case for most of the well-studied RSSes
(including e.g. the geometric reward schemes studied in [7]).

10°All of the common RSSes that motivate this work are also anonymous, meaning that
o((s1,m1),...,(st,m¢)) is independent of s1, s2, ..., s¢. While anonymity is natural
(and arguably unavoidable) in a permissionless blockchain setting, our positive re-
sults do not require that assumption. In any case, the RSSes advocated by our results
are anonymous.
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2.4 A Reward-Sharing Scheme as a Hashrate Estimator

To compare the statistical properties (such as variance-minimization) of differ-
ent RSSes, it is useful to view an RSS as a statistical estimator of the hashrate
distribution. By an estimator, we mean a function that associates each se-

quence (s1,m1), ..., (St,m¢) with a probability distribution over the miners [k].
Specifically, given an RSS ¢, the corresponding estimator f, associates each
sequence (s1,m1),..., (s, my) of signed messages with the k-vector p in which

the jth component p; is the fraction of the rewards awarded to miner j:

=g X el (s m), 1)

i€t] 1 si=j
where Z = S0, ((s1,m1),. .., (s;,m;)) is a normalizing factor. For a memo-
ryless rule ¢ one can write ¢(s;, m;) instead of ((s1,m1),..., (s, m;)) in (1). If

the RSS ¢ is randomized, so is the corresponding estimator f, (even for a fixed
sample).

The likelihood of a sequence (s1,m1),. .., (s¢, m¢) of signed messages with a
hashrate distribution h is the probability that ¢ i.i.d. draws from the message
distribution M(h) induced by h is (s1,m1),. .., (s¢,m¢). A mazimum likelihood
estimator (MLE) maps each sequence (s1,m1),. .., (s, m¢) to a hashrate distri-
bution maximizing the likelihood of that sequence. There is no a priori require-
ment that an MLE is induced by an RSS, though we’ll see in Theorem 2 that
the PPS RSS induces an MLE.

Some kind of unbiasedness assumption is required for meaningful variance-
minimization results (otherwise, a constant function can achieve zero variance).
Formally, we call an estimator f wunbiased if, for every positive integer ¢ and
hashrate distribution h,

E[f((s1;m1),...; (st,me))] = h, (2)

where the expectation is over ¢ i.i.d. samples from M (h) and any randomization
internal to the estimator. For example, the PPS, PPLNS, and proportional RSSes
all induce unbiased estimators. Also, because the message m; in a sample (s;, m;)
from M(h) is chosen uniformly at random from A:

Proposition 2. For every unbiased RSS , its symmetrization @*¥™ is also
unbiased.

An estimator is unbiased for miner s if the identity in (2) holds in the sth
coordinate. (An estimator is thus unbiased if and only if it is unbiased for every
miner.)

For a given estimator f, positive integer ¢, and hashrate distribution h, we
can define its miner-s t-sample variance as

E[(f((slvml)v EERE) (Stvmt)))s - hs)z]a

where the expectation is again over ¢ i.i.d. samples from M(h) and any random-
ization internal to the estimator. The t-sample variance of an estimator f for
a hashrate distribution h is the vector of all such variances (ranging over the
miner s).
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2.5 When t Is Random

The t-sample variance refers to a fixed number ¢ of samples, corresponding to
a fixed number of miner shares. If one instead fixes an amount of time, then t
itself is a random variable (the number of shares found during that time window,
which is distributed according to a Poisson distribution). All of our t-sample
variance-optimality results (such as Theorems 4 and 5) hold simultaneously for
all positive integers ¢. Thus, by the law of total variance (see equation (3)), these
variance-optimality results carry over to the case in which ¢ is a random variable
(e.g., the case of a fixed time window).

3 Warm-Up: Maximizing Likelihood

We begin with an observation that champions PPS from a statistical predic-
tion perspective—the corresponding estimator is in fact a maximum likelihood
estimator for the hashrate distribution h (given ¢ i.i.d. samples from the mes-
sage distribution M (h)).!1+12 The next section describes the main results of this
paper, on variance-optimality.

Theorem 1 (PPS Is an MLE). The estimator fpps induced by the PPS
reward-sharing scheme is an MLE.

