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A B S T R A C T   

Background: Closed-loop phase-locked stimulation experiments are rare due to the unavailability of user-friendly 
algorithms and devices. Our goal is to provide an algorithm for the detection of oscillatory activity in local field 
potentials (LFPs) and phase prediction, which is user-friendly and robust to non-stationarities in LFPs of behaving 
animals. 
New method: We propose an algorithm that only requires specification of the frequency range within which 
oscillatory episodes are tracked. Frequency-specific detection thresholds and filter parameters are adjusted 
automatically based on the short-time LFP power spectrum. Estimates of instantaneous frequency and instan
taneous phase are used for phase extrapolation, taking advantage of Bayesian estimation. We used real LFP 
signals, recorded from a variety of different species and different brain areas, as well as artificial LFP signals with 
known properties to assess the detection and prediction performance of our algorithm and three previously 
published reference algorithms under various conditions. 
Results and comparison with existing methods: Our algorithm, while significantly more user-friendly than previous 
approaches, provides a solid detection and prediction performance over a wide range of realistic conditions and, 
in many cases, has a longer prediction horizon than the reference algorithms. Due to its ability to adjust to 
changes in the signal, the algorithm is well-prepared to deal with non-stationarities in oscillation frequency, even 
in the presence of multiple oscillation components. 
Conclusions: We have created a universal algorithm for oscillation detection and phase prediction, which per
forms well and is user-friendly at the same time, making closed-loop phase-locked stimulation experiments easier 
to accomplish.   

1. Introduction 

Synchronized oscillatory activity across ensembles of neurons or 
brain areas has been proposed to play an important role in essential 
mechanisms like modulating functional connectivity (“Communication 
through Coherence” theory) (Fries, 2005) or memory retrieval (Watrous 
et al., 2013). The experimental evidence supporting these hypotheses, 
however, is largely correlational (Bosman et al., 2012; Gregoriou et al., 
2009; Grothe et al., 2012). Proving a functional coupling between syn
chronous oscillatory activity and the proposed mechanisms would 
require a causal manipulation of the timing of neural activity in one 
neural ensemble relative to ongoing neural activity in another ensemble. 
In principle, closed-loop phase-locked stimulation should be able to at 
least inject time-locked artificial neural activity. Theoretical work sug
gests that phase-locked optogenetic stimulation might also be used to 

change the phase relationship between ongoing oscillations itself (Witt 
et al., 2013). Detecting and predicting oscillatory activity is challenging 
in awake behaving animals due to associated non-stationarities (oscil
latory episodes tend to be short, the oscillation frequency can change 
over time, etc.) (Akam and Kullmann, 2014). Despite a number of al
gorithms for the detection and prediction of oscillatory activity having 
been published, some of them quite sophisticated (e.g., (Chen et al., 
2013; Rutishauser et al., 2013), experimental studies taking advantage 
of closed-loop phase-locked stimulation are still rare. A closer look at the 
existing algorithms suggests that a potential reason could be that they 
are not particularly user-friendly. For example, the algorithm proposed 
by Chen et al. (Chen et al., 2013) requires the user to record a sample of 
the to-be-tracked oscillatory activity and submit it to a potentially 
lengthy offline optimization process to obtain optimal parameters for an 
autoregressive model. If the characteristics of the signal change over 
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time, the determined parameters might no longer be optimal. The al
gorithm proposed by Rutishauser et al. (Rutishauser et al. (2013)) re
quires the user to specify an absolute detection threshold for the 
presence of oscillatory activity as well as a fixed narrow frequency band 
that is going to be monitored. How these parameters should be chosen is 
not obvious, and even if the experimenter knew the current oscillation 
frequency, it could still change over time. 

