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Abstract—In this paper, we study an information-theoretic
secret sharing problem, where a dealer distributes shares of a
secret among a set of participants under the following constraints:
(i) authorized sets of users can recover the secret by pooling their
shares, and (ii) non-authorized sets of colloding wsers cannot
learn any information about the secret. We assume that the
dealer and participants observe the realizations of correlated
(Ganssian random variables and that the dealer can communicate
with participants through a one-way, authenticated, rate-limited,
and public channel. Unlike traditional secret sharing protocols,
in our setting, no perfectly secure channel is needed between
the dealer and the participants. Our main result is a closed-form
characterization of the fundamental trade-off between secret rate
and public communication rate.

Index Terms— Secret sharing, information-theoretic security,
rate-limited communication, Ganssian sources.

I. INTRODUCTION

ECRET sharing has been introduced in [2], [3]. In basic

secret-sharing models, a dealer distributes a secret among
a set of participants, with the consiraint that only pre-defined
sets of participants can recover this secret by pooling their
shares, while any other set of colluding participants cannot
learn any information about the secret.

In most secret-sharing models, including Shamir's
scheme [2], it is assumed that the dealer and each participant
can communicate over an information-theoretically secure
channel at no cost. While complexity-based cryptography
techniques, e.g., [4], could be used to implement secure
channels without any other resources than a public channel,
it would not provide information-theoretically secure channels.
In this paper, we are interested in another approach that
aims at providing a full information-theoretic solution that
would not rely on complexity-based cryptography. In other
words, we want to avoid the assumption that information-
theoretically secure communication channels are available
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at no cost. An information-theoretic approach to secret
sharing over wireless channels has been introduced in [5]
for this purpose. The main idea is to leverage channel noise
by remarking that information-theoretic secret sharing over
wireless channels is similar to compound wiretap channel
models [6]. This information-theoretic approach has also been
formulated for source models in [7]-{9], where participants
and dealers share correlated random variables. These models
are related to compound secret-key generation, e.g., [10], [11],
and biometric systems with a multiuser access structure [12],
in that multiple reliability and security constraints need to be
satisfied simultaneously.

In this paper, we consider the information-theoretic secret
sharing model in [8] with Gaussian sources. Specifically, the
dealer and the participants observe realizations of correlated
Gaussian random variables, and the dealer can communicate
with the participants over an authenticated, one-way, rate-
limited, and public communication channel. In wireless net-
works, independently and identically distributed realizations
of correlated random variables can, for instance, be obtained
from channel gain measurements after appropriate manipu-
lations [13], [14]. Our approach for the achievability part
consists in handling the reliability and security requirements
separately. Specifically, reliability is obtained via a coding
scheme akin to a compound version of Wyner-Ziv coding [15],
and security relies on universal hashing via extractors [16].
Interestingly, the converse shows that there is no loss of
optimality in decoupling the reliability and security require-
ments. The achievability is first obtained for discrete random
variables and then extended to continuous random variables
via fine quantization. In principle, one cannot assume a specific
quantization strategy to ensure the security requirement in
an information-theoretic manner; hence, the key step in this
extension is to show that information-theoretic security holds,
provided that the guantization is sufficiently fine. For the
converse part, we can partly rely on techniques developed
in [17], [18]. However, unlike in [17], [ 18], our setting involves
multiple security constraints that need to be satisfied simulta-
neously; hence, the main task in the converse is to prove a
saddle point property without any degradation assumption on
the source model.

The main differences between our work and [8], [10]-]12]
are that [8], [10]-{12] consider discrete memoryless sources,
whereas we consider Gaussian sources. As described above,
handling Gaupssian random variables calls for different
proof techniques and considerations. Additionally, unlike
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[8], [10]12], it also allows us to derive capacity results
without assuming any source degradation properties. We also
highlight that unlike [8], [11], we consider rate-limited public
communication, and unlike [8], [12], we handle arbitrary
access structures.

The main features of our work can be summarized as
follows: (i) Our model relies on correlated Gaussian random
variables and, similar to [8] but unlike traditional secret-
sharing schemes [2], does not rely on the assumption that
information-theoretically secure channels between the dealer
and the participants are available. (ii) Similar to the model
in [8] but unlike traditional secret-sharing models, we consider
a model that requires information-theoretic security for the
secret with respect to unauthorized sets of participants during
the distribution phase, i.e., when the dealer distributes shares
of the secret to participants. (iii) We establish a closed-form
expression that characterizes the optimal trade-off between
secret rate and public communication rate. (iv) The size of the
shares in our coding scheme scales linearly with the size of
the secret for any access structure similar to the model in [8].
Indeed, a share comprises the public communication from the
dealer and n quantized realizations of a Gaussian random
variable, which can be shown to both linearly scale with n.
The size of the shares does depend on the specific access
structure considered but not on the number of participants.
Specifically, the public communication must ensure that the
set of authorized users with the least amount of information
about the secret is able to reconstruct the secret. By contrast,
the best-known traditional secret-sharing schemes may require
a share size that grows exponentially with the number of the
participants for some access structures [19] — note, however,
that it is unknown whether or not there exist traditional secret-
sharing schemes that require a smaller share size. (v) For
threshold access structures, i.e., when a fixed number of
participants ¢ is needed to reconstruct the secret (independently
from the specific identities of those participants), we establish
that the size of the secret that can be exchanged is, in general,
nof a monotonic function of the threshold ¢.

The remainder of the paper is organized as follows. We set
the notation in Section II and formally introduce the prob-
lem statement in Section III. We present our main results
in Section IV, and proofs in Sections V and VI. Finally,
we provide concluding remarks in Section VIL

II. NoTtaTioNn

For any a,b € R, define [a,b] £ [|a], [b]] M. For = € R,
define [r]* £ max(0,z). For a set S, let 2° denote the
power set of 5. All logarithms are taken in base 2 throughout
the paper. Let I, denote the identity matrix of dimension
m € M. Let det(W) denote the determinant of a matrix W
and |&| denote the cardinality of a set &. For two random
variables X and V, o% and oxy denote E[(X — E[X])?]
and E[(X — E[X])(V — E[V])], respectively. N ~ A(0,X)
indicates that N is a zero-mean Gaussian random vector
with covariance matrix X. The indicator function is denoted
by 1{w}, which is equal to 1 if the predicate w is true
and 0 otherwise. Let H(X) (respectively, h(X)) denote the
Shannon entropy (respectively, the differential entropy) of a
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discrete (respectively continuous), random variable X . Also,
let I{X;Y) denote the mutual information between X and ¥,
which are either continuous or discrete random variables.

