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Abstract 

In many industrial systems, bounding walls or immersed surfaces are utilized as the primary 

thermal source to heat a gas-solids mixture. As a result, the heat transfer in the near-wall region is 

of great significance. To resolve the heat transfer near a boundary, convection correlations 

developed for unbounded systems (no walls) are extended into the near-wall region in conjunction 

with particle-scale theories for indirect conduction. Here we rigorously test the unbounded 

convection correlations and indirect conduction theory against outputs from direct numerical 

simulation of laminar flow past a hot plate and a static, cold particle. The unbounded convection 

correlations alone are found to under-predict the heat transfer occurring in the near-wall region. 

While further incorporation of indirect conduction captures the first-order physics associated with 

near-wall heat transfer enhancement, the conductive length scale commonly employed for indirect 

conduction is incorrectly identified as being proportional to the particle size. By contrast, it is 

observed that the key length scale associated with near-wall heat transfer enhancement is the 

thickness of the wall thermal boundary layer. An approximation of the thermal boundary layer 

thickness from classic boundary layer theory is utilized to develop a Nusselt correlation for the 

near-wall region. The new correlation accounts for convection as well as indirect conduction and 

asymptotically decays to the unbounded convection correlation for large particle-wall separation 

distances, thereby seaming together the unbounded and near-wall regions.  

 

Introduction 

 The design and operation of various industrial processes is highly dependent upon the 

transport of thermal energy within a gas-solids flow. In many systems, domain walls or immersed 

surfaces are utilized as the primary energy source to heat a particle-laden mixture [1-13]. Under 

such conditions, the heat transfer occurring between a wall and a gas-solids flow is of primary 

significance. Despite prevalent use of such flows in industry, fundamental explorations on wall-

to-particle heat transfer have been largely unreported in the literature. While a variety of 

convective heat transfer correlations have been reported for unbounded gas-solids flows (no walls) 

[14-17], they inherently do not account for boundary effects. By and large, these unbounded 

correlations are applied as is to the near-wall region, where their validity is expected to deteriorate. 

On many occasions, direct numerical simulation (DNS) has been employed to probe the heat 

transfer occurring within an unbounded gas-solids system [14,16,18-26].  However, works-to-date 

which account for wall-to-particle heat transfer (boundary effects) are far less inclusive [9,27].  

 The heat transfer occurring between a particle and a wall is comprised of convective, 

conductive, and radiative mechanisms. For the case of moderate system temperatures (𝑇 < 700𝐾), 

radiation is often neglected since it is not a significant contribution to the overall heat transfer [28-

29]. Under these circumstances, the relevant heat transfer mechanisms may be simplified to 

convection and conduction only. Typically, correlations for unbounded systems [14-17] are 

utilized to approximate the interphase convection in the near-wall region. To account for 

conduction, particle-scale theories have been largely relied upon. Specifically, the conduction 

occurring between a particle and wall is made up of two contributions: (i) direct conduction 
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through the particle-wall contact area [30-31] and (ii) indirect conduction between a particle and 

wall separated by a thin layer of fluid [32]. In many practical cases, indirect conduction tends to 

dominate over direct conduction - i.e., when the ratio of thermal resistances associated with direct 

and indirect conduction is much greater than unity, or 𝛽 = 𝑅𝑝𝑘𝑔ℎ̂𝑃𝐹𝑊(0)/2𝑘𝑝𝑅𝑐 ≫ 1, where 𝑅𝑝 

is the particle radius, 𝑘𝑔 is the gas thermal conductivity, ℎ̂𝑃𝐹𝑊(0) is the solution to the indirect 

conduction integral at a particle-wall separation distance of zero [33], 𝑅𝑐 is the radius of contact 

between the particle and wall, and 𝑘𝑝 is the particle thermal conductivity. While particle-scale 

theories for indirect conduction [32,34-36] have been applied to a wide variety of systems [7-8,37-

40], the theories themselves have not been validated. Most commonly, indirect conduction theory 

assumes that each particle is surrounded by a static fluid lens (𝑅𝐿𝑒𝑛𝑠), as denoted by the dashed 

line in Figure 1. When the fluid lens overlaps with the wall, one-dimensional conduction is 

assumed to occur through the fluid lens. Therefore, the fluid lens thickness is the key length scale 

that establishes distances over which particle-wall conduction will occur. Indirect conduction 

theory has been shown to be most sensitive to the fluid lens thickness parameter, which is 

traditionally set according to the particle size (𝑅𝐿𝑒𝑛𝑠 ∝ 𝑅𝑝) [33]. The current state-of-the-art for 

modeling near-wall heat transfer involves using the unbounded heat transfer correlations in the 

near-wall region with modifications based on particle-scale theories (indirect conduction), which 

have not been rigorously tested. For gas-solids flows at moderate temperatures (dominated by 

convection and indirect conduction), further work is required to assess the accuracy of these 

methods in the near-wall region. 

 

 
 

Figure 1: (left particle) An illustration of the static fluid lens (dashed line) theory employed by 

indirect conduction theory. (right particle) The heat transfer occurring between a particle and 

wall when the lens overlaps with a wall - i.e., the particle-wall separation distance (𝛿) is less than 

the fluid lens thickness (𝑅𝐿𝑒𝑛𝑠 − 𝑅𝑝). 

  

In the present work, we utilize a hybrid lattice Boltzmann - random walk particle tracking 

(LBM - RWPT) based DNS code [41-44] to examine the heat transfer to a spherical particle in the 

near-wall region. The heat transfer to a static particle in a laminar, thermal boundary layer is 
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considered here - i.e., uniform flow of a fluid past a hot plate and a static, cold particle. The 

presence of a hot wall in this work allows boundary effects on wall-to-particle heat transfer to be 

quantified. Particle heat rates obtained from LBM-RWPT are compared to the heat rates predicted 

by unbounded convection [14] and indirect conduction [32] closures commonly employed within 

the discrete element method (DEM) framework. The unbounded convection correlations alone are 

found to under predict the heat transfer to a particle in the near-wall region since they do not 

fundamentally account for the presence of the wall. By contrast, the combination of unbounded 

convection and indirect conduction considerably improves agreement with LBM-RWPT. 