Here we propose a user-friendly algorithm for the detection of 
oscillatory activity in the local field potential (LFP) and the prediction of 
oscillation phase for the purpose of closed-loop phase-locked stimula
tion. The user only has to specify a range of frequencies within which 
oscillations are to be tracked and a statistical confidence level for the 
oscillation detection. All other parameters are determined automatically 
and adjust to the signal. The algorithm is therefore able to handle 
changes in signal properties like signal amplitude or oscillation fre
quency. We explain how the algorithm works and demonstrate that its 
detection and prediction performance can compete with or, in many 
cases, even outperform a selection of published algorithms. In addition 
to the already mentioned algorithms by Chen et al. and Rutishauser 
et al., we also evaluated a more recent algorithm by Mansouri et al. 
(Mansouri et al. (2017)), which the authors found to be competitive with 
the Chen et al. algorithm. A brief description of each of these reference 
algorithms as well as how they were adapted for the comparisons re
ported here can be found in the Materials and Methods section. 

2. Materials and methods 

2.1. Algorithm 

The overall structure of our algorithm is shown in Fig. 1. The basic 
processing steps are:  

1 Obtain an estimate of the background spectrum  
2 Is there any activity in the frequency range of interest, which 

significantly exceeds the background spectrum? If so, an oscillatory 
episode is detected.  

3 Obtain the range of frequencies exceeding the background spectrum 
and use it to specify the passband of a zero-phase bandpass filter  

4 Apply the bandpass filter and a Hilbert transform to obtain the 
instantaneous phase  

5 Use robust linear regression to obtain the phase at the end of the 
analysis window, assuming a constant oscillation frequency within 
the analysis window and avoiding edge artefacts 

6 Obtain an estimate of the oscillation frequency from the peak loca
tion in the spectrum  

7 Use Bayesian estimation to combine the current estimate with a prior 
distribution of recently observed oscillation frequencies  

8 Use the estimated frequency for a linear phase extrapolation 

The individual processing steps will now be explained in more detail: 

The LFP signal (sampled at 1 kHz) is analyzed in short segments. We 
considered analysis windows ranging from 100 ms (corresponding to 
about 5 cycles of the fastest analyzed oscillations near 50 Hz) to 800 ms 
(corresponding to about 3.5 cycles of the slowest analyzed oscillations 
near 4.5 Hz). The window is then stepped forward for the next analysis. 
All of the results reported here are based on a step size of half the 
window length (with the exception of the detection delay analysis, 
where we are also considering smaller step sizes). The signal segment 
was multiplied with a single Slepian taper (which provided overall 
better results than using a Hamming or Hanning window; data not 
shown). Fig. 2(A) shows an example of a signal segment before (black) 
and after applying the taper (blue). We then obtained the power spec
trum using a 1024-point FFT. The combination of applying the taper and 
obtaining the spectrum was achieved by calling the function “mtspec
trumc” from the Chronux toolbox (http://chronux.org) with “tapers =
[11]” (Mitra and Bokil, 2008). For detecting the presence of oscillations 
we adopted an idea from BOSC, an established algorithm for offline 
analysis of oscillatory activity (Hughes et al., 2012). The LFP power 
spectrum in the absence of any oscillatory activity is expected to 
resemble a power-law function (colored noise), which corresponds to a 
line in log f vs. log power space. Oscillatory activity would add a bump 
on top. Hughes et al. (Hughes et al., 2012) used standard linear 
regression to estimate the background spectrum. Since our short-time 
spectra are substantially bumpier than the wavelet-based spectra in 
BOSC, we use robust linear regression (MATLAB’s “robustfit” function), 
applied to the power spectrum for frequencies ranging from 2 to 100 Hz, 
to estimate the background spectrum, which is also less prone to be 
biased by the presence of oscillatory activity. An example of this pro
cedure is shown in Fig. 2(B). Actual power values in the absence of 
oscillatory activity are expected to be χ2 distributed around the mean 
given by the fit (Hughes et al., 2012). The tail of the distribution can 
therefore be used to define a frequency-dependent detection threshold 
for oscillatory activity. Power values exceeding this threshold are 
assumed to reflect oscillations. Determining the threshold location re
quires picking a statistical confidence level, which has to be provided by 
the user of the algorithm. After evaluating the algorithm’s detection 
performance for a variety of confidence levels, we settled on a single 
value of 0.998, which was used for all datasets and all results reported in 
this manuscript. Since all FFT frequencies in the user-specified range of 
interest are tested for threshold crossing, we also apply Bonferroni 
correction. The red line in Fig. 2(B) shows an example of such a 
frequency-dependent detection threshold. 

