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Abstract
This paper outlines a framework for quantifying the prior’s 
contribution to posterior inference in the presence of prior-
likelihood discordance, a broader concept than the usual 
notion of prior-likelihood conflict. We achieve this dual 
purpose by extending the classic notion of prior sample 
size, M, in three directions: (I) estimating M beyond conju-
gate families; (II) formulating M as a relative notion that is 
as a function of the likelihood sample size k, M(k), which 
also leads naturally to a graphical diagnosis; and (III) per-
mitting negative M, as a measure of prior-likelihood con-
flict that is harmful discordance. Our asymptotic regime 
permits the prior sample size to grow with the likelihood 
data size, hence making asymptotic arguments meaning-
ful for investigating the impact of the prior relative to that 
of likelihood. It leads to a simple asymptotic formula for 
quantifying the impact of a proper prior that only involves 
computing a centrality and a spread measure of the prior 
and the posterior. We use simulated and real data to il-
lustrate the potential of the proposed framework, includ-
ing quantifying how weak is a ‘weakly informative’ prior 
adopted in a study of lupus nephritis. Whereas we take a 
pragmatic perspective in assessing the impact of a prior on 
a given inference problem under a specific evaluative met-
ric, we also touch upon conceptual and theoretical issues 
such as using improper priors and permitting priors with 
asymptotically non-vanishing influence.
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2  |      REIMHERR et al.

1  |   MOTIVATION AND ILLUSTRATION

The difficulty in choosing priors and fully understanding their impact on statistical analyses has been 
a primary concern of Bayesian methods since their inception. The common approach to alleviate such 
concerns is to conduct a sensitivity analysis, investigating how the results are affected by perturbations 
of the prior. However, such an approach does not typically reveal how a chosen prior has actually 
contributed to the analysis in comparison to the information from the data, as captured by the posited 
likelihood. Although many have asked questions along the line ‘How much of your conclusion is 
actually due to your prior assumptions?’, to the best of our knowledge, there are no well-recognized 
approaches to quantitatively address such legitimate inquires.

As the adoption of Bayesian tools continues to grow, we need quantitative assessments on the im-
pact of priors, permitting at least a check on their impact compared to the likelihood. This is desirable, 
both scientifically and statistically. A posterior inference with 45% prior information contribution may 
affect our decisions rather differently, at least psychologically, from one with only 5% prior contribu-
tion. However, quantifying the impact of a prior has been a very challenging task, partially explaining 
the lack of routinely adopted methods. A key difficulty is that the information from the prior may be 
in conflict with that from the likelihood to a point that it can actually ‘subtract’ rather than ‘add’ to 
an analysis. Recently, Efron (2015) explored frequentist properties of Bayesian estimates, illustrating 
that, in many ways, researchers are often still unable to understand/quantify the impact of their priors 
on their inference. Our paper aims to make a substantive contribution in this direction, though we by 
no means declare that we have found the solution as this is an area that requires much more research.

1.1  |  Building upon the classic notion of prior sample size

This paper presents a strategy for simultaneously assessing the degree of conflict between the prior 
and likelihood, and quantifying the information contribution of the prior to the posterior. We accom-
plish this by extending the easily interpretable information metric prior sample size (PSS), a common 
notion in the literature of conjugate priors (e.g. Diaconis et al., 1979; Gutiérrez-Peña et al., 1997; 
Meng & Zaslavsky, 2002). As is well known, a conjugate prior can be equated to the posterior from a 
prior study with, say, M i.i.d. (hypothetical) observations and a baseline ‘non-informative’ prior. This 
equivalence provides a concrete practical guideline. If our likelihood is based on N i.i.d. observations 
from the same conjugate family, then we can consider that the conjugate prior has contributed M/
(N+M)×100% of the information to our posterior inference.

Given its practical appeal, multiple efforts have been made to extend the concept of PSS beyond 
conjugate families. The approach by Clarke (1996) is particularly significant, taking advantage of 
reference priors (Bernardo, 1979), which are equivalent to Jeffreys priors in univariate cases (George 
& McCulloch, 1993). Specifically, by minimizing their relative entropy (i.e. Kullback–Leibler di-
vergence), Clarke’s approach matches a target prior—typically considered to be informative—with 
the posterior based on a likelihood from a given family and a given reference prior. The resulting 
likelihood function is then interpreted as representing implicit data information in the target prior, 
relative to the reference prior. The PSS of the target prior is then approximated by this likelihood data 
size, though Clarke (1996) also identifies the actual data values used by the likelihood (typically not 
unique). Subsequently, Clarke and Yuan (2006) developed closed-form expressions for the prior sam-
ple size, and Lin et al. (2007) examined how to quantify the information content with non i.i.d. data. 
Ginebra (2007) discussed, more generally, how to quantify the information content in an experiment, 
and Berger et al. (2014) investigated how to quantify effective sample sizes of various linear models. 
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      |  3REIMHERR et al.

Recently Wiesenfarth and Calderazzo (2019) explored the usage of historical data for quantifying PSS 
in the context of clinical trials.

In addition, Morita et al. (2008) took a similar approach but with a different baseline and diver-
gence. Their baseline prior was constructed by keeping the prior mean and correlations (for multivar-
iate cases) the same as the target prior, but with the prior variance greatly inflated to render ε-amount 
of information. Their divergence is based on the trace of the (expected) curvature of the log density, 
which they reported was best after extensive trial and error. This is intuitive as the curvature of the 
log density is to the prior variance what Fisher information is to the posterior variance. This pairing 
between the divergence and the baseline prior was also emphasized by Clarke (1996), because the 
reference prior is the minimizer of an expected K–L divergence, and hence his pairing also guarantees 
his PSS to be non-negative when it exists. However, permitting a negative PSS turns out to be the key 
to resolve the thorny issue of prior-likelihood conflict when measuring the impact of prior informa-
tion, as we will discuss in Section 2. The methods of Morita et al. (2008) were further illustrated on 
biomedical applications in Morita et al. (2010), and extended to hierarchical models in Morita et al. 
(2012).

A commonality between the settings in Clarke (1996) and Morita et al. (2008) (and their subse-
quent extensions) is that both treat the likelihood model as a device for measuring the information 
in the target prior, with the hypothetical observations optimized over or averaged over, respectively. 
Hence these are pre-data measures, most useful for design purposes and theoretical investigations. 
In this paper, however, we address a harder and more common post-data question: how many obser-
vations are required, approximately, to match the prior’s contribution—in terms of some statistical 
efficiency—to a posterior inference based on a particular likelihood function from a set of observed 
data? That is, we intend our PSS to be inherently data dependent.

In theory, we all hope that, at the very least, our prior does no harm. However, in practice, typically 
there are some degrees of prior-likelihood conflict. This can lead to, for example, a 95% posterior in-
terval that is wider than an analogous 95% confidence interval, or which has deficient coverage. This 
can occur regardless of the correctness of the prior or likelihood, because a particular data set from a 
known model can still exhibit ‘tail’ behaviour. Any measure of the prior contribution to a particular 
posterior inference must then allow for the possibility of negative prior contribution. But how should 
we formulate negative ‘sample size’? We report a practical way to circumvent this problem by match-
ing two posteriors corresponding to two priors (target and baseline), instead of the prior-posterior 
matching as in Clarke (1996) or in Morita et al. (2008).

The more fundamental question is the meaning of measuring the statistical efficiency in a particu-
lar study. All statistical inference paradigms require a specification of reference replications (see, e.g. 
Liu & Meng, 2016), because otherwise there is no variation, and hence no information, to speak of. 
The reference replications in Clarke (1996) and Morita et al. (2008) are pre-data hypothetical obser-
vations as respectively specified, designed as frequentist measures, averaging over many hypothetic 
data sets that we will never observe. But if we insist on using the Bayesian replication, that is, all data 
sets that are exactly the same as the observed ones, then our entire information measure will be driven 
by the prior, the only source of variation. To avoid either extreme (see Liu & Meng, 2016, for reasons 
for this avoidance), we adopt a compromise: we measure information/efficiency with respect to all 
data sets that are exchangeable with the observed data, that is, they are not identical to the observed 
data but they share the same generating model with the same parameter value for the latter. We do not 
know this parameter value, but when we have adequate internal replications (e.g. with i.i.d. data), we 
will be able to estimate our measure via common methods such as bootstrap.

