2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

AutoScale: Energy Efficiency Optimization for
Stochastic Edge Inference Using Reinforcement Learning

Young Geun Kim* and Carole-Jean Wu*"

Arizona State University”*

Facebook AI'

{younggeun.kim, carole-jean.wu}@asu.edu

Abstract—Deep learning inference is increasingly run at the
edge. As the programming and system stack support becomes
mature, it enables acceleration opportunities in a mobile system,
where the system performance envelope is scaled up with a
plethora of programmable co-processors. Thus, intelligent ser-
vices designed for mobile users can choose between running
inference on the CPU or any of the co-processors in the mobile
system, and exploiting connected systems such as the cloud
or a nearby, locally connected mobile system. By doing so,
these services can scale out the performance and increase the
energy efficiency of edge mobile systems. This gives rise to a
new challenge—deciding when inference should run where. Such
execution scaling decision becomes more complicated with the
stochastic nature of mobile-cloud execution environment, where
signal strength variation in the wireless networks and resource
interference can affect real-time inference performance and
system energy efficiency. To enable energy efficient deep learning
inference at the edge, this paper proposes AutoScale, an adaptive
and lightweight execution scaling engine built on the custom-
designed reinforcement learning algorithm. It continuously learns
and selects the most energy efficient inference execution target
by considering characteristics of neural networks and available
systems in the collaborative cloud-edge execution environment
while adapting to stochastic runtime variance. Real system
implementation and evaluation, considering realistic execution
scenarios, demonstrate an average of 9.8x and 1.6x energy
efficiency improvement over the baseline mobile CPU and cloud
offloading, respectively, while meeting the real-time performance
and accuracy requirements.

I. INTRODUCTION

It is expected that there will be more than 7 billion mobile
device users and 900 million wearable device users in 2021 [99],
[100], with products including smartphones, smartwatches, and
wearable virtual- or augmented-reality devices. To improve
the mobile user experience, various intelligent services such
as virtual assistant [3], [5], face/image recognition [36], and
language translation [38] have been introduced in recent years.
Many companies, including Amazon, Facebook, Google, and
Microsoft, are using sophisticated machine learning models,
especially deep neural networks (DNNs), as the key component
of their intelligent services [3], [38], [77], [111].

Traditionally, due to the compute- and memory-intensive
nature of the DNN workloads [7], [18], [44], both training
and inference have been executed on the cloud [25], [53],
while the mobile devices only acted as user-end sensors, user
interfaces, or both. More recently, with the advancements in
powerful mobile systems-on-a-chip (SoCs) [41], [50], [107],
there has been increasing push to execute DNN inference on
the edge mobile devices [10], [25], [42], [53], [55], [65], [106],

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICR0O50266.2020.00090

[107], [111], [121]. This is because executing inference on
the edge devices can improve the response time of services
by removing data transmission overhead. However, executing
inference on the edge mobile devices also increases the energy
consumption of mobile SoCs [53]. Since these devices are
energy constrained [60], it is necessary to optimize energy
efficiency of the DNN inference, satisfying quality-of-service
(QoS) requirements.

To address the performance and energy efficiency challenges,
mobile devices are employing more and more accelerators
and co-processors, such as graphics processing units (GPUs),
digital signal processors (DSPs), and neural processing units
(NPUs) [12], [51], scaling up the overall system performance.
Furthermore, the mobile system stack support for DNNs has
become more mature, allowing DNN inference to benefit from
the computation and energy efficiency advantages provided
by the co-processors. For example, deep learning compiler
and programming stacks, such as TVM [12], SNPE [90], and
Android NNAPI [4], [51], enable inference execution on diverse
hardware back-ends including the co-processors.

These recent advancements give rise to a new challenge—
deciding when inference should run where. Intelligent services
that run on a mobile device can run inference on the CPU or
any available co-processor in the device, or exploit connected
systems such as the cloud or a nearby, locally-connected system
[6] that is more powerful than the device itself. By doing
s0, the services can scale out the performance and increase
the energy efficiency of edge inference. For example, many
personalized health and entertainment applications operate in a
collaborative execution environment composed of smartwatches,
smartphones, and the cloud [29], [46], [85], [109]. Similarly,
virtual- and augmented-reality systems comprise wearable
electronics, smartphones (as the staging device), and the
cloud [35], [37], [78], [84]. However, deciding which execution
target to exploit is challenging for any intelligent services, since
the energy efficiency of each execution target significantly
varies with various features, such as neural network (NN)
characteristics and/or edge-cloud system profiles. The extremely
fragmented mobile SoCs make this decision even more difficult,
as there are myriad hardware targets with different profiles
[111] to choose from.

To determine the optimal execution scaling decision, state-
of-the-art approaches, such as [25], [42], [53], [106], [107],
[121], proposed to rely on predictive models. However these
approaches did not consider stochastic runtime variance, such
as interference from co-running tasks and network signal

1082

strength variation, which have a large impact on energy
efficiency [34]. In a real use case, there can be several
applications simultaneously running along with the DNN
inference [57], [67], [98], because recent mobile devices support
multi-tasking features [98], such as screen sharing between
applications. In addition, signal strength variations in wireless
networks can affect the performance and energy efficiency of
cloud inference, as the data transmission latency and energy
increase exponentially at weak signal strength [61] which
accounts for 43% of data transmission [19]. Therefore, without
considering such stochastic variance, one would not be able
to choose the optimal execution scaling decision for DNN
inference.

This paper proposes an adaptive and light-weight execution
scaling engine, called AutoScale, to make accurate scaling
decisions for the optimal execution target of edge DNN
inference in the presence of stochastic variance. Since the
optimal execution target varies with the NN characteristics,
underlying execution platforms, and stochastic runtime vari-
ance, it is infeasible to enumerate the massive design space
exhaustively. Therefore, AutoScale leverages a reinforcement
learning technique for continuous learning, that captures and
adapts to the stochastic environmental variance [20], [79],
[83], [97]. AutoScale observes the NN characteristics, such
as layer composition, and the system information, such as
interference intensity and network stability. It then selects an
execution target which is expected to maximize the DNN
inference energy efficiency while satisfying the performance
and accuracy targets. The result of the selection is measured
from the system and fed back to AutoScale, allowing it to
continuously learn and predict the optimal execution target.
We demonstrate AutoScale with real system-based experiments
that show 9.8x and 1.6x improved average energy efficiency,
compared to the baseline settings of mobile CPU and cloud
offloading, respectively, satisfying both the QoS and accuracy
constraints with 97.9% prediction accuracy.

This paper makes the following key contributions:

o This paper provides an in-depth characterization of DNN

inference execution on mobile and edge-cloud systems.
The characterization results show that the optimal ex-
ecution scaling decision significantly varies with the
NN characteristics and the stochastic nature of mobile
execution (Section III).

o This paper proposes an intelligent execution scaling
engine, called AutoScale, that accurately selects the
optimal execution target of edge inference in the presence
of stochastic variance (Section 1V).

o To demonstrate the feasibility and practicality of the
proposed execution scaling engine, we implement and
evaluate AutoScale with a variety of on-device inference
use cases in an edge-cloud execution environment using
real systems and devices, allowing AutoScale to be
adopted immediately' (Section VI).

Uhttps://github.com/mocha-research/AutoScale

II. BACKGROUND
A. Deep Neural Network

DNNs connect numerous functional layers to extract features
from inputs at multiple levels of abstraction [54], [66]. Each
layer comprises multiple processing elements (neurons), which
are applied with the same function to process different parts
of an input. Depending on what function is applied, the layers
can be classified into various types [18]. These layers and their
execution characteristics are important since they can affect
the decision made by AutoScale. We provide brief descriptions
for each type below.

A convolutional layer (CONYV) performs a two-dimensional
convolution to extract a set of feature maps from an input. To
selectively activate meaningful features, it applies an activation
function such as sigmoid or rectified linear to the obtained
feature maps. Typically, this layer is compute-intensive due to
the convolutions.

A fully-connected layer (FC) computes the weighted sum of
the inputs and then applies the activation function to the sum.
This layer is one of the most compute- and memory-intensive
layers in DNNs [18], [53], [55], since its neurons are connected
exhaustively to all neurons in the previous layer.

A recurrent layer (RC) uses the output of a given step in a
sequence as an input in the next step. At each step, this layer
also computes the weighted sum of the inputs. This layer is
even more compute- and memory-intensive than an FC layer,
since its neurons can be connected to those in the previous,
current, and next layers.

Other common layers include the following: A pooling layer
(POOL) applies a sub-sampling function, such as max or
average, to regions of the input feature maps; a normalization
layer normalizes features across spatially grouped feature
maps; a softmax layer yields a probability distribution over
the possible classification categories; an argmax layer chooses
the class with the highest probability; and a dropout layer
randomly ignores neurons during training and allows them
to pass through during inference. These layers are typically
less compute- and memory-intensive than CONV, FC, and RC
layers, so that they usually have little impact on performance
and energy efficiency of DNN inference.

DNNs can have various layer compositions. For example,
computer vision NNs (e.g., Inception, MobileNet, and ResNet)
mainly comprise CONV, POOL, and FC layers. On the other
hand, language processing NNs (e.g., BERT) mainly consist
of RC layers, such as long short-term memory (LSTM) and
attention. Since each layer has unique characteristics due
to different compute- and memory-intensities, to optimize
inference execution for DNNS, it is important to consider the
layer compositions.

B. DNN Inference Execution at the Edge

Fig. 1 depicts the general structure of the system stack for
machine learning inference execution at the edge. At the front-
end, DNNs are implemented with various frameworks [9], [82],
[89], [105], whereas the middleware allows the deployment of
DNN inference on diverse hardware back-ends. The frameworks

1083

FrontcEnd Ne’:::ll;ralz [Inception ”MobiIeNet ” ResNet“ SSD MobileNet ” BERT I |
Mk | I PyTorch | | Caffe | | MXNet] I TensorFlow | I TF Lite I

= &

Middewars Offline Method Online Method
ML Compiler Vendor-Provided SDK 0OS API Interpreter
oM | [xea]| | [ARMNN |[Hiai | Android TFLite
GLOW I ISNFE ” EDEN I NNAPI Delegate
¥
CoreML
| | Executables |+| Libraries || : :
Hardware ;
Cloud Edge

Execution Targets

Fig. 1. System stack for DNN inference.

and middleware also enable efficient inference at the edge—
various NN optimizations, such as quantization [15], [30],
[52], [62], [65], [111], [119], weight compression [43], [68],
and graph pruning [112], [118] can be employed before the
DNNs are deployed. Among them, quantization is one of the
most widely used ones for the edge execution, since it reduces
both compute- and memory-intensities of the inference by
shrinking 32-bit floating-point (FP32) values to, for example,
16-bit floating-point (FP16) or 8-bit integer (INTS). Since the
middleware does not select a specific hardware target for DNN
inference execution, intelligent services should choose one
among the possible hardware targets. However, this decision
process is challenging, as the energy efficiency of each target
can considerably vary with various features.

