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Abstract— In this paper, we study an information-theoretic
secret sharing problem, where a dealer distributes shares of a
secret among a set of participants under the following constraints:
(i) authorized sets of users can recover the secret by pooling their
shares, and (ii) non-authorized sets of colluding users cannot
learn any information about the secret. We assume that the
dealer and participants observe the realizations of correlated
Gaussian random variables and that the dealer can communicate
with participants through a one-way, authenticated, rate-limited,
and public channel. Unlike traditional secret sharing protocols,
in our setting, no perfectly secure channel is needed between
the dealer and the participants. Our main result is a closed-form
characterization of the fundamental trade-off between secret rate
and public communication rate.

Index Terms— Secret sharing, information-theoretic security,
rate-limited communication, Gaussian sources.

I. INTRODUCTION

SECRET sharing has been introduced in [2], [3]. In basicsecret-sharing models, a dealer distributes a secret among
a set of participants, with the constraint that only pre-defined
sets of participants can recover this secret by pooling their
shares, while any other set of colluding participants cannot
learn any information about the secret.
In  most  secret-sharing  models, including  Shamir’s

scheme [2], it is assumed that the dealer and each participant
can communicate over an information-theoretically secure
channel at no cost. While complexity-based cryptography
techniques, e.g., [4], could be used to implement secure
channels without any other resources than a public channel,
it would not provide information-theoretically secure channels.
In this paper, we are interested inanother approach that
aims at providing a full information-theoretic solution that
would not rely on complexity-based cryptography.In other
words, we want to avoid the assumption that information-
theoretically secure communication channels are available
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at no cost. An  information-theoretic approach to secret
sharing over wireless channels has been introduced in [5]
for this purpose. The main idea is to leverage channel noise
by remarking thatinformation-theoretic secret sharingover
wireless channels is similar to compound wiretap channel
models [6]. This information-theoretic approach has also been
formulated for source models in [7]–[9], where participants
and dealers share correlated random variables. These models
are related to compound secret-key generation, e.g., [10], [11],
and biometric systems with a multiuser access structure [12],
in that multiple reliability and security constraints need to be
satisfied simultaneously.
In this paper, we consider theinformation-theoreticsecret
sharing model in [8] with Gaussian sources. Specifically, the
dealer and the participants observe realizations of correlated
Gaussian random variables, and the dealer can communicate
with the participants over an authenticated, one-way, rate-
limited, and public communication channel. In wireless net-
works, independently and identically distributed realizations
of correlated random variables can, for instance, be obtained
from channel gain measurements after appropriate manipu-
lations [13], [14]. Our approach for the achievability part
consists in handling the reliability and security requirements
separately. Specifically, reliability is obtained via a coding
scheme akin to a compound version of Wyner-Ziv coding [15],
and security relies on universal hashing via extractors [16].
Interestingly, the converse shows that there is no loss of
optimality in decoupling the reliability and security require-
ments. The achievability is first obtained for discrete random
variables and then extended to continuous random variables
via fine quantization. In principle, one cannot assume a specific
quantization strategy to ensure the security requirement in
an information-theoretic manner; hence, the key step in this
extension is to show that information-theoretic security holds,
provided that the quantization is sufficiently fine. For the
converse part, we can partly rely on techniques developed
in [17], [18]. However, unlike in [17], [18], our setting involves
multiple security constraints that need to be satisfied simulta-
neously; hence, the main task in the converse is to prove a
saddle point property without any degradation assumption on
the source model.
The main differences between our work and [8], [10]–[12]
are that [8], [10]–[12] consider discrete memoryless sources,
whereas we consider Gaussian sources. As described above,
handling Gaussian random variables calls for different
proof techniques and considerations. Additionally, unlike
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[8], [10]–[12], it also allows us to derive capacity results
without assuming any source degradation properties. We also
highlight that unlike [8], [11], we consider rate-limited public
communication, and unlike [8], [12], we handle arbitrary
access structures.
The main features of our work can be summarized as

follows: (i) Our model relies on correlated Gaussian random
variables and, similar to [8] but unlike traditional secret-
sharing schemes [2], does not rely on the assumption that
information-theoretically secure channels between the dealer
and the participants are available. (ii) Similar to the model
in [8] but unlike traditional secret-sharing models, we consider
a model that requires information-theoretic security for the
secret with respect to unauthorized sets of participants during
the distribution phase, i.e., when the dealer distributes shares
of the secret to participants. (iii) We establish a closed-form
expression that characterizesthe optimal trade-off between
secret rate and public communication rate. (iv) The size of the
shares in our coding scheme scales linearly with the size of
the secret for any access structure similar to the model in [8].
Indeed, a share comprises the public communication from the
dealer andn quantized realizations of a Gaussian random
variable, which can be shown to both linearly scale withn.
The size of the shares does depend on the specific access
structure considered but not on the number of participants.
Specifically, the public communication must ensure that the
set of authorized users with the least amount of information
about the secret is able to reconstruct the secret. By contrast,
the best-known traditional secret-sharing schemes may require
a share size that grows exponentially with the number of the
participants for some access structures [19] – note, however,
that it is unknown whether or not there exist traditional secret-
sharing schemes that require a smaller share size. (v) For
threshold access structures, i.e.,  when a fixed number of
participantstis needed to reconstruct the secret (independently
from the specific identities of those participants), we establish
that the size of the secret that can be exchanged is, in general,
nota monotonic function of the thresholdt.
The remainder of the paper is organized as follows. We set

the notation in Section II and formally introduce the prob-
lem statement in Section III. We present our main results
in Section IV, and proofs in Sections V and VI. Finally,
we provide concluding remarks in Section VII.

II. NOTATION

For anya, b∈R,definea, b [a,b]∩N.Forx∈R,
define[x]+ max(0,x).ForasetS,let2S denote the
power set ofS. All logarithms are taken in base 2 throughout
the paper. LetIm denote the identity matrix of dimension
m ∈N.Letdet(W)denote the determinant of a matrixW
and|S|denote the cardinality of a setS. For two random
variablesX andV,σ2X andσXV denoteE[(X − E[X])

2]
andE[(X −E[X])(V−E[V])], respectively.N ∼ N(0,Σ)
indicates thatN is a zero-mean Gaussian random vector
with covariance matrix Σ. The indicator function is denoted
by1{ω}, which is equal to1if the predicateω is true
and0otherwise. LetH(X)(respectively,h(X)) denote the
Shannon entropy (respectively, the differential entropy) of a

discrete (respectively continuous), random variableX. Also,
letI(X;Y)denote the mutual information betweenX andY,
which are either continuous or discrete random variables.

III. PROBLEMSTATEMENT

Consider a dealer andL participants. DefineL 1,L,
X R,andY R. Consider a Gaussian memoryless source
model (X ×YL,pXYL), whereYL (Yl)l∈L,and(X, YL)
are jointly Gaussian random variables with a non-singular
covariance matrix. LetA be a set of subsets ofLsuch that
for anyT ⊆L,ifT contains a set that belongs toA,thenT
also belongs toA,i.e.,Ais a monotone access structure [20].
We also define U 2L\Aas the set of all colluding subsets
of users who must not learn any information about the secret.
In the following, for anyA ∈ A and for anyU ∈ U,
we use the notation YnA (Ynl)l∈A andY

n
U (Ynl)l∈U.

Moreover, we assume that the dealer can communicate with
the participants overan authenticated, one-way, rate-limited,
noiseless, and public communication channel.
Definition 1: A (2nRs,Rp,A,n)secret-sharing strategy is
defined as follows:
• The dealer observes Xn and Participant l ∈ L
observesYnl.

• The dealer sends over the public channel the message
M to the participants with the bandwidth constraint
H(M)≤nRp.

• The dealer computes a secret S ∈ S 1,2nRs

fromXn.
• Any subset of participants A ∈ A can compute an
estimateS(A)ofS from their observations(Ynl)l∈A
andM.