Before we proceed to illustrate the key ingredients of our proposal, we emphasize that the need 
for choosing a baseline prior, as above and in other similar works such as Evans and Jang (2011), is 
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unavoidable because it is mathematically impossible to represent ignorance via a probability distri-
bution (see Martin & Liu, 2016, Proposition 2.1). In responding to an insightful question raised by 
a reviewer, we will also report a ‘prior size paradox’ caused by this impossibility (see Section 5.2). 
Our preference therefore is to choose a prior that represents what a practitioner would adopt without 
real prior information, such as those documented in Kass and Wasserman (1996). We also note that 
various developments on deviance information criteria such as Spiegelhalter et al. (2002), Watanabe 
(2010) and Watanabe (2013), and others as reviewed in Gelman et al. (2014), are similar in spirit 
to our goal of quantifying prior-likelihood conflicts. They also provide information deviances to be 
examined within our framework, in addition to the quadratic loss measures, a focus of this paper. 
Furthermore, the concept of surprise has been used in Evans (1997), Evans and Moshonov (2006), 
Bousquet (2008), and Evans and Jang (2011) for a variety of procedures including detecting prior-
likelihood conflicts. In particular, Evans and Moshonov (2006) provided methods to check for conflict 
in proper priors, an assumption we avoid making due to the heavy reliance on improper priors in prac-
tice, whereas Bousquet (2008) expanded on this work, giving a binary decision rule for determining 
if there is conflict.

1.2  |  The normal enlightenment

As usual, a normal distribution example sheds much light on what lies ahead, and permits exact ana-
lytic results. Our main theoretical results, given in Section 2, show that under an asymptotic regime 
that permits the influence of the prior to grow with the likelihood data size, the exact normal results 
are special cases of the asymptotic results for a large class of likelihood-prior models. We will also 
use this example (and others) in Section 4 to check the implementation and computational procedures 
outlined in Section 3.

We begin by assuming �⃗X n = {X1, …, Xn } to be an i.i.d. sample from N(�, �2
0
), where for simplic-

ity of illustration, we assume �2
0
 is known. We adopt the usual conjugate prior on μ, � = N (�� , �

2
0
∕m),  

but we parameterize the prior variance as �2
0
∕m since if our prior was set according to a previous 

data set also from the model N(�, �2
0
), say {Y1, …, Ym }, then the variance of the previous MLE of μ 

would be �2
0
∕m. For the baseline prior, �b, we take m = 0 that is a constant prior. With a slight abuse of 

notation, we let �⃗X k be a generic notation for any subset of �⃗X n with size k ≤ n, and Xk denotes the corre-
sponding sample average. The posterior of μ given �⃗X k under either prior is normal with, respectively, 

 

It is natural to ask, how π has changed our posterior inference for μ compared to the baseline? To 
be specific, let us examine the posterior mean-squared error (MSE), averaged over all data sets that are 
generated (under the normal model) by the same �0 that generated our observed data �⃗X n. Therefore, 
denoting by U this expected MSE, we would like to compare 

(1)E𝜋 [𝜇 | �⃗X k ] =
m𝜇𝜋 + kXk

m + k
, Var𝜋 [𝜇 | �⃗X k ] =

𝜎2
0

m + k
;

(2)E𝜋b
[𝜇 | �⃗X k ] = Xk, Var𝜋b

[𝜇 | �⃗X k ] =
𝜎2
0

k
.

U� (k) =
�2
0

m + k
+ E

[
m�� + kXk

m + k
− �0

]2
with U�b

(k) =
�2
0

k
+ E

[
Xk − �0

]2
.
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Let Δ =
√
m (�0 − �� )∕�0, which encapsulates the degree of discordance between the prior and the 

likelihood. It is then straight forward to show that 

Our approach is to find M(k) such that U�b
(k +M (k) ) = U� (k), so M(k) can be viewed as the PSS of π 

relative to �b.
After some algebra, we can express 

where r = m/k is the nominal prior size relative to the likelihood data size. Expression (4) reveals some-
thing unexpected: M(k) = m, the perceived PSS, if and only if Δ2 = 1. This may surprise those who expect 
that M(k) = m when Δ=0. However, if our prior was specified according to a prior data set {Y1, …, Ym }, 
then we would have set �� = Ym, and hence Δ2 = m (Ym − �0 )

2∕�2
0
, which is distributed as �2

1
 when the 

prior data set is indeed from the same population. That is, on average we should expect Δ2 to be 1, not 
0. Therefore, Δ2 < 1 means we have a ‘fortuitous’ prior (as compared to a no-conflict prior), and hence 
M(k) > m because of the additional ‘lucky’ information brought in by ��. When 1 < Δ2 < 1 + 2(1 + r )

, we have 0 < M(k) < m, meaning that, although the prior is not as informative as its nominal size m 
advertises, it is still helpful in the sense of reducing the MSE over using the baseline. However, when 
Δ2 ≥ 1 + 2(1 + r ), the prior has zero or negative impact, because M(k)≤0. 1

In summary, (4) tells us that,with respect to the impact on MSE for estimating μ, 

This calls for a more general concept of prior-likelihood discordance than prior-likelihood conflict 
to describe the lack of harmony between our likelihood model and prior model, because not all such 
discordance is harmful, which the phrase ‘conflict’ would suggest. Indeed, Δ2 = 0 represents our most 
fortunate case, with the prior mean being exactly the true parameter value and hence M(k) reaches 
its maximal value m(3+2r)/(2+r). We observe that this maximal value is always between 1.5m and 
2m. We suggest that the term prior-likelihood conflict is reserved for cases when our prior becomes 
harmful, that is, when M(k) < 0. We must emphasize that we take a pragmatic perspective in suggest-
ing these terms, by considering primarily the impact of the target prior on the chosen inference with 
respect to a specified evaluative metric (and a baseline prior). Hence a zero-impact prior does not 
mean a zero-information prior (which is a self-contradictory phrase in the Bayesian framework), nor 
does a helpful prior imply no harmful consequences, such as lack of robustness; see Al-Labadi and 
Evans (2017).

Regardless of the value of Δ2, we see from (4) that M(k) is a strictly decreasing function of k, un-
less Δ2 = 1 when it is a constant function. Its decreasing rate is controlled by Δ2 − 1, with the most 
rapid decreasing occurring when Δ2 =∞, in which case M(k) = −k. We see that, whenever there is a 

(3)U� (k) =
[2k +m (1 +Δ2 ) ]�2

0

(m + k)2
and U�b

(k) =
2�2

0

k
.

(4)M (k) = m

[
1 −

(r + 1) (Δ2 − 1)

2(r + 1) + r (Δ2 − 1)

]
,

(5)

When Δ2<1, M(k)>m; lucky prior

When Δ2=1, M(k)=m; “advertised” prior

When 1<Δ2<1+2(1+r), 0<M(k)<m; unlucky but helpful prior

When Δ2=1+2(1+r), M(k)=0; zero-impact prior

When Δ2>1+2(1+r), −k≤M(k)<0; harmful prior
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6  |      REIMHERR et al.

prior-likelihood discordance (regardless of being lucky or unlucky), the slope of M(k) will be negative. 
Its extreme value, −1, is also achieved if and only if Δ = ∞, which means that the prior-likelihood 
conflict is so extreme that it wipes out the entire likelihood. When we treat k as a continuous index, 
the derivative of M(k) will be always bounded below by −1.

Therefore, this normal example leads to (at least) five observations:

1.	 PSS is a relative concept, relative to the size of the likelihood sample size (LSS);
2.	 The dependence of PSS on LSS is governed by the prior-likelihood discordance;
3.	 The prior-likelihood discordance can be both beneficial and harmful;
4.	 PSS can take negative values, when the prior-likelihood discordance is severe;
5.	 The PSS as a function of LSS, M(k), has a slope that is bounded below by −1.