C. Real-Time Inference Quality of Experience

The quality of user experience is a crucial metric for mobile
optimization. For real-time inference, the quality of experience
(QoE) is the product of system energy efficiency, inference
latency, and inference accuracy. To improve energy efficiency
of mobile devices, a number of energy management techniques
can be used [60]. Unfortunately, the techniques often sacrifice
performance (i.e., latency) for energy efficiency, degrading QoE
of real-time inference.

Inference latency is an important QoE factor, because if the
latency of a service exceeds the human-acceptable limit, users
will abandon the service [98], [122]. However, a single-minded
pursuit of performance is undesirable due to energy constrained
nature of mobile devices. Hence, there is a need to provide just
enough performance to meet the QoS expectations of users
with minimal energy consumption. These expectations can be
defined as a certain latency (e.g., 33.3 ms for 30 FPS video
frame rate [22], [122], or 50 ms for interactive applications [23],
[74]), below which most users cannot perceive any difference.

Various NN optimizations can improve both the latency and
energy efficiency of inference, but they often sacrifice accuracy.
Since human-level accuracy is a primary requirement for user
satisfaction [7], [18], [55], it is also important to keep the
inference accuracy above the quality expectation of users.

In summary, to maximize the quality of user experience for
real-time inference, it is crucial to maximize the system-wide

[PPW - Edge (GPU)
Il PPW - Connected Edge

[PPW - Edge (DSP)
-# Latency

[PPW - Edge (CPU)
[l PPW - Cloud

25 18.1

2
Optimal: Edge (DSP) Optimal: Edge (CPU) | Optimal: il >
= Cloud)
£ 2 A — L5 8
- \\ QoS Target %
_:;j 15 ¥ . 1 &
=
g 2
c o
Z 1 05 8
<

02 Mi8Pro - Inception v1 Mi8Pro - MobileNet v3 Mi8Pro - MobileBERT 0

15.0

23 " Optimal: Edge (GPU) | Optimal: Edge (CPU) | Optimal: -
= Cloud 92‘
B 2 155
= QoS Target £
2 - ¥ 3
=15 1 a
E —" N)
S &
Z 1 05 3

e GalaxyS10e - Inception v1 GalaxyS10e - MobileNet v3 ~GalaxyS10e - MobileBERT 0

70.7
10 Optimal: Connected Optimal: Connected Edge Optimal:\ L
> g |8 Edge| Cloud 3 5
& \ E
[5]
r \ 6 5
£ 4 — 4 5
;2 3 I QoS Target o %:
2 ‘£ <
-l - - - ——— -

0 MotoX - Inception v1 MotoX - MobileNet v3 MotoX - MobileBERT _ ©

Fig. 2. The optimal execution target depends on NN characteristics and the
edge-cloud system profiles. Performance per watt (PPW) is normalized to
Edge (CPU) and latency is normalized to the QoS target.

energy efficiency while satisfying the human acceptable latency
and accuracy expectations.

ITI. MOTIVATION

This section presents system characterization results for
realistic DNN inference scenarios on actual mobile and
edge-cloud systems. We examine the design space covering
three important axes—Ilatency, accuracy, and energy efficiency
(performance per watt).

For mobile inference, we select three smartphones—Xiaomi
Mi8Pro, Samsung Galaxy S10e, and Motorola Moto X Force—
to respectively represent high-end mobile systems with GPU
and DSP co-processors, high-end mobile systems with GPU
but without DSP, and mid-end mobile systemsz.

We emulate edge-cloud inference execution using the three
smartphones and a server-class Intel Xeon processor, hosting
an NVIDIA P100 GPU. For a locally connected mobile device,
we use a tablet, Samsung Galaxy Tab S6; note we connect
the smartphones to the tablet over a Wi-Fi-based peer-to-peer
network (Wi-Fi Direct). Detailed specifications of our mobile
and edge-cloud setup appear in Section V.

A. Varying Optimal DNN Execution Target
o Optimal edge-cloud execution depends on the NN character-
istics and edge-cloud system profiles.

Fig. 2 shows the energy efficiency and latency of three
common mobile inference use cases over the three mobile

>We use high-end mobile systems with and without an NN-specialized
accelerator (i.e., a DSP) to examine the performance scale-up from off-the-
shelf mobile systems. In addition, we select the Moto X Force to represent
mid-end mobile systems with much wider market coverage [111] (for details,
see Section V).

1084

O CONV B FC @ POOL O Others
2
>
Q
§ 1.6
3
3 1.2
N
]
o | | = L 1|
0
CPU GPU DSp CPU GPU DSP
Inception v1 MobileNet v3

Fig. 3. Each NN layer exhibits different latency on different mobile processors.
The optimal execution target thus depends on layer compositions. Note that
latency is normalized to that of CPU.

devices and the edge-cloud setup. The x-axis represents the
mobile system running three representative NNs.

For the high-end systems (i.e., Mi8Pro and Galaxy S10e),
the optimal edge-cloud execution depends on the NN char-
acteristics. For example, in the case of light NNs such as
Inception vl [103] and MobileNet v3 [47], edge inference is
more efficient than cloud inference. This is because off-the-
shelf mobile SoCs deliver enough performance to satisfy the
QoS target of the light NNs. On the other hand, cloud inference
is more efficient than edge inference for the heavy NNs, such
as MobileBERT [101], since the performance of the mobile
SoCs is insufficient. In this case, the performance gain of cloud
execution (reduced computation time and energy) outweighs
the loss (increased data transmission time and energy).

For the mid-end system (i.e., Moto X Force), however,
scaling out to the connected systems is always beneficial, as
the performance of the SoC in this system is not enough even
for the light NNs. For the light NNs, scaling out to a locally
connected device can be an option, since 1) the higher-end
device (i.e., tablet) can satisfy the QoS constraint of the light
NNs, and 2) data transmission overhead between the locally
connected edge devices is usually smaller than that between
edge-cloud. On the other hand, in case of heavy NNs, there is
no option other than scaling out to the cloud.

o The optimal execution target depends on layer compositions.

Another important observation in edge inference execution
is that the optimal execution target can vary with the layer
compositions of the NNs. Fig. 3 shows the cumulative latency
of different layers in two NNs?, running on different processors
in the Mi8Pro. The compute- and memory-intensive FC layers
exhibit much longer latency on co-processors, whereas other
layers exhibit longer latency on CPUs. NNs that have more
FC layers (e.g., MobileNet v3) thus run more efficiently on
CPUs, while others (e.g., Inception v1) run more efficiently on
co-processors. This result also implies that the co-processors do
not always outweigh the CPUs, so that carefully choosing one
considering layer compositions is crucial for energy efficiency.

o The optimal edge-cloud execution target varies with the
inference quality requirement.

3MobileBERT was not used for this experiment, since the inference execution
of MobileBERT on co-processors is not supported by any middleware yet.

[C]PPW - Edge (CPU FP32) [[[] PPW - Edge (CPU INTS) [I] PPW - Edge (GPU FP32)
E PPW - Edge (GPU FP16) [H] PPW - Edge (DSP INTS) [l PPW - Cloud
[l PPW - Connected Edge Accuracy
5 100 100
65% of Accuracy
4 80 » E 12 i = 80
O | oo — a8 &~ L2l - 8
-§ 3 Soveer — 60 5 'E 60 5
N curacy q 5
= 5 Accuracy 40 <’<\ w 40]
£ Sl 3
21 20 z 20 =
0 0 0

Optimum shifts .

(a) Inception v1 (b) MobileNet v3

Fig. 4. Depending on the inference accuracy target, optimal edge-cloud
execution also shifts. Note that PPW is normalized to Edge (CPU FP32).

Fig. 4 shows the energy efficiency (PPW) and the DNN
inference accuracy on different execution targets, where the
inference quality (i.e., accuracy) of each NN highly depends on
the execution target. Note that the accuracy for each processor
is measured in our edge-cloud systems using the ImageNet
validation set [17]. If the accuracy requirement is 50%, the
optimal target may be DSP INT8 and CPU INTS for Inception
vl and MobileNet v3, respectively; these targets show the
highest energy efficiency while satisfying the QoS constraint.
If the accuracy requirement is 65%, however, the optimal
target should be shifted to the cloud to satisfy the accuracy
requirement.

B. Impact of Runtime Variance on Inference Execution

In a realistic environment, there can be on-device interference
from co-running applications [57], [67], [98]. In addition, the
network signal strength can vary considerably as edge device
users move. In fact, users undergo significant signal strength
variations in daily life (43% of data is transmitted under weak
signal strength [19]).

o On-device interference and varying network stability change
the optimal edge-cloud execution.

Fig. 5 shows the normalized energy efficiency (PPW) and
latency of DNN (i.e., MobileNet v3) inference when CPU-
intensive or memory-intensive synthetic applications are co-
running. When a CPU-intensive application is co-running,
the energy efficiency of the inference execution on CPU
is significantly degraded because of competition for CPU
resources and frequent thermal throttling due to high CPU
utilization [59]. In this case, the optimal execution target shifts
from the CPU to the GPU. On the other hand, when a memory-
intensive application is co-running, the energy efficiency of
all on-device processors (including the CPU, GPU, and DSP)
is degraded since the inference execution is competing with
other applications for the memory. The optimal target therefore
moves from the edge to the cloud.

Fig. 6 shows the normalized energy efficiency (PPW) and
latency of DNN (i.e., ResNet 50 [45]) inference when the
wireless network signal strength varies. When the signal
strength weakens, inference execution on connected systems
becomes less energy efficient, since 1) the data transmission
time exponentially increases with decreased data rate [19], [61],
and 2) the network interface consumes more power to transmit

1085

] PPW - Edge (CPU)] PPW - Edge (GPU) I PPW - Edge (DSP)

Il PPW - Cloud Il PPW - Connected Edge “® Latency

L2 Optimal: Edge (CPU) » Optimal: Edge (GPU) Optimal: Cloud L2
= QoS Target gz
I | = 12 g
& \ g
9 — I
N 8
= 08 H= -
E - 5
2 06 4] g

06 H ﬂ» - 08 2

0.4 0.6

() No co-running app (b) CPU-:mtensive ©) Memory-i.mensive
co-running apps co-running apps

Fig. 5. In the presence of on-device interference, the optimal edge-cloud

execution target varies. Note that PPW is normalized to Edge (CPU) with no
co-running app and latency is normalized to the QoS target.