III. PROBLEM STATEMENT

Consider a dealer and L participants. Define £ £ [1,L],
X 2R, and Y £ R. Consider a Gaussian memoryless source
model (X x Ve, pxy,.). where Yz £ (¥))iec, and (X,Yz)
are jointly Gaussian random variables with a non-singular
covariance matrix. Let & be a set of subsets of £ such that
forany T C L, if T contains a set that belongs to A, then T
also belongs to A, i.e., A is 2 monotone access structure [20].
We also define U £ 25 A as the set of all colluding subsets
of users who must not learn any information about the secret.
In the following, for any 4 < A and for any If € U,
we use the notation Y7 2 (Y")icq and V7 2 (Y )icu.
Moreover, we assume that the dealer can communicate with
the participants over an authenticated, one-way, rate-limited,
noiseless, and public communication channel.

Definition 1: A (2"% R, A n) secret-sharing strategy is
defined as follows:

« The dealer observes X™ and Participant [

observes ¥}

« The dealer sends over the public channel the message

€ L

M to the participants with the bandwidth constraint
H{M) < nhp.

« The dealer computes a secret S € S £ [1,27%]
from X™.

« Any subset of participants 4 € A can compute an
estimate S{.4) of 5 from their observations (¥;")ic4
and M.

Definition 2: A rate pair (Hp, R;) is achievable if there

exists a sequence of (2"« R, A n) secret-sharing strategies
such that

Jim ﬁgpﬁmy #£8] =0, (1)
Jim max(S;M,Y7) =0, (2)
lim log|S| — H(S) = 0. (3)

(1) means that any subset of participants in & is able to
recover the secret, (2) means that any subset of participants in
I cannot obtain information about the secret, while (3) means
that the secret is nearly uniform and that its entropy is nearly
equal to its length.

Remark 1: The uniformity condition (3) ensures that a
secret-sharing strategy that maximizes the length of the secret,
will also maximize the entropy of the secret. Without this
condition, maximizing the length of the secret would not be
meaningful as one could always increase the length of the
secret by adding redundancy to it. This is the same reason
why in secret-key generation, one requires uniformity of the
secret key [21], [22].

The secret capacity region is defined as

R(pxye,A) 2 {(Rp, Rs) : (Rp, R,) is achievable}.

Moreover, for a fixed Rp, the supremum of secret rates R,
such that (Rp, Bs) € Ri{pxy., &) is called the secret capacity
and is denoted by C.(&, Rp).
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Additionally, one can write for any .4 £ A and for any
i € U (see Appendix A for the derivation)

YA = HAX + W-YA L] {4}
where Hq € RAXY |y e RMIXY Wy, ~ N(0,14), and
Wy, ~ N(0, Ig).

IV. MAIN RESULTS
A. Results for General Access Structures
For a given access structure &, define
* o T T * o T
A* e MGEEHAH"" u* e MaﬁgﬁHuHH-

Thearem [: For any access structure A4 and public commu-
nication rate R, = 0, the secret capacity Ca(4, Rp) is

Cs(A, Rp) =
+
1, oLHE Hyu.2"% 4 o2 HT, HA.{I—EQHP]+ll

2 log crxﬂg.Hu- +1
Proaf: The converse and achievability are proved in
Sections V and VI, respectively. O
From Theorem 1, we obtain the following corollary when
the public communication is rate-unlimited.
Corollary 1: For any access structure &, and an unlimited
public communication rate, the secret capacity is given by

Cs(A, Bp = +oq) & R,,Ii-m Cs(A, By)

_ 110 crxﬂi.HA.+1
oy HI Hy. +1

Note that in Theorem 1 and Corollary 1, the length of the
public communication scales linearly with the length of the
secret by construction and corresponds to a compressed ver-
sion of the n source observations of the dealer via a compound
version of Wyner-Ziv coding. Hence, the size of the share of
each participant, which comprises the public communication
and n quantized observations of a Gaussian random variable,
scales linearly with the length of the secret — as explained
in the proof of Theorem 1, the number of bits needed to
store quantized realizations of Gaussian random variables is
negligible compared to the number of source observations
n in our achievability scheme. Note that, unlike traditional
secret-sharing models, which separately consider the share-
creation phase and the share-distribution phase, we allow a
joint design of these two phases in our setting. This is made
possible by considering correlated random variables (at the
participants and the dealer) and public communication instead
of information-theoretically secure channels as in traditional
secret-sharing models. The following example illustrates The-
orem 1 and Corollary 1.

Example I: Consider a dealer and three participants who
observe independently and identically distributed realiza-
tions of correlated Gaussian random variables as depicted in
Figure 1. Define the access structure & £ {{1,2} {2,3},
{1,2,3}} and define U £ {{1,3},{1},{2},{3}} such that
(i) the sets of participants in & can recover the secret using
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Fig. |. Sccret-sharing seiting when & = {{1, 2} {2 3},{1.2,3}} and
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sent the subsets of participants that are authonized to reconstruct the secret.
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Fig. 2. Secret capacity for example 1.

their observations and the public message M, and (ii) the
sets of participants in U cannot learn information about the
secret. For s € [1, L], let H(s) denote the s-th component
of He, and assume that o3 £ 2, H; £ [0.5,1,0.8], and for
any S C £, Hg = (Hy(5))ses. Then, one can compute the
secret capacity using Theorem 1 and Corollary 1, as shown in
Figure 2.

B. Results for Threshold Access Structures

We now consider a special kind of access structure called
threshold access structure [2]. A threshold access structure
with threshold ¢ € [1, L] is defined as

A2 {ACL:|A >t}

The complement of A, is defined as U, £ 26\4, = {4 C
L : |A| < t}. In other words, the threshold access structure
is defined such that any set of ¢ participants can reconstruct
the secret, but no set of fewer than ¢ participants can learn
information about the secret.