The main contribution of this paper is to show, theoretically and empirically, that these observa-
tions hold rather generally. Theoretically, we show that the normal formula (4), not surprisingly, holds 
asymptotically for a rather general class of distributions and hence (5) holds as well. This asymptotic 
approximation provides a quick (and not too dirty) assessment of the prior impact almost as a by-
product of the original posterior computation. But for those who are willing and able to do more, we 
also describe a finite-sample bootstrap-like method to estimate M(k), especially its slope, as a function 
of k, which provides a diagnostic tool for detecting the discordance.

A reviewer’s comment also reminded us to stress that the notion of prior-likelihood discordance is 
a qualitative and absolute concept, intended to indicate any kind of incompatibility between the prior 
and likelihood (function), harmful or not. In contrast, the classic notion of prior sample size (PSS) is a 
quantitative and relative concept, designed to provide a practically appealing measure to numerically 
index the strength or weakness of an adopted prior with respect to our likelihood function. Whereas 
both concepts are needed, quantitative measures can do more harm than qualitative ones because of 
their seductive nature of being precise, regardless of their validity. It is therefore critical for those of 
us who develop such measures to be explicit about their limitations and potential misuse, a practice 
we follow whenever appropriate.

The remainder of the paper is organized as follows. Section 2 provides our general framework, and 
implements it asymptotically, as well as for finite-sample i.i.d. data. Section 3 establishes theoretical 
results for a large class of distributions to justify the implementations in Section 2. Section 4 gives a 
simulation study, and a real-data application. Section 5 concludes with a discussion of complications, 
limitation and open problems. Some secondary proofs and technical verifications are in the online 
supplemental material. All computations were done using R and the accompanying code can be found 
at the corresponding authors website.

2  |   A GENERAL FORMULATION OF PRIOR SAMPLE SIZE

Let Y ∈ S represent a data set and f(y|θ) its density, with θ ∈ Θ being the model parameter, and �0 the 
value that generated Y. Let I = I(θ) be a user defined scalar indicator of information content in Y about 
θ, that is, I is a non-negative real number determined by f(y|θ). We can index Y by I, and use the nota-
tion YI and yI as needed. When Y consists of n i.i.d. observations, we typically set I=n.

Let � be the set of all distributions over Θ, and D:� → [0,∞) be a user defined measure 
quantifying the amount of uncertainty in a particular distribution or a loss function when one in-
vokes a decision-theoretic perspective. For example, when θ is univariate, D can be the variance, 
the mean absolute deviation, the mean squared error to a specified value of the parameter, etc. 
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The range of D implies that it exists and is finite, a condition which may require us to restrict its 
domain to a subset of �. We emphasize that our approach only requires D be real valued, not that 
θ be univariate.

In general, the choice of D should reflect aspects of a posterior that are most relevant to what we 
want to learn. A common choice is the posterior MSE as in Section 1.2: 

where, for notation simplicity, we assume θ is univariate, and we use the subscript �0 to highlight the 
dependence of D on the true value. Recall that expected measures such as MSE are typically not invariant 
even to one-to-one transformations, regardless of whether they are for estimation uncertainty or prediction 
error. We stress that as a pragmatic measure to capture the impact of a prior on the actual values of these 
expected measures, the proposed PSS can vary with the scale of what we want to estimate or predict; see 
Section 5.3. We can also consider other Lp measures, such as L1 distance (see Section E of the appendix). 
We discuss several possible directions in Section 5.4 on choices for D as future work. For additional 
ideas on choosing D, see Morita et al. (2008) for a measure based on curvature of the log likelihood and 
Gelman et al. (2014) for measures based on deviances. One can also use multiple Ds to serve for different 
purposes.

2.1  |  Define the prior information function

For a given D, the expected posterior loss (i.e. risk) with respect to the true model is 

Given a baseline prior �b, we define M(I) as the amount of information needed to match the risk in 
� (� |yI ) to that in �b (� |yI+M(I) ), that is, we seek M such that 

just as in the normal example, where I = k.
To see how M(I), as a function of I, is useful for detecting prior-likelihood discordance, let us 

assume it is differentiable with respect to I, which, as an index for information, can be treated as con-
tinuous. Assuming differentiability as needed, and taking the derivative with respect to I in (7), 

we arrive at, assuming U �
�b
(I +M( I ) ) ≠ 0, 

When D is chosen appropriately, U(I) should be a strictly decreasing function of I, since an appropriate 
uncertainty measure should decrease as the information I increases in expectation (see the on-line supple-
ment for why we need to emphasize this issue, as well as Meng and Xie (2014) on how variance measures 

(6)D�0
(� ( ⋅ |Y) ) = Var� (� |Y) + [E� (� |Y) − �0 ]

2,

U� ( I) = ∫SD�0

[
� ( ⋅ |yI )

]
f (yI |�0 ) d� (yI ) .

(7)U�b
(I +M( I ) ) = U� ( I) ,

U �
�b
(I +M( I ) )

[
1 +M � ( I )

]
= U �

�
( I) ,

(8)1 +M � ( I ) =
U �

�
( I )

U �
�b
(I +M( I ) )

.
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violate this monotonicity for inefficient procedures). This implies that the right hand side of (8) will be 
non-negative, yielding M � ( I ) ≥ −1, confirming observation (V) from the normal example. Moreover, a 
negative M ′ ( I ) implies that the uncertainty decreases slower when using π because the left hand side of 
(8) is less than one, indicating a discordance between the likelihood function L(θ|Y) ∝ f(Y|θ) and the prior 
π. The −1 lower bound has a practical interpretation: the most extreme prior-likelihood conflict detectable 
by M(I) is when the negative information in the prior erases every single piece of information (defined by 
the information in a single data point) added to the likelihood.

On the other hand, when there is no detectable discordance, for example, when the prior π comes 
from a (exchangeable) previous experiment on the same �0, the information in the prior should stay 
about the same regardless of the information in the likelihood function. Hence M ′ ( I ) will be approx-
imately zero. This interpretation is most obvious when we notice that limI→∞M ( I)∕I = limI→∞M

� ( I ) 
by L’Hôpital’s rule if M(I)→∞, and that I+M(I) = I[1+R(I)], where R(I) = M(I)/I. Hence M ′ ( I ), for 
large I, approximates the direct measure R(I), the information gained or lost due to the prior relative 
to that in the likelihood. Therefore, when the information in the likelihood grows but the prior infor-
mation stays about the same, M � ( I ) ≈ R ( I) ≈ 0 for large I, that is, the prior information is negligible 
asymptotically.

In contrast, if say M ′ ( I ) or R(I) ≈ −0.5, then the prior-likelihood conflict has caused a reduction 
of 50% information, for example, our posterior mean/mode based on 1000 i.i.d. observations and our 
prior π behaves like the posterior mean/mode based on 500 i.i.d. observations and the baseline prior 
�b, which typically behaves like the MLE based on 500 i.i.d. observations. Clearly it is helpful for 
users of Bayesian methods to be aware of such loss of efficiency, just as they should be aware of the 
uncertainty in their estimators.

An appealing property of using M(I) to measure Iprior, the prior information, is that if we view 
I+M(I) as the information measure for the posterior, Iposterior, then trivially 

because the information in the likelihood, Ilikelihood, is I in our setup. Whereas (9) is practically appealing, 
it is a non-standard information decomposition because Iprior =M can be negative, pointing to a prior-
likelihood conflict.

2.2  |  Implementing the asymptotic formula

As we will demonstrate in Section 3, the normal formula (4) holds asymptotically for a general class 
of distributions. Our theoretical and empirical investigations provide us sufficient confidence to sug-
gest that, in the absence of other more reliable methods, it can be adopted to be a rule-of-thumb for a 
quick assessment of the impact of the prior. Specifically, formula (4) implies that, when k=n (which 
is our target case), 

Therefore, to compute R(n), we only need to compute Δ2 and r. Here r and Δ can take on a number of 
asymptotically equivalent forms and hence they can be estimated in a number of different ways.