[J PPW - Edge (Best Processor)

Il PPW - Connected Edge
Optimal: Cloud d
QoS Target

@ Latency
Optimal: Connected Edge

W PPW - Cloud ‘

25

m) Optimal: Edge

~e
.

Normalized PPW
o
Kouaje] pazijeuwioN

0.5

(a) Wi-Fi: Regular
‘Wi-Fi Direct: Regular

(b) Wi-Fi: Weak
Wi-Fi Direct: Regular

(c) Wi-Fi: Weak
Wi-Fi Direct: Weak

Fig. 6. When signal strength varies, the optimal edge-cloud execution target
also varies. Note that PPW is normalized to Edge (Best Processor) and latency
is normalized to the QoS target.

data with stronger signals. If only the Wi-Fi signal strength
weakens, the locally connected edge device can still serve as an
optimal execution target. However, if the Wi-Fi Direct signal
strength also weakens, the optimal target shifts to the edge.

C. Inefficiency of Prediction-based Approaches

Energy optimization of mobile DNN inference can be
formulated as the problem of choosing the optimal execution
target in the presence of stochastic runtime variance, which
optimizes energy efficiency while satisfying the QoS and
accuracy constraints. One possible solution for this kind of
problems is to evaluate all execution targets using a prediction
model. Unfortunately, owing to the massive design space and
the nonlinear relationship across NN characteristics and runtime
variance, it is difficult to simply build an accurate prediction
model. An inaccurate prediction can result in selection of a
sub-optimal execution target.

o Exhaustively enumerating the massive design space is infea-
sible. Simple prediction-based approaches are insufficient,
leaving significant room for energy efficiency improvement.

To shed light on the inefficiency of existing prediction-
based approaches, we compare three types of prediction-based
approaches with the baseline (Edge (CPU)) and oracular design
(Opt): 1) regression-based approaches, 2) classification-based
approaches, and 3) Bayesian optimization-based approach [32],
[39], [92]. For each type, we use methods that are widely
adopted by existing works in this domain [10], [25], [42],
[53], [121]. For the regression-based approaches, we use
linear regression (LR) [96] and support vector regression
(SVR) [21]. For the classification-based approaches, we select
support vector machine (SVM) [102] and & nearest neighbor

[0 Edge (CPU) O LR O SVR O SVvM
[0 KNN O BO N Opt
12 1
]
Elo 208 H
A8 ~
2 §0.6 H
N6 =
3 S04
4 8
= -
Z 2 202 H
(o4
o Lo 0
No Runtime Runtime No Runtime Runtime
Variance Variance Variance Variance

Fig. 7. There is a significant gap between Opt and existing prediction-based
approaches, as they fail to accurately predict the optimal execution target in
the presence of runtime variance.

(KNN) [114]. The objective of Bayesian optimization (BO) is
set to find the execution target that maximizes energy efficiency
while satisfying the QoS constraint. We employ the Gaussian
process as the surrogate model and expected improvement
as the acquisition function. Using BO, we obtain the energy
efficiency and latency estimation functions and use them to
predict the optimal target at runtime.

Fig. 7 shows the energy efficiency (PPW) and QoS violation
ratio of prediction-based approaches normalized to those of
Edge (CPU). Although these approaches improve energy
efficiency compared to the baseline, there is a significant gap
between the approaches and Opt, as they fail to accurately
select the optimal execution target.

When there is no runtime variance, the mean absolute
percentage error (MAPE) is 13.6% for LR and 10.8% for
SVR. But when stochastic runtime variance is present, the
MAPE for LR and SVR is 24.6% and 21.1%, respectively.
Because of the inaccurate energy and latency predictions,
these approaches fail to run DNN inference on the optimal
execution target, degrading energy efficiency and violating
the QoS constraint. On the other hand, the mis-classification
ratios of SVM and KNN are 12.7% and 14.3%, respectively,
when runtime variance is present. Although the two values
do not seem to be large, these approaches degrade energy
efficiency much more than regression-based approaches. This
is because they make the wrong decision regardless of the
absolute energy and latency magnitudes. For example, even
though on-device inference is much more efficient than cloud
inference when the signal strength is weak, cloud inference can
be selected as the execution target. The BO-based approach also
fails to accurately capture the impact of runtime variance—its
MAPE with and without runtime variance is 15.7% and 9.2%,
respectively. Hence, they also degrade the energy efficiency
and latency, leaving significant room for energy efficiency
improvement.

These results call for a novel scheduler design that can
accurately select the optimal DNN inference execution target
while adapting to stochastic runtime variance. In the next
section, we present our proposed AutoScale design, which
employs reinforcement learning to self-learn the optimal
execution target in the presence of runtime variance.

1086

Software

Middleware

Hardware

Edge Device

1
1
1 T Execution
- — 1| AutoScale - Available
Intelligent Service S 2 Select 3 Execiita Processors Targets
1| Characteristics Action A T CPU
‘3 m Neural Network] i |of NN (sec. 3.1) (sec. 4.1) Inference : —
2 U —54 fol-Hili—s i
= [l L Observe " 1 DSP Cloud
£ u’ Co-running AppS : State S QS AY q(s,;.tq) : :
= = 1 Sec. 4.1 1 Wireless Networks =
0 — CPU 1 () 5 QU5 4D | Q(51 &) — 1
= Q @ Memory] | B[°° @ Calculate JH Srong
&) @ \J]]‘v‘\ A [} [Resource 5| QA osA) Reward R ! \\IA.I“ l/\/ Connected Edge
el Q-Table (Sec. 4.1) PV VA
1 (Sec.3.2) N k 1 1

-
Wireless Signal Strength
(Sec. 3.2)

N |
Measured Latency (Ry;.,,), Estimated Energy (R.,.,),

Pre-obtained Accuracy (R, curac,) (Sec. 4.1)

Fig. 8. AutoScale design overview.

IV. AUTOSCALE

Fig. 8 shows the design overview of AutoScale in the context
of the mobile and edge-cloud DNN inference execution. For
each inference, AutoScale identifies the current execution state
(D), including NN characteristics and runtime variance. For the
observed state, AutoScale selects an action (i.e., execution target
@), that is expected to maximize energy efficiency satisfying
QoS and inference quality requirements. This selection is based
on a lookup table (i.e., Q-table) that contains the accumulated
rewards of previous selections. AutoScale then executes the
DNN inference on the target* defined by the selected action ((3))
while observing the result (i.e., energy, latency, and inference
accuracy). Based on that result, AutoScale calculates the reward
(@), which indicates how much the selected action improves
energy efficiency and satisfies the QoS and accuracy targets.
Finally, AutoScale updates the Q-table with the calculated
reward ().

AutoScale employs reinforcement learning (RL) as an
adaptive prediction mechanism. Generally, an RL agent learns
a policy to select the best action for a given state with
accumulated rewards [86]. In the context of mobile and edge-
cloud inference execution, AutoScale learns how to select
the optimal inference execution target for a given NN in
the presence of runtime variance based on the accumulated
energy, latency, and accuracy results of selections. To solve
system optimization using RL, ther are three important design
requirements for mobile use.

High Prediction Accuracy: The success of RL depends
on how much the predicted execution target is close to the
optimal one. For accurate predictions, it is crucial to model the
core components—state, action, and reward—in a realistic
environment. We define these components in accordance
with our observations of a realistic edge inference execution
environment (Section IV-A).

In addition to the core components, avoiding local optima is
also important. It is deeply related to a classical RL problem:

“In this paper, we only consider offloading at model granularity, since
model partitioning at layer granularity introduces additional context switching
overhead (from transferring intermediate inputs to another execution target).
Model partitioning at layer granularity is complementary to and can be applied
on top of AutoScale [42], [53], [55].

exploitation versus exploration [27], [64]. If an RL agent always
exploits an action with the temporary highest reward, it can get
stuck in local optima. On the other hand, if it keeps exploring
all possible actions, convergence may get slower. To solve this
problem, we employ the epsilon-greedy algorithm, which is
one of the widely adopted randomized greedy algorithms in
this domain [75], [83], [86], for its effectiveness and simplicity
(Section TV-B).

Minimal Training Overhead: In case of RL, training is
continuously performed on-device. Reducing its overhead is
therefore crucial, particularly for the energy-constrained edge
domain. As we observed in Section III, although performance
of execution targets vary across heterogeneous devices, they
all exhibit a similar energy trend for each NN. An RL model
trained in a device has this energy trend knowledge implicitly.
Hence, we consider transferring a model trained on one device
to other devices in order to expedite the convergence, reducing
the training overhead. (detailed results appear in Section VI-C).

Low Latency Overhead: For the real-time inference exe-
cution on energy-constrained edge devices, latency overhead is
another crucial factor. Among the various RL approaches [86],
such as Q-learning [14], TD-learning [70], and deep RL [79],
Q-learning has an advantage for low latency overhead, as it
employs a lookup table to find the best action. We therefore
use Q-learning for AutoScale.

A. AutoScale RL Design

In RL, there are three core components: state, action, and
reward. This section defines the core components to formulate
the optimization space for AutoScale.

State: Based on our observations in Section III, we identify
states that are critical to edge inference; Table I summarizes
the states.

As we explored in Section III-A, the optimal target depends
on the NN layer compositions. However, identifying states for
all layer types is undesirable, since the latency overhead (i.e.,
Q-table lookup time) increases. Hence, we identify states with
layer types that are deeply correlated with the energy efficiency
and performance of inference execution. We test the correlation
between each layer type and energy/latency by calculating the
squared correlation coefficient (pz) [123]. We find CONYV, FC,

1087

TABLE I
STATE-RELATED FEATURES.