Power values exceeding the threshold are indicators of possible os
cillations. To further reduce spurious threshold crossings, we required at 
least two neighboring frequencies to exceed threshold, which was 
interpreted as detecting the presence of oscillatory activity. A group of 
neighboring frequencies exceeding threshold was treated as a candidate 
oscillation. In case there was more than one such group in the frequency 
range of interest, we prioritized the group with the largest number of 
neighboring frequencies as the most robust oscillation. In case there 

Fig. 1. Overall structure of the proposed algorithm for detecting the presence of oscillatory activity and predicting its phase. The text colors correspond to the colors 
of the illustrations in Fig. 2. 
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were multiple groups with the same number of frequencies, we priori
tized the candidate oscillation that exceeded threshold power by the 
largest amount. The range of frequencies in the selected group was 
stored for later use in the algorithm. 

This frequency range was used to specify the passband of a bandpass 
filter. The lower cutoff frequency of a 2nd-order Butterworth filter was 
set to the lowest frequency minus the frequency resolution of the FFT 

(about 1 Hz), the upper cutoff frequency to the highest frequency plus 
the frequency resolution of the FFT. The signal segment was then 
convolved twice with the filter kernel, once in the forward and once in 
the backward direction using MATLAB’s “filtfilt” function, resulting in a 
zero-phase 4th-order bandpass filter. Thus, the algorithm uses an 
adaptive filter that passes the selected frequencies exceeding threshold 
through, without inducing any systematic phase shifts. The red line in 
Fig. 2(A) shows the result of this filtering process. The filtered signal was 
then subjected to a Hilbert transform to obtain the instantaneous phase. 
An example of such an instantaneous phase signal is shown in Fig. 2(C). 
Since the instantaneous phase is prone to edge artefacts, we used 
another robust linear regression to obtain a phase estimate based on the 
assumption of a constant oscillation frequency in the analysis window. 
Initially, we used the resulting line directly for linearly extrapolating the 
phase into the future. We also considered a robust 2nd order fit, which 
would allow the oscillation frequency to change over time, but did not 
find a clear advantage and therefore stayed with the simpler linear 
model (data not shown). Thus, our phase prediction is based on the 
assumption that the oscillation frequency will remain stationary in the 
very near future. 

Overall, however, we observed better prediction performance when 
estimating the oscillation frequency from the spectrum rather than the 
slope of the robust fit to the instantaneous phase. Thus, the robust fit is 
only used to obtain a reliable phase estimate at the end of the analysis 
window (beginning of the prediction window), which we name φ0. An 
estimate of the current oscillation frequency is obtained from the loca
tion of the peak in the spectrum in the selected range of frequencies 
during detection. To be able to obtain estimates in between the discrete 
FFT frequencies we adopted the Gaussian local approximation approach 
proposed by (Gasior and Gonzalez, 2004). Assuming that S[0] is the 
peak power in the discrete spectrum in the selected range, and S[-1] and 
S[+1] are the power values at the left and right neighboring frequencies, 
the inferred true peak location (as an index ranging from -1 to +1) is 
given by 

kp =

ln
(

S[+1]

S[−1]

)

2ln
(

S[0]2

S[+1]⋅S[−1]

)

If fdiscrete is the frequency associated with the peak in the discrete 
spectrum, the estimate of the oscillation frequency ̂f osc can be calculated 
as 

f̂ osc = fdiscrete + kp⋅Δf  

with Δf being the frequency resolution of the FFT. The variance σ̂2
osc of 

the local Gaussian interpolation can be determined to be 

σ̂2
osc =

Δf 2

ln
(

S[0]2

S[+1]⋅S[−1]