For computational simplicity, in general, we recommend using the estimates 

(9)Iposterior = Ilikelihood + Iprior

(10)R (n) =
M (n)

n
= r

[
1 −

(
2

Δ2 − 1
+

r

1 + r

)−1
]
.
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where d is the dimension for multivariate θ. Note here we have deviated from our assumption of d=1 
in order to provide explicit general formula, which might not be immediate for general practitioners if 
we only give the univariate version r̂ = �̂

2

�b
∕�2

�
 and Δ̂

2
= ( �̂�b

− �� )
2∕�2

�
. Here �� and Σ� (or �2

�
) are, 

respectively, the prior mean and variance of θ from the target prior π, and �̂�b
 and Σ̂�b

 (or �̂2

�b
) the poste-

rior mean and variance of θ under the baseline prior �b (and use all the data). These four quantities are 
readily available for the vast majority of Bayesian analyses where a proper prior is used; note the need 
of assessing the prior impact relative to a baseline prior (often improper) arise typically only when the 
prior is proper. Just as a sanity check, for the example in Section 1.2, �2

�
= �2

0
∕m, �̂2

�b
= �2

0
∕n, and hence 

r̂ = m∕n = r (when k=n). Furthermore, �̂�b
= Xn, hence Δ̂

2
= m (Xn − �� )

2∕�2
0
, which consistently esti-

mates Δ2 = m (�0 − �� )
2∕�2

0
 (recall here �0 is a known constant).

There are cases, however, where a proper prior does not have variance or even mean, such as 
the Cauchy prior in Section 4.3. Our theory actually does not require them to exist, but rather the 
existence of a prior estimate of θ and the associated uncertainty measure, denoted by �̃� and Σ̃� 
(or �̃2

�
) respectively. For the Cauchy prior, for example, we can use its median for �̃� and its scale 

parameter for �̃�.
In those cases where the prior estimate �� and its associate uncertainty Σ� are not readily avail-

able, one can use the same routine for computing the posterior mean and variance to approximate 
them by applying the routine to a random selected subsample of size n0. Ideally we want to set 
n0 = 0, but if that is not permissible (e.g. resulting in a non-convergent MCMC), we can use n0 the 
smallest possible one that still rends a well-defined output from the posterior routine. That is, we 
are willing to move a very small part of the likelihood into the prior in order to gain computational 
simplification, and then assessing the contribution of this enhanced prior, as an approximation to 
the actual prior contribution. This might cause a slightly over-estimation or underestimation of our 
prior contribution, but as long as n0 is a few percentages of the total n, the resulting estimate r̂Δ 
should serve the same purpose as that from the actual R(n). Again, our practical interest is to gain 
a reasonably quantified feeling of the impact of the prior (e.g. whether it is 5% or over 30%), not to 
pinpoint the exact prior contribution, which will not be a fruitful pursuit even if it is theoretically 
possible.

2.3  |  A finite-sample procedure for i.i.d. data

Even as a quick-and-not-so-dirty assessment metric, the accuracy of (10) will depend on how soon 
the asymptotic kicks in. For data consist of X1,…,Xn

i.i.d
∼ f (x |� ), with π(θ) being the target prior, we 

can also implement M(r) empirically and numerically, as long as we are willing to perform some non-
trivial computation. Specifically,

1.	 Choose a baseline prior �b (� ) , such as an objective or reference prior; see Kass and Wasserman 
(1996) and Berger et  al. (2009). A flexibility of our strategy is the allowance of atypical 
baselines (e.g. Protassov et  al., 2002).

2.	 Choose D�0
( ⋅ ) and then construct an estimator of 

(11)�r =
1

d
trace

(
�Σ𝜋b

Σ−1
𝜋

)
, and �Δ

2
= (�𝜇𝜋b

− 𝜇𝜋 )
⊤Σ𝜋

−1 (�𝜇𝜋b
− 𝜇𝜋 ) ;

U�,�0
(k) = E[D�0

(� ( ⋅ |X1, …, Xk ) ) |� = �0 ] , k = 1, …, K,
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where we choose K = O (n1∕2 ) for reasons given in Section 3. Letting �k be the 
(
n

k

)
× k matrix enumerating 

all possible 
(
n

k

)
 subsamples of {1, …, n} of size k, we can then estimate U�, �0

(k) by Û�,�̂n
(k), where �̂n is 

an efficient estimator of �0 based on all data {X1, …, Xn }, and 

In practice, a sub-sampling strategy, that is, bootstrapping, will typically suffice. Obtain Û�b,�̂n
(k) 

analogously to Û�,�̂n
(k), with the baseline �b in place of π.

3.	 Interpolate the Û functions so they live on the real line. We use linear interpolation for simplicity, 
but one can investigate more sophisticated methods. We then define 

For M̂(k) to exist, we need to avoid (at least) �U𝜋,�𝜃n
(0) < �U𝜋b,

�𝜃n
(K), that is, the information in 

π is so strong that it exceeds the combined information from the entire likelihood with all K 
observations and from the baseline prior. Whereas we can try k (and hence K) as large as n, 
the very need to do so should serve as a warning that the prior is very informative. Indeed, if 
the solution still does not exist when k=n, then it suggests that at least 50% of our posterior 
information will come from our prior π.

4.	 Plot the sequence M̂(k) and R̂(k) = M̂ (k)∕k against k, for k=1, …, K, and regress M̂(k) on k for 
k = k0, …, K for some suitably chosen k0 to estimate an approximate limiting slope of M̂(k) as a 
function of k, denoted by SK. Based on our current theoretical and empirical evidence, we observe 
the following:

5.	 When there is no noticeable prior-likelihood discordance, M̂(k) stays fairly constant, and hence 
SK ≈ 0, and R̂(k) will approach zero rapidly as k increases;

6.	 Any serious departure of M̂(k) from being a constant function, especially as a monotone decreas-
ing function, indicates a prior-likelihood discordance;

7.	 Both R(k) and SK serve as measures of the degree of discordance, where R(k) measures the loss (or 
gain) due to the prior-likelihood discordance at a finite k≤K, and SK serves an estimator of R(n), 
the object of our central interest, for n>>K; Very serious prior-likelihood conflict will cause R̂(k) 
or SK to approach −1, that is, the conflict would essentially wipe out all the information in the 
likelihood.

We use SK instead of R̂(K ) to estimate R(n) because K needs to be chosen such that 
n∕K = O (n1∕2 ) →∞ and hence R̂(K ) is often too far from R(n). However, as long as we are able 
to choose k0 such that M̂(k), for k ≥ k0, is reasonably linear in k, we can approximate R(n) by 
the slope from regressing M̂(k) on k for k ≥ k0. The theoretical and empirical evidence provided 
below indicates that this approximation is of practical value. Nevertheless, we do not have any 
evidence, nor intuition, to suggest that it cannot be improved; we hence invite readers to search 
for improvements.

(12)
Û�,�̂n

(k) =
1�
n

k

�

⎛⎜⎜⎜⎝

n

k

⎞⎟⎟⎟⎠�
j= 1

D�̂n
[� ( ⋅ �X

�k(j,1)
, …, X

�k(j,k)
) ] .

M̂(k) = arg min{m ∈ ℝ: Û�,�̂n
(k) = Û�b,�̂n

(m + k) } .
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3  |   THEORETICAL UNDERPINNING

This section establishes an asymptotic result to provide some theoretical insight about the procedure 
given in Section 2.3, with the D being the estimated posterior MSE given by, for k=1, …, K(≪n), 

 Any suitable asymptotic regime here must permit the prior influence to grow in some suitable way with 
the likelihood data size. Otherwise the prior contribution would become negligible by design, as with 
the standard asymptotic framework for the large-sample equivalence between Bayesian and likelihood 
inferences. We emphasize that the standard asymptotic framework is statistical, meaning that its limiting 
process is a statistically feasible one, at least conceptually. The non-standard asymptotics strategy we 
adopt is mathematical, invoked purely for obtaining a tractable mathematical expression to approximate a 
target quantity. This is in the same spirit as the popular large-p-small-n asymptotics, where the number of 
parameter p is assumed to grow with the sample size n, a process typically with no scientific or statistical 
reality, because nature and humans do not collaborate with each other in choosing the number of variables 
(p) relative to the sample size (n). See Li and Meng (2021) for a discussion about the importance of dis-
tinguishing between mathematical asymptotics and statistical asymptotics.

Our non-standard regime shows that the key identity for the normal case, (4), holds asymptotically, 
essentially for all posterior-prior families that satisfy the following ‘functional shrinkage’ assumption. 
For simplicity, we restrict θ to be univariate, but the results hold generally with necessary extensions 
of notation, as illustrated by (11).