State Description Discrete Values
NN- Sconv # of CONV layers Small (<30), medium (<50), large (<90), larger (>=90)
related Src # of FC layers Small (<10), large (>=10)
Features Skrc # of RC layers Small (<10), large (>=10)
; Syvac # of MAC operations Small (<1,000M), medium (<2,000M), large (>=2,000M)

Sco cru CPU utilization of co-running apps None (0%), small (<25%), medium (<75%), large (<=100%)
Runtime Sco mem | Memory usage of co-running apps None (0%), small (<25%), medium (<75%), large (<=100%)
Variance Srss1 w RSSI of wireless local area network Regular (>-80dBm), weak (<=—80dBm)

Srssi_p RSSI of peer-to-peer wireless network | Regular (>-80dBm), weak (<=—80dBm)

and RC layers are most correlated with energy/latency, because
of their compute- and/or memory-intensive nature. Thus, we
identify Sconv, Src, and Sgc which represent the number of
CONYV, FC, and RC layers, respectively. We also identify Syac
as the number of MAC operations to consider size of NNs.

As we explored in Section III-B, the edge inference efficiency
depends highly on the CPU-intensity and memory-intensity of
co-running applications. Hence, we use Sc, cpv and Sc, mEM
which represent the CPU and memory usage of co-running
applications, respectively. In addition, the inference execution
efficiency on the connected systems depends highly on the
wireless network signal strength. We therefore use Sgssy w and
Srssi_p which stand for the RSSI of wireless local area network
(e.g., Wi-Fi, LTE, and 5G) and RSSI of peer-to-peer wireless
network (e.g., Bluetooth, Wi-Fi Direct, etc.), respectively.

When a feature has a continuous value, it is difficult to
define the state in a discrete manner for the lookup table of
Q-learning [14], [83]. To convert the continuous features into
discrete values, we applied DBSCAN clustering algorithm to
each feature [14]; DBSCAN determines the optimal number
of clusters for the given data. The last column of Table I shows
discrete values for each state.

To examine the importance of each state, we conducted a
sensitivity test using ablation [71], [120]. We found removing
any one state degrades accuracy by 32.1% on average. This
means that all the states are essential to predict the optimal
execution target.

Action: RL actions represent the adjustable control knobs of
the system. For edge-cloud inference, we define actions as the
available execution targets. For the edge inference execution,
available processors in mobile SoCs, such as CPUs, GPUs,
DSPs, and NPUs, are defined as the actions. On the other hand,
for the cloud execution, server-class processors, such as CPUs,
GPUs, and TPUs, are defined as the actions.

The set of actions can be augmented by considering other
control knobs, such as dynamic voltage and frequency scaling
(DVES) as well as quantization. For example, as long as
the QoS constraint is satisfied, it is possible to reduce the
frequency of processors, saving energy. In addition, employing
the quantization for each processor can reduce both compute
and memory intensities of the inference execution, improving
energy efficiency and performance.

Reward: In RL, a reward models the optimization objective
of the system. To represent the three main optimization axes,
we encode three rewards: Ryurencys Renergy» and Raccuracy- Riatency
is the measured inference latency for a selected action (i.e.,

execution target for DNN inference). R,ergy is the estimated
energy consumption of the selected action, and Ryccuracy 1S
pre-measured inference accuracy of the given NN on each
execution target.

We estimate R,rqy for edge execution as follows. When
the CPU is selected as the action, Ryergy is calculated using
the utilization-based CPU power model [55], [116] as in (1),
where Eém is the power consumed by the ith core, t'bfusy and
tiale are the time spent in the busy state at frequency f and that

in the idle state, respectively, and beusy and Py, are the power

consumed during IZ; sy At f and that during t;4., respectively.
Renergy = ZE(lforw
i

ECore - Z(ng;“

Similarly, if scaling out the inference to GPUs within the
system is selected as the action, Repergy is calculated using the
GPU power model [58] as in (2). Note that tl{usy and t;4;, for
CPU/GPU are obtained from procfs and sysfs in the Linux
kernel [57], while P}f;s, and P,y for CPU/GPU are obtained
by power measurement of CPU/GPU at each frequency in the
busy state and idle state, respectively. They are then stored in

a look-up table of AutoScale.
Renergy = Z(bets‘y
f

6]

X f;{usy) + Piate X tigle

X Q{usy) + Piate X tiate (2)
If the selected action is to scale out the inference using DSPs,
Renergy 18 calculated as in (3), where Ppgp is a pre-measured
DSP power consumption; we use the constant value, since
Ppsp remains consistent over 100 runs of 10 NNs.

3)
On the other hand, if scaling out the inference execution to
connected systems is selected as the action, Reergy is calculated
using the signal strength-based energy model [61] as in (4),
where f7x and tgy are the latencies measured when transmitting
the input and receiving the output, respectively, and P;VX and
PgX are power consumed by a wireless network interface during
trx and fgy, respectively, at signal strength S. Note that ng
and Pgy for each network are obtained my measuring power
consumption of wireless network interfaces at each signal
strength while transmitting and receiving data, respectively.

EDSP = PDSP X Rlatency

S S
Renergy =Ppy Xtrx + Ppy X1gx
+ Pidle X (Rlatency —Irx — tRX)

“

Since the energy estimation is based on the measured latency
its MAPE is 7.3%, low enough to identify the optimal action.

1088

Algorithm 1 Training Q-Learning Model

Variable: S, A
S is the state
A is the action
Constants: 7, U, €
7Y is the learning rate
U is the discount factor
€ is the exploration probability
Initialize Q(S,A) as random values
Repeat (whenever inference begins):
Observe state and store in S
if rand() < € then
Choose action A randomly
else
Choose action A with the largest Q(S,A)
Run inference on a target defined by A
(when inference ends)
Measure Rjyency, €stimate Reyergy, and obtain Ruccuracy
Calculate reward R
Observe new state S’
Choose action A’ with the largest Q(S",A’)
O(S,A) < Q(SA) + VIR + nQ(S",A’) — O(S,A)]
S5

To ensure AutoScale selects an efficient execution target
that maximizes energy efficiency while satisfying the QoS and
accuracy constraints, the reward R is calculated as in (5), where
o is the latency weight and 3 is the accuracy weight; we use
0.1 for both, but we can use higher weights if the inference
workload requires higher performance and accuracy.

if Raccuracy < Inference Quality Requirement,
R = Raccuracy — 100
else
if Rigtency < QoS Constraint, 5

R= _Renergy + aRlatency + ﬁRaccumcy
else

R= _Renergy + ﬁRaccumcy

If the selected action fails to satisfy the inference quality
requirement, the reward is Ruccuracy — 100 (i.e., how much the
accuracy is far from 100%) to avoid choosing that action for the
next inference. Otherwise, the reward is calculated depending
on whether the QoS constraint is satisfied or not. In (5), Renergy
is multiplied by —1 to increase the reward for lower energy
consumption.
B. AutoScale Implementation

As we previously discussed, AutoScale uses Q-learning to
exploit its low runtime overhead. To deal with the exploitation
versus exploration dilemma in RL, AutoScale also employs
the epsilon-greedy algorithm, which chooses the action with
the highest reward or a uniformly random action based on an
exploration probability.

In Q-learning, the value function Q(S,A) takes state S and
action A as parameters. It is a form of lookup table, called a

TABLE 1II

MOBILE DEVICE SPECIFICATION WITH THE PEAK SYSTEM POWER
CONSUMPTION SHOWN IN THE PARENTHESIS.

Device CPU GPU DSP
Cortex A75 - | Adreno 630 -

Mi8Pro 2.8GHz w/ 0.7GHz w/ Hexagon 685
23 V/F steps | 7 V/F steps (1.8 W)
(5.5 W) (2.8 W)
Mongoose - Mali-G76 -

Galaxy 2.7GHz w/ 0.7GHz w/

S10e 21 V/F steps | 9 V/F steps)
(5.6 W) (2.4 W)
Cortex A57 - | Adreno 430 -

Moto X 1.9GHz w/ 0.6GHz w/

Force 15 V/F steps | 6 V/F steps)
(3.6 W) 2.0 W)

Q-table. Algorithm 1 shows the detailed algorithm for training
the Q-table for on-device DNN inference. At the beginning,
it initializes the Q-table with random values. At runtime, the
algorithm observes S for each DNN inference by checking the
NN characteristics and runtime variance. For the given S, it
evaluates a random value compared with &3. If the random
value is smaller than &, the algorithm randomly chooses A for
exploration. Otherwise, it chooses A with the largest Q(S,A).
The algorithm then runs the inference on a target defined by
A. During the inference, the algorithm measures Rjqsency and
estimates Rejergy, as explained in Section IV-A. In addition,
it obtains Ryccuracy from the stored inference accuracy for the
given NN on the selected execution target. Using these values,
the algorithm calculates the reward R as in (5) of Section
IV-A. Afterward, it observes the new state S’ and chooses the
corresponding A’ with the largest Q(S’,A’). It then updates the
QO(S,A) based on the equation in Algorithm 1. In the equation,
v and u are hyperparameters that represent the learning rate
and discount factor, respectively. The learning rate indicates
how much the new information overrides the old information.
On the other hand, the discount factor gives more weight to
the rewards in the near future. We set ¥ and u based on a
sensitivity test (Section V-C).

After the learning is complete (i.e., the largest Q(S,A) value
for each state S is converged), the Q-table is used to select A
which maximizes Q(S,A) for the observed S.

V. EXPERIMENTAL METHODOLOGY

A. Real System Measurement Infrastructure

We perform our experiments on three smartphones—
Mi8Pro [49], Galaxy S10e [94], and Moto X Force [81].
Table II summarizes their specifications®. Note that we only
use the smartphone with DSP rather than that with NPU,
since 1) NPUs are only programmable through vendor-provided
software development kits (SDKs) which have yet to see public
release [S1], and 2) DSPs in recent mobile SoCs are optimized
for DNN inference so that they can act as NPUs [51], [90].

SNote that we use 0.1 for & by referring to previous RL-based works in
this domain [75], [83].

6 Although mobile processors have lower-performance CPU cores as well,
we only present the high-performance ones since they are what DNN inference
usually runs on.

1089

TABLE III
DNN INFERENCE WORKLOADS. LAYER COMPOSITIONS ARE OBTAINED
FROM THE TENSORFLOW NN IMPLEMENTATIONS.