)

which is needed in the next step. While ̂f osc could be used directly for the 
phase prediction, it is a noisy estimate, and it turns out that the overall 
prediction quality can be further improved (data not shown) by taking 
advantage of the oscillation frequency typically showing some conti
nuity over time. This can be exploited to obtain a Bayesian estimate of 
the oscillation frequency by combining the current frequency estimate 
with a prior distribution given by recently observed oscillation fre
quencies. Ideally, the number of recent observations contributing to the 
prior should be tailored to how (non-)stationary the oscillation fre
quency is. Since this information is typically not available, we used a 
fixed number. After initial tests with the most recent 10 and 20 obser
vations, which resulted in comparable prediction performance (data not 
shown), we settled on the most recent 15 observations as a compromise, 
which has been used for all results reported in this paper. If we take the 

Fig. 2. Illustration of signal processing, oscillation detection, and phase pre
diction (based on a signal segment taken from real Dataset 1). (A) Windowing 
and filtering. Signal segment before (black) and after (blue) applying the Sle
pian taper. The red trace shows the signal after applying the zero-phase 
bandpass filter. (B) Oscillation detection. The blue trace is the short-time 
power spectrum. The grey shaded area indicates the frequency range of inter
est (ROI). The green line is the estimate of the background spectrum based on 
robust linear regression. The red line is the frequency-dependent detection 
threshold. The red points mark the frequencies in the ROI, where the power 
spectrum exceeded the threshold. The orange arrow indicates the estimated 
oscillation frequency based on a local interpolation of the power spectrum near 
the peak. (C) Phase prediction. The blue trace is the instantaneous phase in the 
analysis window. The dashed orange line reflects a robust linear regression. The 
phase on this line at the end of the analysis window (green dot) is used as the 
starting phase for the phase prediction. The predicted phase (red line) is a linear 
extrapolation; the slope is determined by a Bayesian estimate of the oscillation 
frequency (purple). 
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prior to be a normal distribution with mean fprior and variance σ2
prior given 

by the sample mean and sample variance of the 15 most recently 
observed oscillation frequencies (estimates resulting from the local 
Gaussian interpolation near the peak of the spectrum), the a posteriori 
estimate of the oscillation frequency f̂ Bayes is given by 

f̂ Bayes =
f̂ osc⋅σ2

prior + fprior⋅σ̂2
osc

σ2
prior + σ̂2

osc 

Thus, phase (in degrees) was predicted to be 

φ(t) = φ0 + f̂ Bayes⋅t⋅360◦

with time zero corresponding to the end of the analysis window, which 
is also the beginning of the prediction window. 

2.2. Methods for evaluating Algorithm Performance 

2.2.1. Datasets 
We needed suitable datasets to evaluate the performance of the al

gorithm. Artificial datasets have the advantage that parameters like 
oscillation frequency, signal-to-noise ratio (SNR), oscillation episode 
duration, and non-stationarities in the oscillation frequency can be 
tightly controlled. Furthermore, the ground truth about the presence/ 
absence of oscillatory activity and the current phase is known. However, 
the algorithm is supposed to be applied to real LFPs, which might have 
properties that deviate from the properties of artificial data. Real LFP 
recordings have the disadvantage though that the ground truth about 
whether there is currently ongoing oscillatory activity and what the 
current phase of the oscillation is, is not known. We therefore took a 
hybrid approach, evaluating the performance of the algorithm using a 
combination of artificial and real data. 

Artificial datasets were constructed by starting with pink noise and 
embedding oscillatory activity. Oscillation frequencies ranged from 
4.5–47 Hz and were either constant, allowed to change between oscil
latory episodes (within a particular range, either 10…20 Hz or 20… 
40 Hz), or even within oscillatory episodes (combination of linear fre
quency drift with a random slope up to 7.5 Hz/s and random fluctua
tions according to Brownian motion with a diffusion coefficient of 
22.5 Hz2/s). The SNR ranged from -16 to +12 dB (total signal power vs. 
total noise power). Oscillatory episodes could be either long (3 s) or 
short (3–12 cycles). We also considered signals with two simultaneously 
embedded oscillations at two different frequencies and different SNR (-9 
and -2 dB) to test whether the algorithm could track the stronger oscil
lation component. 