Specifically, indirect conduction theory is observed to capture the first order physics associated 

with heat transfer enhancement in the near-wall region. However, heat transfer enhancement is 

observed in LBM-RWPT at particle-wall separation distances (𝛿) not predicted by indirect 

conduction theory. Namely, indirect conduction theory sets the fluid lens thickness according to 

geometric arguments based upon the particle size (𝑅𝐿𝑒𝑛𝑠 = 1.4𝑅𝑝) [7-8,33-34], and thus predicts 

near-wall heat transfer will occur when the fluid lens intersects the wall (𝛿 ≤ 0.4𝑅𝑝). However, 

setting the fluid lens thickness in this manner neglects the thermal length scale associated with the 

fluid near the wall (boundary layer thickness). By contrast, we find that the thermal boundary layer 

thickness (𝛿𝑇) associated with the wall is the correct length scale associated with heat transfer 

enhancement in the near-wall region. An approximation for 𝛿𝑇 [45-46] is utilized to develop a 

Nusselt number correlation in terms of the dimensionless separation distance (𝛿̂ = 𝛿/𝛿𝑇). The 

Nusselt correlation is observed to asymptotically decay to the unbounded convection correlation 

in the limit of large 𝛿 (particle outside the thermal boundary layer), and thus, seams together the 

unbounded and near-wall regions. Furthermore, the developed correlation accounts for heat 

transfer to a particle due to both convection as well as indirect particle-fluid-wall conduction. 

 

Background: Indirect Conduction Theory 

To account for the indirect conduction occurring between a particle and wall, we employ 

the theory proposed by Rong and Horio [8,32]. In this theory, particles are assumed to be 

surrounded by a static fluid lens (dashed line in Fig. 1). When the lens overlaps with the wall, one-

dimensional conduction through the fluid lens is assumed to occur between the particle and wall.  

Motivation for describing the fluid lens as “static” is guided by the effect of no-slip boundary 

conditions on the particle and wall. As the separation distance (𝛿) between the particle and wall 

becomes small, the fluid velocities between the particle and wall are dramatically reduced from 

the free-stream velocity. The rate of heat transfer due to indirect conduction is found by integrating 

Fourier’s law over the area of overlap between the fluid lens and wall [8]: 

 

𝑞̇𝑃𝐹𝑊 ≡ ℎ𝑝𝑓𝑤[𝑇𝑤 − 𝑇𝑝] = ∫
2𝜋𝑘𝑔𝑟

𝑀𝑎𝑥(𝑙, 𝑠)
[𝑇𝑤 − 𝑇𝑝]𝑑𝑟

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

 

𝑟𝑖𝑛 = {𝑟𝑠 =  √𝑅𝑝
2 − (𝑠 − 𝑅𝑝 − 𝛿)

2
𝛿 ≤ 𝑠

0 𝛿 > 𝑠

  

𝑟𝑜𝑢𝑡 =

{
 
 

 
 √𝑅𝑙𝑒𝑛𝑠

2 − (𝑅𝑝 + 𝛿)
2

𝛿 > √𝑅𝑙𝑒𝑛𝑠
2 − 𝑅𝑝

2 − 𝑅𝑝

𝑅𝑝 𝛿 ≤ √𝑅𝑙𝑒𝑛𝑠
2 − 𝑅𝑝

2 − 𝑅𝑝

 

(1) 
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where 𝑞̇𝑃𝐹𝑊 is the rate of heat transfer due to indirect conduction between the wall and particle, 

ℎ𝑝𝑓𝑤 is the particle-fluid-wall heat transfer coefficient, 𝑇𝑤 is the wall temperature, 𝑇𝑝 is the particle 

temperature, 𝑟 is the radial position of the fluid lens overlap, 𝑙(𝑟) is the conduction distance at a 

radial position of r, 𝑠 is the minimum conduction distance, 𝛿 is the particle-wall separation 

distance, and 𝑅𝑙𝑒𝑛𝑠 is the fluid lens radius. To evaluate the integral in Eq. 1, a fluid lens radius 

(𝑅𝑙𝑒𝑛𝑠) and minimum conduction distance (𝑠) must be specified. An upper bound for 𝑅𝑙𝑒𝑛𝑠 is 

generally determined from geometric arguments and is given by 𝑅𝑙𝑒𝑛𝑠 = √2𝑅𝑝 ≈ 1.41𝑅𝑝. 

Namely, the maximum fluid lens radius is set such that the upper bound of integration in Eq. 1 

(𝑟𝑜𝑢𝑡) does not exceed the particle radius at the point of solid body contact (𝛿 = 0) – i.e., the 

conduction distance (𝑙) remains well defined. The fluid lens radius utilized in this work matches 

that commonly employed in other works (𝑅𝑙𝑒𝑛𝑠 = 1.4𝑅𝑝) [7-8,33-34,37]. The minimum 

conduction distance (𝑠) in Eq. 1 acts as a lower bound for the conduction distance (𝑙). The 

minimum conduction distance can be physically interpreted as corresponding to either the size of 

surface asperities (roughness) or the mean free path of the gas (perfectly smooth particles). For the 

former case, large-scale asperities on the surface of a particle or wall will result in finite separation 

distances even at contact. For the latter case, as the particle and wall tend to solid body contact 

(𝛿 = 0), the conduction distance (𝑙(𝑟)) becomes small with respect to the mean free path of the 

gas and rarefaction effects become non-negligible. By setting the minimum conduction distance 

to the mean free path of the gas (air at STP) (2.75 × 10−8 m), the integration in Eq. 1 avoids 

conduction lengths where rarefaction effects are significant. Here, the particle and wall will be 

assumed to be perfectly smooth and the range of separation distances (𝛿) considered will be larger 

than the mean free path of the gas. Therefore, the lower bound of integration in Eq. 1 (𝑟𝑖𝑛) will 

always be 0 in the present work (i.e., particle-wall contact will not be considered). The integral in 