The following result provides necessary and sufficient con-
ditions to determine whether the secret capacity increases or
decreases as the threshold ¢ increases.

Theorem 2: Assume that for any § C £, Hs =
(He(s))ses. For any t € [1,L], consider A; &
argmin 4cp, HiHA, and U} € argmaxycy, HIHy. For
any communication rate B, > 0, for any t € [1, L], we have

Cs{ﬁll:a Rp} = GB{AI& RP}'-
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Fig. 3. Secret capacity for threshold access structure.
and for any £ € [1,L] and i € [1,L —¢],
Colhe, Bp) = Co(Arys, Bp)

HE:“HHL'H — Hﬁ-} Hu: - 1+ G-?C Hg&. Hul-
HE, Hac, P~ Tr Ry

Proof: See Appendix B. O
Theorem 2 illustrates the fact that the secret capacity is not
necessarily a monotonic decreasing function of the threshold ¢.
Example 2: Consider a dealer and five participants. Assume
that o3 £ 2, Hy £ [1,0.85,0.9,0.95,0.75|, and for any
SCL Hs=(Hg(s))ses. Then, one can compare the secret
capacities for different thresholds using Theorem 2, as shown
in Figure 3.
From the definition of .4} and 14}, we have H 4. = [0.75]7,
Hy, = [D.TE,D.EE]T, Hy, = [0.75,0.85,09]", Hg: =

[0.75,0.85,0.9 1395] Hy. = [0.75,0.85,0.9,0.95,1],
Hy; — 1y, — [1,0.95]7, Hy; = [1,0.95,0.9]7, and
Hy. = [1,0. 95 0 0,0, 85]T.

For example, putting Hi.HA- = 2.0075, HE;HH.; =
2.7125, HE;-EHA-E 3.9975, and H{, Hu = 3.4350 in
Theorem 2 with + = 4 and i = 1, weget(_'f (A4, Rp) =
Cs(As, Rp) for any Ry = 0.

V. CoNVERSE PROOF OF THEOREM 1

To prove the converse, we first derive an upper bound
on the secret capacity C,(&, Rp) by considering a worst-
case scenario in terms of a secret-key generation problem.
This upper bound takes the form of a minimax optimization
problem. We then derive a closed-form expression of this
upper bound by proving a minimax theorem.

Define for 4 € A, U € U, Oy & HEHA,andDu s
HI Hy. Consider V' an auxilim’y random variable jointly
Gaussmn with X, and let o x + be the conditional variance
of X given V. Consider also 4* € argmingcs 04 and
I{* € arg maxy ey Oy. Provided that ﬂl’i-lv # 0, for A € A,
i £ 1, define

1 aﬂ 1. c20,4+1

— Zlog 52—,
G Y AV st
o + i+
I, i L__ OxHHT 2
(x> AU) £ 5 B Oatl 2 gaxwﬂu+1

We will also use the following lemmas.

Lemma 1 (Weinstein-Aronszajn Identity, e.g., [23, Appen-
dix B]): For any o €« Rt and A € R9*!, we have

det(Ac”AT + 1) = ATAc” + 1.

Lemma 2: Let e, d € Ry such that ¢ = d. Then, the function
fe,q is non-decreasing, where

fea: By =R
l] cr+1
Ty a1
Proof: The derivative of f.q at x € Ry is f 4(x) =
1 __ e—d - O

TIn2 {ex+1)dz+1) =
We now prove the converse of Theorem | through a series
of lemmas.
Lemma 3: Let By € Ry, An upper bound on the secret
capacity Cs(A, Hp) for the Gaussian source model (X =
J’f::va,:} is given by

Cs (A, Bp) < min min

AEAUEU I"{J‘%“’”A’u]'

max
] 1
Doy w20y

st Ip(ok v AV Ry

(6)

Proof: Fix A € A, { £ U. We first consider the secret-
key generation model in [17] consisting of a transmitter
{Alice), a receiver (Bob), and an eavesdropper (Eve), who
observe X™, Y™, and Z", respectively, independently and
identically distributed according to a Gaussian source (X =
VxZ),pxyz) where Y 2 R, Y £ RMI, Z 2 RYI [n this
model, a secret-key rate Hy. is achievable if after the transmis-
sion from Alice to Bob of message M such that H(M) < nB,
over an authenticated noiseless public channel, a secret key
K € [1,2"%] is generated by Alice, and an estimate K of
K is generated by Bob such that (i) limp,_. .. P[K # E?] o
(reliability), (ii) lmp_. . J{H; Z"M) = 0 (security), and
limy, o log[27F] — H{K) = 0 (uniformity). Moreover, the
capacity region of this model is defined as R(pxy z, A,U) 2
{(Rp, Ri) : (Rp, Ri) is achievable}.

Consider now the secret-sharing problem described in
Section III and the rate pair (R, R:) € R(pxy..&). Then,
by conditions (1), (2), and (3), the rate pair (Hp, Hs) also
belongs to Ripxv, vy, A.U) for any A € A I € 1.
Therefore, by [17, Theorem 2], we have for any 4 € A,
Uel,

det{HAa}HT + 1) det(Hyok HY + IJ
det(Hpo%, HY + 1) det(Hyo} Hy +1)
oy 11 det(Haot HY +1)

2 det(H a0y, HY +1)’

for some 0%, € (0,0%]. Finally, using Lemma 1 and the
deﬁmunnofb A€ A and Oy, W € U, we have (6). [
Lemma 4: Let Ry e Ry, Let A € A, I{ £ U, and assume

that O 4 = Oyy. Then, we have
2

max Iie Al

0<od .y <ok s AL)
st Tp(ok v AV Ry

_1 oy Oy~ ERP+J§CDAII1—2 2R-=}+1 P
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Proof: Fix A € A and If £ U. Let c‘}*lv{A.,H} be
an optimal solution on the left-hand side of (7). By writing
Is{ailv,.d.lu} as

1 ijoq+1 1 Ex],rﬂ.rll 1
Lo U= -log2——— — — —I
s le’A’ ) 2 Dgazxﬂu+l 2 leDH+1

we have that I, {"'X|w A.l{) is a non-increasing fum:tlon of

XIV by Lemma 2 because O 4 > Oy. Hence, o3, x v AU
must be the smallest f’xw € (0,0%] that satisfies the
constraint Ip(o% ., A) < Rp. However, Iy(o%,,.A) is
a non-increasing function of "?CIV; thus, we must have
Ip(o¥y (A,U), A) = Ry, ie.,