Before we prove Theorem 1, we need to state the following result that can be
found, for example, in [19]. Let X7, ..., X, be i.i.d random variables with a dis-
crete support [k]. For s € [k] let ny = [{X; = s}|. We say that p = (p1,...,pk) is
the mazimum likelihood estimate if

n
P = argmazqeqQ H qre

s=1

where Q = {q € R* : Zf:o gs = 1,Vs g > 0} denotes the simplex.

Theorem 2. The mazimum likelihood estimate is given by the empirical distri-
bution defined by

Ng

Ds = —
n

for all s € [k].

We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). First note that the values of the s;’s are i.i.d. For
every i, s; is chosen by the hash distribution, and for any i # j, s; is independent
of s; as the Poisson process is memoryless. Furthermore, the estimator induced

1 MLEs are deterministic (up to tie-breaking). Thus no randomized RSS (such as
PPLNS or the estimator induced by the proportional rule) can be a MLE.

12 A similar result can be found in [14] under the reasonable assumption that the shares
follow the Poisson distribution.
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by PPS is the empirical distribution. Indeed, when focusing on PPS (with a fixed
reward of ¢ per share), the identity in (1) specializes to

1
Ps = ; : . Z c
i€[t] 1 s;=s
_ {i : s; = s}

t

Theorem 1 now follows from Theorem 2.

While we believe Theorem 1 is a novel way to single out one RSS among many,
the primary purpose of mining pools is variance-minimization, not prediction per
se. We therefore proceed to our main results on variance-optimality, in which the
PPS RSS will continue to play a central role.

4 Main Results: Variance-Optimality

4.1 Single-Class Shares Are Optimal

Our first result proves that single-class shares are optimal, in the sense that
symmetrization can only reduce the variance of every miner.

Theorem 3 (Message-Independence Minimizes Variance). For every un-
biased RSS @, hashrate distribution h, positive integer t, and miner j € [k], the
miner-j t-sample variance under the estimator f, is at least as large as under
its symmetrization fpsum.

Proof. The law of total variance states that for X and Y, random variables over
the same probability space,

Var[X] = E[Var[X | Y]] + Var[E[X | Y]]. (3)

For an unbiased RSS, we have that E[(f((s1,m1),..., (st,m4))); — hy)?] =
Var[(fo((s1,m1), ..., (s¢,me)));], and so we can apply the above. Here we take
X = fy(s,m);, wheres = (s1,...,5¢) and m = (mq,...m;). Note that Ep, [f, (s, m); |
s| = fosum (s, m);.

Plugging this into (3) we find that

Var[f, (s, m);] = Es[Var[fe(s, m); | s]] + Var[feeum (s, m);].

The first term on the right-hand side is always nonnegative, and it equals 0
if f, = fpsum. This completes the proof.

For example, consider a version of the PPLNS scheme that uses two classes
of shares (e.g., corresponding to at least 65 and at least 75 leading zeroes), with
different rewards (e.g., more for 75 zeroes). Theorem 3 implies that all miners
would enjoy lower variance (and the same expectation) if instead every share
of either type was rewarded according to the expected reward of a share in one
of the two classes (where the expectation is over a uniformly random message

from A).
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4.2 PPS Is Variance-Optimal

Theorem 3 is agnostic to all aspects of an RSS other than message-independence—
for example, it offers no opinion on which of PPS or PPLNS is “better.” Our
next result singles out PPS as variance-optimal among all unbiased RSSes. We
discuss this point further and revisit PPLNS after the proof of Theorem 5.

Theorem 4 (PPS Is Variance-Optimal). For every hashrate distribution h,
positive integer t, and miner j € [k], the PPS RSS minimizes the miner-j t-
sample variance over all estimators that are unbiased for miner j.

To prove this, we show the following general statement:

Lemma 1. Let x = (m,b) be such that m is chosen uniformly from some set
F and b are the results of | coin flips for some constant . Let {F;} be pairwise
disjoint subsets of F x {0,1}!. Let

X = Z Q; ]-IGFi

and assume that E[X] = R for some constant R. Then the choice of a; that

minimizes the variance of X is a; = ﬁ.
k2

Intuitively we can think about the elements of Lemma 1 as follows. Assume that
a bitcoin mining pool runs a version of PPS where the reward for a miner is a
function of the number of leading zeroes in the hash. Then each F; will be the
set of messages with a given number of leading zeroes, and for such a message
the pool will give a reward of a;.