Eq. 1 may be nondimensionalized and directly evaluated [33]: 

 

ℎ̂𝑝𝑓𝑤 ≡
ℎ𝑝𝑓𝑤

𝑘𝑔𝑅𝑝
= 2𝜋

[
 
 
 
 

(1 + 𝛿̂)𝐿𝑛

{
 
 

 
 |√1 − 𝑟̂𝑜𝑢𝑡

2
− (1 + 𝛿̂)|

|(𝛿̂)|

}
 
 

 
 

+√1 − 𝑟̂𝑜𝑢𝑡
2

− 1

]
 
 
 
 

 

 

𝑟̂𝑜𝑢𝑡 = {
√𝐶̂2 − (1 + 𝛿)

2
𝛿 > √𝐶̂2 − 1 − 1

1 𝛿 ≤ √𝐶̂2 − 1 − 1

 

where ̂  denotes normalization by the particle radius, and 𝐶̂ = 𝑅𝑙𝑒𝑛𝑠/𝑅𝑝 = 1.4 is the fluid lens 

proportionality constant. The rate of heat transfer at a given dimensionless separation distance 

(𝛿 = 𝛿/𝑅𝑝) then becomes 𝑞̇𝑃𝐹𝑊 = 𝑘𝑔𝑅𝑝ℎ̂𝑝𝑓𝑤(𝛿̂)[𝑇𝑤 − 𝑇𝑝]. 

 

 

Numerical Techniques 

Lattice Boltzmann Method (LBM) 

The DNS framework is a hybrid scheme based on two coupled methods. The first is the 

lattice Boltzmann method (LBM), which is utilized to resolve the fluid phase - i.e., solve the 

Navier-Stokes (NS) equations. The LBM scheme employed here matches that developed by Ladd 

(2) 
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and co-workers [47-49]. Due to a foundation in statistical mechanics, LBM discretizes the 

continuous Boltzmann equation rather than the NS equations. Since the Boltzmann equation 

governs the evolution of the molecular velocity distribution, LBM utilizes discrete velocity 

distributions (population densities) as opposed to the hydrodynamic variables. The discrete 

velocity distributions are updated in this work according to the classic streaming and collision 

process: 

 

𝑛𝑖(𝐫 + 𝐜𝑖∆𝑡, 𝑡 + ∆𝑡) ≡ 𝑛𝑖
∗(𝐫, 𝑡) = 𝑛𝑖(𝐫, 𝑡) + ∆𝑖(𝐧(𝐫, 𝑡)) 

where 𝑛𝑖 is the discrete velocity distribution associated with molecular velocity 𝐜𝑖, ∆𝑡 is the LBM 

time step, ∆𝑖 is the collision operator (function of all velocity distributions at a node, 𝐧(𝐫, 𝑡)), and 

𝑛𝑖
∗ is the post-collision distribution function (expanded about the local equilibrium, 𝐧𝑒𝑞). The 

hydrodynamic quantities are given by the moments of the discrete distribution functions: 

 

𝜌 =∑𝑛𝑖
𝑖

     𝐣 = 𝜌𝐮 =∑𝑛𝑖𝐜𝑖
𝑖

     𝚷̅ =∑𝑛𝑖𝐜𝑖𝐜𝑖
𝑖

 

where 𝜌 is the density, 𝐣 is the momentum, 𝐮 is the macroscopic velocity, and  𝚷̅ is the fluid stress 

tensor. The update scheme given in Eq. 3 may ultimately be shown to recover the incompressible 

Navier-Stokes equations in the low Mach limit with the following closures for the shear (𝜂) and 

bulk (𝜂𝑏) viscosities [49]: 

 

𝜂 = −𝜌𝑐𝑠
2 [
1

𝜆
+
1

2
]      𝜂𝑏 = −

2𝜌𝑐𝑠
2

3
[
1

𝜆𝑏
+
1

2
] 

where 𝑐𝑠
2 = 1/3 is the square of the speed of sound, and 𝜆 and 𝜆𝑏 are eigenvalues of the collision 

matrix. 𝜆 corresponds to the relaxation of the off-diagonal portion of the non-equilibrium stress 

tensor while 𝜆𝑏 corresponds to the relaxation of the diagonal portion of the non-equilibrium stress 

tensor. Coupling between the fluid phase and solid particles is completed by imposing a no-slip 

boundary condition at the particle surface. The net force and torque applied to a particle by the 

fluid is given by surface integration of the interphase momentum transfer (resulting from the no-

slip boundary condition). While the particle in this work is held static, the force and torque may 

be utilized to find the new particle velocity and position (solid body mechanics). No particle 

collisions occur in the present work. 

 

Random Walk Particle Tracking (RWPT) 

The second method within the DNS framework is random walk particle tracking (RWPT). 

RWPT is employed here to solve the advection-diffusion equation for thermal energy: 

 

𝜕𝑇

𝜕𝑡
+ 𝐮 ∙ ∇(𝑇) = 𝛼∆(𝑇) 

where 𝑇 is the thermal temperature and 𝛼 is the thermal diffusivity. Similar to LBM, RWPT does 

not involve directly the continuum equation (Eq. 6 for RWPT), but instead RWPT monitors the 

positions of many tracers as they undergo displacement. The movement of each tracer depends 

(3) 

(4) 

(5) 

(6) 
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upon the local velocity field obtained via LBM as well as random fluctuations. An explicit time 

integration scheme is utilized within the present work to update the position of each tracer [43]: 

 

𝐫1(𝑡 + ∆𝑡) = 𝐫1(𝑡) + 𝐮(𝐫, 𝑡)∆𝑡 + 𝛏(𝑡)√2
𝛼1
2

𝛼2
∆𝑡 [1 − 𝐻 (𝜁 −

𝛼2
𝛼1
)] 