Assumption 1  Assume X1, …, Xn

i.i.d.
∼ f (x |� ) with respect to a measure on ℝ, where � ∈ ℝ. Assume 

that the prior, π(θ), is such that there exists m>0 and �m ∈ ℝ such that for any �⃗X k = {X1, …, Xk },  
where k ≥ k∗ for some fixed k∗, the following hold 

where u is a twice differentiable and v>0 is a differentiable, 

and Tk is the average of some Ti = T(Xi ) over i=1, …, k, whose mean �T = E[Ti |� ] and variance 
�2
T
= Var[Ti |� ] are assumed to exist. Furthermore, assume that our baseline prior �b corresponds to 

the limiting case of π when m is set to zero. That is, 

Assumption 1 is satisfied by many common conjugate prior distributions including the six nat-
ural exponential families (NEFs) with quadratic variance functions (Morris, 1982); see the online 
Supplement. More broadly, under standard regularity conditions, a log-likelihood function resulting 
from i.i.d. data is known to be asymptotically quadratic, and hence we can expect Assumption 1 to 

(13)D�𝜃n
(𝜋 ( ⋅ | �⃗X k ) ) = Var𝜋 (𝜃 | �⃗X k ) + [E𝜋 (𝜃 | �⃗X k ) −

�𝜃n ]
2, with �𝜃n = E𝜋b

[𝜃 | ���⃗Xn ] .

(14)E𝜋 [𝜃 | �⃗X k ] = u (Tk,m ) +Op ( (m + k) −1 ) and Var𝜋 [𝜃 | �⃗X k ] =
v(Tk,m )

m + k
+Op ( (m + k) −2 ) ,

(15)Tk,m =
m�m + kTk

m + k
,

(16)E𝜋b
[𝜃 | �⃗X k ] = u(Tk ) +Op (k

−1 ) and Var𝜋b
[𝜃 | �⃗X k ] =

v(Tk )

k
+Op (k

−2 ) .
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hold at least asymptotically. Perhaps the easiest way to gain insight is to consider the parallel to the 
normal case in Section 1.2, where is particularly easy to understand the Tk.m expression in (15), as a 
weighted average of the sample mean and the prior mean, with weights proportional to their respective 
precisions. As is well known, this weighted average is the backbone of the much celebrated shrinkage 
estimation from a Bayesian perspective (e.g. Efron & Morris, 1973). Hence we view Assumption 1 
as an assumption of functional shrinkage because it requires both the posterior mean and variance as 
functions of the standard linear shrinkage estimator as in the normal example of Section 1.2, where 
T(x) = x.

The comparison with the normal example also gives us the insight that m can be interpreted in 
general as the nominal PSS measured on the same unit scale as the likelihood data size. We say m is 
nominal because the real PSS must take into account the potential prior-likelihood discordance, as 
emphasized previously. Furthermore, Assumption 1 does not require the existence of the prior mean, 
but only the existence of m and �m (see the exponential example in Section 4.2). Therefore, in general, 
�m should be regarded as a measure of prior centrality, and is not necessarily the prior mean for �T.

We use the notation �m to indicate that the prior centrality can depend on m. This is obvious 
when our prior information actually comes from a previous study based on a data set { X̃1, …, X̃m }, 
which are i.i.d. samples from f(x |�1 ) , where �1 may differ from �0, the generating value for our data 
{X1, …, Xn }. Assuming the previous Bayesian analysis used the same baseline prior �b, we know 
from (16) that the prior mean for �T will be approximately T̃m, the average of {T ( X̃i ) , i = 1, …, m} .

The simple concept that we can approximate �m by T̃m turns out to provide rather useful insights 
for forming an appropriate asymptotic regime, a regime that permits m to grow with k such that  
k/(k+m) stays within the interval (0,1). Specifically, if we let Δ =

√
m (�m − �T )∕�T, then the fact 

that Δ ≈
√
m ( T̃m − �T )∕�T means that even under the assumption �1 = �0, Δ2 will not approach zero, 

because Δ2 is a test statistic—based on data T̃m—of the null hypothesis H0: �1 = �0; its asymptotic 
null distribution, as m→∞, is the chi-squared distribution �2

1
, which is exact in the normal example 

of Section 1.2. It is therefore meaningful in our asymptotic regime to consider Δ as fixed while per-
mitting m to grow, because Δ provides a probabilistic yardstick for assessing how the prior data set, 
as a proxy for the prior information, differs from the current data set used for the likelihood function. 
Consequently, we build our asymptotic regime under the following assumption:

Assumption 2  For the �m given in Assumption 1, we assume that it can be expressed as 

for some fixed constant Δ ∈ ℝ.

As shown shortly, the two assumptions above play a critical role in establishing an asymptotic ex-
pression for R(k)=M(k)/k. The next assumption is of a technical nature to ensure that our asymptotic 
expression is unique, and it holds trivially in virtually all applications. Nevertheless, it is needed for 
eliminating pathological cases where properties that hold in probability, as in (14), fail to hold almost 
surely, as required by Assumption 3; for practical purposes, this difference is almost immaterial.

Assumption 3  We assume (i) both ̂U�,�̂n
( I) and ̂U�b,�̂n

( I) converge almost surely to zero as I→∞, and 
(ii) for any finite stopping time Î , �U𝜋b,

�𝜃n
(�I) > 0, almost surely.

We are now ready to state our main theoretical results; see Appendix A for proof.

(17)�m = �T +Δ
�T√
m

+Op (m
−1 )
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Theorem 1  Assume D̂ as defined in (13) and that both k and m increase to infinity with n, with the 
restriction k = O (n1∕2 ) and that r=m/k is strictly bounded away from zero and infinity even at 
its limit. Letting c = [u � (�T ) ]

2�2
T
∕{ [u � (�T ) ]

2�2
T
+ v(�T ) } ≤ 1, we then have the following 

results.

1.	 Under Assumptions 1 and 2, any M(k)  =  kR(k), where 

gives the PSS to the order of Op (k
−1∕2 ), in the sense that it satisfies 

2.	 Furthermore, under Assumption 3, (19) holds if and only if (18) holds.
Expression (18) illustrates the role of Δ2 in determining the behavior of R(k)=M(k)/k. As in the 

normal example, when Δ2 = 1, Rr (1) = m∕k = r, implying that M(k) will recover the nominal PSS m 
asymptotically. When Δ2

→∞, representing the extreme prior-likelihood conflict, Rr (Δ
2 ) goes to its 

lower limit −1; clearly Rr (Δ
2 ) decreases strictly monotonically to −1 as Δ2 increases to ∞.

At the other extreme, that is, when Δ=0, we see that because we can write 

we have Rr (0) = rAr, with (recall 0≤c≤1) 

Therefore, asymptotically, M(k) is larger than the nominal size m by the factor Ar. This is the beneficial 
discordance phenomenon seen in the normal example, where c = 1/2.

Intriguingly, c = 1/2 holds for a wide range of models. Specifically, let us assume the usual 
large-sample equivalence between the likelihood inference and the Bayesian inference under our 
baseline prior �b, that is, as k→∞, the posterior variance of θ, Var�b

[� |Xk ] is almost surely the 
same as the sampling variance of the posterior mean E𝜋b

[𝜃 | �⃗X k ]. Then we have from (16), by the 
δ-method, that 

and hence the c as specified in Theorem 1 is 1/2. In Appendix B, we will verify that (21) holds for all 
models examined there. Furthermore, when c = 1/2, the increase in PSS due to beneficial discordance is 

(18)R(k) = Rr (Δ
2 ) +Op (k

−1∕2 ) , with Rr (Δ
2 ) = r

(
1 −

c(1 + r ) (Δ2 − 1)

(1 + r ) + cr(Δ2 − 1)

)
,

(19)
Û�,�̂n

(k)

Û�b,�̂n
(k +M(k) )

= 1 +Op (k
−1∕2 ) .

(20)Rr (Δ
2 ) = rAr (Δ

2 ) , where Ar (Δ
2 ) = 1 −

c(1 + r ) (Δ2 − 1)

1 + r + rc(Δ2 − 1)
,

Ar = 1 +
c(1 + r )

1 + r (1 − c)
≥ 1.