If there is some extra randomness beyond the sampling of the miner, say as
in PPLNS, then this randomness will appear in the coin flips b. In this case,
a family F; could be, for example, all the messages with the number of leading
zeros between 65 and 70, for which the coin flips sum up to exactly 5.

The reward given for the family F; can be a function also of the history
(51, ?’TLl)7 ceey (St—h mt_l).

Lemma 1 essentially shows that the minimum variance is obtained by giving
the same reward for every family F;, that is, discarding any information given
by the message or the randomness of the RSS.

Proof (of Lemma 1). Let X =), a;1,¢cr,. Remembering that Var[X]| = E[[X —
E[X]]?] we have that the smallest possible variance Var[X] = 0 is obtained if
and only if X = E[X].

In our notation, this means that for every ¢ and i’ we must have that a; = a;,
and as E[X] = R this gives us that for every i, a; = m as needed.
It is left to deduce Theorem 4 from Lemma 1.

Proof (of Theorem /). To show this, we first choose F = A, the family of all
messages that can be sent to the pool. Second, for a given RSS we define as F;
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the set of all the messages and result of the extra randomness that get the reward
a;. The expectation R is given by the assumption that the RSS is unbiased.

Note that in an unbiased RSS a miner j cannot get paid for the a message
sent by another miner (e.g., if h; = 0 then any payment to j would make the RSS
biased). To minimize the variance of miner j it is left to decide on the reward
of messages sent by them. By Lemma 1 we have that the smallest variance will
be obtained by giving the same reward for every message and flipping no extra
coins. This is exactly the definition of PPS.

Finally, we note that Theorem 4 considers minimizing the variance of some
fixed miner s € [k]. As the optimal RSS is PPS (independent of s), it is actually
variance-optimal for all of the miners simultaneously. More precisely, we have
the following:

Corollary 1 (Miner-Optimality). For every hashrate distribution h and pos-
itive integer t, the PPS RSS simultaneously minimizes the variance of the miner-
s t-sample for all s over all unbiased estimators.

It is interesting to note that Corollary 1 holds even if each miner chooses
their own difficulty of shares (as is common in some mining pools). A miner that
is free to choose its difficulty in the PPS RSS can lower the variance further by
choosing the smallest possible difficulty.

We emphasize that there is no a priori guarantee that a statement like Corol-
lary 1 should hold for any RSS—for example, it is conceivable that small miners
would fare better under one scheme and large miners under a different one. Corol-
lary 1 shows that no trade-offs between different miners are necessary. This is
particularly interesting if we add other restrictions on the RSS.

4.3 Variance-Optimality of PPLNS

A shortcoming of PPS is that for any fixed reward per share, there is a constant
probability that at some point the pool will not have the funds to pay the
miners. The PPLNS method is common in practice and does not suffer from
this drawback. Does PPLNS become variance-optimal if we impose additional
constraints on an RSS?

We consider four constraints on an RSS.

(P1) No-deficit. An RSS can only distribute block rewards that have been earned
to date.

(P2) Liquidating. An RSS must distribute each block reward as soon as the block
is found.

(P3) N-bounded. The reward given for a share depends on at most the next N
shares found.

(P4) Past-agnostic. The distribution of the reward for a share should not depend
on the realizations of past rewards or on past blocks found.

The PPLNS method is variance-optimal for all miners, subject to (P1)—(P4).
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Theorem 5. For every hashrate distribution h and positive integert, the PPLNS
RSS simultaneously minimizes the variance of the miner-s t-sample for all s over

all unbiased RSSes that satisfy properties (P1)—(P4).

Before proceeding to the proof, we note that PPLNS is not variance-optimal if
any of the properties (P1)—(P4) are relaxed. Most of the RSSes that demonstrate
this are not particularly attractive, however, as they suffer from serious incentive
problems (see Section 4.4 for further discussion). The point of Theorem 5 is not so
much to argue that PPLNS is the only reasonable RSS for variance-minimization,
but rather to clarify the types of transgressions required by any RSS that does
better.