 

𝐫2(𝑡 + ∆𝑡) = 𝐫2(𝑡) + 𝐮(𝐫, 𝑡)∆𝑡 + 𝛏(𝑡)√2𝛼2∆𝑡 

 
 

where 𝐫𝑖 is the position of a tracer within phase ‘i’, 𝐮  is the velocity at the tracer position before 

the step (found via trilinear interpolation of the LBM velocity field), 𝛏 is a random vector whose 

entries are sampled from a Gaussian distribution with zero mean and unit variance, 𝛼𝑖 is the 

thermal diffusivity of phase ‘i’, ∆𝑡 is the random walk time step, 𝐻 is the Heaviside function, and 

𝜁 is a random number sampled from a uniform distribution on the span [0, 1] (𝒰(0,1)). Note that 

an inherent assumption in Eq. 7 is that the thermal diffusivity of phase 1 is greater than phase 2 

(𝛼1 > 𝛼2). In the present work, 𝛼1 will correspond to the fluid phase and 𝛼2 will correspond to the 

solid particle phase. The thermal temperature in RWPT is proportional to the local tracer 

concentration. In the present work, we impose a temperature gradient (∆𝑇 =  𝑇1 − 𝑇0) by utilizing 

two tracer types. Tracers labeled as type ‘1’ correspond to the higher temperature (𝑇1) while tracers 

labeled as type ‘0’ correspond to the lower temperature (𝑇0). The local temperature and 

dimensionless temperature are given as: 

 

𝑇(𝐫, 𝑡) = 𝑇1
𝐶1(𝐫, 𝑡)

𝐶𝑡
+ 𝑇0

𝐶0(𝐫, 𝑡)

𝐶𝑡
 

 

𝜃(𝐫, 𝑡) ≡
𝑇(𝐫, 𝑡) − 𝑇0
𝑇1 − 𝑇0

=
𝐶1(𝐫, 𝑡)

𝐶𝑡
 

 

where 𝐶1 is the concentration of type 1 tracers, 𝐶0 is the concentration of type 0 tracers, 𝐶𝑡 is the 

total tracer concentration of tracers in the domain, and 𝜃 is the dimensionless temperature.  

 

Systems Simulated 

 Uniform flow past a hot wall and a static, cold particle is considered; see Figure 2. Due to 

the presence of the hot wall, the steady-state fluid flow will be characterized by the development 

of a hydrodynamic and thermal boundary layer near the bottom plate. The center of the particle is 

located 5 particle diameters (𝐷𝑝) away from the leading edge of the plate (𝐿 = 5𝐷𝑝) in all 

simulations, while the particle-wall separation distance (𝛿) and the particle Reynolds number 

(𝑅𝑒𝑃𝑎𝑟𝑡 ≡ |𝑈𝑓 − 𝑈𝑠|𝐷𝑝/𝜈 = 𝑈∞𝐷𝑝/𝜈) are varied. The range for  𝑅𝑒𝑃𝑎𝑟𝑡 is chosen to reflect 

common values observed in applications concerned with wall-to-particle heat transfer [1-13] and 

is given by 𝑅𝑒𝑃𝑎𝑟𝑡  ∈ [1 10]. The values for 𝛿 considered are chosen such that the particle resides 

completely within the thermal boundary layer or completely outside the thermal boundary layer 

and is given by 𝛿/𝑅𝑝 ∈ [0.01 25]. Since the distance from the leading edge (𝐿) is fixed, the 

resulting plate Reynolds number (𝑅𝑒𝑃𝑙𝑎𝑡𝑒 ≡ 𝑈∞𝐿/𝜈 = 5𝑅𝑒𝑃𝑎𝑟𝑡; 𝑅𝑒𝑃𝑙𝑎𝑡𝑒 ∈ [5 50]) lies in the 

intermediate regime and the flow is laminar (𝑅𝑒𝑃𝑙𝑎𝑡𝑒 < 𝒪(10
6)) [46]. The particle diameter and 

(7) 

(8) 

(9) 
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Prandtl number (𝑃𝑟 = 𝜈/𝛼) are fixed and set to 600 𝜇𝑚 and 0.7, respectively. The particle 

diameter is resolved by 10 LBM nodes (𝐷𝑝/∆𝑥𝐿𝐵𝑀 = 10) in all simulations. This resolution has 

been shown to reach the point of grid insensitivity for uniform flow past a particle at 𝑅𝑒𝑃𝑎𝑟𝑡 = 40 

[24], which is well above the largest 𝑅𝑒𝑃𝑎𝑟𝑡 considered in this work. Furthermore, test simulations 

were conducted at a resolution of 𝐷𝑝/∆𝑥𝐿𝐵𝑀 = 20 and the resulting heat transfer coefficients 

differed from the 𝐷𝑝/∆𝑥𝐿𝐵𝑀 = 10 case by less than 1%. A complete overview of the simulation 

conditions is given in Table 1 while the fluid and particle properties are contained within Table 2. 

To impose the required boundary conditions given in Figure 2, a variety of methods were 

employed. The hydrodynamic boundary conditions were imposed in the LBM framework. 

Namely, the no-slip and uniform inflow boundary conditions were achieved via the bounce-back 

method [49]. The free slip and outflow boundary conditions were completed by way of the anti-

bounce-back method [50] and extrapolation [24,51], respectively. The thermal boundary 

conditions were imposed in the RWPT framework. Specifically, the constant temperature 

boundary at the inflow (𝜃 = 0.2) and bottom wall (𝜃 = 1) was achieved by a two-step process. 