‘Workload DNN S CONV S FC S RC
Inception vl 49 1 0
Inception v3 94 1 0
Image MobileNet v1 14 1 0
Classification MobileNet v2 35 1 0
MobileNet v3 23 20 0
ResNet 50 53 1 0
Object SSD Mob?]eNet vl 19 1 0
Detection SSD Mob}leNet v2 | 52 1 0
SSD MobileNet v3 | 28 20 0
Translation MobileBERT 0 1 24

For cloud inference execution, we connect the smartphones
to a server, equipped with an Intel Xeon CPU E5-2640 with
2.4GHz of 40 cores, an NVIDIA Tesla P100 GPU, and 256
GB of RAM. To control the Wi-Fi signal strength, we adjust
the distance between the smartphones and the access point
(AP). For inference execution on locally connected edge, we
use a tablet, Galaxy Tab S6, equipped with 2.84 GHz of Cortex
A76 CPU, an Adreno 640 GPU, and a Hexagon 690 DSP. We
connect the smartphones to the tablet through Wi-Fi Direct.
To control the signal strength of Wi-Fi Direct, we adjust the
distance between the locally connected devices. We measure
the system-wide power consumption of the smartphones using
an external Monsoon Power Meter [80]; prior works used the
similar practice [8], [11], [88].

To execute DNN inference on diverse processors in edge-
cloud systems, we build atop TVM [12] and SNPE [90].
TVM compiles NNs from TensorFlow/TF Lite and generates
executables for edge/cloud CPUs and GPUs, whereas SNPE
compiles NNs and generates executables for mobile DSPs. The
executables are deployed onto each device with runtime library
implementations of TVM [12] and SNPE [90], enabling edge
inference at runtime.

To evaluate the effectiveness of AutoScale’, we compare
it with five baselines in our edge-cloud systems: Edge (CPU
FP32), which always runs DNN inference on the CPU of the
edge device; Edge (Best), which runs the inference on the
most energy efficient processors of the edge device; Cloud,
which always runs inference on the cloud; Connected Edge,
which always runs inference on another locally connected
edge device; and Opt®, an oracular design that always runs
inference on the optimal execution target. We also compare
AutoScale with two closely related prior works: MOSAIC [42]
and NeuroSurgeon [53].

B. Benchmarks and Execution Scenarios
For our evaluation, we use the 10 neural networks in Table
III, which are widely used in real use case scenarios [42],

7 AutoScale is implemented as part of intelligent services and runs on the
mobile CPU. It obtains the NN characteristics using the TVM and SNPE
runtime libraries as well as other information (i.e., mobile resource usage and
signal strength) through system kernel APIs.

8To obtain Opt, we measure the inference latency, accuracy, and energy
efficiency for each device over the entire design space of about 200,000 (3,072
states times ~66 actions augmented with quantization and DVFES). We then
define it as the setup that provides the highest energy efficiency while meeting
the QoS and accuracy requirements.

TABLE IV
DNN INFERENCE EXECUTION ENVIRONMENT.
Environment Description

S1 | No runtime variance

S2 | CPU-intensive co-running app
Static S3 | Memory-intensive co-running app
S4 | Weak Wi-Fi signal

S5 | Weak Wi-Fi Direct signal

D1 | Co-running app: music player
D2 | Co-running app: web browser

D3 | Random Wi-Fi signal

D4 | Varying co-running apps

Dynamic

[76], [93], [108]. To explore real use cases, we implement
an Android application. For computer vision workloads (i.e.,
image classification and object detection), we implement two
scenarios: non-streaming and streaming. For the non-streaming
scenario, the Android application takes an image from the
camera and performs inference on it. For this scenario, short
response time is important to users. Since users cannot perceive
any difference as long as the response time is less than 50 ms
[23], [74], [122], we use 50 ms as the QoS target. On the other
hand, for the streaming scenario, the Android application takes
a real-time video from the camera and performs inference on
it. For this scenario, high frames per second (FPS) is important
for user satisfaction. Since users cannot perceive any QoS
difference as long as the FPS exceeds 30 [22], [122], we
use 30 FPS as the QoS target. For MobileBERT in natural
language processing, we implement one scenario: the Android
application translates a sentence entered by keyboard. We use
100 ms as the QoS target in this case [93].

To validate the effectiveness of AutoScale in real environ-
ment with varying runtime variance, we run our experiments
in two environments: static and dynamic. For the static
environment, we fix the runtime variance (i.e., co-running apps
with constant CPU and memory usages and constant Wi-Fi and
Wi-Fi Direct signal strengths). For the dynamic environment,
we vary the runtime variance. In case of the co-running apps,
we use two real-world applications: a web browser and a
music player. For the web browser, we encode the series of
inputs using an automatic input generator [57] to represent
real use cases. In addition, since the signal strength variance is
typically modeled by a Gaussian distribution [19], we emulate
the random signal strength with a Gaussian distribution by
adjusting the bandwidth limit of Wi-Fi AP. We also conduct
experiments with varying co-running apps from the music
player to the web browser. Table IV summarizes the DNN
inference execution environments.

C. AutoScale Design Specification

Actions: We determine the actions of AutoScale with
processors available in our edge-cloud system. Since the
energy efficiency of mobile CPU/GPU can be further optimized
via DVFS, we identify each voltage/frequency (V/F) step
as the augmented action; Table II shows the number of
available V/F steps. We do not consider DVES for DSP in our
experiments, since DSP does not support DVFES yet. We also
identify the quantization available for each mobile processor
(INT8 for CPUs and FP16 for GPUs) as the augmented

1090

QoS Violation Ratio Normalized PPW

> D > O D QN DL H S 54
Q) 4 B A 4 Q Y
S o P s ses &
F P ETF ST F S -
FFTFT T EIF TS
TP F P FFEE

L L

Fig. 9. AutoScale significantly improves energy efficiency compared with the
baselines and prior work [42],[53] satisfying QoS constraints.

action. In summary, AutoScale defines the actions for our
edge-cloud system as follows: mobile CPU with FP32/INTS,
DVES settings; mobile GPU with FP32/FP16, DVFES settings;
mobile DSP; cloud CPU with FP32; cloud GPU with FP32;
connected mobile CPU with FP32; connected mobile GPU with
FP32; and connected mobile DSP. Note that depending on the
configurations of edge-cloud systems, additional actions, such
as mobile NPU or cloud TPU, could be further considered.

Hyperparameters: To determine two hyperparameters—the
learning rate and discount factor—we evaluate three values of
0.1, 0.5, and 0.9 for each hyperparameter. We observe that a
higher learning rate is better, meaning the more the reward
is reflected to the Q values, the better AutoScale works. We
also observe that a lower discount factor is better. This means
that the consecutive states have a weak relationship due to the
stochastic nature, so that giving less weight to the rewards in
the near future improves the efficiency of AutoScale. Thus, in
our evaluation, we use 0.9 for the learning rate and 0.1 for the
discount factor.

Training and Testing: To cover the design space of
AutoScale with sufficient training samples, we repeatedly run
inference 100 times for each NN in each runtime variance-
related state (i.e., SCO_CPU: SCO_MEM: SRSSI_W? and SRSSI_P in
Table I). Section VI-C provides our analysis on the training
overhead. For testing, we use the leave-one-out cross-validation
method across the NNs in Table III [115]; for testing each NN,
we used a Q-table trained with the rest of NNs.

VI. EVALUATION RESULTS AND ANALYSIS
A. Performance and Energy Efficiency
Fig. 9 shows the average energy efficiency (PPW) normalized
to Edge (CPU FP32) as well as the QoS violation ratio of
DNN inference on three mobile devices in static environments.
Overall, AutoScale improves the average energy efficiency
of the inference by 9.8x, 2.3x, 1.6x, and 2.7x compared to

O Edge (CPU FP32) [0 Edge (Besty H Cloud [0 Edge (CPUFP32) [0 Edge (Best) & Cloud
B Connected Edge [E MOSAIC [42] B NeuroSurgeon [53] B Connected Edge B AutoScale Opt
l AutoScale Opt g1
25 z 5
& N /0.8
~ \ o
20 o N 19
g \ 206
15 S \ g
= § S04
10 i1 E \ ~ 02
| 2 \ 2
5 §| N & 0
0 . Non-streaming ~ Streaming Non-streaming ~ Streaming

Fig. 10. Even when the inference intensity rises (from non-streaming to
streaming), AutoScale still substantially increases the energy efficiency and
exhibits much lower QoS violation ratio compared to the baselines.

Edge (CPU FP32), Edge (Best), Cloud, and Connected Edge,
respectively. Across the diverse neural networks, AutoScale
predicts the optimal execution target to maximize the DNN
inference energy efficiency, satisfying the QoS constraint as
much as possible. AutoScale achieves almost the same energy
efficiency improvement as Opt; the difference is only 3.2%.

In addition, AutoScale exhibits a considerably lower QoS
violation ratio compared to the baselines. In fact, it achieves
nearly the same ratio as Opt; the difference is only 1.9%. For
light NNs, AutoScale does not violate the QoS constraint except
when CPU- and memory-intensive applications are co-running
or the wireless network signal strength is weak. For heavy
NNs, AutoScale mostly relies on cloud execution, so that QoS
violation occurs when the Wi-Fi signal strength is weak.

Compared to MOSAIC [42] and NeuroSurgeon [53], Au-
toScale also improves the average energy efficiency by 1.9x and
1.2x, respectively. Those two techniques offload computations
at the granularity of NN layers, whereas AutoScale does so at
a coarser, model granularity. Furthermore, both MOSAIC [42]
and NeuroSurgeon [53] are based on simple regression models.
As Section III-C shows, such approaches often fail to capture
stochastic runtime variance, such as on-device interference and
signal strength variation. AutoScale accurately predicts the
optimal execution target by adapting to the runtime variance
using RL. Hence, it shows higher energy efficieny compared
to the prior work, satisfying the QoS constraint.

When the inference intensity rises (from non-streaming to
streaming scenario), the energy efficiency and QoS violation
ratio of AutoScale is degraded, as shown in Fig. 10. Neverthe-
less, since AutoScale accurately selects the optimal execution
target regardless of the inference intensity, it achieves almost
the same energy efficiency and QoS violation ratio as Opt.

B. Adaptability and Accuracy Analysis

Adaptability to Stochastic Variance: Fig. 11 shows the
average energy efficiency normalized to Edge (CPU FP32)
and the QoS violation ratio of DNN inference in the presence
of stochastic variance. The x-axis represents the inference
environments (Table IV). Since AutoScale accurately predicts
the optimal execution scaling even with stochastic variance,
it improves the average inference energy efficiency by 10.7x,
2.2x, 1.4x, and 3.2x compared with Edge (CPU FP32), Edge
(Best), Cloud, and Connected Edge, respectively, while showing
a similar QoS violation ratio as Opt.