(21)1 = lim
k→∞

V
[
E𝜋b

(𝜃 | �⃗X k ) |𝜃
]

V𝜋b
(𝜃 | �⃗X k )

= lim
k→∞

[u � (𝜇T ) ]
2𝜎2

T
∕k

v(𝜇T )∕k
=

[u � (𝜇T ) ]
2𝜎2

T

v(𝜇T )
,
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always an additional (1+r)/(2+r) percent of information, and hence it is between 50% and 100%, exactly 
the same as in the normal example. This is an unexpected finding, especially because of its simple and 
general nature. The assumption (21) holds rather generally because of the standard asymptotic equiva-
lence between the likelihood and Bayesian inferences. For some convolution families under the single ob-
servation unbiased prior (SOUP; under which posterior mean is unbiased as a point estimator; see Meng 
& Zaslavsky, 2002), (21) holds exactly for any k.

More generally, we see from (20) that the beneficial information kicks in as soon as Δ2 < 1, and 
the amount of increased information is monotone in 1 −Δ2. Similarly, when Δ2 > 1, the amount of the 
information lost is a monotone increasing function of Δ2 − 1.

This result also says that when |Δ2 − 1 | is too small, our method will not be able to detect the prior-
likelihood discordance, especially considering we can only detect the type of discordance with the 
likelihood that is not already presented in the baseline prior, as demonstrated below.

4  |   EMPIRICAL ILLUSTRATIONS

4.1  |  Computational considerations

To empirically demonstrate the performance of our procedure, we first address its computational 
requirements. The brute-force implementation of the procedure outlined in Section 2.3 can impose a 
substantial burden because of the need to recalculate posterior summaries (e.g. means and variances) 
for many different subsamples. For some models, this may simply be infeasible. However, when 
working with conjugate families, means and variances of the posterior can be immediately calculated, 
and hence our methods can be carried out very efficiently. For example, the simulations presented 
below were carried out in R making heavy use of vectorization and parallelization, and each simula-
tion study (e.g. the entire normal example) took 5–30 min, depending on the sample size, on a laptop 
running an Intel i7 processor.

When one is not working with conjugate families, usually posterior calculations are carried 
out using MCMC. Having to obtain thousands of separate MCMC samples is often impractical. 
However, this can be sidestepped by a careful use of importance weights, when they are easy to 
compute. This can be very effective as the posteriors for two different subsamples are usually quite 
close. Therefore, only one or a few large MCMC samples need to be generated, which can then 
be used for importance sampling. To illustrate, let (X1, …, Xk ) and (X �

1
, …, X �

k � ) be two separate 
subsamples. If the MCMC samples, �1, …, �m, were generated using � (� |X1, …, Xk ) but we wish 
to calculate the posterior mean � �

post
= E[� |X �

1
, …, X �

k � ], then we can estimate it by 

 This approach works well as long as we choose (X1, …, Xk ) reasonably wisely so the (sample) variance 
of the importance weight w is not too large, because the effective Monte Carlo sample size for �̂

′

post
 is 

largely bounded below‡ by meff = m∕(1 +Var(w ) ) (see Kong, 1992; Liu, 1996), assuming the underly-

�̂
�

post
=

∑
m
i=1

wi�i∑
m
i=1

wi

where wi ∝
� (�i �X �

1
, …, X �

k � )

� (�i �X1, …, Xk )
.

 ‡We thank the AE for pointing out that this often quoted formula for meff can be very misleading in cases where the 
importance sampling weights are designed to improve the Monte Carlo efficiency, for which cases a term neglected in 
deriving meff is in fact not negligible.
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ing MCMC chain has mixed well (and without taking into account the comparison of CPU time). Using 
this approach, we were able to recreate the normal example, employing parallelization and the Rcpp 
package (to execute the necessary loops in C++), with a computation time less than 2.5 h (with the same 
equipment). There we took an MCMC sample of size m = 100,000, 10,000 subsamples, and k up to 100, 
with meff varying from 7000 to 60,000.

4.2  |  A simulation study

Here we provide numerical illustrations for the normal and exponential settings. Throughout, the esti-
mated measure of uncertainty, D, is from (13), and we take 100,000 subsamples with replacement, to 
construct the estimates Û�,�̂n

 and Û�b,�̂n
.

The goal of this section is to highlight the empirical performance of our procedure and vali-
date the approximation formula given in (10). To that end, we will choose the hyperparameters 
to reflect a desired level of r and Δ; in all examples below, we take 100 replicates, n=1000, 
r = 0.05, and consider Δ = 0,0.5, 1, 1.25 to reflect differing levels of conflict between the prior 
and the likelihood. To produce the ‘truth’ in each setting, we also use a Monte Carlo approach 
with 100,000 draws to approximate the population values for the U, which can then be used to 
approximate the population level values for M(k) and R(k). These values will be marked as dashed 
lines throughout the plots.

Example 1: Normal with known variance

The true mean is �0 = 1 and the variance is �2 = 1; the latter will be treated as known. The baseline is 
taken to be normal with mean zero and infinite variance (i.e. a ‘flat prior’). The first row of Figure 1  
depicts plots of M̂(k) for 100 replications given in grey. Starting from the left column, the plots cor-
respond to Δ=0, 0.5, 1, 1.25. A solid black line is included as the cross-sectional average of the grey 
lines and a dashed red line is given as the population level M(k), computed via Monte Carlo. We see 
the solid and dash lines are practically the same. The second row of Figure 1 provides boxplots com-
paring R̂(n ) when using the plots to approximate M̂(n) (RPlot) versus using the asymptotic formula 
(QuickEst). When using the plots, we average the last 10 values of M̂(k) and then divide by n to ap-
proximate R(n). That is 

where K = n/2 = 500 in our simulation studies. For the normal case, the asymptotic formula is exact and 
thus we see that the two procedures agree as we would expect.

Lastly, we note that the slope of the M̂(k) plots reflect the level of discordance between the likeli-
hood and prior. The case of ‘no conflict’ corresponds to Δ=1 which is the third plot and has basically 
a slope of 0. There the effective sample size of the prior is about 50, which corresponds to r = 0.05 
with n = 1000. As Δ moves away from 1, we see negative slopes reflecting the discordance. However, 
for the two Δ smaller than 1, the discordance is beneficial because it leads to larger effective sample 
sizes, about 70–80, demonstrating the super information phenomena.

(22)R̂plot (n) =

1

10

∑
K
k=K−10

M̂ (k)

n
,
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Example 2: Exponential under two parameterizations

We now assume that X1, …, Xn are i.i.d. exponential random variables with mean � = �−1 = 1∕2 and 
variance �2 = �−2 = 1∕4. By comparing the case of θ = μ with θ = λ, we explore the nature of prior-
likelihood discordance with respect to parameterizations. As we will see, while the two parametriza-
tions do differ, the differences are not drastic.

The conjugate prior on λ is gamma, Γ(α,β), while the conjugate prior on μ is then the inverse 
gamma Γ−1 (�, � ). Our baseline is given by taking (α, β)→0, which yields �b (� ) ∼ �−1, regardless 
of whether θ = λ or θ = μ, and corresponds to the Jeffreys prior for this likelihood. The posterior of λ 
under the Γ(α,β) prior is also a gamma distribution with mean and variance 

 Similarly, the posterior for μ under the Γ−1 (�, � ) prior is the inverse gamma with mean and variance 

(23)E𝜋 [𝜆 | �⃗X k ] =
𝛼 + k

𝛽 + kXk

, Var𝜋 [𝜆 | �⃗X k ] =
𝛼 + k

(𝛽 + kXk )
2
.

(24)E𝜋 [𝜇 | �⃗X k ] =
𝛽 + kXk

𝛼 + k − 1
, Var𝜋 [𝜇 | �⃗X k ] =

(𝛽 + kXk )
2

(𝛼 + k − 1)2 (𝛼 + k − 2)
.

