

From Proper Scoring Rules to Max-Min Optimal Forecast Aggregation

ERIC NEYMAN, Columbia University
TIM ROUGHGARDEN, Columbia University

This paper forges a strong connection between two seemingly unrelated forecasting problems: incentive-compatible forecast elicitation and forecast aggregation. Proper scoring rules are the well-known solution to the former problem. To each such rule s we associate a corresponding method of aggregation, mapping expert forecasts and expert weights to a “consensus forecast,” which we call *quasi-arithmetic (QA) pooling* with respect to s . We justify this correspondence in several ways:

- QA pooling with respect to the two most well-studied scoring rules (quadratic and logarithmic) corresponds to the two most well-studied forecast aggregation methods (linear and logarithmic).
- Given a scoring rule s used for payment, a forecaster agent who sub-contracts several experts, paying them in proportion to their weights, is best off aggregating the experts’ reports using QA pooling with respect to s , meaning this strategy maximizes its worst-case profit (over the possible outcomes).
- The score of an aggregator who uses QA pooling is concave in the experts’ weights. As a consequence, online gradient descent can be used to learn appropriate expert weights from repeated experiments with low regret.
- The class of all QA pooling methods is characterized by a natural set of axioms (generalizing classical work by Kolmogorov on quasi-arithmetic means).

The full paper is available at <https://arxiv.org/abs/2102.07081>

ACM Reference Format:

Eric Neyman and Tim Roughgarden. 2021. From Proper Scoring Rules to Max-Min Optimal Forecast Aggregation. In *Proceedings of the 22nd ACM Conference on Economics and Computation (EC ’21), July 18–23, 2021, Budapest, Hungary*. ACM, New York, NY, USA, 1 page. <https://doi.org/10.1145/3465456.3467599>

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

EC ’21, July 18–23, 2021, Budapest, Hungary

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8554-1/21/07.

<https://doi.org/10.1145/3465456.3467599>