1091

OEdge (CPU FP32) @Edge (Best) B Cloud
m Connected Edge M AutoScale Opt

2727222227222 272

QoS Violation Ratio Normalized PPW
OO OO
ooy —°

S1 S2 S3 S4 S5 DI D2 D3 D4

Fig. 11. Since AutoScale accurately predicts the optimal target in the presence
of stochastic variance, it largely improves the energy efficiency of DNN
inference in realistic environments while satisfying the QoS target.

[Edge (CPU FP32)

[Connected Edge

AutoScale - 50%
n Accuracy Target

O Edge (Best)
AutoScale - 70%
g8 Accuracy Target

AutoScale - No
m Accuracy Target

H Cloud

" AutoScale - 65%
Accuracy Target

12 g 1
Z 10 £ 08
=%} P =]
e} .2 0.6
g 6 g
g S 0.4
g >
5 2 %0.2
“ 0 S o

Fig. 12. When AutoScale uses a higher accuracy target, its energy efficiency
and QoS violation ratio are slightly degraded. Nevertheless, it still significantly
improves the energy efficiency compared to the baselines.

Adaptability to Inference Quality Targets: Fig. 12 shows
the average energy efficiency and QoS violation ratio for
different inference accuracy targets under AutoScale. When
AutoScale uses a high inference accuracy target (i.e., 70% or
65%), it avoids choosing the on-device processors with low
precision. On the other hand, when it relaxes the inference
accuracy target to 50% or none, it chooses on-device execution
with low precision where some NN inference results in lower
accuracy. Thus, when AutoScale uses lower accuracy targets,
its energy efficiency and QoS violation ratio are improved. The
improvement does not vary much beyond the 50% accuracy
threshold because the most energy efficient target usually offers
higher inference accuracy than 50% in our setup.

Prediction Accuracy: To analyze the prediction accuracy
of AutoScale, we compare its execution scaling decision to the
optimal one. Fig. 13 shows how AutoScale and Opt make the
decision on three mobile devices.

AutoScale accurately selects the optimal execution scaling
decision for all devices, achieving 97.9% prediction accuracy on
average. It mis-predicts the optimal target only when the energy
difference between the optimal target and the (mis-predicted)
sub-optimal target is less than 1%. This is owing to the small
Renergy error. Although AutoScale makes a sub-optimal choice
in a few cases, it does not much degrade the overall system

energy efficiency and QoS violation ratio compared to Opt.

This is due to the small energy difference between the optimal
and sub-optimal ones.

Mi8Pro Galaxy S10e Moto X Force
Opt AutoScale Opt AutoScale Opt AutoScale

60%

Edge (CP\S[B];?S) 0.0% 0.1% 0.0% 0.1% 0.0% 0.1%
Edge (CPU INT8
ge (- mvrs) 25.0% 15.0% | 25.0% @ 209% | 5.0% 42%
w
Edge (GP}VJ/S:,’;ZS) 0.0% 0.2% 0.0% 0.8% 0.0% 0.2% &
Edge (GPU FP16) - g
I 42.4% 2.5% 3.4%
W/DVFS . ’ ’ £
o
Edge (DSP)| 17.5% 0.0% 0.0% 0.0% 0.0% =
Cloud| 275% 27.3% | 27.5% 247% [IEXCPIY)
Connected Edge| 0.0% 0.1% 0.0% UM 25% 423%
L1 o0

Fig. 13. AutoScale accurately selects the optimal execution target.

© 12 = 1.2 - 2 T

< < = ¥

5 1 1 Ea

Q I 9)

& 08 ~08 g ~ 0.8

3 Zos Ll a0 3

N 0.6 N0.6 o6

= s = i

E 0.4 EO'4 — Transfer E 0.4 | |~ Transfer

2 0.2 v 2 02 — Scratch 2 02 Il : — Scratch
0 o L o Wl

SRS ® SR SSS SRS

of Inference Runs
(b) Galaxy S10e

of Inference Runs
(a) Mi8Pro

of Inference Runs
(c) Moto X Force

Fig. 14. The reward is usually converged in 40-50 runs. A learning transfer
can accelerate the convergence.

Even in the presence of runtime variance, AutoScale ac-
curately makes the optimal execution scaling decision. For
example, when the signal strength gets weaker (S4 in Table IV),
AutoScale selects on-device inference (69.1%) or connected
edge (30.7%) rather than cloud (0.2%), achieving 97.8%
prediction accuracy. On the other hand, when the web browser
is co-running (D2 in Table IV), AutoScale selects cloud (46.1%)
or connected edge (35.3%) rather than on-device inference
(18.6%), achieving 97.3% accuracy.

C. Overhead Analysis

Training Overhead: Fig. 14 shows that when training a
model from scratch, the reward converges after about 40-50
inference runs on average. Before convergence, AutoScale
exhibits 18.9% lower average energy efficiency than Opt.
Nevertheless, it still achieves 66.1% energy saving against
Edge (CPU FP32). The training overhead can be alleviated
with learning transfer. As shown in Figure 14, when the model
trained on the Mi8Pro is used for the Galaxy S10e and Moto
X Force, the training converges more rapidly, reducing the
average training time overhead by 21.2%. This result implies
AutoScale can capture the common characteristics across the
variety of edge inference workloads, system performance and
power profiles, and environmental uncertainties. Note that in
dynamic environments (i.e., D1-D4 in Table 1V), the reward
converges 9.1% slower than in the stable environments (i.e., S1-
S4 in Table IV). Nonetheless, this long convergence in dynamic
environments can also be alleviated with learning transfer;
when the model trained on the Mi8Pro is used for the Galaxy
S10e and Moto X Force, training in dynamic environments
also converges rapidly, so that the convergence time difference
between dynamic and stable environments decreases to 0.5%.

1092

Runtime Overhead: To demonstrate the viability of mobile
inference deployment, we evaluate the AutoScale runtime
overhead. The performance overhead of RL algorithm in
AutoScale is, on average, 25.4 us for training, excluding the
time for inference execution. It corresponds to 1.2% of the
lowest inference latency. In addition, when using the trained
Q-table, the overhead can be reduced to 7.3 us with only 0.3%
overhead. This result means it takes 18.1 us to measure the
inference results, calculate the reward, and update the Q-table.
The energy overhead is only 1.0% and 0.2% of the total system
energy consumption, when training the Q-table and exploiting
the trained Q-table, respectively. The memory requirement of
AutoScale is 0.4 MB, translating to only 0.01% of the 3 GB
DRAM capacity of a typical mid-end mobile device [81].

VII. RELATED WORK

With the emergence of DNN-based intelligent services,
energy optimization of mobile DNN inference has been widely
studied. Due to the compute- and memory-intensive nature,
many of the early works executed DNN inference in the cloud
[13], [28], [56], [73]. As mobile systems become powerful [31],
[41], [50], [107], there has been increasing push to execute
DNN inference at the edge [10], [25], [42], [53], [55], [65],
[106], [107], [111], [121]. As an intermediate stage, many
techniques tried to partition DNN inference execution between
the cloud and the local mobile device [24], [25], [40], [53], [69],
using performance/energy prediction models. These techniques,
however, do not consider fully executing inference at the edge.
According to our analysis, there exist various cases where
edge inference outperforms cloud inference by removing data
transmission overhead. More importantly, previous techniques
also do not consider stochastic variance, such as on-device
interference and signal strength variation, which largely affects
inference efficiency.

To execute DNN inference entirely at the edge, many
optimizations have been proposed, including model architecture
search [95], [104], [110], [124], quantization [15], [30], [52],
[62], [65], [111], [119], weight compression [18], [43], [68],
[72], and graph pruning [112], [118]. In addition, deep learning
compiler and programming stacks have been improved to
ease the adoption of co-processors. On top of these works,
many researchers tried to optimize the performance and/or
energy efficiency of edge inference execution by exploiting
co-processors or near-sensor processing along with CPUs [10],
[42], [55], [63], [65], [106], [107], [121]. However, most of the
above techniques are based on existing prediction approaches,
which are prone to being affected by stochastic variance.
Moreover, they also do not consider executing inference on
connected systems, such as the cloud server or a locally
connected mobile device.

Considering the uncertainties of the mobile environment, var-
ious energy management techniques have been proposed [33],
[34], [98]. To maximize smartphone energy efficiency subject
to user satisfaction demands under the memory interference,
DORA takes a regression-based predictive approach to control
the frequency settings of mobile CPUs at runtime [98]. Gaudette

et al. proposed to use arbitrary polynomial chaos expansions
to consider the impact of various uncertainties on mobile user
experience [34]. Various offloading techniques that execute all
or some computations on remote servers while considering
the variability of the mobile environment have been also
proposed [1], [2], [16], [48], [56], [61], [87], [91], [113], [117].
Some of these techniques employed reinforcement learning
(RL) to handle network variability [1], [48], [113], [117],
dependency between mobile workloads [87], or server resource
utilization [91]. The above techniques, however, are not directly
applicable to energy efficiency optimization of edge inference,
since they do not consider the characteristics of NN inference
workloads. Other works have employed RL to handle runtime
variance and/or a large design space for web browsers, latency-
sensitive cloud services, data center job scheduling, and NN
code generations for heterogeneous processors [12], [14], [26],
[75], [83].

To the best of our knowledge, this is the first work that
demonstrates the potential of DNN inference at the edge
by automatically leveraging co-processors as well as other
computing resources nearby and in the cloud. We examine a
collection of machine learning-based predictive approaches,
and tailor-design an automatic execution scaling engine with
lightweight, customized reinforcement learning. AutoScale
achieves near-optimal energy efficiency for edge inference
while adapting to stochastic variance, particularly important
for user quality of experience in the mobile domain.

VIII. CONCLUSION

Given the growing ubiquity of intelligent services, including
virtual assistant, face/image recognition, and language transla-
tion, deep learning inference is increasingly run at the edge.
To enable energy efficient inference at the edge, we propose
an adaptive and light-weight deep learning execution scaling
engine—AutoScale. The in-depth characterization of DNN
inference on mobile and edge-cloud systems demonstrates
that the optimal scaling decision depends on various features:
NN characteristics, QoS and accuracy targets, underlying
system profiles, and stochastic runtime variance. AutoScale
continuously learns and selects the optimal execution scaling
decision by taking into account the features and dynamically
adapting to the stochastic runtime variance. We design and
construct representative edge inference use cases and mobile-
cloud execution environment using off-the-shelf systems. On
average, AutoScale improves DNN inference energy efficiency
by 9.8x and 1.6x, as compared to the baseline settings of
mobile CPU and cloud offloading, satisfying both the QoS
and accuracy constraints. We demonstrate that AutoScale is
a viable solution and will pave the path forward by enabling
future work on energy efficiency improvement for DNN edge
inference in a variety of realistic execution environments.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under SHF-1652132, CCF-1618039, and CCF-
1525462 for Young Geun Kim and Carole-Jean Wu at ASU.