The real datasets were LFP recordings from different species 
(humans, nonhuman primates, and rodents) and different brain areas 
(visual cortex, parietal cortex, hippocampus, and thalamus) and had 
oscillation frequencies ranging from 6 to 50 Hz. SNR (following the same 
definition as in the case of the artificial datasets) was typically between 
-10 and 0 dB. A monkey LFP recording from parietal cortex was provided 
by the Ditterich Lab (Dataset 1; oscillation frequency: 15 Hz), a monkey 
LFP recording from the thalamus was contributed by the Usrey Lab (UC 
Davis; Dataset 2; oscillation frequency: 12 Hz), and rat LFP recordings 
from the hippocampus were provided by the Gurkoff Lab (UC Davis; 
Datasets 3 and 4; oscillation frequency: 8 Hz). Human ECoG recordings 
from visual cortex were from (Hermes et al., 2015) and are available as 
Supplementary Data (Datasets 5 and 6; oscillation frequencies: 40… 
50 Hz). Human iEEG recordings from hippocampus were from (Ekstrom 
et al., 2005) and requested through the Kahana Lab’s Cognitive Elec
trophysiology Data Portal (Datasets 7 through 9; oscillation frequencies: 
6…16 Hz). Datasets 8 and 9 were originally the same dataset, which 
contains two oscillatory components, one at 6 Hz, one at 16 Hz. In 
Dataset 8 we are testing how well the component with the lower fre
quency can be tracked (by having extracted reference information for 
the lower frequency component and setting algorithm parameters such 

that this component should be evaluated; in this case frequency ranges 
were set such that they only included one of the oscillation frequencies); 
in Dataset 9 we are testing how well the component with the higher 
frequency can be tracked (by having extracted reference information for 
the higher frequency component and setting algorithm parameters such 
that this component should be evaluated). Table 1 provides a summary 
of the real datasets. 

2.2.2. Generating reference information for real datasets 
While information about the presence/absence of oscillatory activity 

as well as the oscillation phase at any given time is known a priori for the 
artificial datasets, such reference information is not available for the real 
datasets and needs to generated. We used the BOSC algorithm (Hughes 
et al. (2012)) to determine the presence of oscillatory episodes in the LFP 
recordings. MATLAB code is available as Supplementary Material to 
(Whitten et al., 2011). The confidence level was set to 0.95, and oscil
latory episodes had to be at least three cycles long to be detected. The 
background spectrum is estimated using the complete dataset. Since the 
BOSC algorithm is wavelet-based, it requires a minimum, 
frequency-dependent signal length. Some of our real datasets contained 
only one-second-long recording chunks, which are too short for BOSC at 
low frequencies. We therefore developed an alternative method for 
obtaining the spectrum based on a windowed 512-point FFT. The win
dow length was chosen to be about 2.5 cycles of the dominant oscillation 
frequency, and a single Slepian taper was used. The background spec
trum was obtained by stepping the window through the dataset without 
overlaps, the time-resolved spectrum for detecting oscillatory activity 
was obtained by sliding the window over the signal in 1 ms steps. Once 
the time-resolved spectrum was computed, the algorithm followed the 
same detection logic as the wavelet-based BOSC algorithm. 

For obtaining the reference phase, for each detected oscillatory 
episode, we found the frequency with the largest power and defined a 
zero-phase 4th order bandpass filter with the passband ranging from the 
next lower to the next higher analyzed frequency. Thus, when using the 
FFT, the passband was about 4 Hz wide. The wavelet-based approach 
uses a logarithmic frequency spacing, so the width of the passband was 
frequency-dependent. The filter was applied to the signal segment cor
responding to the oscillatory episode, and a Hilbert transform was used 
to obtain the instantaneous phase. We only kept the longest continuous 
phase segment with a positive derivative. Decreasing phase indicates an 
artefact that sometimes occurs, primarily at the edges. 

Table 1 
Properties of real LFP datasets. “?” indicates that detailed information was not 
available.  