1 o2 1

oy 04 +1
— - lo Ix A
Bp=3 BoT (AU

lo
2 BT (AU, + T

which gives
7%

G'EXGA{EQRF —11+ QIR ®)

ﬂ';c*w'[-rql:u] =

Plugging in this value for o3, (A, U) in Is(o%, (A, U),
A, W) gives (7). m|

Lemma 5: Assume that for any 4 £ A, I{ € U, we have
04 = Oy. Let By € Ry Then, we have

Ia'[f"?qv-. A, U)

min min
AcA el

max
D":-'f"i'w <oy
st Ip(oy v Al R,

(9)

= max min min I, (a% -, A, U).
Dcohiw<ck  Aches ° X

sl (o% At ISR

Proof: By Lemma 2, we have for any ﬂ’?cw e (0, a?c],
A b U el,

1 20_,.1+1 11 O_,q +1

- ﬁz—_ ugﬂ‘,—

2 wa’AJrl 2 xwﬂ +1’

1 axﬂ‘u+l 1 a'x&p+1

—glog—r—— > —Cleg K ——
JXWDU +1 2 G’xwﬂu. +1

hence, Is(a% . AU) = Is(o% |y, A*, U*), and we conclude
that for any 0%, € (0,0%],
min min I, (v AU) = L(o%y, A U*).
Then, we have

(10)

min min
AcAlleU

2
ﬂ":"'zxw oy

st :P::r}w,,q:gﬂ?

Is{ﬂ’?qv: AU)

(@) . 2e
2 i (o (A, U), A1)
(b)

=1 {.:rxw{_A* W), A* )
= I U
ﬂ{”ﬁai s{ﬂ’xwgﬂ ' ]
st Ip(o )y A"V SRy
(e)

min min [, I[a'xw,_.f-'l i),

max
Deoy Sy  ACAUCU

st Ip(oy )y A VSR
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where in (a) we have defined for A c 4, I e U,
J.:JI?C*W{A:H} = Iﬂ{ﬂi’w:-’d:u]:

Arg Max
3 1
Doy w20y

st Ip(ok v AV Ry

(b) holds because for any 4 € A, I{ = U, we have
L(o%, (AU, AU) > L%, (AU),A W) >
I, {cr v ASU*), A U*Y), where the first  inequality
holds h}r (10), and the second inequality holds because
I, {-:rxw{.A i), A*, l{*) 15 a non-increasing function of
ﬂ’xw':A U) by Lemma 2, and o3 xv (A% UY) = axw{A.,H}
by (2) in the proof of Lemma 4, and () holds by (10). O

MNext, we remark that if there exist 4 € Aand If € U
such that O 4 < Ok, then Cs(A, By} = 0 by Lemma 3 and
Lemma 2 applied to fz .2 v Thus, we obtain the converse
of Theorem 1 by combining Lemmas 3, 4, and 5.

VI. ACHIEVABILITY PROOF OF THEOREM 1

To prove the achievability part of Theorem 1, we first
prove an achievability result for discrete random variables in
Section VI-A and then extend our result to Gaussian random
variables by a quantization arcument in Section VI-B.

A. Discrete Case

Our coding scheme decouples the requirements (1) (reliabil-
ity) and (2) (security with respect to unauthorized groups of
colluding users). Specifically, as described next, we repeat
g < M times a reconciliation step to handle (1) via a
compound version of Wyner-Ziv coding and then perform
a privacy amplification step to handle (2) via universal
hashing implemented with extractors. Note that Wyner-Ziv
coding is a key component to handle rate-limited communi-
cation constraints as in rate-limited secret-key generation [24]
and biometric secrecy system models, e.g., [25]-{29], which
rely on rate-limited secret-key generation. Here, unlike in
[25]-{29], we employ a compound version of Wyner-Ziv cod-
ing because unlike in [25]-{29], we simultaneously consider
multiple reliability constraints due to the presence of an access
structure.

1) Reconciliation Step: Let n € M and ¢ = 0. For a
probability mass function py-, denote the set of e-letter typical
sequences [30] (see also [31]) with respect to px by T"(X),
and define supp(px) £ {zr € X : px(z) > 0} and px £
Ml e yppipx) PX (7). Define € L %e.

a) Code construction: Fix a joint probability distribution
prxy: on ¥V x A x Ve, where V' is an auxiliary random
variable such that V' —X — Y forms a Markov chain. Define
Ry £ maxpeaH(V|Y4) — H(V|X) + 6eH(V), R, 2
H(V) — max 4ea H(V|Y4) — 3eH(V). Generale gniR.+R,)
codewords, labeled v™(w,r) with (w,v) € [1,27%] x
[1, E“Hi]] by generating the symbols v(w,v) for i € [1,n]
and (w,v) € [1,2%] x [1,2"R.] independently according
to mr.

b) Encoding: Given z", find a pair (w,v) such that
(=™, v™(w,r)) € TMXV). If there are several pairs, choose
one (according to the lexicographic order); otherwise, set
(w, ) = (1,1). Define v™ £ v™(w,r), and transmit m £ w.

Authorized licensed use limited to: WICHITA STATE UNIWERSITY LIBRARIES. Downloaded on December 23,2021 at 18:22:41 UTC from IEEE Xplore. Resirictions apply.



554 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

c) Decoding: Let A € A. Given y7y and m, find 4
such that (y,v™(w,v4)) € T(Y4V). If there is one or
more v 4, then choose the smallest; otherwise, set vy = 1.
Define 7% £ v™(w,54).

d) Probability of error: The random variable that repre-
sents the randomly generated code is denoted by C'y,. As shown
in Appendix C, there exists a codebook C} such that

ﬁlgicp[vn B i}j] < |A Teafﬂﬂaf'. A, (11)

where
3(n, e, A) 2 2|X||V e kXA 1 9 neHV)
+ exp(—(1 - 2|V||,'t'|.g_“[—‘1:-|-‘=1+2-“vx )2enH (V)
V|||V TR xy

2) Privacy Amplification Step: Let g,n £ M, and define
N £ ng. The reconciliation step is repeated g times such
that the dealer has VY = (V™) and the participants
in 4 £ A have {V“}‘? Note that the total public com-
munication M £ M is such that HE&” < lugIMI =
maxgea I(X;V[Y4) + 6eH (V). Next, another mund of rec-
onciliation with negligible communication is performed to
ensure that maxea P[(V™)? # (V3)7] < 4(g). where
limg_. . d(g) = 0 when n is fixed. Finally, the dealer computes
5 = g(V™,Uy), while the participants in 4 € A compute
5(A) = g(V¥,Us), where Uy is a sequence of d (to be
defined later) uniformly distributed random bits, and g :
{0, 1} % {0,1} — {0,1}* is to be defined later.