Definition 2: A rate pair (Rp,Rs)is achievable if there
exists a sequence of(2nRs,Rp,A,n)secret-sharing strategies
such that

lim
n→ ∞

max
A∈A
P[S(A)=S]=0, (1)

lim
n→ ∞

max
U∈U
I(S;M, Yn

U)=0, (2)

lim
n→ ∞

log|S| −H(S)=0. (3)

(1) means that any subset of participants inA is able to
recover the secret, (2) means that any subset of participants in
Ucannot obtain information about the secret, while (3) means
that the secret is nearly uniformand that its entropy is nearly
equal to its length.
Remark 1: The uniformity condition (3) ensures that a

secret-sharing strategy that maximizes the length of the secret,
will also maximize the entropy of the secret. Without this
condition, maximizing the length of the secret would not be
meaningful as one could always increase the length of the
secret by adding redundancy to it. This is the same reason
why in secret-key generation, one requires uniformity of the
secret key [21], [22].
The secret capacity region is defined as

R(pXYL,A) {(Rp,Rs):(Rp,Rs)is achievable}.

Moreover, for a fixed Rp, the supremum of secret ratesRs
such that(Rp,Rs)∈ R(pXYL,A)is called the secret capacity
and is denoted byCs(A,Rp).
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Additionally, one can write for any A ∈ A and for any
U∈U(see Appendix A for the derivation)

YA=HAX +WYA, (4)

YU=HUX +WYU, (5)

whereHA ∈R
|A|×1,HU∈R

|U |×1,WYA ∼ N(0,I|A|),and
WYU ∼ N(0,I|U |).

IV. MAINRESULTS

A. Results for General Access Structures

For a given access structureA,define

A ∈arg min
A∈A
HTAHA, U ∈arg max

U∈U
HTUHU.

Theorem 1:For any access structureAand public commu-
nication rateRp≥0, the secret capacityCs(A,Rp)is

Cs(A,Rp)=

1

2
log
σ2XH

T
U HU 2

−2Rp+σ2XH
T
A HA (1−2

−2Rp)+1

σ2XH
T
U HU +1

+

.

Proof: The converse and achievability are proved in
Sections V and VI, respectively.
From Theorem 1, we obtain the following corollary when
the public communication is rate-unlimited.
Corollary 1: For any access structureA, and an unlimited
public communication rate, the secret capacity is given by

Cs(A,Rp=+∞) lim
Rp→ +∞

Cs(A,Rp)

=
1

2
log
σ2XH

T
A HA +1

σ2XH
T
U HU +1

+

.

Note that in Theorem 1 and Corollary 1, the length of the
public communication scales linearly with the length of the
secret by construction and corresponds to a compressed ver-
sion of thensource observations of the dealer via a compound
version of Wyner-Ziv coding. Hence, the size of the share of
each participant, which comprises the public communication
andnquantized observations of a Gaussian random variable,
scales linearly with the length of the secret – as explained
in the proof of Theorem 1, the number of bits needed to
store quantized realizations of Gaussian random variables is
negligible compared to the number of source observations
nin our achievability scheme. Note that, unlike traditional
secret-sharing models, which separately consider the share-
creation phase and the share-distribution phase, we allow a
joint design of these two phases in our setting. This is made
possible by considering correlated random variables (at the
participants and the dealer) and public communication instead
of information-theoretically secure channels as in traditional
secret-sharing models.The following example illustrates The-
orem 1 and Corollary 1.
Example 1: Consider a dealer and three participants who
observe independently and identically distributed realiza-
tions of correlated Gaussian random variables as depicted in
Figure 1. Define the access structureA {{1,2},{2,3},
{1,2,3}}and defineU {{1,3},{1},{2},{3}}such that
(i) the sets of participants inA can recover the secret using

Fig. 1.  Secret-sharing setting whenA = {{1,2},{2,3},{1,2,3}}and
U= {{1,3},{1},{2},{3}}. Dashed, dotted, and solid contour lines repre-
sent the subsets of participants that are authorized to reconstruct the secret.

Fig. 2.  Secret capacity for example 1.

their observations and the public messageM, and (ii) the
sets of participants inU cannot learn information about the
secret. Fors∈ 1,L,letHL(s)denote thes-th component
ofHL, and assume thatσ

2
X 2,HL [0.5,1,0.8]T,andfor

anyS ⊆L,HS=(HL(s))s∈S. Then, one can compute the
secret capacity using Theorem 1 and Corollary 1, as shown in
Figure 2.

B. Results for Threshold Access Structures

We now consider a special kind of access structure called
threshold access structure [2]. A threshold access structure
with thresholdt∈ 1,Lis defined as

At {A ⊆ L:|A| ≥t}.

The complement ofAtis defined asUt 2L\At={A ⊆
L:|A|<t}.In other words, the threshold access structure
is defined such that any set oftparticipants can reconstruct
the secret, but no set of fewer thantparticipants can learn
information about the secret.
The following result provides necessary and sufficient con-

ditions to determine whetherthe secret capacity increases or
decreases as the thresholdtincreases.
Theorem 2: Assume that for any S ⊆ L,HS =
(HL(s))s∈S. For any t ∈ 1,L, consider At ∈
arg minA∈AtH

T
AHA,andUt ∈ arg maxU∈UtH

T
UHU.For

any communication rateRp≥0,foranyt∈ 1,L,wehave

Cs(A1,Rp)≥Cs(At,Rp),
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Fig. 3.  Secret capacity for threshold access structure.

and for anyt∈ 1,Landi∈ 1,L−t,

Cs(At,Rp)≥Cs(At+i,Rp)⇐⇒

HTUt+i
HUt+i−H

T
Ut
HUt

HTAt+i
HAt+i−H

T
At
HAt

≥
1+σ2XH

T
Ut
HUt

1+σ2XH
T
At
HAt

.

Proof: See Appendix B.
Theorem 2 illustrates the fact that the secret capacity is not

necessarily a monotonic decreasing function of the thresholdt.
Example 2:Consider a dealer and five participants. Assume

thatσ2X 2,HL [1,0.85,0.9,0.95,0.75]T,andforany
S ⊆L,HS=(HL(s))s∈S. Then, one can compare the secret
capacities for different thresholds using Theorem 2, as shown
in Figure 3.
From the definition ofAtandUt,wehaveHA1 =[0.75]

T,

HA2 =[0.75,0.85]
T,HA3 =[0.75,0.85,0.9]

T,HA4 =
[0.75,0.85,0.9,0.95]T,HA5 = [0.75,0.85,0.9,0.95,1]T,
HU2 =[1]

T,HU3 =[1,0.95]
T,HU4 =[1,0.95,0.9]

T,and
HU5 =[1,0.95,0.9,0.85]

T.
For example, puttingHTA4HA4 = 2.9975,H

T
U4
HU4 =

2.7125,HTA5HA5 = 3.9975,andH
T
U5
HU5 = 3.4350in

Theorem 2 witht=4 andi=1, wegetCs(A4,Rp)≤
Cs(A5,Rp)for anyRp≥0.

V. CONVERSEPROOF OFTHEOREM1

To prove the converse, we first derive an upper bound
on the secret capacityCs(A,Rp)by considering a worst-
case scenario in terms of a secret-key generation problem.
This upper bound takes the form of a minimax optimization
problem. We then derive a closed-form expression of this
upper bound by proving a minimax theorem.
Define for A ∈ A,U ∈ U,OA HTAHA,andOU
HTUHU. ConsiderV an auxiliary random variable jointly
Gaussian with X,andletσ2X|V be the conditional variance
ofX givenV. Consider alsoA ∈ arg minA∈AOA and
U ∈arg maxU∈UOU. Provided thatσ

2
X|V =0,forA∈ A,

U∈U,define

Ip(σ
2
X|V,A)

1

2
log

σ2X
σ2X|V

−
1

2
log

σ2XOA+1

σ2X|VOA+1
,

Is(σ
2
X|V,A,U)

1

2
log

σ2XOA+1

σ2X|VOA+1
−
1

2
log

σ2XOU+1

σ2X|VOU+1
.

We will also use the following lemmas.

Lemma 1 (Weinstein–Aronszajn Identity, e.g., [23, Appen-
dix B]):For anyσ2∈R+ andA∈Rq×1,wehave

det(Aσ2AT+Iq)=A
TAσ2+1.