Dataset 
# 

Species Brain area Task Oscillation 
frequency near 

1 Rhesus 
monkey 

Parietal cortex 
(LIP) 

Perceptual 
decision- 
making 

15 Hz 

2 Rhesus 
monkey 

Thalamus Visospatial 
attention 

12 Hz 

3 Rat Hippocampus 
(CA1) 

? 8 Hz 

4 Rat Hippocampus ? 8 Hz 
5 Human 

(ECoG) 
Visual cortex Visual 

stimulation 
50 Hz 

6 Human 
(ECoG) 

Visual cortex Visual 
stimulation 

40 Hz 

7 Human 
(ECoG) 

? Virtual 
navigation 

6 Hz 

8 Human 
(ECoG) 

? Virtual 
navigation 

6 Hz and 16 Hz 
(reference phase 
extracted for 6 Hz) 

9 Human 
(ECoG) 

? Virtual 
navigation 

6 Hz and 16 Hz 
(reference phase 
extracted for 16 Hz)  
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2.2.3. Evaluation of the detection and prediction performance 
Our goal was to come up with simple metrics for quantifying the 

detection and prediction performance of the algorithms. Each time an 
analysis is performed, the algorithm has to make a decision about the 
presence of oscillatory activity. There are two possible outcomes: 
“oscillation detected” or “no oscillation detected”. We compared this 
against the reference information about whether oscillatory activity was 
present at the beginning of the prediction window or not. Again, there 
are two possible states: “oscillation present” or “no oscillation present”. 
We defined the Detection Performance (DP; or Detection Accuracy) as 
the relative frequency of the algorithm making a decision that was 
consistent with the reference information (i.e., either “oscillation 
detected” & “oscillation present” or “no oscillation detected” & “no 
oscillation present”); i.e., it can be calculated as the sum of true positives 
(TP; correct detections) and true negatives (TN; correct rejections), 
divided by the total number of detection decisions (DD): 

DP =
TP + TN

DD  

The two remaining combinations indicate two different types of 
mistakes:  

• False positives: “oscillation detected” & “no oscillation present”  
• Misses: “no oscillation detected” & “oscillation present” 

To quantify the prediction performance, we analyzed the phase 
prediction error. Each individual phase prediction can be compared with 
the reference information, given an oscillation was present. We let the 
algorithms predict the phase for 800 ms. The reference phase was ob
tained for the same amount of time, if available, or until the end of the 
current oscillatory episode if it ended earlier. Since oscillatory episodes 
can be multiple cycles long, we had to work with the unwrapped phase. 
As a consequence, predicted phase and reference phase can be offset by 
multiples of 360◦. Thus, we first adjusted the predicted phase to mini
mize the (absolute) difference at the beginning of the prediction win
dow. The absolute phase error (as a function of time into the future) was 
obtained by calculating the difference between predicted phase and 
reference phase and taking the absolute value. Averaging across indi
vidual predictions results in the expected absolute phase error. (We 
averaged for each time point independently, using all available absolute 
phase errors for that time point.) We defined the Prediction Perfor
mance (or Prediction Horizon) as the time horizon, for which the ex
pected absolute phase error stayed below a critical value. This value can 
be chosen arbitrarily. We decided to go with 90◦, a quarter of a cycle, 
reasoning that stimulation that was more than a quarter cycle off target 
would not really be considered phase-locked anymore. Fig. 3(A) shows 
an example time course of the expected absolute phase error for our 
algorithm for one of the artificial datasets (oscillation frequency of 
14 Hz, SNR of -2 dB, short oscillatory episodes, analysis window size of 

400 ms). To provide more insight into how the expected absolute phase 
error evolves over time in the case of our algorithm, we extracted two 
additional critical values: for how long it stayed below 60◦, and for how 
long it stayed below 30◦. The Prediction Performance (time horizon 
below 90◦) will be shown as thick solid lines for all algorithms in the 
prediction performance plots in the Results section. The additional time 
horizons below 60◦ (dashed thin red line) and below 30◦ (dotted thin red 
line) will only be shown for our algorithm. 