3) Analysis of Reliability: The secrets computed by the
dealer and the participants in .4 £ A are asymptotically the
same for a fixed n as g goes to infinity.

P[S(A) # S] < P[(VX)? # (V)] < d(q).

4) Analysis of Security: Let the min-entropy of a dis-
crete random variable X, defined over X with prob-
ability mass function py, be denoted by H..(X) £
—log (maxze y px(z)). We will use the following lemmas:

Lemma 6 {Adapted from [32]): Let Eyy be the random vari-
able that represents the total knowledge about V'V available
to participants in I{ € U. Let g be a particular realization of
Ey. If Hyo (VY| Ey = ey) = 4N, for some v € [0,1]\{0,1},
then there exists an extractor g : {0, 1}V x {0,1}¢ — {0, 1}*
with d < N&(N) and k& = N{v— 4(N)), where §({ V') is such
that limpy . 5 o 4(N) = 0. Moreover,

H(S|Us,Ey = ey) = k — 8*(N),
with 6*(N) = 2-VN/1EN (k. 4 /N /log N).

Lemma 7 ([32], See Alse [33]): Consider a discrete mem-
oryless source (X x V, pxy ) and define

0 £ 1{(X%,Y7) € THXY)JL{Y? € THY)}.

Then, B[O = 1] > 1 — (2Sxleamx/3
2|Sxy|e~'Wx¥/3), with Sxy 2 supp(pxy) and Sy
supp(py ). Moreover, if y? £ T2(Y"), then

H.o (XY =947,8=1)
> g(1— H(X|Y) + log(1 — 2|Sxy|e=¢ #xv/6),

fle= 4+

Define for any I{ £ U, the random variables
Oy £ {(VY,Y) € VY)Y € TAYD)),

(12)
Tu 2 {Ho (VN =l .6u=1)

— Ho(VV Y =4 , M =m, 0y = 1)

< log |M| + VN}. (13)

For any U € U, P&y = 1] > 1 — 2(n,U), where

52(n,U) £ 2|Syn|emvn/3 4 9|Symyyle”  Wva/? by
Lemma 7 applied to the discrete memoryless source model

(V" x Vi, py=yg), and B[Yy = 1] > 127N by [32,
Lemma 10]. Hence,
BTy =16y =1>1-8@U) -2,  (14)

Then, for any I{ € U, we have
(@)
H(S|UaY;{' M) > H(S|UaYy) MOy Ty)
> mi N
2 min H(S|UaYy M6y Ty)
> 1 = 1. =
= E]:IFIELEP[BH 1, Ty =1]

x H(S|UY N M, 0y =1, Ty =1)
} 1 = . =
= E]:IFIELEP[BH 1, Ty =1]

x min H(S|UaY M, Oy = 1,Tu = 1)

( }
(1 - maﬂ{n, Uy — 2—“"‘7’)
x min H(S|Ua¥ M, 0 = 1, Ty = 1),
(15)

where (a) holds because conditioning reduces entropy and
(b) holds by (14). To lower bound mingey H(S|UgY; N M,
By = 1, Tyy = 1) in (15) with Lemma 6, we now lower bound

mingey Hoo (VYY) = V.M = m, 6y = 1, Ty = 1).
We have for any I = U,
Hoo(VVYY =y M =m, 0y =1,Tyu=1)
}Hm{V ¥ =wii,0u=1)—log M| - VN
S gt — HV V) — 81 (gmU) — N(max I(V; X[V)
+6eH(V))—vN

9 N{I(X;V[Ya) — max (V3 X[Y) — 67 (g,m, )
= N[gﬂﬂ I{X,VlYu}—ma}f{VerYA}—ﬁlgl}ﬁe (g,n,U)]

(d)

N[MI{V Yq) - MI{V Yu) - Eﬁﬁf{‘h nau]]'.

(16)
where (a) holds by (13), (b) h:]la:isﬂ by Lemma 7 with
62(q,n,U) £ —log(l — 2Syayzle”“#™a""), (c) holds

with 82(g,n,U) 2 el(X;V[Y) + (1 — €)[2eH (X [V V) +
9!+ log |X|(4V||X|e "B+ 2V|X] D
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3_52“""’“'“"’8}] + N-16}g,n,U) + 6eH(V) + N-1/2
because, as shown in Appendix D, we have

H(VYP) > n(H(X[Yu) — HX[YaV)(1 + 2))
—92 — nlog | X|(4[V||X|e~ "< Bxv
+2[V||X|[VayJe=€ v X /3,

a7

and (d) holds because V" — X — (¥4, ¥5y).
Next, we set the output size k of the extractor to be less
than the lower bound in (16) by +/N, i.e.,

k& |N[minf(V;Ya) — maxI(V;Yu) — max 6 (g,n,U)
- N2, (18)
Finally, we have

max[(S; UV, M) = H(S8) — min H(S|U ¥V M)

i (1 — max®(n, 1) — 2-“”‘7’)
el
x (k —8*(N))
®
< §,(N), (19)

where (a) holds by (15), (16) (valid for any I{ £ 1), (18), and
Lemma 6 with 6*(N') £ 2-VN/10eN (k4 /N /log N') and (b)
holds with 63(N) £ §*(N) + (maxyey 82 (n,U) + 9-vN )k,
5) Analysis of Uniformity: Similar to (19), we have
. N
H(S5) 2 min H(S|UsYy M)
> k—63(N). (20)

6) Public Communication Rate: The public communication
rate corresponds to the rate of M plus the rate of Uy, ie.,

lim Ry = maxI(X; V[Y4) + 6cH(V).