Lemma 2:Letc, d∈R+such thatc≥d. Then, the function
fc,dis non-decreasing, where

fc,d:R+→ R

x→
1

2
log
cx+1

dx+1
.

Proof:The derivative offc,datx∈ R+ isfc,d(x) =
1
2ln2

c−d
(cx+1)(dx+1) ≥0.

We now prove the converse of Theorem 1 through a series
of lemmas.
Lemma 3: LetRp∈ R+. An upper bound on the secret
capacityCs(A,Rp)for the Gaussian source model(X ×
YL,pXYL)is given by

Cs(A,Rp)≤min
A∈A
min
U∈U

max
0<σ2X |V≤σ

2
X

s.t.Ip(σ
2
X |V,A)≤Rp

Is(σ
2
X|V,A,U).

(6)

Proof:FixA∈ A,U ∈U. We first consider the secret-
key generation model in [17] consisting of a transmitter
(Alice), a receiver (Bob), and an eavesdropper (Eve), who
observeXn,Yn,andZn, respectively, independently and
identically distributed according to a Gaussian source((X ×
Y×Z),pXY Z),whereX R,Y R|A|,Z R|U |.Inthis
model, a secret-key rateRkis achievable if after the transmis-
sion from Alice to Bob of messageM such thatH(M)≤nRp
over an authenticated noiseless public channel, a secret key
K ∈ 1,2nRk is generated by Alice, and an estimateK of
K is generated by Bob such that (i)limn→ ∞ P[K =K]=0
(reliability), (ii)limn→ ∞ I(K;Z

nM) = 0(security), and
limn→ ∞ log2

nRk −H(K)=0(uniformity). Moreover, the
capacity region of this model is defined asR(pXY Z,A,U)
{(Rp,Rk):(Rp,Rk)is achievable}.
Consider now the secret-sharing problem described in
Section III and the rate pair(Rp,Rs)∈ R(pXYL,A). Then,
by conditions (1), (2), and (3), the rate pair(Rp,Rs)also
belongs toR(pXYAYU,A,U)for anyA ∈ A,U ∈ U.
Therefore, by [17, Theorem 2], we have for any A ∈ A,
U∈U,

Rs≤
1

2
log

det(HAσ
2
XH

T
A+I)

det(HAσ2X|VH
T
A+I)

det(HUσ
2
X|VH

T
U+I)

det(HUσ2XH
T
U+I)

,

Rp≥
1

2
log

σ2X
σ2X|V

−
1

2
log

det(HAσ
2
XH

T
A+I)

det(HAσ2X|VH
T
A+I)

,

for someσ2X|V ∈ (0,σ
2
X]. Finally, using Lemma 1 and the

definition ofOA,A∈AandOU,U∈U,wehave(6).
Lemma 4:LetRp∈R+.LetA∈ A,U∈U, and assume
thatOA≥OU. Then, we have

max
0<σ2X |V≤σ

2
X

s.t.Ip(σ
2
X |V,A)≤Rp

Is(σ
2
X|V,A,U)

=
1

2
log
σ2XOU2

−2Rp+σ2XOA(1−2
−2Rp)+1

σ2XOU+1
. (7)
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Proof: Fix A ∈ A andU ∈ U. Letσ2X|V(A,U)be
an optimal solution on the left-hand side of (7). By writing
Is(σ

2
X|V,A,U)as

Is(σ
2
X|V,A,U)=

1

2
log
σ2XOA+1

σ2XOU+1
−
1

2
log
σ2X|VOA+1

σ2X|VOU+1
,

we have that Is(σ
2
X|V,A,U)is a non-increasing function of

σ2X|V by Lemma 2 becauseOA ≥ OU. Hence,σ
2
X|V(A,U)

must be the smallest σ2X|V ∈ (0,σ2X]that satisfies the

constraintIp(σ
2
X|V,A) ≤ Rp. However,Ip(σ

2
X|V,A)is

a non-increasing function ofσ2X|V; thus, we must have

Ip(σ
2
X|V(A,U),A)=Rp, i.e.,

Rp=
1

2
log

σ2X
σ2X|V(A,U)

−
1

2
log

σ2XOA+1

σ2X|V(A,U)OA+1
,

which gives

σ2X|V(A,U)=
σ2X

σ2XOA(2
2Rp−1) + 22Rp

. (8)

Plugging in this value forσ2X|V(A,U)inIs(σ
2
X|V(A,U),

A,U)gives (7).
Lemma 5:Assume that for any A∈ A,U ∈U, wehave
OA≥OU.LetRp∈R+. Then, we have

min
A∈A
min
U∈U

max
0<σ2X |V≤σ

2
X

s.t.Ip(σ
2
X |V,A)≤Rp

Is(σ
2
X|V,A,U)

= max
0<σ2X |V≤σ

2
X

s.t.Ip(σ
2
X |V,A )≤Rp

min
A∈A
min
U∈U
Is(σ

2
X|V,A,U). (9)

Proof: By Lemma 2, we have for anyσ2X|V ∈(0,σ
2
X],

A∈A,U∈U,

1

2
log

σ2XOA+1

σ2X|VOA+1
≥
1

2
log

σ2XOA +1

σ2X|VOA +1
,

−
1

2
log

σ2XOU+1

σ2X|VOU+1
≥−
1

2
log

σ2XOU +1

σ2X|VOU +1
;

hence,Is(σ
2
X|V,A,U)≥Is(σ

2
X|V,A ,U ), and we conclude

that for anyσ2X|V ∈(0,σ
2
X],

min
A∈A
min
U∈U
Is(σ

2
X|V,A,U)=Is(σ

2
X|V,A ,U ). (10)

Then, we have

min
A∈A
min
U∈U

max
0<σ2X |V≤σ

2
X

s.t.Ip(σ
2
X |V,A)≤Rp

Is(σ
2
X|V,A,U)

(a)
= min
A∈A
min
U∈U
Is(σ

2
X|V(A,U),A,U)

(b)
= Is(σ

2
X|V(A ,U ),A ,U )

= max
0<σ2X |V≤σ

2
X

s.t.Ip(σ
2
X |V,A )≤Rp

Is(σ
2
X|V,A ,U )

(c)
= max

0<σ2X |V≤σ
2
X

s.t.Ip(σ
2
X |V,A )≤Rp

min
A∈A
min
U∈U
Is(σ

2
X|V,A,U),

where in(a)we have defined forA∈A,U∈U,

σ2X|V(A,U) arg max
0<σ2X |V≤σ

2
X

s.t.Ip(σ
2
X |V,A)≤Rp

Is(σ
2
X|V,A,U),

(b)holds because for any A ∈ A,U ∈ U, we have
Is(σ

2
X|V(A,U),A,U) ≥ Is(σ

2
X|V(A,U),A ,U ) ≥

Is(σ
2
X|V(A ,U ),A ,U ),  where  the  first  inequality

holds by (10), and the second inequality holds because
Is(σ

2
X|V(A,U),A ,U ) is a non-increasing function of

σ2X|V(A,U)by Lemma 2, andσ
2
X|V(A ,U )≥σ

2
X|V(A,U)

by (8) in the proof of Lemma 4, and(c)holds by (10).
Next, we remark that if there exist A ∈ A andU ∈ U

such thatOA < OU,thenCs(A,Rp) =0by Lemma 3 and
Lemma 2 applied tofσ2X,σ2X |V. Thus, we obtain the converse

of Theorem 1 by combining Lemmas 3, 4, and 5.

VI. ACHIEVABILITYPROOF OFTHEOREM1

To prove the achievability part of Theorem 1, we first
prove an achievability result for discrete random variables in
Section VI-A and then extend our result to Gaussian random
variables by a quantization argument in Section VI-B.