2.2.4. Measuring the detection delay 
To measure how much time typically passes between the onset of 

oscillatory activity and when it is first detected by our algorithm, we 
created additional artificial LFP signals with no oscillatory activity at the 
beginning (only pink noise), but oscillatory activity starting at a random 
onset time (with a random phase) and then remaining present. We used 
six different oscillation frequencies (4.5, 9, 14, 22, 33, and 47 Hz), the 
corresponding optimal analysis windows that will be determined later in 
this article (800, 400, 400, 200, 200, and 100 ms, respectively), two 
different SNRs (-2 and +5 dB), and three different window step sizes (50 
%, 25 %, and 10 % of the window size). Fig. 3(B) shows an example of a 
signal with an oscillation frequency of 14 Hz, an SNR of -2 dB, and a 
window step size of 200 ms (50 % of the analysis window size of 
400 ms). We measured the time difference between the end of the 
analysis window, when the oscillation was first detected, (shown in 
green in Fig. 3(B)) and the oscillation onset time (dashed black line and 
black arrow). The procedure was repeated 1000 times for each condi
tion, and the median detection time will be reported in Results. 

2.2.5. More detailed analysis of the ability to separate two frequency 
components 

To gain more detailed insight into our algorithm’s ability to separate 
two frequency components, we created additional artificial LFP signals 
with two frequency components embedded in pink noise. The two 
components were either centered around 11 Hz, with possible absolute 
frequency differences of 1, 2, 3, 4, or 5 Hz, or centered around 22 Hz, 
with possible absolute frequency differences of 1, 2, 3, 4, 5, 6, 7, 8, or 
9 Hz. The SNR of the stronger component was always -2 dB, the weaker 
component had an SNR of either -5 or -8 dB. We used the corresponding 
optimal analysis windows that will be determined later in this article 
(400 ms for the center frequency of 11 Hz, 200 ms for the center fre
quency of 22 Hz). The frequency range of interest was set to 6.5… 
15.5 Hz for the center frequency of 11 Hz and to 15.5…28.5 Hz for the 
center frequency of 22 Hz. We ran our algorithm on each of these cases 
until it had made 1000 detections. For each of these detections we 
determined whether the bandpass filter had been placed such that the 
frequency of the stronger component was inside the passband of the 
filter and the frequency of the weaker component was outside the 
passband of the filter. If so, we called it a successful separation. How the 
relative frequency of successful separations depended on the different 

Fig. 3. Analysis methods. (A) Predic
tion horizon. Example time course of 
the expected absolute phase error (blue) 
for our algorithm for an artificial data
set (see text). The thick solid arrow in
dicates the Prediction Performance 
(time horizon below 90◦), the dashed 
thin arrow the time horizon below 60◦, 
and the dotted thin arrow the time ho
rizon below 30◦. (B) Detection delay. 
Example artificial LFP signal (blue); the 
oscillation onset is marked with a 
dashed black line and a black arrow. 
The analysis window where the oscilla
tion was first detected is shown in 
green. The measured detection delay is 
indicated in magenta.   
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parameters will be reported in Results. 

2.2.6. Reference algorithm 1: “AR” 
The first algorithm we used as a reference for comparing the detec

tion and prediction performance was (Chen et al. (2013)). The MATLAB 
code is available here: https://github.com/transcranial/cortical-stim. 
By default, the code uses a fixed analysis window length of one second. 
We adjusted the code to also work with other window lengths, which 
was necessary to evaluate the performance at higher oscillation fre
quencies. The way the algorithm works poses a constraint on the length 
of the analysis window: it has to be longer than 1.25 times the cycle 
length at the lowest possible frequency of interest. As a consequence, we 
imposed this constraint on all compared algorithms and never used 
analysis window lengths shorter than this limit. 