N—na

7) Achievable Secret Rate: The secret rate B, 2
satisfies

Ry > minI(V;Yy)

k/N

—%I(V;Yu]—rlgggﬁf{qm,“]

—-NYV2_N-L 2D

B. Continuous Case

In this section, we extend the achievability result of
Section VI-A for discrete random variables to Gaussian ran-
dom variables by means of guantization. (QQuantization also
allows us to show that the size of the shares linearly scales
with the length of the secret. The main issue with quantization
is that it might lead to an underestimation of the information
that unauthorized sets of participants may learn about the
secret. We will, however, show that this issue can be overcome
provided that the quantization is fine enough.

We now build upon Section VI-A to show that (Rp, R.) €
Ripxvy.,A), where

1 a3 1 0304 +1
R, =1 X _ Clgw SXTATT S 22
2%y 2 ok On + 1 @

555

1. o204 +1 1

by OXO0u +1
Dlog xCa-t1 1
2 %0 040 +1 25

xw'ﬂ“' +1

R, = (23)

We use the following lemma to extend Section VI-A to the
continuous case by means of quantization.

Lemma 8 ([34]-{36]): Let X and ¥ be two real-valued
random variables with probability distribution Py and Py,
respectively. Let Ca, = {Ci}iez. Da, = {Dy}seq be two
partitions of the real line for X and ¥ such that for any i £ T,
Py [G;] = My, for any j € 7, ]PV[D_.;] = Aa, where A,
Mg = 0. Let X, ,Ya, be the quantized version of X, Y with
respect to the partitions Ca , , D, respectively. Then, we have

IX,Y) =, lim I(Xa,Ya,):

We first show that a quantization does not affect the security
requirement (2).

Proposition 1: A quantization of Y;}, I{ € U, might lead to
an underestimation of I(5; M, ¥;}'). However, if the quantized
Version Y;?,a. of Y;}. U € U, is fine enough, then for any 4 = 0

ﬁﬁf{s;ﬂﬁ;}g%f{ﬁ;mﬁﬁ]+é. (24)
Proof: For any & = 0, for any i/ € U, we have

I(S; MY;Y) < [I(S; MYy}) — I(S; MY o )| + I(S; MYj )

< Eﬁms;m] —I(S; MY A)l
. T
+ maxI(S; MY )

-=_:5+r§gacfl[.‘3; MY A), (23)
where the last inequality holds by Lemma 8, if the quantized
version Y} A of ¥}, I{ € U, is fine enough. Since (25) is
valid for any I{ € U, we obtain (24). |

For A € A andlf € U, we quantize X, Y4, ¥, and V asin
Lemma 8 to form X, ¥4 A, Y a, and Va such that A = !
and |Xa| = [Vaal = [Jual = [Va| = T with [ > 0. Next,
we apply the proof for the discrete case to the random variables
Xa,Ya4n,Yun, Va. By Lemma 8, we can fix [ large enough
such that, forany A € A, [I(Va; Yana)-T(V;Y4)| < /2, for
any I € U, [[({Va;Yua) — I1(V;Yy)| < 4/2, such that (21)
becomes

Ry > min I(V;Y,) — maxI(V;Yy) - maxaﬂ{g,n Uu)

— N—”? —-N'_a
Note that §2(g,n,l{), U € U, in the above equation hides
the terms 2e(1 — e)H (X a[Y14 AVa) and 6eH (V4 ), which do
not go to zero as [ goes to infinity. Consequently, we choose
e = n®, where o € [0,1/2)\{0,1/2}, such that if we
choose [ large enough, then n large enough, and finally g
large enough, then the asymptotic secret rate is as close as
desired to
min[(V3Yy) — max I(ViYu), (26)
#2(N') vanishes to zero in (19), (20), and the asymptotic public
communication rate is as close as desired to

max I(V; X[V 4). 7
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By taking the auxiliary random variable V' jointly Gaussian
with X in (26) and (27), we obtain (22) and (23), as shown
in Appendix E.

Remark 2: We observe that the size of the shares scales
linearly with the secret size. First, note that the size of each
share is the sum of the length of the public communication,
i.e., VR bits, and the length of N quantized observations of
a Gaussian random variable. Then, since we achieve the secret
rate in (26) by making the quantization parameter [ fixed when
N grows to infinity, we conclude that the size of the shares
scales linearly with N, which is also the case for the length
of the generated secret.

VII. CONCLUDING REMARKS

We smdied information-theoretic secret sharing from
Gaussian correlated sources over a one-way rate-limited public
channel and characterized its secret capacity, which provides
a closed-form expression of the trade-off between public
communication and the secret rate. By contrast with a tra-
ditional secret-sharing protocol, our setting does not require
information-theoretically secure channels between the dealer
and participants, and provides information-theoretic security
during the distribution phase, where the dealer distributes
shares of the secret to the participants. Moreover, we have
shown that the size of the shares scales linearly with the size
of the secret for any access structure. We also characterized
the secret capacity for threshold access structures and showed
that the secret capacity is, in general, not a monotone function
of the threshold.

While explicit and low-complexity coding schemes have
been proposed for information-theoretic secret sharing that
rely on discrete channel models [37], [38] and discrete source
models [39], developing low-complexity coding schemes that
achieve the limits derived in this paper for Gaussian sources
remains an open problem.

APPENDIX A
DERIVATION OF (4), (5)

Let Z and Z' be zero-mean jointly Gaussian and jointly

non-singular random vectors with covariance matrices ¥z and
Y. respectively. By [40, Theorem 3.5.2], we have

Z'=PZ+W, (28)

where P £ EzrzEEl and W is independent of Z with
covariance T £ Yz — EzzX;'EL, ;. Hence, by (28),
we have for any § C L

Ys = Eysxﬂ';cﬂx + Wy, (29)

where Ty, L Ty — Eysxa;22$5x. Then, we normal-
ize (29) as follows. By Cholesky decomposition, there exists
an invertible matrix B € R'*!*!®| such that Ty, = BBT.
Hence, (29) can be rewritten as

Yz =HsX + Wy,

where Y% 2 B-1Ys, Hs —
N0, Ii5)).