F I G U R E  1   Normal Distribution. From the left, the four columns correspond to Δ = 0, 0.5, 1, 1.25,  respectively. 
The first row displays 100 replications of the M̂ (k ) curve, with their point-wise average indicated as the solid line.
The second and third rows compare the two estimates of R(k), (4.1) and (10), via boxplots and scatter plots (with the 
QuickEst method on the y-axis). In all plots, the red dash-line represent the estimand, which itself is approximated by 
using 100,000 Monte Carlo samples
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The results for the rate and mean parametrizations are given in Figures 2 and 3, respectively. The 
plots are analogous to the normal plots given in Figure 1. We once again see the plots for M̂(k) are 
centered around the population quantity, as are the boxplots for R̂plot (n ). However, unlike the normal 
case, the asymptotic formula is less accurate. While the distortion is still not extreme and hence the 
asymptotic formula can still be used as a quick approximation, it highlights the benefits of our more 
computationally involved algorithm.

In terms of the parametrization, there are slight differences. In particular, the variability of our 
procedure is higher for the rate parameter λ than for the mean parameter μ and our asymptotic approx-
imation seems to work better for the mean as well. However, the broader message is essentially the 
same. The asymptotic formula provides a computationally cost-effective approximation, but the full 
algorithm is useful, especially as we move away from normality and linear estimators.

4.3  |  Application: Logistic regression for predicting lupus

We apply our methods on a data set provided by Dr. Haas, a client at the University of Chicago’s 
consulting program, as reported in van Dyk and Meng (2001). The data set consists of 55 patients, 
18 of which have membranous lupus nephritis also known as stage V lupus. We also have meas-
urements on the difference between immunoglobulin G3 (IgG3) and G4 (IgG4). Haas (1994) was 
interested in the relationship between this difference and the presence of stage V lupus. To that 
end, a logistic regression model on disease status was used where a covariate representing the 
difference between IgG3 and IgG4 was included. A summary of the data (in counts) is reported 
below (Table 1).

F I G U R E  2   Exponential distribution with θ = λ. The same caption for Figure 1 applies
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Gelman et al. (2008) investigated the idea of a weakly informative prior, and for logistic regression 
suggested, after standardizing appropriately, that one use a Cauchy prior with a scale of 2.5 on the 
slope parameter. We use our methodology to explore how weak or strong such a prior really is. We 
evaluate candidate priors from the Cauchy distribution with scales 2.5, 5 and 10 against a baseline 
prior, taken to be Cauchy with a scale of 10,000. The results end up being fairly robust against the 
choice of baseline, as we also tried Cauchy with scales 100 and 1000, as well as a normal baseline, 
as reported in Section E of the online supplement. We use the metric (12) to compare the two priors. 
However, instead of taking the mean of this metric over subsamples, we take the median to combat 
the well-known small-sample instability of logistic regressions, and for the same reason, we examine 
M̂(k) only for k>10. (To be more consistent with the median approach, in the online supplemental 
we also explore using the mean absolute deviation for D instead of the MSE, however the results are 
nearly identical.) To reduce the impact of the non-linear part of M̂(k) on the estimation of R(55), we 
take k0 = 20 to approximate R(55) by the least squared estimator based on k = 20, …, 35.

The results are plotted in Figure 4 with the slopes given in the caption, using both k0 = 10 and 
k0 = 20. The plots are a bit more chaotic than in our simulations due, likely, to the aforementioned 

F I G U R E  3   Exponential distribution with θ = μ. The same caption for Figure 1 applies

T A B L E  1   Counts of patients with and without stage V lupus against IgG3-IgG4, the difference between 
immunoglobulin G3 and G4 levels

IgG3 - IgG4

Lupus 0 0.5 1 1.5 2

0 31 2 2 0 2

1 5 0 2 6 5
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instability of logistic regression with small sample sizes, but none of them suggests more than 6 
PSS. The prior suggested by Gelman et al. (2008), that is, with scale = 2.5, seems to indeed depict a 
weakly informative prior, equivalent to between 2 and 6 data points, which is no more than 10% of the 
information provided by the likelihood. There might be some small amount of prior-likelihood discor-
dance. By taking the scale up to 5 or 10, the discordance is reduced, and so is the prior impact. Indeed, 
the slope estimators based on k > k0 = 20 are essentially zero regardless of the scale, indicating essen-
tially negligible prior impact with n = 55. Such practical, quantifiable, and interpretable assessments 
can help greatly to strengthen our inferential conclusions and to communicate them convincingly, by 
reducing both the impact and the appearance of ad hoc choices made during our inference process. 
Evidently, it is more scientific to numerically demonstrate that the impact of a prior is no more than 
adding 10% of data than to simply declare that it is weakly informative. For more studies on weakly 
informative prior, see Gelman (2006) and Polson and Scott (2012).

We remark that logistic regression is a telling example about why it is important to formulate PSS 
as a measure relative to the likelihood function, and hence it is data dependent. It is well-known that 
when the observed data exhibit a (nearly) perfect separation pattern, that is, when a predictor (nearly) 
perfectly separates those with positive outcome from those with negative outcome, we will run into a 
(nearly) non-identifiability issue. This issue occurs rather frequently in practice, and Bayesian meth-
ods have been suggested as an effective way to address the problem, as detailed in Gelman et  al. 
(2008), and more recently in Rainey (2016), who concluded that ‘When facing separation, researchers 
must carefully choose a prior distribution ....’ (emphasize is original). But since separation is a data-
dependent phenomenon, and the prior is brought in to combat the issue that the likelihood function is 
too flat (e.g. MLE does not exist) to form a proper posterior without a suitably informative prior, the 
relative contribution of the prior information must be data dependent. Furthermore, to be meaning-
fully ‘careful’ in choosing such a prior, we need to be able to quantify the amount of contribution of 

F I G U R E  4   Plot of the estimated PSS M̂ (k ) for the application in Section 4.3. Estimated slopes are −0.1173, 
−0.0646, and −0.0283 using k>10, for scales 2.5,5, and 10 respectively. The estimated slopes become 0.0032, 
−0.0024, and −0.0079 respectively when using k>20
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various choices and hence one can judicate based on quantifiable evidence, which should also help to 
communicate—and hence to ensure the reproducibility of—our findings.

5  |   RESPONDING TO REVIEWERS: OLD 
CONTEMPLATION AND NEW EXPLORATIONS

5.1  |  Why do we still work on such an old problem?

One reviewer expressed a strong disbelief that the Bayesian paradigm had been promoted for so long 
without having had settled on such a basic assessment about prior influence. We were sceptical as well 
when we started this project, but the progress we made (since 2012) has shown us why quantifying 
prior information is fundamentally as problematic as the use of an improper prior, a matter of ongoing 
debate. Indeed, another reviewer questioned our use of an improper prior as the base prior. They asked 
if one does not have a proper prior to start with, then should one question the use Bayesian methods in 
the first place? Philosophically, we agree with the reviewer, because it is a mathematical fact that the 
Bayesian paradigm cannot handle complete ignorance (e.g. Martin & Liu, 2016). Practically, we also 
agree that whenever meaningful, we should use a proper prior as the base, which is not restricted by 
our proposed framework in any way.

There are inferential paradigms that can quantify complete ignorance in fully logical and mathe-
matical ways, such as belief functions (Dempster, 1968; Shafer, 1976). However, a recent investigation 
(Gong & Meng, 2021) reveals that there is currently no known inferential paradigm that can do so 
without having to pay a ‘leap-of-faith’ price somewhere else (e.g. trading indeterminacy in updating 
rules for that in prior specifications). The implication is that we have to live with imperfection or even 
paradoxes one way or another. Using improper priors seems to be the least problematic for now, given 
its wide-spread practice, which does not justify its use, but it does suggest that we know much more 
about its pros and cons, or at least know where to look for source of troubles. The following is such 
an example.

5.2  |  A prior sample size paradox?

We are grateful to yet another reviewer for raising an intriguing question regarding what should be 
viewed as nominal prior size in Example 2 discussed above. The reviewer pointed out that, inspecting 
the density function based on an i.i.d. sample with size n, we would see a term �n in the exponential 
likelihood. When this is compared to the term ��−1 in the conjugate Gamma prior, it seems natural to 
define the ‘nominal prior size’ as n0 = � − 1, instead of what we defined as m=α. Furthermore, since 
n0 = m − 1, with our definition, we seem to run into a negative nominal prior size when m=0. This is 
undesirable because as a nominal prior size, the worst it can be should be zero, representing no prior 
information. A negative nominal prior size would suggest that we know a priori the degree of prior-
likelihood conflict before seeing any data, which would be an odd position to take, if not illogical.