First, all tracers that cross the boundary are specularly reflected back into the domain. Second, a 

number is sampled from 𝒰(0,1). If the sampled value is less than or equal to 𝜃, the tracer type is 

set to 1; else, the tracer type is set to 0. The inlet fluid temperature boundary condition (𝜃 = 0.2) 

is chosen such that it is less than the wall temperature (𝜃 = 1) but greater than the particle 

temperature (𝜃 = 0). By setting the inlet temperature boundary condition in this manner a thermal 

gradient between the particle and fluid will be sustained at large 𝛿 and the particle heat transfer 

will approach the Nusselt correlation for unbounded spheres. By contrast, as the particle 

approaches the wall (𝛿 → 0), the inlet temperature is of less significance since the fluid near the 

wall will be equilibrated to the wall temperature. Therefore, the effect of the flow on wall-particle 

heat transfer can be directly evaluated. The constant particle temperature (𝜃 = 0) is achieved by 

setting all tracers that enter the particle to type 0. The adiabatic boundary is imposed by specularly 

reflecting tracers back into the domain (no alteration of type). The thermal outflow boundary is 

achieved by a semi-reflecting barrier [44]. If a tracer reaches the outflow plane, the probability of 

being specularly reflected back into the domain (𝑃∗) is calculated as in [44]. A number is then 

sampled from 𝒰(0,1).  If the value is less than 𝑃∗, the tracer is specularly reflected back into the 

domain; otherwise, the tracer is re-seeded at the inflow plane and its type is set according to the 

temperature boundary condition at the inflow plane (𝜃 = 0.2).  
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Figure 2: The geometry and boundary conditions utilized to simulate uniform flow past a hot 

plate (bottom wall in red) and a static, cold particle (blue sphere). The particle-wall separation 

distance (𝛿) is the distance between the bottom of the particle and the wall (varied) while 𝐿 is the 

distance from the leading edge to the center of the particle (fixed).  

 

 

Table 1.  Flow Past a Hot Plate and Static, Cold Particle Simulations  

Geometry and Operating Conditions 

Mesh      

Nodes 
(x × y × z) 

160 × 240 × 80     

𝐷𝑝/∆𝑥𝐿𝐵𝑀 10     

𝐶𝑡 2.0     

𝐿/𝐷𝑝 5     

      

Simulation Conditions     

𝑅𝑒𝑃𝑎𝑟𝑡 𝑅𝑒𝑃𝑙𝑎𝑡𝑒 𝛿/𝑅𝑝  

1 5 0.01, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10, 25  

2 10 0.01, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10, 18  

4 20 0.01, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10, 12  

6 30 0.01, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10  
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8 40 0.01, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10  

10 50 0.01, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10  

      

 

 

Table 2: Fluid and Particle Characterization 

Hydrodynamic and Thermal Properties 

Fluid Properties   

ν 1.570 × 10−5
𝑚2

𝑠2
   

𝛼1 2.230 × 10−5
𝑚2

𝑠2
   

𝑘𝑓 2.624 × 10−2
𝑊

𝑚𝐾
   

𝑃𝑟 0.70   

    
Particle Properties   

𝐷𝑝 600 𝜇𝑚   

𝛼2 8.30 × 10−7
𝑚2

𝑠2
   

 
 

Results 

 In the present work, a hydrodynamic and thermal boundary layer develops near the bottom 

wall. From boundary layer theory, the ratio of the thermal boundary layer thickness (𝛿𝑇)  to the 

hydrodynamic boundary layer thickness (𝛿ℎ) is found to scales as 𝛿𝑇/𝛿ℎ = 𝑃𝑟−1/3 [45-46]. For 

the Prandtl number considered in this work (0.7), the thermal boundary layer thickness will be 

larger than the hydrodynamic boundary layer thickness by approximately 12%. The extent to 

which the particle interacts with the thermal boundary layer depends upon the separation distance 

(𝛿); see Figures 3-4 for velocity and temperature profiles, respectively. For the case of a small 

separation distance (subplots (a)), the particle is within the thermal boundary layer and hence 

interacts with the wall more. By contrast, for large separation distances (subplots (b)), the particle 

is outside the thermal boundary layer (as well as the hydrodynamic boundary layer) and is less 

affected by the wall. Due to the thermal source at the bottom wall, a spatially varying temperature 

field is resulted (Figure 4).  
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Figure 3: The dimensionless stream-wise velocity (𝑈̂𝑥) profile for 𝑅𝑒𝑃𝑎𝑟𝑡 = 10 and a separation 

distance of (a) 𝛿/𝑅𝑝 = 0.2 and (b) 𝛿/𝑅𝑝 = 10.0. The white dashed lines indicate the location of 

the particle. 

 

 
 

Figure 4: The dimensionless temperature (𝜃) profile for 𝑅𝑒𝑃𝑎𝑟𝑡 = 10 and a separation distance 

of (a) 𝛿/𝑅𝑝 = 0.2 and (b) 𝛿/𝑅𝑝 = 10.0. The white dashed lines indicate the location of the 

particle. 

 

By definition, the heat transfer coefficient (ℎ) relates the heat flux (𝑞") to the thermal 

driving force (∆𝑇) (ℎ = 𝑞"/∆𝑇). To quantify the heat transfer coefficient (ℎ) or more generally the 

Nusselt number (𝑁𝑢 = ℎ𝐷𝑝/𝑘) for a particle in the near-wall region, the relevant thermal driving 

force (∆𝑇) must be defined. For the case of an unbounded system, such as in [14-17], the thermal 

driving force is taken to be the difference between the fluid temperature at the inflow plane (𝑇𝑓,∞) 

and the particle temperature (𝑇𝑝) (∆𝑇 = 𝑇𝑓,∞ − 𝑇𝑝). In the present work, as we are interested in the 

(a) (b) 

(a) (b) 



11 
 

joint influence of the incoming fluid (𝑇𝑓,∞) and the wall (𝑇𝑤), the fluid temperature surrounding 

the particle (𝑇𝑓,𝐿𝑜𝑐) is used to define the driving force. The local fluid temperature may be 

approximated by the integral of the fluid temperature (𝑇𝑓), with respect to a weighting function 

(𝑔(𝑟)), over a spherical volume that surrounds the particle (𝛀𝑦) [19,25]:  
 