B 'y xoy", and WY ~

APPENDIX B
PrOOF OF THEOREM 2

To prove Theorem 2, we proceed as follows. For a
threshold access structure A,, we first prove that there
exist sets of authorized and unauthorized participants A €
argmin gep HiH_,q and Ui € arg maxg, oy, H Hy., respec-
tively, such that for any ¢t € [1,L — 1], A} < Aj,,
U < U, . Then, by Theorem 1, we remark that 4; and
U4} also correspond to the sets that appear in the expression
of the secret capacity for the threshold access structure A,;.
Finally, using the monotonicity property (with respect to t) of
the sets (A7 )ee1,] and (U )eeq1,.) and Theorem 1, we derive
necessary and sufficient conditions to determine whether the
secret capacity increases or decreases as the threshold ¢
increases.

We will need the following lemma.

Lemma 9: Let a,c € R; and R, € E,. The function
fae,r, is non-increasing

foer By — R
et 1. cy2 2R 4 ca(l— 2-2R) 41
y+— = log )
2 cy+1
Proof: The derivative of foep, at y e Ry is ff . p =

1 e(l4ea)(2~ P 1) <0
202 (eys1)(ey2 e tea(1-2- e 41) —
Using Lemma 9, we obtain the following result:
Lemma 10: One can find sets (A7 )eeqr,o) and (U )ee1,z)
such that for any ¢ € [1,L — 1], we have A} < A7 ;. U} C
U}, . and for any ¢ € [1, L],

+
(4114} € argmin [fuzn,a.n, (HEH)| . GO

where we have used the notation of Lemma 9.
Proof: For t € [1, L], remark that

+
[fHIHA,U},RF{HgHU}]

Ay MEU,
— iargmjnHEHA,argmaxHEHu},

A€, Uel,
because fprm, o3 ., (H{{Hy) is an increasing function
of HY{H, and is a decreasing function of HJTHy
by Lemma 9. Next, write the vector H; as Hy =
[He(1), He(2), ..., He (L)), By relabelling the participants,
if necessary, assume that |H:(1)] < |Hg(2) < ---
\H(L)). For t € [1,L]. choose A7 2 [1,t] and L
[L —t + 2,L]. Clearly, for any t € [1,L — 1], we have
AP C Apy, Uf © Uy, and by (31), we have that (30)
holds for any ¢ € [1,L]. M

By Theorem 1 and (30), we have

[

arg min

(31)

=
4

+
1 -
Cs(Ay, Bp) = [E log (JQXHE;HAHI -2 QRF} + 1)] 1
(32)
and for ¢ € [2, L], we have

Ci(Ae, Rp) =
[1 oy H Hy; 2 2R + o3 HY, H g (1-272F5) 4 1] +

-1
g % o3 Hi. Hu: +1
(33)
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Using (32) and (33), we easily obtain for any ¢ € [1, L]
Cs(Ay, RBy) = CoAy, Rp)

= ox Hjj; Ha; Hj: Hu; + H} Ha; + Hig. Hu;
—H.Hy >0,
From the proof of Lemma 10, there exists & > 0 such
that O < HE:H[,{: and HEIHA; +0 = H_,{;HA:' There-
fore, H}. H 4y + Hjj.Hy; > H}.Hy;, and Cs(A1, Rp) >

Csl e, Bp).
Next, we have for i € [1,L — ],

Cs(Ae, Bp) 2 CalAete, Hp)
= ox Hj;Ha Hije Hus, +Hj.Ha: + Hij. Hy,,
>o%Hi; Hu; H, | Hag, +Hi:Hu: +Hi: Ha,,
< oxH;H; (Hy, Hu, — HjHy; + Hy.Huy;)
+H5;.+‘_Hu:+i —HE: Hy;
> o Hiy; Hup (Hy, Hag, —H A Ha; +HA: Ha)
+HY. Hap,,—Hi.Ha;
= (1+oxHjy. Hy; }{Hﬁr}“ Hy;, . — Hyj. Hy;)
> (14 0% HLE. Hu;]{Hi:“HA:H - H:{: H 4. ),
where the first equivalence is obtained using (33). Note that,
by Lemma 10, one can choose A} C A7, and I} C U},
hence, H};*.“HA:H - H:{: Hy. = 0 and Hﬂ"l_“Hu;H —
HE:HH: = 0
APPENDIX C
PROOF OF (11)

The probability of error averaged over Ci,
ie, Eq [P[V™ # V3] for any A € A can be upper
bounded via the union bound by the four following terms:

1) The probability that (z™,y%) ¢ T5(XY4). which
is upper bounded by 2|X||Va|exp(—nejuxy,) [31,
Page 272 Equation (1.12)].

2) The probability that the encoder cannot find (w, i) such
that (=", v"(w,v)) € T(XV), given that (z",y7}) €
TH(XY4), which is upper bounded by

Ec, Z Pxmyy (=™, y73) L{¥(w,v), (v"(w,v),z")

T

i

¢ T"(VX) and (=", 3) € TET{XYA]}I

- ¥

(= y R 1 ETT (XY )

>

(z= WA IETH (X Ya)
—P[(V*(w,v),z") € T (VX)])
{E} Z
(z=,y3 )ETE (XY ,)
x P[(V*{w,v),z") € TMVX)])

Px~yy (=", 33 )P[¥(w, v),

(VHw,v),z") € T"(V X))
px=y g (", yi )(1

gmi Ftu+Hy, )

pxnyy (2", y} ) exp(— 2"t )

557

(B}
< > px~yp(x", y}) exp
(x= YR IETH (XY a)

- (1 _ 55?,}5{%]) g—ﬂ[I[V}xHZEH{V)J)

<exp (= (1= 82 (m)) 27),

where (a) holds because for any = > 0 and any p <
[0,1], (1 —p)* < P, and in 2{-E-} we have defined
87e(n) 2 2|V X| exp (—n 2y x ).