However, if we follow the reviewer’s definition, then our prior mean would be E(� ) = (n0 + 1)∕�

. This would imply that even when the prior size is zero, meaning there is no prior information what-
soever, we would still have a finite ‘prior mean’ E(λ)=1/β. This seems at least as illogical as having 
a negative prior sample size. This dilemma is rooted exactly in the indeterminacy of an ‘ignorant 
prior’ discussed in Section 5.1: if the prior is the posterior obtained from a previous study of sample 
size n0, what was the prior that led to that posterior? If that was the constant prior on λ, then that 
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posterior would be Gamma(n0 + 1, � ), and hence � = n0 + 1, consistent with the reviewer’s sugges-
tion. However, if that prior was Jeffreys prior � (� ) ∝ �−1, which the reviewer also suggested to be a 
natural choice, then that posterior would be Gamma(n0, � ), and hence � = n0, as we formulated. Hence 
‘looking directly at the likelihood form’ and ‘using Jefferys prior’ cannot be ‘natural’ simultaneously.

Although the meaning of ‘natural’ is debatable in this context, we see a more compelling reason to 
adopt the latter, since there are various theoretical justifications for using the Jeffreys prior (Gutiérrez-
Peña et al., 1997). The former runs into the danger of mixing the form of λ arising from normalizing 
constant for the sampling distribution with the form of λ arising from modelling it directly. As far as 
we are aware of, there is no theoretical justification on why the meanings of the powers in these two 
different usages of λ should be the same. Of course, the central difficulty here lies in the fundamental 
impossibility of using a probabilistic distribution to represent ignorance, and hence it further illus-
trates the necessity of choosing a baseline when we assess prior contribution.

5.3  |  Should we always check likelihood and prior, regardless of prior 
contribution?

The answer to this reviewer’s question of course is a resounding YES. We should always worry about 
the inadequacy of any part of our model, even or especially when we cannot check it. As many would 
argue, rightly, checking the likelihood is more important than assessing the prior and it should be done 
first, because it is the likelihood that permits us to make (Bayesian) inference from data to parameters. 
The prior serves typically an important but nevertheless supplemental role, except when we have very 
little information from our likelihood. But it is exactly because of the perceived supplemental role of 
our prior that we need to have some reasonable ways to assess the actual impact of a posited prior 
relative to the likelihood contribution, even if just for the purposes of calibrating with our original 
expectations. For example, in the logistic model in Section 4.3, we surely should check the adequacy 
of the logistic model first. But once it is adopted for whatever reasons (e.g. convenience), then if our 
intention is to use weak priors for its parameters, we should at least to check whether these ‘weak’ 
priors actually have weak impact; see the mortality example in Gelman et al. (1996), where a seem-
ingly innocent uniform prior on convex curves turned out to be very influential.

This reviewer also emphasized the need to check data-prior conflict as a falsification of the prior, 
an important modelling step regardless of the need to assess the prior contribution. We also agree, 
without getting into the debate about checking ‘subjective priors’ versus ‘objective priors’. Indeed, the 
whole industry of prior predictive and posterior checks (e.g. Box, 1980; Gelman et al., 1996; Meng, 
1994; Rubin, 1984) were designed for such purposes, though as the reviewer noted there are multiple 
complications.

First, essentially all checks are local in the sense that they can detect only some model defects in 
the likelihood, prior, or both. This is due to the necessarily limited capacity of the checking/testing sta-
tistics or more generally ‘realized discrepancy’ (Gelman et al., 1996). We view this locality a feature 
rather than a deficiency, because an almighty test would or at least should reject essentially all models, 
because ‘all models are wrong’. George Box’s mantra ‘but some are useful’ reminds us that our job—
through judicious choices of assessments—is to ensure the relevant parts are usable.

Second, not all model defects are consequential for the substantive questions at hand. Again, we 
avoid this issue by choosing the measure of uncertainty directly reflective of the analysis of interest, as 
emphasized in Section 2. We also agree with the reviewer that even when a defect is inconsequential 
for one study, it may still be useful to understand it since it can be very consequential for another study 
using the same model.
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Such choices, however, lead to a third issue. Our uncertainty measure is not invariant to reparam-
etrization, which is the case for the quadratic measure. Whereas we agree with the reviewer that an 
invariant measure has some general appeal, our proposed methods would not have much practical 
impact if we do not consider measures such as MSE, which are well understood and most commonly 
adopted for good reasons.

5.4  |  Limitations and future work

Although our method has a number of appealing properties, much more needs to be done. Perhaps the 
most important extension is for problems where sample size is not a good indicator of information, as 
is typically the case with time series and spatially dependent data. We also need to establish theoreti-
cal results for scenarios that go beyond those covered in Section 3, and more critically to cases where 
the likelihood itself is misspecified in consequential ways. A reviewer also reminded us to study the 
issue of assessing likelihood-prior combination that could lead to substantial bias, in the sense of cre-
ating regions of parameter space that are highly probable a priori; see Baskurt et al. (2013); Evans and 
Guo (2019). Applications to high-dimensional and/or non-parametric problems are another important 
direction to explore, and the growing literature on the relationship between prior and posterior con-
centrations (see for example van der Pas et al. (2014) and Strawn et al. (2014) and references therein) 
may provide some theoretical insight on this exploration.

In applying our method, we also encountered three practical problems. The first is the computa-
tional demand. Seeking effective computational strategies is an area of much needed research, and 
the importance sampling approach presented in Section 4.1 merely is a starting point. The second 
issue involves instability with small k. We did not encounter any problem for our simulation studies, 
where conjugate priors were used. However, for the lupus nephritis application, we had to avoid 
small k because logistic regressions can be very unstable for small sample sizes. Any model which 
has stability problems for small samples can generate similar issues. We found switching the means 
to medians in our resampling scheme helped, but obviously this creates a discrepancy between the 
application and the current theoretical results, which are mean-based, that is, using the L2 norm. 
Extending our theoretical results to cover other norms, especially the L1 norm, as well as more gen-
eral choices of the discrepancy or uncertainty measure D is another direction for future research. 
Third, we need to search for more reliable estimate of R(n), the relative gain or loss corresponding 
to the actual data size, as our current extrapolation via the slope of the PSS curve M(k) is more of 
exploratory nature.

A reviewer reminded us that a particularly interesting direction for choosing D involves moving to 
a prediction based uncertainty measure. This can help, to a degree, with the parametrization problem 
as it fixes the scale of the outcome as default. However, there are at least a few options as to how to 
construct a prediction based measure. One possibility is to take a similar approach to the MSE mea-
sure we introduced, which involves conditioning on the true underlying parameter. Another option 
could be based on the posterior predictive distribution and not conditioning on the true parameters, 
while yet another option would be similar to cross-validation, where observations not included in the 
�⃗Y k could be used for evaluating prediction. However, preliminary explorations using cross-validation 
idea, as in the on-line supplement, are not very encouraging. In particular, any newly proposed mea-
sure for D has to reasonably quantify the bias of the estimates. As demonstrated in Section D of the 
Appendix, if this is not done, then results are quite unreliable.

Finally, we can explore other methodological applications using the idea of assessing discordance 
via monitoring M(I). For example, we can compare two subjective priors constructed by two different 
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investigators, and determine whether one has more serious discordance with a likelihood function than 
the other. Or perhaps we can convert this diagnostic tool into something helpful in selecting a prior via 
tuning the measure we proposed, as a functional of a candidate prior, according to some sensible cri-
terion. For instance, we may want our prior to be weakly informative in the sense that the PSS should 
not exceed, say, 10% of the likelihood sample size, for a chosen purpose.

Going even further, we can extend the idea of comparing two priors to comparing two likelihood 
functions, by using a common baseline prior. If one of the likelihood models is saturated, then the 
conflict between them can be viewed as a misspecification of the other, unless we just have very bad 
luck. Of course, whether we assess prior-likelihood discordance or misspecification of a likelihood, 
our general goal is the same: to be an informed Bayesian, or more generally, an informed statistical 
analyst.
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