𝑇𝑓,𝐿𝑜𝑐 =
∭𝑔(|𝐫𝑦 − 𝐫𝑝|) 𝑇𝑓(𝐫𝑦)𝑑𝛀𝑦

∭𝑔(|𝐫𝑦 − 𝐫𝑝|) 𝑑𝛀𝑦
 

 

𝑔(𝑟) = exp (−
𝑟

𝐷𝑝
),   

𝑟

𝐷𝑝
∈ [0  2] 

 

where 𝑇𝑓(𝐫𝑦) is the fluid temperature, 𝑔(𝑟) is the weighting function, and 𝛀𝑦 is the volume 

contained within a sphere of radius 2𝐷𝑝 whose center coincides with the particle center (𝐫𝑝). As 

discussed in [19], the motivation for utilizing the given form of the weighting function (𝑔(𝑟)) is 

its consistency with techniques commonly employed to derive the volume-averaged equations of 

motion for a gas-solids mixture [52-53]. Here, we define ∆𝑇𝐿𝑜𝑐 = 𝑇𝑓,𝐿𝑜𝑐 − 𝑇𝑝 as the thermal 

driving force (ℎ = 𝑞"/∆𝑇𝐿𝑜𝑐).  
Physically speaking, as 𝛿 becomes large with respect to the wall thermal boundary layer 

thickness (Figure 3b), the boundary effects on particle heat transfer becomes negligible and the 

resulting Nusselt number should converge to those obtained for an unbounded system [14-17]. 

However, the Nusselt numbers obtained here will not converge to [14-17], even in the limit of 𝛿 →
∞, but this is solely due to using ∆𝑇𝐿𝑜𝑐 instead of ∆𝑇; see Figure 5. The disagreement between  

𝑁𝑢𝐿𝑜𝑐 and existing correlations for unbounded systems [14-17] can be attributed to the interphase 

transfer of thermal energy that will cause ∆𝑇𝐿𝑜𝑐 < ∆𝑇. For the 𝑅𝑒𝑃𝑎𝑟𝑡 considered here, the 

reduction in thermal driving force (∆𝑇𝐿𝑜𝑐 < ∆𝑇) causes the resulting Nusselt numbers to be 25-

50% larger than those given in [14-17]. Specifically, the Nusselt numbers obtained using ∆𝑇 =
𝑇𝑓,∞ − 𝑇𝑝 (𝑁𝑢∞) agree with [14-17] while the Nusselt numbers obtained using ∆𝑇𝐿𝑜𝑐 = 𝑇𝑓,𝐿𝑜𝑐 −

𝑇𝑝 (𝑁𝑢𝐿𝑜𝑐) are larger than those given in [14-17].  

In the opposite limit of separation distance (𝛿 → 0), a choice must be made in terms of the 

definition for 𝛀𝑦. Since the radius of 𝛀𝑦 is 2𝐷𝑝 (significantly larger than the particle), a subset of 

𝛀𝑦 will overlap with the wall (𝛀𝑤). For this case, the volume of 𝛀𝑦 overlapping with the wall 

(𝛀𝑤) as well as the fluid volume (𝛀𝑓), was incorporated into the volume integration performed in 

Eq. 10 (𝛀𝑦 = 𝛀𝑓+𝑤) and the temperature within 𝛀𝑤 was set to the boundary condition temperature 

(𝜃 = 1). This choice was motivated by the interpolation techniques employed within the DEM 

framework [54] to which our correlation of Nusselt number is to be applied. In DEM, the thermal 

driving force is found by interpolating the fluid temperature to the location of the center of the 

particle. If a particle lies within a numerical cell adjacent to a wall, the interpolated fluid 

temperature will lie between the wall temperature (𝑇𝑤) and the fluid temperature at the adjacent 

nodes. By including 𝛀𝑤 into the calculation of 𝑇𝑓,𝐿𝑜𝑐, the resulting values are more consistent with 

those achieved via interpolation techniques; see Figure 6. Neglecting 𝛀𝑤 and only integrating over 

the fluid volume (𝛀𝑦 = 𝛀𝑓) will cause the resulting 𝑇𝑓,𝐿𝑜𝑐 to be reduced by 16-21%, and thus the 

resulting heat transfer coefficients will increase. Ultimately, integration including the union 

between  𝛀𝑦 and 𝛀𝑤 was utilized in this work since it is a more conservative approach (results in 

(10) 
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smaller predicted ℎ values due to the larger thermal driving forces) and agrees better with 

interpolation of the fluid temperature. 

 

 

 
Figure 5: Comparison between the Nusselt numbers for unbounded flow past a particle when the 

inlet fluid temperature (𝑁𝑢∞) (solid black dots) versus local fluid temperature (𝑁𝑢𝐿𝑜𝑐) (open 

dots) is utilized as the relevant driving force. 
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Figure 6: The local, dimensionless fluid temperature (𝜃𝐿𝑜𝑐) found via integration over 𝛀𝑦 that 

includes wall volume (𝛀𝑓+𝑤) (solid lines) as well as just the fluid volume (𝛀𝑓) (dashed lines) 

versus the dimensionless distance between the particle center and the wall (r̂𝑝,𝑦). Note, for r̂𝑝,𝑦 ≥

5  𝛀𝑦 does not intersect the wall (𝛀𝑤 = 0 → 𝛀𝑦 = 𝛀𝑓). The wall temperature (𝜃𝑤) is included 

for reference. 