A. Discrete Case

Our coding scheme decouples the requirements (1) (reliabil-
ity) and (2) (security with respect to unauthorized groups of
colluding users). Specifically, as described next, we repeat
q ∈ N times a reconciliation step to handle (1) via a
compound version of Wyner-Ziv coding and then perform
a privacy amplification step to handle (2) via universal
hashing implemented with extractors. Note that Wyner-Ziv
coding is a key component to handle rate-limited communi-
cation constraints as in rate-limited secret-key generation [24]
and biometric secrecy system models, e.g., [25]–[29], which
rely on rate-limited secret-key generation. Here, unlike in
[25]–[29], we employ a compound version of Wyner-Ziv cod-
ing because unlike in [25]–[29], we simultaneously consider
multiple reliability constraints due to the presence of an access
structure.
1) Reconciliation Step: Let n ∈ N and > 0.Fora
probability mass functionpX, denote the set of-letter typical
sequences [30] (see also [31]) with respect topX byT

n(X),
and definesupp(pX) {x∈ X :pX(x)> 0}andμX
minx∈supp(pX)pX(x).Define1

1
2.

a) Code construction:Fix a joint probability distribution
pV XYL onV ×X ×YL, whereV is an auxiliary random
variable such that V−X−YLforms a Markov chain. Define
Rv maxA∈AH(V|YA)− H(V|X) +6H(V),Rv
H(V)−maxA∈AH(V|YA)−3H(V). Generate2

n(Rv+Rv)

codewords, labeledvn(ω, ν)with (ω, ν) ∈ 1,2nRv ×
1,2nRv , by generating the symbolsvi(ω, ν)fori∈ 1,n
and(ω, ν)∈ 1,2nRv × 1,2nRv independently according
topV.

b) Encoding: Given xn, findapair(ω, ν)such that
(xn,vn(ω, ν))∈Tn(XV). If there are several pairs, choose
one (according to the lexicographic order); otherwise, set
(ω, ν)=(1,1).Definevn vn(ω, ν), and transmitm ω.
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c) Decoding:Let A ∈ A. GivenynA andm,find̃νA
such that(ynA,v

n(ω,ν̃A))∈ T
n(YAV). If there is one or

more ̃νA, then choose the smallest; otherwise, set̃νA =1.
DefinevnA vn(ω,ν̃A).
d) Probabilityof error:The random variable that repre-

sents the randomly generated code is denoted byCn.Asshown
in Appendix C, there exists a codebookCnsuch that

max
A∈A
P[Vn=VnA]≤|A|max

A∈A
δ(n, ,A), (11)

where

δ(n, ,A) 2|X ||YA|e
−n2

1μXYA +2−n H(V)

+exp(−(1−2|V||X |e−n
( − 1)

2

1+1
μV X)2nH(V))

+2|V||X ||YA|e
−n

( − 1)
2

1+1
μV XYA.

2) Privacy Amplification Step:Letq, n∈ N, and define
N nq. The reconciliation step is repeatedqtimes such
that the dealer hasVN = (Vn)q and the participants
inA ∈ A have(VnA)

q. Note that the total public com-

munication M ∈ M is such thatH(M )N ≤ log| M|
N =

maxA∈AI(X;V|YA)+6H(V). Next, another round of rec-
onciliation with negligible communication is performed to
ensure thatmaxA∈AP[(V

n)q = (VnA)
q]≤ δ(q), where

limq→ ∞ δ(q)=0whennis fixed. Finally, the dealer computes
S = g(VN,Ud), while the participants inA ∈ A compute
S(A) =g(VNA ,Ud), whereUdis a sequence ofd(to be
defined later) uniformly distributed random bits, andg :
{0,1}N×{0,1}d→{0,1}kis to be defined later.
3) Analysis of Reliability: The secrets computed by the
dealer and the participants inA∈ A are asymptotically the
same for a fixednasqgoes to infinity.

P[S(A)=S]≤P[(VnA)
q=(Vn)q]≤δ(q).

4) Analysis of Security: Let the min-entropy of a dis-
crete random variable X, defined overX with prob-
ability mass function pX, be denoted byH∞(X)
−log (maxx∈XpX(x)). We will use the following lemmas:
Lemma 6 (Adapted from [32]):LetEUbe the random vari-
able that represents the total knowledge aboutVN available
to participants inU∈U.LeteUbe a particular realization of
EU.IfH∞(V

N|EU=eU)≥γN,forsomeγ∈[0,1]\{0,1},
then there exists an extractorg:{0,1}N×{0,1}d→{0,1}k

withd≤Nδ(N)andk≥N(γ−δ(N)),whereδ(N)is such
thatlimN→ +∞ δ(N)=0. Moreover,

H(S|Ud,EU=eU)≥k−δ(N),

withδ(N)=2−
√
N/logN(k+

√
N/logN).

Lemma 7 ([32], See Also [33]):Consider a discrete mem-
oryless source(X ×Y,pXY)and define

Θ {(Xq,Yq)∈Tq2(XY)} {Y
q∈Tq(Y)}.

Then, P[Θ  =  1] ≥ 1 − (2|SX|e
− 2qμX/3 +

2|SXY|e
− 2qμXY /3), withSXY supp(pXY)andSY

supp(pY). Moreover, ify
q∈Tq(Y),then

H∞(X
q|Yq=yq,Θ=1)

≥q(1− )H(X|Y) + log(1−2|SXY|e
− 2qμXY /6).

Define for anyU∈U, the random variables

ΘU {(VN,YNU )∈T
q
2(V

nYnU)} {Y
N
U ∈T

q(YnU)},

(12)

ΥU {H∞(V
N|YNU =y

N
U,ΘU=1)

−H∞(V
N|YNU =y

N
U, M=m,ΘU=1)

≤log| M|+
√
N}. (13)

For any U ∈ U,P[ΘU = 1] ≥ 1− δ
0(n,U), where

δ0(n,U) 2|SVn|e
− 2qμVn/3+2|SVnYnU|e

− 2qμVnYn
U
/3
by

Lemma 7 applied to the discrete memoryless source model

(Vn×YnU,pVnYnU),andP[ΥU =1] ≥ 1−2
−
√
N by [32,

Lemma 10]. Hence,

P[ΥU=1,ΘU=1]≥1−δ
0(n,U)−2−

√
N. (14)

Then, for anyU∈U,wehave

H(S|UdY
N
U M)

(a)

≥ H(S|UdY
N
U MΘUΥU)

≥min
U∈U
H(S|UdY

N
U MΘUΥU)

≥min
U∈U
P[ΘU=1,ΥU=1]

×H(S|UdY
N
U M, ΘU=1,ΥU=1)

≥min
U∈U
P[ΘU=1,ΥU=1]

×min
U∈U
H(S|UdY

N
U M, ΘU=1,ΥU=1)

(b)

≥ 1−max
U∈U
δ0(n,U)−2−

√
N

×min
U∈U
H(S|UdY

N
U M, ΘU=1,ΥU=1),

(15)

where (a)holds because conditioning reduces entropy and
(b)holds by (14). To lower boundminU∈UH(S|UdY

N
U M,

ΘU=1,ΥU=1)in (15) with Lemma 6, we now lower bound
minU∈UH∞(V

N|YNU = yNU, M= m,ΘU =1,ΥU =1).
We have for any U∈U,

H∞(V
N|YNU =y

N
U, M=m,ΘU=1,ΥU=1)

(a)

≥ H∞(V
N|YNU =y

N
U,ΘU=1)−log| M| −

√
N

(b)

≥ q(1− )H(Vn|YnU)−δ
1(q, n,U)−N(max

A∈A
I(V;X|YA)

+6 H(V))−
√
N

(c)

≥ N[I(X;V|YU)−max
A∈A
I(V;X|YA)−δ

2(q, n,U)]

≥N[min
U∈U
I(X;V|YU)−max

A∈A
I(V;X|YA)−max

U∈U
δ2(q, n,U)]

(d)
= N[min

A∈A
I(V;YA)−max

U∈U
I(V;YU)−max

U∈U
δ2(q, n,U)],

(16)

where (a)holds by (13), (b)holds by Lemma 7 with

δ1(q, n,U) −log(1−2|SVnYnU|e
− 2qμVnYn

U
/6
),(c)holds

with δ2(q, n,U) I(X;V|YU)+(1− )[2H(X|YUV)+
2n−1 + log|X |(4|V||X |e−n

2μXV + 2|V||X ||YU|
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e−
2nμV XYU/8)] +N−1δ1(q, n,U) + 6H(V) +N−1/2

because, as shown in Appendix D, we have

H(Vn|YnU)≥n(H(X|YU)−H(X|YUV)(1 + 2))

−2−nlog|X |(4|V||X |e−n
2μXV

+2|V||X ||YU|e
− 2nμV XYU/8),

(17)

and(d)holds becauseV−−X −−(YA,YU).
Next, we set the output size kof the extractor to be less

than the lower bound in (16) by
√
N, i.e.,

k N[min
A∈A
I(V;YA)−max

U∈U
I(V;YU)−max

U∈U
δ2(q, n,U)

−N−1/2], (18)

Finally, we have

max
U∈U
I(S;UdY

N
U M)=H(S)−min

U∈U
H(S|UdY

N
U M)

(a)

≤ k− 1−max
U∈U
δ0(n,U)−2−

√
N

×(k−δ(N))

(b)

≤ δ3(N), (19)

where(a)holds by (15), (16) (valid for anyU∈U), (18), and

Lemma 6 withδ(N) 2−
√
N/logN(k+

√
N/logN)and(b)

holds withδ3(N) δ(N)+(maxU∈Uδ
0(n,U)+2−

√
N)k.