1093

[1]

[2]

[3]
[4]

[51
[6]

[71

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge computing by
deep reinforcement learning based on sarsa,” IEEE Access, vol. 8, pp.
54074-54 084, 2020.

M. Altamimi, A. Abdrabou, K. Naik, and A. Nayak, “Energy cost models
of smartphones for task offloading to the cloud,” IEEE Transactions on
Emerging Topics in Computing, vol. 3, 2015.

Amazon, “Alexa.” [Online]. Available: https://developer.amazon.com/en-
US/alexa

Android, “Android neural networks api.” [Online].
https://developer.android.com/ndk/guides/neuralnetworks
Apple, “Siri.” [Online]. Available: https://www.apple.com/siri

J. I. Benedetto, L. A. Gonzalez, P. Sanabria, A. Neyem, and J. Navon,
“Towards a practical framework for code offloading in the internet of
things,” Future Generation Computer Systems, vol. 92, 2019.

S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Bechmark analysis
of representative deep nerual network architectures,” IEEE Access, vol. 6,
no. 1, pp. 64270-64 277, 2018.

W. L. Bircher and L. K. John, “Complete system power estimation: A
trickle-down approach based on performance events,” in Proceedings
of the International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2007, pp. 171-180.

Caffe2, “A new lightweight, modular, and scalable deep learning
framework.” [Online]. Available: https://caffe2.ai

E. Cai, D.-C. Juan, D. Stamoulis, and D. Maculescu, “Neuralpower:
Predict and deploy energy-efficient convolutional neural networks,” in
Proceedings of the Asian Conference on Machine Learning (ACML),
2017.

A. Caroll and G. Heiser, “An analysis of power consumption in
a smartphone,” in Proceedings of the USENIX Annual Technical
Conference, 2010.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm:
An automated end-to-end optimizing compiler for deep learning,” in
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation, 2018.

Y. Chen, J. Hen, X. Zhang, C. Hao, and D. Chen, “Cloud-dnn: An open
framework for mapping dnn models to cloud fpgas,” in Proceedings
of the International Symposium on Field-Programmable Gate Arrays
(FPGA), 2019, pp. 73-82.

Y. Choi, S. Park, and H. Cha, “Optimizing energy efficiency of browsers
in energy-aware scheduling-enabled mobile devices,” in Proceedings
of the International Conference on Mobile Computing and Networking
(MobiCom), 2019.

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” arXiv:1602.02830v3, 2016.
E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphone last longer with
code offload,” in Proceedings of the International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2010.

J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
Computer Vision and Pattern Recognition (CVPR), 2009.

C. Ding, Y. Wang, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai,
G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, and B. Yuan,
“Circnn: Accelerating and compressing deep neural networks using
block-circulantweight matrices,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2017, pp. 395-408.

N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice,
“Characterizing and modeling the impact of wireless signal strength
on smartphone battery drain,” in Proceedings of the International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), 2013, pp. 29-40.

B. Donyanavard, A. Sadighi, T. Muck, F. Maurer, A. M. Rahmani,
A. Herkersdorf, and N. Dutt, “Sosa: Self-optimizing learning with
self-adaptive control for hierarchical system-on-chip management,” in
Proceedings of the International Symposium on Microarchitecture
(MICRO), 2019, pp. 685-698.

H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support
vector regression machines,” in Proceedings of Advances in Neural
Information Processing Systems (NIPS), 1997.

Available:

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

1094

B. Egilmez, M. Schuchhardt, G. Memik, R. Ayoub, N. Soundararajan,
and M. Kishinevsky, “User-aware frame rate management in android
smartphones,” ACM Transactions on Embedded Computing Systems,
vol. 16, no. 5s, pp. 1-17, 2017.

Y. Endo, Z. Wang, J. B. Chen, and M. I. Seltzer, “Using latency to
evaluate interactive system performance,” in Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
1996.

A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Transactions on Mobile Computing, 2020.
A. E. Eshratifar and M. Pedram, “Energy and performance efficient
computation offloading for deep neural networks in a mobile cloud
computing environment,” in Proceedings of Great Lakes Symposium on
VLSI (GVLSI), 2018, pp. 111-116.

R. Evans and J. Gao, “Deepmind ai reduces google data centre cooling
bill by 40%.” [Online]. Available: https://deepmind.com/blog/article/
deepmind-ai-reduces- google-data-centre-cooling-bill-40

E. Even-Dar, S. Mannor, and Y. Mansour, “Action elimination and
stopping conditions for the multi-armed bandit and reinforcement
learning problems,” Journal of Machine Learning Research, vol. 7,
pp. 1079-1105, 2006.

Z. Fang, T. Yu, O. J. Mengshoel, and R. K. Gupta, “Qos-aware
scheduling of heterogeneous servers for inference in deep neural
networks,” in Proceedings of the ACM Conference on Information
and Knowledge Management (CIKM), 2017, pp. 2067-2070.

Fitbit, “Fitbit flex 2.” [Online]. Available: https://www.fitbit.com/in/flex2
J. Fromm, M. Cowan, M. Philipose, L. Ceze, and S. Patel, “Riptide:
Fast end-to-end binarized neural networks,” in Proceedings of Machine
Learning and Systems (MLSys), 2020.

C. Gao, A. Gutierrez, M. Rajan, R. Dreslinski, T. Mudge, and C.-J. Wu,
“A study of mobile device utilization,” in Proceedings of the International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2015.

J. R. Gardner, M. J. Kusner, Z. Xu, K. Q. Weinberger, and J. P.
Cunningham, “Bayesian optimization with inequality constraints,” in
Proceedings of the International Conference on Machine Learning
(ICML), 2014.

B. Gaudette, C.-J. Wu, and S. Vrudhula, “Improving smartphone user
experience by balancing performance and energy with probabilistic qos
guarantee,” 2016.

B. Gaudette, C.-J. Wu, and S. Vrudhula, “Optimizing user satisfaction
of mobile workloads subject to various sources of uncertainties,” /[EEE
Transactions on Mobile Computing, vol. 18, no. 12, pp. 2941-2953,
2019.

Google, “Google cardboard.” [Online]. Available: https://arvr.google.
com/cardboard/

Google, “Google cloud vision.” [Online]. Available: https://cloud.
google.com/vision

Google, “Google daydream.” [Online]. Available: https://arvr.google.
com/daydream/

Google, “Google translate.” [Online]. Available: https://translate.google.
com

S. Greenhill, S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh, “Bayesian
optimization for adaptive experimental design: A review,” I[EEE Access,
vol. 8, pp. 13937-13 948, 2020.

T. Guo, “Cloud-based or on-device: An empirical study of mobile
deep inference,” in Proceedings of International Conference on Cloud
Engineering (IC2E), 2018, pp. 184-190.

M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile cpu’s rise to power:
Quantifying the impact of generational mobile cpu design trends on
performance, energy, and user satisfaction,” in Proceedings of the IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2016, pp. 64-76.

M. Han, J. Hyun, S. Park, J. Park, and W. Baek, “Mosaic: Heterogeneity-
, communication-, and constraint-aware model slicing and execution for
accurate and efficient inference,” in Proceedings of the International
Conference on Parallel Architecture and Compilation Techniques
(PACT), 2019, pp. 165-177.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2016.

[44]

[45]

[46]

[47]

[51

[52]

[54]

[55]

[56]

[57]

[59]

[60]

[61]

[62]

[63]

J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang, “Djinn and tonic: Dnn as
a service and its implications for future warehouse scale computers,”
in Proceedings of the IEEE International Symposium on Computer
Architecture (ISCA), 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

C. Healthcare, “The intelligent healthcare platform.” [Online]. Avail-
able: https://www.changehealthcare.com/about/innovation/intelligent-
healthcare-platform

A. Howard, M. Sandler, G. Chu, L. C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching
for mobilenetv3,” in Proceedings of the International Conference on
Computer Vision (ICCV), 2019.

L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, 2020.
Huawei, “Kirin 980, the world’s first 7nm process mobile ai chipset.”
[Online]. Available: https://consumer.huawei.com/en/campaign/kirin980/
L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-
based deep learning framework for continuous vision applications,”
in Proceedings of the International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2017, pp. 82-95.

A. Ignatov, R. Timofte, W. Chou, K. Wang, T. Hartley, and L. V. Gool,
“Al benchmark: Running deep neural networks on android smartphones,”
arXiv:1810.01109, 2018.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017, pp. 615-629.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, A. Sukthankar, and
L. Fei-fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014, pp. 1725-1732.

Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim, “ulayer: Low
latency on-device inference using cooperative single-layer acceleration
and processor-friendly quantization,” in Proceedings of the European
Conference on Computer Systems (EuroSys), 2019.

Y. G. Kim and S. W. Chung, “Signal strength-aware adaptive offloading
for energy efficient mobile devices,” in Proceedings of the International
Symposium on Low Power Electronics and Design, 2017, pp. 1-6.

Y. G. Kim, M. Kim, and S. W. Chung, “Enhancing energy efficiency of
multimedia applications in heterogeneous mobile multi-core processors,”
IEEE Transactions on Computers, vol. 66, no. 11, pp. 1878-1889, 2017.
Y. G. Kim, M. Kim, J. M. Kim, M. Sung, and S. W. Chung, “A novel
gpu power model for accurate smartphone power breakdown,” ETRI
Journal, vol. 37, no. 1, pp. 157-164, 2015.

Y. G. Kim, M. Kim, J. Kong, and S. W. Chung, “An adaptive thermal
management framework for heterogeneous multi-core processors,” I[EEE
Transactions on Computers, vol. 69, pp. 894-906, 2020.

Y. G. Kim, J. Kong, and S. W. Chung, “A survey on recent os-level
energy management techniques for mobile processing units,” /IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 10, pp.
2388-2401, 2018.

Y. G. Kim, Y. S. Lee, and S. W. Chung, “Signal strength-aware adaptive
offloading with local image preprocessing for energy efficient mobile
devices,” IEEE Transactions on Computers, vol. 69, no. 1, pp. 99-101,
2020.