 

For each LBM-RWPT simulation (Table 1), the heat rate to the particle (𝑞̇) and local fluid 

temperature (𝑇𝑓,𝐿𝑜𝑐) are extracted at steady state. The heat rates obtained from LBM-RWPT (𝑞̇) 

are directly compared to the convective correlations (𝑞̇𝑐𝑜𝑛𝑣) and indirect conduction theory (𝑞̇𝑃𝐹𝑊) 

commonly employed in DEM. First, the unbounded convective correlation of [14] (𝑞̇𝑐𝑜𝑛𝑣 =
ℎ𝑐𝑜𝑛𝑣𝐴𝑝∆𝑇𝐿𝑜𝑐) is compared to LBM-RWPT; see Figure 7a. As the particle-wall separation 

distance becomes small, the heat transfer coefficient grows quite rapidly (note logarithmic x-axis) 

and the unbounded convection correlation fails to characterize the heat transfer enhancement that 

occurs in the near-wall region. This behavior is expected since the correlation given in [14] 

(unbounded system) does not account for the thermal source associated with the boundary. Note 

that the dimensionless heat rate (𝑞̂) does not decay to unity as the separation distance becomes 

large. This behavior is solely a result of utilizing ∆𝑇𝐿𝑜𝑐 as the thermal driving force (see 𝑁𝑢𝐿𝑜𝑐 in 

Fig. 5) and 𝑞̂ would tend to unity if ∆𝑇 were utilized for the thermal driving force.   

Inclusion of the indirect conduction mechanism [32-33] into the total heat rate (𝑞̇𝑐𝑜𝑛𝑣 +

𝑞̇𝑃𝐹𝑊 = ℎ𝑐𝑜𝑛𝑣𝐴𝑝∆𝑇𝐿𝑜𝑐 + 𝑘𝑓𝑅𝑝ℎ̂𝑃𝐹𝑊(𝛿)[𝑇𝑤 − 𝑇𝑝]) is observed to agree markedly better with 

LBM-RWPT than the convection correlation alone; see Figure 7b. In contrast to the convection 

correlation, indirect conduction theory accounts for the effect of a boundary by assuming that one-

dimensional conduction occurs through a stagnant layer of fluid between the particle and wall 

(𝑅𝐿𝑒𝑛𝑠). However, heat transfer enhancement due to the hot wall is still observed at length scales 

not predicted by indirect conduction theory (peaks in Figure 7b). The length scale for indirect 

conduction theory is the fluid lens thickness (𝑅𝐿𝑒𝑛𝑠 − 𝑅𝑝) and is set according to the particle size 

(𝑅𝐿𝑒𝑛𝑠 = 1.4𝑅𝑝) [33] – i.e., 𝑞̇𝑃𝐹𝑊 only contributes to the total heat rate when 𝛿 <

(𝑅𝐿𝑒𝑛𝑠 − 𝑅𝑝)/𝑅𝑝 = 0.4 in Figure 7b.   
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Figure 7: (a) The heat rate obtained via LBM-RWPT (𝑞̇) normalized by the correlation of [14] 

(𝑞̇𝑐𝑜𝑛𝑣) and (b) the sum of [14] and indirect conduction theory [32] (𝑞̇𝑐𝑜𝑛𝑣 + 𝑞̇𝑃𝐹𝑊) versus 

dimensionless separation distance (𝛿). 

 

Physically speaking, heat transfer enhancement due to the boundary should occur at a 

length scale associated with the thermal boundary layer thickness (𝛿𝑇) of the plate, rather than the 

particle radius; see Figure 8. For example, if a particle that is large with respect to 𝛿𝑇 is considered 

(right particle in Fig. 8), the onset of indirect conduction (fluid lens just intersects the wall; 𝛿 =
0.4𝑅𝑝) would correspond to a particle outside the thermal boundary layer. For this case, the 

inherent assumptions of the indirect conduction theory (static, 1-D conduction) is violated since 

the hot fluid contained within the thermal boundary layer is advected between the particle and 

wall. The advection of fluid between the particle and the wall acts to reduce the thermal gradients 

near the particle surface from those predicted by indirect conduction theory, and thus, the heat 

transfer to the particle in this case is over-predicted by indirect conduction theory. By contrast, if 

a particle small with respect to 𝛿𝑇 is considered (left particle in Fig. 8), the onset of indirect 

conduction (fluid lens just intersects the wall; 𝛿 = 0.4𝑅𝑝) corresponds to a particle that is fully 

immersed in the boundary layer. Therefore, the heat transfer enhancement occurring when the 

particle is within the thermal boundary layer (𝛿 < 𝛿𝑇) but not within the fluid lens thickness (𝛿 >
0.4𝑅𝑝) cannot be captured by indirect conduction theory - i.e., the particle may reside in the 

thermal boundary layer where heat transfer enhancement occurs but the fluid lens does not intersect 

with the wall. In this case, the heat transfer to the particle is under-predicted by indirect conduction 

theory. Note, that the ratio of the particle size to thermal boundary layer thickness considered in 

the LBM-RWPT simulations is most analogous to the ‘small’ case in Fig. 8, which is why the 

combination of convection and indirect conduction tends to under-predict the overall heat transfer 

(Fig. 7b). 

 

(a) (b) 
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Figure 8: An illustration of particles (solid black lines) and their fluid lenses (dashed grey line) 

overlaid upon the scaling of the thermal boundary layer thickness (𝛿𝑇). For particles small with 

respect to 𝛿𝑇 (left particle), the onset of indirect conduction occurs when the particle is inside the 

boundary layer. For particles large with respect to 𝛿𝑇 (right particle), the onset of indirect 

conduction occurs when the particle is outside the boundary layer. 

 

 By taking 𝛿𝑇 as the relevant length scale, the heat transfer enhancement occurring in the 

near-wall region (Figure 7a) is more generally interpreted as the interaction between the particle 

and the thermal boundary layer. From classic boundary layer theory for flow past a plate, 𝛿𝑇 may 

be approximated as [45-46]: 

𝛿𝑇 ≈ 5.0
 𝑥

𝑅𝑒𝑃𝑙𝑎𝑡𝑒
1/2

𝑃𝑟−1/3 

where 𝑥 is the distance from the leading edge (5𝐷𝑝 in this work). The local Nusselt number 

(𝑁𝑢𝐿𝑜𝑐 = ℎ𝐷𝑝/𝑘;  ℎ = 𝑞"/∆𝑇𝐿𝑜𝑐 ) for the unbounded system (open dots in Figure 5) may be 

approximated by the following fit 

 

𝑁𝑢𝐿𝑜𝑐 = 3.75 + 0.0675𝑅𝑒𝑃𝑎𝑟𝑡. 