5) Analysis of Uniformity:Similar to (19), we have

H(S)≥min
U∈U
H(S|UdY

N
U M)

≥k−δ3(N). (20)

6) Public Communication Rate:The public communication
rate corresponds to the rate ofM plus the rate ofUd,i.e.,

lim
N→ ∞

Rp= max
A∈A
I(X;V|YA)+6H(V).

7) Achievable Secret Rate: The secret rate Rs k/N
satisfies

Rs≥min
A∈A
I(V;YA)−max

U∈U
I(V;YU)−max

U∈U
δ2(q, n,U)

−N−1/2−N−1.(21)

B. Continuous Case

In this section, we extend the achievability result of
Section VI-A for discrete random variables to Gaussian ran-
dom variables by means of quantization. Quantization also
allows us to show that the size of the shares linearly scales
with the length of the secret. The main issue with quantization
is that it might lead to an underestimation of the information
that unauthorized sets of participants may learn about the
secret. We will, however, show that this issue can be overcome
provided that the quantization is fine enough.
We now build upon Section VI-A to show that (Rp,Rs)∈

R(pXYL,A),where

Rp=
1

2
log

σ2X
σ2X|V

−
1

2
log

σ2XOA +1

σ2X|VOA +1
, (22)

Rs=
1

2
log

σ2XOA +1

σ2X|VOA +1
−
1

2
log

σ2XOU +1

σ2X|VOU +1
. (23)

We use the following lemma to extend Section VI-A to the
continuous case by means of quantization.
Lemma 8 ([34]–[36]): LetX andY be two real-valued
random variables with probability distributionPX andPY,
respectively. LetCΔ1 = {Ci}i∈I,DΔ2 = {Dj}j∈J be two
partitions of the real line forX andYsuch that for anyi∈I,
PX[Ci] = Δ1,foranyj∈ J,PY[Dj] = Δ2, whereΔ1,
Δ2>0.LetXΔ1,YΔ2be the quantized version ofX, Y with
respect to the partitionsCΔ1,DΔ2, respectively. Then, we have

I(X, Y) =  lim
Δ1,Δ2→ 0

I(XΔ1,YΔ2).

We first show that a quantization does not affect the security
requirement (2).
Proposition 1:A quantization ofYnU,U∈U, might lead to

an underestimation ofI(S;M, Yn
U). However, if the quantized

versionYnU,Δ ofY
n
U,U∈U, is fine enough, then for anyδ>0

max
U∈U
I(S;MYn

U)≤max
U∈U
I(S;MYn

U,Δ)+δ. (24)

Proof:For anyδ>0,foranyU∈U,wehave

I(S;MYn
U)≤|I(S;MY

n
U)−I(S;MY

n
U,Δ)|+I(S;MY

n
U,Δ)

≤max
U∈U
|I(S;MYn

U)−I(S;MY
n
U,Δ)|

+max
U∈U
I(S;MYn

U,Δ)

≤δ+max
U∈U
I(S;MYn

U,Δ), (25)

where the last inequality holds by Lemma 8, if the quantized
versionYnU,Δ ofY

n
U,U ∈U, is fine enough. Since (25) is

valid for anyU∈U, we obtain (24).
ForA∈AandU∈U, we quantizeX, YA,YU,andVas in
Lemma 8 to formXΔ,YA,Δ,YU,Δ,andVΔsuch thatΔ= l

−1

and|XΔ|= |YA,Δ|= |YU,Δ|= |VΔ|= lwith l >0. Next,
we apply the proof for the discrete case to the random variables
XΔ,YA,Δ,YU,Δ,VΔ. By Lemma 8, we can fixllarge enough
such that, for anyA∈A,|I(VΔ;YA,Δ)−I(V;YA)|<δ/2,for
anyU∈U,|I(VΔ;YU,Δ)−I(V;YU)|<δ/2, such that (21)
becomes

Rs≥min
A∈A
I(V;YA)−max

U∈U
I(V;YU)−max

U∈U
δ2(q, n,U)

−N−1/2−N−1−δ.

Note thatδ2(q, n,U),U ∈U, in the above equation hides
the terms2(1− )H(XΔ|YU,ΔVΔ)and6H(VΔ), which do
not go to zero aslgoes to infinity. Consequently, we choose
= n−α, whereα ∈ [0,1/2]\{0,1/2}, such that if we

choosellarge enough, thennlarge enough, and finallyq
large enough, then the asymptotic secret rate is as close as
desired to

min
A∈A
I(V;YA)−max

U∈U
I(V;YU), (26)

δ3(N)vanishes to zero in (19), (20), and the asymptotic public
communication rate is as close as desired to

max
A∈A
I(V;X|YA). (27)
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By taking the auxiliary random variableV jointly Gaussian
with X in (26) and (27), we obtain (22) and (23), as shown
in Appendix E.
Remark 2: We observe that the size of the shares scales
linearly with the secret size. First, note that the size of each
share is the sum of the length of the public communication,
i.e.,NRpbits, and the length ofN quantized observations of
a Gaussian random variable. Then, since we achieve the secret
rate in (26) by making the quantization parameterlfixed when
N grows to infinity, we conclude that the size of the shares
scales linearly withN, which is also the case for the length
of the generated secret.

VII. CONCLUDINGREMARKS

We studied information-theoreticsecret sharing from
Gaussian correlated sources over a one-way rate-limited public
channel and characterized its secret capacity, which provides
a closed-form expression of the trade-off between public
communication and the secret rate. By contrast with a tra-
ditional secret-sharing protocol, our setting does not require
information-theoretically secure channels between the dealer
and participants, and provides information-theoretic security
during the distribution phase, where the dealer distributes
shares of the secret to the participants. Moreover, we have
shown that the size of the shares scales linearly with the size
of the secret for any access structure. We also characterized
the secret capacity for threshold access structures and showed
that the secret capacity is, in general, not a monotone function
of the threshold.
While explicit and low-complexity coding schemes have

been proposed forinformation-theoretic secret sharingthat
rely on discrete channel models [37], [38] and discrete source
models [39], developing low-complexity coding schemes that
achieve the limits derived in this paper for Gaussian sources
remains an open problem.

APPENDIXA
DERIVATION OF(4), (5)

LetZ andZ be zero-mean jointly Gaussian and jointly
non-singular random vectors with covariance matricesΣZand
ΣZ, respectively. By [40, Theorem 3.5.2], we have

Z =PZ+W, (28)

where P ΣZ ZΣ
−1
Z andW is independent ofZ with

covarianceΣW ΣZ − ΣZ ZΣ
−1
Z Σ

T
Z Z. Hence, by (28),

we have for anyS ⊆L

YS=ΣYSXσ
−2
X X +WYS, (29)

where ΣWYS ΣYS −ΣYSXσ
−2
X Σ

T
YSX
. Then, we normal-

ize (29) as follows. By Cholesky decomposition, there exists
an invertible matrixB ∈R|S|×|S|such thatΣWYS = BB

T.
Hence, (29) can be rewritten as

YS=HSX +WYS,

where YS B−1YS,HS = B
−1ΣYSXσ

−2
X ,andWYS ∼

N(0,I|S|).