J. H. Ko, D. Kim, T. Na, J. Kung, and S. Mukhopadhyay, “Adaptive
weight compression for memory-efficient neural networks,” in Proceed-
ings of Design, Automation, and Test in Europe Conference (DATE),
2017.

V. Kodukula, S. Katrawala, B. Jones, C.-J. Wu, and R. LiKamWa,
“Stagioni: Temperature management to enable near-sensor processing
for energy-efficient high-fidelity imaging,” arXiv:2001.01580, 2019.

1095

[64]

[65]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

[78]

[79

[80]

[81

‘%
5

[83]

[84]

(85]

D. E. Koulouriotis and A. Xanthopoluos, “Reinforcement learning and
evolutionary algorithms for non-stationary multi-armed bandit problems,”
Applied Mathematics and Computation, vol. 196, 2008.

N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao,
L. Qendro, and F. Kawsar, “Deepx: A software accelerator for low-
power deep learning inference on mobile devices,” in Proceedings of the
International Conference on Information Processing in Sensor Networks
(IPSN), 2016, pp. 98-107.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proceedings of the International Conference on
Machine Learning (ICML), 2009, pp. 609-616.

S.-Y. Lee and C.-J. Wu, “Performance characterization, prediction,
and optimization for heterogeneous systems with multi-level memory
interference,” in Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), 2017, pp. 43-53.

D. Li, X. Wang, and D. Kong, “Deeprebirth: Accelerating deep neural
network execution on mobile devices,” in Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2018.

G. Li, L. Liu, X. Wang, X. Dong, P. Zhao, and X. Feng, “Auto-tuning
neural network quantization framework for collaborative inference
between the cloud and edge,” in Proceedings of International Conference
on Artificial Neural Networks (ICANN), 2018.

X. Lin, Y. Wang, and M. Pedram, “A reinforcement learning-based
power management framework for green computing data centers,” in
Proceedings of the International Conference on Cloud Engineering
(IC2E), 2016, pp. 135-138.

J. Liu, W. C. Chang, Y. Wu, and Y. Yang, “Deep learning for multi-
label text classification,” in Proceedings of International ACM SIGIR
Conference on Research and Development in Information Retrieval
(SIGIR), 2017, pp. 115-124.

S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in Proceedings of the International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2018.

Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang, “Optimizing
cnn model inference on cpus,” in Proceedings of the USENIX Annual
Technical Conference, 2019, pp. 1025-1039.

D. Lo, T. Song, and G. E. Suh, “Prediction-gudided performance-energy
trade-off for interactive applications,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2015, pp. 508-520.

S. K. Mandal, G. Bhat, J. R. Doppa, P. P. Pande, and U. Y. Ogras, “An
energy-aware online learning framework for resource management in
heterogeneous platforms,” ACM Transactions on Design Automation
and Electronic Systems, 2020.

P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter,
P. Micikevicius, D. Patterson, G. Schmuelling, H. Tang, G. Wei, and
C.-J. Wu, “Mlperf: An industry standard benchmark suite for machine
learning performance,” IEEE Micro, 2020.

Microsoft, “Azure artificial intelligence.” [Online]. Available: https:
/fazure.microsoft.com/en-us/free/ai/

Microsoft, “Hololens2.” [Online]. Available: https://www.microsoft.
com/en-us/hololens

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattile, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wiersta, S. Legg, and D. Hassabis, “Human-level control thourgh
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533,
2015.

Monsoon, “High voltage power monitor.” [Online].
https://www.msoon.com/high-voltage-power-monitor
Motorola, “Moto x force - technical specs.” [Online]. Available:
https://support.motorola.com/uk/en/solution/MS112171

MXNet, “A flexible and efficient library for deep learning.” [Online].
Available: https://mxnet.apache.org/

R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, “Hipster: Hybrid
task manager for latency-critical cloud workloads,” in Proceedings of the
International Symposium on High Performance Computer Architecture
(HPCA), 2017, pp. 409-420.

Oculus, “Turn the world into your arcade.” [Online]. Available:
https://www.oculus.com/?locale=en_US

OMRON, “Healthguide - blood pressure monitoring anytime, anywhere.”
[Online]. Available: https://omronhealthcare.com/products/heartguide-
wearable-blood- pressure-monitor-bp8000m/

Available:

5

[86]

[89]

[90

(91]

[92]

[93]

[96]

[97]

[99]

[100

[101]

[102]

[103]

[104]

[105]

[106]

S. Pagani, S. Manoj, A. Jantsch, and J. Henkel, “Machine learning for
power, energy, and thermal management on multicore processors: A
survey,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 1, pp. 101-116, 2020.

S. Pan, Z. Zhang, Z. Zhang, and D. Zeng, “Dependency-aware
computation offloading in mobile edge computing: A reinforcement
learning approach,” IEEE Access, vol. 7, pp. 134 742—134753.

D. Pandiyan and C.-J. Wu, “Quantifying the energy cost of data
movement for emerging smart phone workloads on mobile platforms,”
in Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), 2014, pp. 171-180.

PyTorch, “From research to production: An open source machine
learning framework that accelerates the path from research prototyping
to production deployment.” [Online]. Available: https://pytorch.org/
Qualcomm, “Snapdragon neural processing engine sdk.” [Online].
Available: https://developer.qualcomm.com/docs/snpe/overview.html
L. Quan, Z. Wang, and F. Ren, “A novel two-layered reinforcement
learning for task offloading with tradeoff between physical machine
utilization rate and delay,” Future Internet, vol. 10, pp. 1-17.

B. Reagen, J. M. Hernandez-Lobato, R. Adolf, M. Gelbart, P. What-
mough, G. Y. Wei, and D. Brooks, “A case for efficient accelerator
design space exploration via bayesian optimization,” in Proceedings
of the IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), 2017.

V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, G. Diamos, J. Duke, D. Fick, J. S. Gardner,
I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Mcikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeria, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference
benchmark,” arXiv:1911.02549, 2019.

Samsung, “Samsung galaxy s10e, s10, & s10+.” [Online]. Available:
https://www.samsung.com/global/galaxy/galaxy-s10

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018.

G. A. E Seber and A. J. Lee, Linear Regression Analysis, 2nd ed. John
Wiley & Sons, 2012.

H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving autonomous
power management using reinforcement learning,” ACM Transactions
on Design Automation of Electronic Systems, vol. 18, no. 2, pp. 1-32,
2013.

D. Shingari, A. Arunkumar, B. Gaudette, S. Vrudhula, and C.-
J. Wu, “Dora: Optimizing smartphone energy efficiency and web
browser performance under interference,” in Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2018, pp. 64-75.

Statista, “Forecast number of mobile users worldwide from 2019 to
2023.” [Online]. Available: https://statista.com/statistics/218984/number-
of-global-mobile-users-since-2010

Statista, “Number of connected wearable devices worldwide by region
from 2015 to 2022 [Online]. Available: https://www.statista.com/
statistics/49023 1/wearable-devices- worldwide-by-region/

Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mo-
bilebert: A compact task-agnostic bert for resource-limited devices,”
arXiv:2004.02984, 2020.

J. A. K. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural Processing Letters, vol. 9, pp. 293-300,
1999.

C. Szeged, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1-9.

M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” arXiv:1905.11946, 2019.

Tensorflow, “An end-to-end open source machine learning platform.
[Online]. Available: https://www.tensorflow.org/

S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra, “High-throughput cnn inference on embedded arm big.little
multi-core processors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2020.

s

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116

[117]

[118

[119]

[120]

[121]

[122]

[123]

[124]

1096

S. Wang, A. Pathania, and T. Mitra, “Neural network inference on
mobile socs,” IEEE Design & Test, 2020.

Y. E. Wang, C.-J. Wu, X. Wang, K. Hazelwood, and D. Brooks,
“Exploiting parallelism opportunities with deep learning frameworks,”
arXiv:1908.04705, 2019.

WITHINGS, “The world’s first analog watch with a
built-in electrocardiogram to detect atrial fibrillation.”
[Online]. Available: https://www.withings.com/us/en/move-

ecg?utm_source=CJ&utm_medium=Affiliate&utm_campaign=
affiliation- Skimlinks&utm_content=7099101-Home+Page+US-
13184200&CJEVENT=3669c89¢7{8511ea83c700830alc0el3

B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” arXiv:1812.03443, 2018.
C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao,
B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang,
B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang, “Machine learning
at facebook: Understanding inference at the edge,” in Proceedings of
the IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2019, pp. 331-344.

J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware par-
allelism,” in Proceedings of the IEEE International Symposium on
Computer Architecture (ISCA), 2017, pp. 548-560.

B. Zhang, G. Zhang, W. Sun, and K. Yang, “Task offloading with power
control for mobile edge computing using reinforcement learning-based
markov decision process,” Mobile Information Systems, 2020.

B. Zhang and S. N. Srihari, “Fast k-nearest neighbor classification
using cluster-based trees,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 4, pp. 525-528, 2004.

K. Zhang, A. Guliani, S. O.-. Memik, G. Memik, K. Yoshii, R. Sankaran,
and P. Beckman, “Machine learning-based temperature prediction for
runtime thermal management across system components,” vol. 29, no. 2,
pp. 405-419, 2018.

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,” in
Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, 2010, pp. 105-114.

T. Zhang, Y. H. Chiang, C. Borcea, and Y. Ji, “Learning-based
offloading of tasks with diverse delay sensitivities for mobile edge
computing,” in Proceedings of the IEEE Global Communications
Conference (GLOBECOM), 2019.

T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 184-199.

R. Zhao, Y. Hu, J. Dotzel, C. D. Sa, and Z. Zhang, “Improving neural
network quantization without retraining using outlier channel splitting,
in Proceedings of the International Conference on Machine Learning
(ICML), 2019.

R. Zhao and V. Tresp, “Efficient dialog policy learning via positive
memory retention,” in Proceedings of the IEEE Spoken Language
Technology Workshop (SLT), 2018.

G. Zhong, A. Dubey, C. Tan, and T. Mitra, “Synergy: An hw/sw
framework for high throughput cnns on embedded heterogeneous soc,
ACM Transactions on Embedded Computing Systems, vol. 18, no. 2,
pp. 1-23, 2019.

Y. Zhu, M. Halpern, and V. J. Reddi, “Event-based scheduling for
energy-efficient qos (eqos) in mobile web applications,” in Proceedings
of the IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 137-149.

Y. Zhu and V. J. Reddi, “High-performance and energy-efficient mobile
web browsing on big/little systems,” in Proceedings of the IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2013, pp. 13-24.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 8697-8710.

s

5