 

By utilizing 𝛿𝑇 as the relevant length scale and 𝑁𝑢𝐿𝑜𝑐 as the asymptotic limit for large 

particle-wall separation distances (𝛿 → ∞), a compression of the LBM-RWPT data may be 

completed; see Figure 9. The data in Figure 9 is approximated by: 

 

𝑓1(𝛿) = 1 + 0.8 exp(−260𝛿) + 0.53 exp(−35𝛿) − 0.002 exp(−0.5𝛿), or 

𝑓2(𝛿) = 1 + 1.13exp (−85𝛿) 

 

(11) 

(12) 

(13) 
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where 𝛿 = 𝛿/𝛿𝑇 is the dimensionless separation distance. Making use of Eqs. 12-13, the Nusselt 

number in the near-wall region then becomes 

 

𝑁𝑢 ≡
ℎ𝐷𝑝

𝑘𝑓
= 𝑓𝑖(𝛿)𝑁𝑢𝐿𝑜𝑐 

where 𝑓𝑖(𝛿) is either 𝑓1(𝛿) or 𝑓2(𝛿) in Eq. 13. Since the heat transfer enhancement in the near-

wall region grows rapidly as the separation distance becomes small (𝛿 → 0 in Fig. 9), the accuracy 

of the fitting function (𝑓𝑖(𝛿)) is better illustrated on a log axis. Due to the larger number of fitting 

parameters, 𝑓1 better characterizes the data. However, very reasonable accuracy is obtained with 

the reduced order 𝑓2 function. Note that both 𝑓1 and 𝑓2 asymptotically decay to unity as 𝛿 → ∞, 

which is the physically correct behavior (𝑁𝑢 → 𝑁𝑢𝐿𝑜𝑐). The choice between 𝑓1 and 𝑓2 should be 

dictated by the desired accuracy. Therefore, the Nusselt correlation given by Eq. 14 seams together 

the unbounded and near-wall region while accounting for both convective and indirect conduction 

mechanisms. While the 𝑓𝑖(𝛿̂) fitting functions monotonically decay with increasing 𝛿, the LBM-

RWPT data displays a local minimum at 𝛿 ≈ 0.5 that becomes more pronounced with increasing 

𝑅𝑒𝑃𝑎𝑟𝑡. As 𝑅𝑒𝑃𝑎𝑟𝑡 increases, the thermal and flow length scales compress. By contrast, the volume 

element utilized to calculate 𝑇𝐿𝑜𝑐 remains constant (sphere of radius 2𝐷𝑝  in Eq. 10). Therefore, 

the spatial averaging in Eq. 10 begins to encompass regions of the hot boundary layer that are not 

significantly contributing to the particle heat transfer - i.e., 𝑇𝐿𝑜𝑐 is increased by averaging over hot 

fluid near the bottom wall that will tend to be advected away as 𝑅𝑒𝑃𝑎𝑟𝑡 increases. 

 Due to the restrictions on parameter space, the formal accuracy of indirect conduction 

theory for a generic system is outside of the scope of the present work. However, by identifying 

the thermal boundary layer thickness as the key length scale, some general trends may be noted. 

For particles that are large with respect to 𝛿𝑇 (right particle in Fig. 8), the current indirect 

conduction theories within DEM are expected to over-predict the heat transfer to the particle. This 

can be traced back to the violation of the static-fluid lens assumption over a length scale of 0.4𝑅𝑝. 

Note that the boundary layer thickness can vary spatially and will compress with increasing 

Reynolds and Prandtl number. For the case of a particle that is small with respect to 𝛿𝑇 (left particle 

in Fig. 8), the current indirect conduction theories are expected to under-predict the heat transfer 

to the particle (observed here in Fig. 7b). In this case, the particle is well within the boundary layer 

(where heat transfer enhancement occurs) at the onset of indirect conduction (𝛿 ≤ 0.4𝑅𝑝).  

  

 

(14) 
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Figure 9: The Nusselt number obtained via LBM-RWPT normalized by the local Nusselt 

number (open dots in Figure 5) versus the non-dimensional separation distance on a logarithmic 

axis.  

 

Conclusions 

Direct numerical simulation (DNS) was utilized to examine the effect of a hot boundary on 

heat transfer to a solid particle in a laminar, thermal boundary layer. The heat rate obtained via 

LBM-RWPT shows that Nusselt correlations developed in unbounded systems (no walls) are not 

sufficient in the near-wall region while the combination of such correlations with indirect 

conduction theory agrees markedly better with DNS.  Nonetheless, such modified correlations still 

exhibit discrepancies with DNS that can be traced to thermal and hydrodynamic length scales of 

the system.   

More specifically, the length scale associated with near-wall heat transfer enhancement is 

found to be proportional to the thermal boundary layer thickness and not the particle radius, as is 

utilized by indirect conduction theory. Furthermore, the use of the local fluid temperature (as 

opposed to the free stream temperature) increases the universality of the resulting Nusselt numbers 

since it accounts for the effects of all the boundary conditions. However, the local fluid temperature 

is not known a priori and must instead be computed on the fly. The thermal boundary layer 

thickness and local Nusselt number (unbounded system with local fluid temperature as the driving 

force) are utilized to compress the LBM-RWPT data and develop a new correlation which is valid 

in the near-wall region. The new correlation asymptotically decays to the unbounded convection 

correlation in the limit of large particle-wall separation distance, and thus seams together the 

unbounded and near-wall regions.  

While not considered here, the particle(s) may translate in space as well as rotate (angular 

velocity). Furthermore, the diameter of the particle, distance from the leading edge, Prandtl 
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number, and thermal wall boundary condition may be altered. The impact of each parameter on 

particle heat transfer is not known a priori but will be the subject of future work - i.e., testing the 

robustness of the present relation for Nu.  
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