APPENDIXB
PROOF OFTHEOREM2

To prove Theorem 2, we proceed as follows. For a
threshold access structureAt, we  first prove that there
exist sets of authorized and unauthorized participantsAt∈
arg minA∈AtH

T
AHA andUt∈arg maxU∈UtH

T
UHU, respec-

tively, such that for anyt ∈ 1,L− 1,At ⊂ At+1,
Ut ⊂ Ut+1. Then, by Theorem 1, we remark thatAtand
Utalso correspond to the sets that appear in the expression
of the secret capacity for the threshold access structureAt.
Finally, using the monotonicity property (with respect tot)of
the sets(At)t∈ 1,Land(Ut)t∈ 1,Land Theorem 1, we derive
necessary and sufficient conditions to determine whether the
secret capacity increases ordecreases as the threshold t
increases.
We will need the following lemma.
Lemma 9: Let a, c∈ R+ andRp ∈ R+. The function

fa,c,Rp is non-increasing

fa,c,Rp:R+→ R

y→
1

2
log
cy2−2Rp+ca(1−2−2Rp)+1

cy+1
.

Proof:The derivative offa,c,Rp aty∈R+ isfa,c,Rp =
1
2ln2

c(1+ca)(2−2Rp−1)

(cy+1)(cy2−2Rp+ca(1−2−2Rp)+1)
≤0.

Using Lemma 9, we obtain the following result:
Lemma 10:One can find sets(At)t∈ 1,Land(Ut)t∈ 1,L
such that for anyt∈ 1,L−1,wehaveAt⊂ At+1,Ut⊂
Ut+1,andforanyt∈ 1,L,

{At,Ut}∈ arg min
A∈At,U∈Ut

fHTAHA,σ2X,Rp(H
T
UHU)

+

, (30)

where we have used the notation of Lemma 9.
Proof:Fort∈ 1,L, remark that

arg min
A∈At,U∈Ut

fHTAHA,σ2X,Rp(H
T
UHU)

+

= arg min
A∈At

HTAHA,arg max
U∈Ut

HTUHU , (31)

because fHTAHA,σ2X,Rp(H
T
UHU)is an increasing function

of HTAHA and is a decreasing function of HTUHU
by Lemma 9. Next, write the vector HL as HL =
[HL(1),HL(2),...,HL(L)]

T. By relabelling the participants,
if necessary, assume that|HL(1)| ≤|HL(2)| ≤ ··· ≤
|HL(L)|.Fort∈ 1,L, chooseAt 1,t andUt
L− t+2,L. Clearly, for anyt∈ 1,L− 1, wehave
At ⊂ At+1,Ut ⊂ Ut+1, and by (31), we have that (30)
holds for anyt∈ 1,L.
By Theorem 1 and (30), we have

Cs(A1,Rp)=
1

2
logσ2XH

T
A1
HA1(1−2

−2Rp)+1

+

,

(32)

and fort∈ 2,L,wehave

Cs(At,Rp)=

1

2
log
σ2XH

T
Ut
HUt2

−2Rp+σ2XH
T
At
HAt(1−2

−2Rp)+1

σ2XH
T
Ut
HUt +1

+

.

(33)
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Using (32) and (33), we easily obtain for anyt∈ 1,L

Cs(A1,Rp)≥Cs(At,Rp)

⇐⇒ σ2XH
T
A1
HA1H

T
Ut
HUt +H

T
A1
HA1+H

T
Ut
HUt

−HTAtHAt ≥0.

From the proof of Lemma 10, there existsO ≥ 0such
thatO ≤ HTUtHUt andH

T
A1
HA1 +O = H

T
At
HAt.There-

fore,HTA1HA1 +H
T
Ut
HUt ≥ H

T
At
HAt,andCs(A1,Rp)≥

Cs(At,Rp).
Next, we have fori∈ 1,L−t,

Cs(At,Rp)≥Cs(At+i,Rp)

⇐⇒ σ2XH
T
At
HAtH

T
Ut+i
HUt+i+H

T
At
HAt+H

T
Ut+i
HUt+i

≥σ2XH
T
Ut
HUtH

T
At+i
HAt+i+H

T
Ut
HUt+H

T
At+i
HAt+i

⇐⇒ σ2XH
T
At
HAt(H

T
Ut+i
HUt+i−H

T
Ut
HUt +H

T
Ut
HUt)

+HTUt+iHUt+i−H
T
Ut
HUt

≥σ2XH
T
Ut
HUt(H

T
At+i
HAt+i−H

T
At
HAt+H

T
At
HAt)

+HTAt+iHAt+i−H
T
At
HAt

⇐⇒ (1 +σ2XH
T
At
HAt)(H

T
Ut+i
HUt+i−H

T
Ut
HUt)

≥(1 +σ2XH
T
Ut
HUt)(H

T
At+i
HAt+i−H

T
At
HAt),

where the first equivalence is obtained using (33). Note that,
by Lemma 10, one can chooseAt⊂ At+iandUt⊂Ut+i,
hence,HTAt+i

HAt+i − H
T
At
HAt ≥ 0andH

T
Ut+i
HUt+i −

HTUtHUt ≥ 0.

APPENDIXC
PROOF OF(11)

The  probability  of  error  averaged  over Cn,
i.e.,ECn[P[V

n = VnA]]for anyA ∈ A can be upper
bounded via the union bound by the four following terms:
1) The probability that (xn,ynA) /∈ T

n
1
(XYA), which

is upper bounded by2|X ||YA|exp(−n
2
1μXYA)[31,

Page 272 Equation (1.12)].
2) The probability thatthe encoder cannot find(ω, ν)such
that(xn,vn(ω, ν))∈Tn(XV), given that(xn,ynA)∈
Tn
1
(XYA), which is upper bounded by

ECn
xn,ynA

pXnYnA(x
n,ynA){∀(ω, ν),(v

n(ω, ν),xn)

/∈Tn(VX)and(xn,ynA)∈T
n
1
(XYA)}

=
(xn,ynA)∈T

n
1
(XYA)

pXnYnA(x
n,ynA)P[∀(ω, ν),

(Vn(ω, ν),xn)/∈Tn(VX)]

=
(xn,ynA)∈T

n
1
(XYA)

pXnYnA(x
n,ynA)(1

−P[(Vn(ω, ν),xn)∈Tn(VX)])2
n(Rv+Rv)

(a)

≤
(xn,ynA)∈T

n
1
(XYA)

pXnYnA(x
n,ynA)exp(−2

n(Rv+Rv)

×P[(Vn(ω, ν),xn)∈Tn(VX)])

(b)

≤
(xn,ynA)∈T

n
1
(XYA)

pXnYnA(x
n,ynA)exp −2

n(Rv+Rv)

× 1−δ(2)
1,(n) 2

−n(I(V;X)+2H(V))

≤exp − 1−δ(2)
1,(n) 2

nH(V),

where (a)holds because for anyx≥ 0and anyp∈
[0,1],(1−p)x ≤ e−px,andin(b)we have defined

δ
(2)
1,(n) 2|V||X |exp −n

(− 1)
2

1+1
μV X .

3) The probability that the decoder findsν̃A =νsuch that
(ynA,v

n(ω,̃νA))∈ T
n(YAV), given that(x

n,ynA)∈
Tn
1
(XYA)and the encoder found(ω, ν)such that

(xn,vn(ω, ν))∈Tn(XV), which is upper bounded by

ω,ν

p(ω, ν)
νA=ν

ECn
(xn,ynA)∈T

n
1
(XYA)

pXnYnA(x
n,ynA)

× {ynA,(v
n(ω, νA))∈T

n(YAV)}

=
ω,ν

p(ω, ν)
νA=ν(x

n,ynA)∈T
n
1
(XYA)

pXnYnA(x
n,ynA)

×P[(ynA,(V
n(ω, νA))∈T

n(YAV)]

≤
ω,ν

p(ω, ν)
νA=ν(x

n,ynA)∈T
n
1
(XYA)

pXnYnA(x
n,ynA)

×2−n(I(V;YA)−2H(V))

≤2n(Rv−I(V;YA)+2H(V))

≤2−n H(V).