Proof. (of Theorem 5) Let f be an unbiased RSS that follows constraints (P1)—
(P4) and has minimum variance. By (P1) we know that it can distribute only
block rewards that were already obtained, and by (P2) we know that it has to
distribute the reward immediately when a block is found. Thus, it is enough to
determine its behavior at the appearance of a block. Furthermore, by (P3) we
know that the reward can only be distributed among the last N shares, and so
f takes as an input only the last N messages before the block, even if t > N.
Thus, we can focus on a function that given the fact that share j is a block,
distributes the reward found among the shares j — N — 1,7 — N —2,..., 5. Call
this function f; and note that f = Zj is block fi-

By (P4), f; cannot depend on whether any of the other N shares is a block
or if the share already received a reward from a different block. The information
available for f; is the message sent with the shares, the arrival time of the
share with respect to the block, and the identity of the sender. This makes f;
independent of any f;/, for j # j’, and so it is enough to minimize the variance
of each f; separately.

After considering (P1)-(P4) we see that f; is an unbiased RSS over an N-
sample. By Corollary 1, PPS minimizes the variance for all of the miners simulta-
neously, and so in the context of f; this means that each of the IV shares receives
the same reward. By (P2) all of the block reward needs to be distributed, so each
shares gets 1/N of the block reward, which is exactly the definition of PPLNS.

4.4 Relaxing the Constraints

All the properties (P1)—(P4) are required for the variance-optimality result in
Theorem 5. For starters, if the no-deficit condition, (P1), is dropped, the PPS
method has smaller variance.

Suppose the liquidating constraint (P2) is dropped. That is, an RSS need not
allocate the full block reward. With partial reward distributions, we can again
find an RSS with a smaller variance: For each share, reward a fixed amount
if in the next N shares at least one block is found. (The reward is the same,
whether 1 or 17 blocks are found over the next N shares.) This RSS has smaller
variance than PPLNS as the reward does not depend on the number of blocks
found. The variance of this RSS becomes smaller as a function of N, but a
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direct consequence of this is that a large portion of funds will not be distributed.
Furthermore, it might incentivize miners to delay the publication of blocks until
they have published enough shares.

If N-boundedness (P3) is dropped, consider the following RSS. For a fixed N
let M be the expected number of blocks within N shares. For each share, reward
a sum proportional to M/N. If there are not enough funds in the pool, wait for
the next block to be found and start paying shares, ordered from the oldest to
the newest. This results in an RSS very similar to PPS, but with the risk of
funds delaying significantly. This RSS suffers from incentive issues, however: As
the delays inevitably grow, miners are incentivized to leave the pool for greener
pastures.

Finally, an RSS which is not past agnostic (P4) and has a smaller variance
is the following. Assume, again, that we expect to find M blocks for every N
shares. Then, for every block found, look back at the last N shares and reward
each one with a sum that will make their reward as close to M /N as possible. If
not all of the reward was distributes or if the reward is not enough to bring the
shares to M /N, distribute the reward in a way that will make the reward of all
of the N shares as even as possible. Although this RSS has a smaller variance,
it creates a negative incentive to mine if no block was found for a while.

Although the examples above have obvious incentive problems, it is not clear
that any such relaxation will create these issues. Studying this further may be
of interest.

5 Conclusions and discussion

In this work, we have proposed a model for investigating the variance-minimization
properties of different mining pool reward-sharing schemes. We focused on two
design decisions: (i) What information from miners should be the basis for their
rewards?; and (ii) How should the information submitted by miners determine
their rewards? Our results strongly support the common practice of using a
single class of shares, as the use of finer-grained information can only increase
the variance experienced by every miner. This holds true across different ways
of translating single-class shares into miner rewards (PPS, PPLNS;, etc.). Our
results also strongly support the pay-per-share scheme, which can be justified
both as a maximum likelihood estimator for the miner hashrate distribution and
as the scheme that minimizes the variance of all miners simultaneously, over all
unbiased estimators.

This work focused single-mindedly on variance-minimization. This tunnel
vision is deliberate, both because it enables a tractable theory with particularly
crisp and interpretable results, and because in many cases it only makes our
results stronger. For example, our main results do not restrict consideration
to reward-sharing schemes with desirable incentive properties, but nevertheless
advocate (as variance-optimal) schemes that do have such properties.

Needless to say, there are many other scientifically interesting and practically
relevant dimensions along which one can compare reward-sharing schemes, all
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of which should be taken into account in a real design. For example, in some
settings the variance-minimization benefits of the pay-per-share scheme may be
outweighed by the risk that would be taken on by the pool owner.
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