3) The probability that the decoder finds 7 4 * v such that
(v, v"(w,vq)) € T(Y4V), given that (=", 17) €
T (XY,4) and the encoder found (w,r) such that
(=™, v™(w, ) € T(XV), which is upper bounded by

> plww) Y Ec, >
W VA (zmyR)ET (XYa)
x L{ya, (v (w, ) € T (YaAV)}
>

vy (2m 3 €T (XYA)
x Py, (V7 (w, ) € T (YAV)]

2

v #v (27 y3 €T (XYA)
w 9~ I(ViY.)—2eH (V)

( _ gﬂ(-ﬂu+ﬂ:,)

pxmyz(z", y4)

px=yz (", 33)

=3 plww)

px=yz (", 33)

<Y plw,w)

< QiR —I(V:Y,)42eH (V)

< E—REH[V}

4) The probability that the decoder cannot find 7 4 such that
(v, v"(w,vq)) € TH(YAV), given that (2%, 47) €
T (XY,4) and the encoder found (w,r) such that
(™, v™w, ) € T™MXV), which is upper bounded
with Markov lemma [31, Pfge 319 Equation (5.1)] by
2V Yalexp (—n G2 v xvy )-

Hence, for any A € A, we have Eg [P[V™ # VT]] <

d(n, e, A). Next, we have

Eo, maxPVg £ V7| <Ee. | BTG £V7)
A

= Y Eo, [PV # V7]
Ak

< Y b(n,e, A)
Ak

< |A|maxd(n, e, A).

By Markov's inequality, we conclude that there exists
a codebook such that maxgcaPVY # V7 <
|A| max 4ep 8(n, €, A).

APPENDIX D
ProoF OF (17)
For any I{ € U, we have

(m}
HV™YE) = I(X™ VY
= H(X™Y) - H(X"|V"Yg)

(b)

= nH(X|Yu) - H(X"|[V"Y7), (34)
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where (a) holds by definition of mutual information, and
(b) holds because the X,'s and (Y¥3;);"s are independently
and identically distributed. We now lower bound the term
—H(X™V"Y;}). Define for any If € T,

PLF £ ﬂ{{Xﬂ’W’}ﬁ‘} € E{XWH]}
Ay 2 {(X™, V) e THXV)},

s0 that,
H(X™V™)
< H(X"TyuMy|VPYE)
= H(TuAy|V'YS) + H(X™ V™Y Tu )

(a)
<2+ Y P(Ty=wl|Au = &)P(Ay = 6y)
fuue{Dl} x H(X™VY ], Ty = e, A = 8u)

(E 24+ HX" VY Ty =1,A4=1)
+ (28:(n) + & (n,U)) log | X"
= Y plyf.v"(1,1)
wiem x HXMYE =t VP = o™ Ty = 1,Ay = 1)
+ 24 (28:(n) + 82(n,U)) log | X"

) log| T3 (X |ygi, v")|
+2 4 (26e(n) + 82 (n,U)) log | X"
< 3 Pyl o™ 1, 1)nH (X YV )(1 + 2¢)
+2+ (26:(n) + &2 (n,U)) log | X"
< nH(X[YuV)(1+ 2e)+ 2 + (26:(n)+ 62(n,U)) log | X|™.
(35)

where (a) holds because (', Ayy) is defined over an alphabet
of cardinality equal to four so that H(Lzd|VTYS)
logd = 2, {E-} holds because PlAy = 0] < &(n)
21X |V]e ™ wxv and Py = 0|Ay = 1] < &(n,U)
‘2|1-’||.—’£'||_].{u|e“ nuvxvyu /8 by Markov Lemma [31, Page 319
Equation (5.1)], and {c) holds because H(X) < log|X| for
any discrete random variable X defined over |X|. Combin-
ing (34) and (35), we obtain (17).

(e)

< > plyd,v"1,1

v

T

fle= fle=1.

APPENDIX E
PrOOF OF (22) AND (23)

We rewrite (26) and (27) as
By = max (h(X) — h{(X|V) — h(Y) + h(Ya[V)), (36)
R, = minmin (h(Y,) — h(Y4|V) — h(Yu) + h(Yu|V)).
(37)
2
Let Kxyv a2 | %
TVX
(X, V). We have
h(X|V) = h(X, V) — h(V)
= %]ﬂg{ﬂ'ﬁﬂ}ﬂ det(Kxy) — %lﬂg Imeay

7x V] be the covariance matrix of

1 _
= E]ugﬂ?re{o'} — axvavﬂax;r]

1
=3 log Ei'reai-lv, (38)

where the last equality holds by [41, Proposition 3.13]. Next,

for any A € A, let Ky, £ A E:$V be the
Ya ¥ Vv
covariance matrix of (¥4, V). We have !
det{ K
hYAIV) = g log(2me) 4L )
1 2 det(Zy, — 5 ) A
a) Elagl[??m}l"“ 7 det(Pr, ﬂ,zYAVJV v)
v
b 1 4|
= Elﬂg{ﬂ'ﬁﬂ} det(Xy, v ),
1
5 5 log(2me) Al det(Hack v HA + 1), (39)

where (a) holds by the formula for the determinant of
a block matrix, (b) holds by [41, Proposition 3.13], (c)
holds by (4) and the definition of the conditional wvari-

ance Sy, 2 E (V4 — E[Y4IV]) (Y4~ EXalV])" V] =
HLE [{X— E[X|V]) (X— E[X|V])" |V] HT+E Wy, W, ]

and Wy, is a Gaussian noise vector with identity covariance
matrix. Similarly, for any I{ = U, we have

hYulV) = T 4+ 1).
Thus, from (36}, (37). (38), (39). and (40), we have
=mﬂ(1lagi_llu dEt{HAG'xHi+I} )

- ]Dg{?ﬂ'e}'“l det(Hyy ﬂ’x“r,- (40)

Aea \2 Foy, 2 det{HAax|VHT+I}
(41)
.. (1. det(H4olHT +1)
R, = = log A
: ﬁ’éﬂﬁemu(g B det(Haok Hh +1)
—llu det(Hyox Hi +1)
3 det(Huok y HE +1) )
(42)

Then, by Lemma 1 and the definition of O4, A = A and
(hy, I € U, we can rewrite (41) and (42) as

1, o} 1. o}04+1
- o — Slog XA 43
By = max (2 By 2 Bo%,0a+1)’ “3)
2w (1, ox0a+1l 1, o}Ou+1
* T Aehuev|\2 78 xﬁwﬂ,q+l 2%y Ou+1)
(44)

Finally, by Lemma 2, (43) and (44) become (22) and (23).
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