4) The probability thatthe decoder cannot find̃νAsuch that
(ynA,v

n(ω,̃νA))∈ T
n(YAV), given that(x

n,ynA)∈
Tn
1
(XYA)and the encoder found(ω, ν)such that

(xn,vn(ω, ν))∈ Tn(XV), which is upper bounded
with Markov lemma [31, Page 319 Equation (5.1)] by

2|V||X ||YA|exp −n
(− 1)

2

1+1
μV XYA .

Hence, for any A ∈ A, wehaveECn[P[V
n = VnA]]≤

δ(n, ,A).Next,wehave

ECn max
A∈A
P[VnA =V

n]≤ECn
A∈A

P[VnA =V
n]

=
A∈A

ECn P[V
n
A =V

n]

≤
A∈A

δ(n, ,A)

≤|A|max
A∈A
δ(n, ,A).

By Markov’s inequality, we conclude that there exists
a  codebook such that maxA∈AP[V

n
A = Vn] ≤

|A|maxA∈Aδ(n, ,A).

APPENDIXD
PROOF OF(17)

For anyU∈U,wehave

H(Vn|YnU)
(a)

≥ I(Xn;Vn|YnU)

=H(Xn|YnU)−H(X
n|VnYnU)

(b)
= nH(X|YU)−H(X

n|VnYnU), (34)
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where (a)holds by definition of mutual information, and
(b)holds because theXi’s and(YU)i’s are independently
and identically distributed. We now lower bound the term
−H(Xn|VnYnU).DefineforanyU∈U,

ΓU {(Xn,Vn,YnU)∈T
n
2(XV YU)},

ΔU {(Xn,Vn)∈Tn(XV)},

so that,

H(Xn|VnYnU)

≤H(XnΓUΔU|V
nYnU)

=H(ΓUΔU|V
nYnU)+H(X

n|VnYnUΓUΔU)
(a)

≤ 2+
δU,γU∈{0,1}

P(ΓU=γU|ΔU=δU)P(ΔU=δU)

×H(Xn|VnYnU,ΓU=γU,ΔU=δU)
(b)

≤ 2+H(Xn|VnYnU,ΓU=1,ΔU=1)

+(2δ(n)+δ2(n,U)) log|X |n

=
ynU,v

n

p(ynU,v
n|1,1)

×H(Xn|YnU =y
n
U,V

n=vn,ΓU=1,ΔU=1)

+2+(2δ(n)+δ2(n,U)) log|X |n

(c)

≤
ynU,v

n

p(ynU,v
n|1,1) log|Tn2(X|y

n
U,v

n)|

+2+(2δ(n)+δ2(n,U)) log|X |n

≤
ynU,v

n

p(ynU,v
n|1,1)nH(X|YUV)(1 + 2)

+2+(2δ(n)+δ2(n,U)) log|X |n

≤nH(X|YUV)(1 + 2)+ 2 + (2δ(n)+δ
2(n,U)) log|X |n.

(35)

where(a)holds because(ΓU,ΔU)is defined over an alphabet
of cardinality equal to four so thatH(ΓUΔU|V

nYnU) ≤
log 4 = 2,(b)holds becauseP[ΔU = 0] ≤ δ(n)
2|X ||V|e−n

2μXV andP[ΓU =0|ΔU =1] ≤ δ
2(n,U)

2|V||X ||YU|e
− 2nμV XYU/8by Markov Lemma [31, Page 319

Equation (5.1)], and(c)holds becauseH(X)≤ log|X |for
any discrete random variableX defined over|X |. Combin-
ing (34) and (35), we obtain (17).

APPENDIXE
PROOF OF(22)AND(23)

We rewrite (26) and (27) as

Rp= max
A∈A
(h(X)−h(X|V)−h(YA)+h(YA|V)), (36)

Rs= min
A∈A
min
U∈U
(h(YA)−h(YA|V)−h(YU)+h(YU|V)).

(37)

LetKXV
σ2X σXV
σV X σ2V

be the covariance matrix of

(X, V). Wehave

h(X|V)=h(X, V)−h(V)

=
1

2
log(2πe)2det(KXV)−

1

2
log 2πeσ2V

=
1

2
log 2πe(σ2X −σXVσ

−2
V σXV)

=
1

2
log 2πeσ2X|V, (38)

where the last equality holds by [41, Proposition 3.13]. Next,

for anyA ∈ A,letKYAV
ΣYA ΣYAV
ΣTYAV σ2V

be the

covariance matrix of(YA,V). Wehave

h(YA|V)=
1

2
log(2πe)|A|

det(KYAV)

σ2V

(a)
=
1

2
log(2πe)|A|

σ2Vdet(ΣYA −ΣYAVσ
−2
V Σ

T
YAV
)

σ2V
(b)
=
1

2
log(2πe)|A|det(ΣYA|V),

(c)
=
1

2
log(2πe)|A|det(HAσ

2
X|VH

T
A+I), (39)

where (a)holds by the formula for the determinant of
a block matrix,(b)holds by [41, Proposition 3.13],(c)
holds by (4) and the definition of the conditional vari-

anceΣYA|V E (YA−E[YA|V]) (YA−E[YA|V])
T
|V =

HAE (X−E[X|V]) (X−E[X|V])
T
|V HTA+E WYAW

T
YA

andWYA is a Gaussian noise vector with identity covariance
matrix. Similarly, for any U∈U,wehave

h(YU|V)=
1

2
log(2πe)|U |det(HUσ

2
X|VH

T
U+I). (40)

Thus, from (36), (37), (38), (39), and (40), we have

Rp= max
A∈A

1

2
log

σ2X
σ2X|V

−
1

2
log

det(HAσ
2
XH

T
A+I)

det(HAσ2X|VH
T
A+I)

,

(41)

Rs= min
A∈A
min
U∈U

1

2
log

det(HAσ
2
XH

T
A+I)

det(HAσ2X|VH
T
A+I)

−
1

2
log

det(HUσ
2
XH

T
U+I)

det(HUσ2X|VH
T
U+I)

.

(42)

Then, by Lemma 1 and the definition ofOA,A∈ A and
OU,U∈U, we can rewrite (41) and (42) as

Rp= max
A∈A

1

2
log

σ2X
σ2X|V

−
1

2
log

σ2XOA+1

σ2X|VOA+1
, (43)

Rs= min
A∈A
min
U∈U

1

2
log

σ2XOA+1

σ2X|VOA+1
−
1

2
log

σ2XOU+1

σ2X|VOU+1
.

(44)

Finally, by Lemma 2, (43) and (44) become (22) and (23).

REFERENCES

[1] V. Rana, R. A. Chou, and H. Kwon, “Secret sharing from correlated
Gaussian random variables and public communication,” inProc. IEEE
Inf. Theory Workshop, Riva del Garda, Italy, Apr. 2021, pp. 1–5.

[2] A. Shamir, “How to share a secret,”Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[3] G. R. Blakley, “Safeguarding cryptographic keys,” inProc. AFIPS 79th
Nat. Comput. Conf., New York, NY, USA, Jun. 1979, pp. 313–317.

[4] W. Diffie and M. E. Hellman, “New directions in cryptography,”IEEE
Trans. Inf. Theory, vol. IT-22, no. 6, pp. 644–654, Nov. 1976.

[5] S. Zou, Y. Liang, L. Lai, and S. Shamai (Shitz), “An information
theoretic approach to secret sharing,”IEEE Trans. Inf. Theory, vol. 61,
no. 6, pp. 3121–3136, Apr. 2015.

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on December 23,2021 at 16:22:41 UTC from IEEE Xplore.  Restrictions apply. 



RANAet al.: INFORMATION-THEORETIC SECRET SHARING 559

[6] Y. Liang, G. Kramer, H. V. Poor, and S. Shamai (Shitz), “Compound
wiretap channels,” EURASIP J. Wireless Commun. Netw., vol. 2009,
no. 1, pp. 1–12, Oct. 2009.

[7] I. Csiszar and P. Narayan, “Capacity of a shared secret key,” inProc.
IEEE Int. Symp. Inf. Theory, Jun. 2010, pp. 2593–2596.

[8] R. A. Chou, “Secret sharing over apublic channel from correlated
random variables,” inProc. IEEE Int. Symp. Inf. Theory (ISIT), Vail,
CO, USA, Jun. 2018, pp. 991–995.

[9] R. A. Chou, “Distributed secretsharing over a public channel from
correlated random variables,” 2021,arXiv:2110.10307.

[10] N. Tavangaran, H. Boche, and R. F. Schaefer, “Secret-key generation
using compound sources and one-way public communication,”IEEE
Trans. Inf. Forensics Security, vol. 12, no. 1, pp. 227–241, Jan. 2017.

[11] M. Bloch, “Channel intrinsic randomness,” inProc. IEEE Int. Symp. Inf.
Theory, Austin, TX, USA, Jun. 2010, pp. 2607–2611.

[12] R. A. Chou, “Biometric systems with multiuser access structures,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France, Jul. 2019,
pp. 807–811.

[13] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. B. Mandayam,
“Information-theoretically secret key generation for fading  wire-
less channels,”IEEE Trans. Inf. Forensics Security, vol. 5, no. 2,
pp. 240–254, Jun. 2010.

[14] A. J. Pierrot, R. A. Chou, and M. R. Bloch, “Experimental aspects
of secret key generation in indoor wireless environments,” inProc.
IEEE 14th Workshop Signal Process. Adv. Wireless Commun., Jun. 2013,
pp. 669–673.

[15] A. D. Wyner and J. Ziv, “The rate-distortion function for source
coding with side information at the decoder,”IEEE Trans. Inf. Theory,
vol. IT-22, no. 1, pp. 1–10, Jan. 1976.

[16] S. Vadhan, “Extracting all the randomness from a weakly ran-
dom source,” Electron. Colloq. Comput. Complex., Berlin, Germany,
Tech. Rep. TR98–047, 1998.

[17] S. Watanabe and Y. Oohama, “Secret key agreement from vector
Gaussian sources by rate limited public communication,” IEEE Trans.
Inf. Forensics Security, vol. 6, no. 3, pp. 541–550, Sep. 2011.

[18] S. Watanabe and Y. Oohama, “Secret key agreement from correlated
Gaussian sources by rate limited public communication,” IEICE Trans.
Fundam. Electron., Commun. Comput. Sci., vol. E93-A, no. 11, pp. 1–8,
Nov. 2010.

[19] A. Beimel, “Secret-sharing schemes: A survey,” inProc. Int. Conf.
Coding Cryptol., Qingdao, China, May/Jun. 2011, pp. 11–46.

[20] J. Benaloh and J. Leichter, “Generalized secret sharing and monotone
functions,” inProc. Conf. Theory Appl. Cryptogr.New York, NY, USA:
Springer, Feb. 1988, pp. 27–35.

[21] U. M. Maurer, “Secret key agreement by public discussion from common
information,”IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 733–742,
May 1993.

[22] R. Ahlswede and I. Csiszár, “Common randomness in information theory
and cryptography. I. Secret sharing,”IEEE Trans. Inf. Theory, vol. 39,
no. 4, pp. 1121–1132, Jul. 1993.

[23] C. Pozrikidis,An Introduction to Grids, Graphs, and Networks.
New York, NY, USA: Oxford Univ. Press, 2014.

[24] I. Csiszár and P. Narayan, “Common randomness and secret key genera-
tion with a helper,”IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 344–366,
Mar. 2000.

[25] R. A. Chou, M. R. Bloch, and E. Abbe, “Polar coding for secret-key
generation,”IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 6213–6237,
Nov. 2015.

[26] T. Ignatenko and F. M. J. Willems,Biometric Security From Information-
Theoretical Perspective. Hanover, MA, USA: Now, 2012.

[27] T. Ignatenko and F. Willems, “Privacy leakage in binary biometric
systems: From Gaussian to binary data,” inSecurity and Privacy in
Biometrics. London, U.K.: Springer, 2013, pp. 105–122.

[28] O. Günlü, “Multi-entity and multi-enrollment key agreement with
correlated noise,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 1190–1202, 2021.

[29] O. Günlü, O. Iscan, V. Sidorenko, and G. Kramer, “Code construc-
tions for physical unclonable functions and biometric secrecy systems,”
IEEE Trans. Inf. Forensics Security, vol. 14, no. 11, pp. 2848–2858,
Nov. 2019.

[30] A. Orlitsky and J. R. Roche, “Coding for computing,”IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001.

[31] G. Kramer, “Topics in multi-user information theory,”Found. Trends
Commun. Inf. Theory, vol. 4, nos. 4–5, pp. 265–444, 2007.

[32] U. Maurer and S. Wolf,Information-Theoretic Key Agreement: From
Weak to Strong Secrecy for Free. Berlin, Germany: Springer-Verlag,
2000, pp. 351–368.

[33] R. A. Chou and M. R. Bloch, “Separation of reliability and secrecy
in rate-limited secret-key generation,”IEEE Trans. Inf. Theory, vol. 60,
no. 8, pp. 4941–4957, Aug. 2014.

[34] T. Cover and J. Thomas,Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA: Wiley, 2006.

[35] M. Pinsker,Information and Information Stability of Random Variables
and Processes. San Francisco, CA, USA: Holden-Day, 1964.

[36] R. Fano,Transmission of Information: A Statistical Theory of Commu-
nications. Cambridge, MA, USA: MIT Press, 1961.

[37] R. A. Chou, “Unified framework for polynomial-time wiretap channel
codes,” 2020,arXiv:2002.01924.

[38] R. A. Chou, “Explicit codes for the wiretap channel with uncertainty
on the eavesdropper’s channel,” inProc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2018, pp. 476–480.

[39] R. Sultana and R. A. Chou, “Low-complexity secret sharing schemes
using correlated random variables and rate-limited public commu-
nication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 970–975.

[40] R.  Gallager, Stochastic  Processes:  Theory  for  Applications.
Cambridge, U.K.: Cambridge Univ. Press, 2013.

[41] M. Eaton,Multivariate Statistics: A Vector Space Approach. Hoboken,
NJ, USA: Wiley, 1983.

Vidhi Rana(Graduate Student Member, IEEE) received the B.Tech. degree in
electronics and telecommunication from the College of Engineering, Roorkee,
India, and the M.Tech. degree in digital signal processing from the Govind
Ballabh Pant Engineering College, Pauri, India. She is currently pursuing the
Ph.D. degree with Wichita State University, Wichita, KS, USA.

Rémi A. Chou (Member, IEEE) received the degree in engineering from
Supélec, Gif-sur-Yvette, France, in 2011, and the Ph.D. degree in elec-
trical engineering from the Georgia Institute of Technology, Atlanta, GA,
USA, in 2015. From 2015 to 2017, he was a Post-Doctoral Scholar with
Pennsylvania State University, University Park, PA, USA. He is currently
an Assistant Professor with the Department of Electrical Engineering and
Computer Science, Wichita State University, Wichita, KS, USA.

Hyuck M. Kwon (Life Senior Member, IEEE) was born in South Korea,
in May 1953. He received the B.S. and M.S. degrees in electrical engi-
neering from Seoul National University, Seoul, South Korea, in 1978 and
1980, respectively, and the Ph.D. degree in computer, information, and
control engineering from the University of Michigan, Ann Arbor, MI, USA,
in 1984. From 1985 to 1989, he was an Assistant Professor with the
Department of Electrical Engineering and Computer Science, University of
Wisconsin–Milwaukee, Milwaukee, WI, USA. From 1989 to 1993, he was
the Principal Engineer with LockheedEngineering and Sciences Company,
Houston, TX, USA, working on the National Aeronautics and Space Admin-
istration space shuttle and space station satellite communication systems.
Since 1993, he has been with the Departmentof Electrical Engineering
and Computer Science, Wichita State University, Wichita, KS, USA, where
he is currently a Full Professor. His current research interests include
wireless, massive multiple-input-multiple-output, millimeter-wave, orthogo-
nal frequency-division multiple-access,cooperative, code-division multiple-
access, frequency-hopping spread-spectrum, and satellite communication
systems.

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on December 23,2021 at 16:22:41 UTC from IEEE Xplore.  Restrictions apply. 