Details about how the algorithm works can be found in (Chen et al., 
2013). Briefly, the algorithm obtains an autoregressive (AR) 
model-based power spectral density for the current signal segment. The 
existence of a local peak in the power spectrum is interpreted as oscil
latory activity being present (detection). An optimal frequency range 
with high power concentration is used to define the passband of a 
zero-phase bandpass filter. The central part of the filtered signal (an 
offline optimization process determines how long this part is; see below) 
is used to estimate an AR model, which is then used to predict how the 
time series is expected to continue (until the end of the analysis window 
and, for the same amount of time, into the prediction window). Only this 
predicted part is then subjected to a Hilbert transform to obtain the 
instantaneous phase and the instantaneous frequency at the end of the 
analysis window (beginning of the prediction window). The predicted 
phase starts with this instantaneous phase and continues to increase 
linearly with this instantaneous frequency. 

A number of parameters for this algorithm are selected in an offline 
optimization process based on a sample of the to-be-tracked signal. For 
each of our datasets, we hand-selected a representative signal segment 
with clearly present oscillatory activity and subjected it to an optimi
zation process for each analysis window length that was used for this 
particular dataset. 

2.2.7. Reference algorithm 2: “Rutishauser” 
The second algorithm that was used as a reference is (Rutishauser 

et al. (2013)). The MATLAB code is available here: https://github. 
com/StimOMatic/StimOMatic. In this algorithm, the signal is sent 
through a fixed zero-phase 8th order bandpass filter. We used a (total) 
width of the passband of 6 Hz as in the example provided in (Rutishauser 
et al. (2013)). The StimOMatic code uses a default of 10 Hz, which 
would not have allowed center frequencies below 5 Hz (see below). The 
center frequency has to be provided by the user. The filtered signal is 
submitted to a Hilbert transform to obtain the instantaneous phase as 
well as the instantaneous power. If the average power during the last 
50 ms of the analysis window exceeded a fixed detection threshold 
(which also has to be provided by the user), an oscillation was detected. 
The frequency of the oscillation is determined by finding the time dif
ference between successive peaks in the filtered time series. The pre
dicted phase starts with the instantaneous phase at the end of the 
analysis window and then linearly increases with the oscillation 
frequency. 

For all artificial datasets with fixed oscillation frequencies the 
bandpass center frequency was set to the actual oscillation frequency. 
For artificial datasets with varying oscillation frequencies the bandpass 
center frequency was set to the center of the frequency range. For the 
real datasets the center frequency was set to the location of the major 
oscillation-related bump in the overall power spectrum. Since the 
“Rutishauser” algorithm does not provide a recipe for selecting the 
detection threshold, we ran the algorithm with 9 different individual
ized thresholds for each dataset. We first created a histogram of the 
distribution of power in the frequency band of interest across the whole 
dataset. An algorithm then selected 9 different values, spanning most of 

the range of the histogram (from 2/3 of the median power to the 
midpoint between the median power and the largest observed power). 
Once the detection results were available for all 9 thresholds, we picked 
the threshold maximizing the difference between the Detection Perfor
mance and the false positive rate. When continuously lowering the 
detection threshold, the Detection Performance initially increases, but 
then tends to plateau, whereas the false positive rate starts to increase. 
Our goal was to catch the sweet spot with nearly optimal Detection 
Performance and low false positive rate. The results reported for the 
“Rutishauser” algorithm in this paper are the ones for this particular 
detection threshold, optimized for each dataset. 

2.2.8. Reference algorithm 3: “Mansouri” 
The third algorithm that was used as a reference is (Mansouri et al. 

(2017)). MATLAB code was obtained from the authors. In contrast to the 
other algorithms, the “Mansouri” algorithm does not have an oscillation 
detection mechanism. We therefore cannot report a Detection Perfor
mance. We had the algorithm always make a prediction and compared it 
to a reference phase whenever available. 

The algorithm uses a 20th order elliptic bandpass filter to extract the 
frequency range of interest and then performs a high resolution 
(0.05 Hz) FFT. The frequency with the largest amplitude is selected, and 
this frequency and the associated phase are used directly for a linear 
phase extrapolation. Since the algorithm does not make use of a zero- 
phase filter, the filter delay should be corrected for. The authors’ code 
allowed for a manual correction. We added code to automatically 
determine and compensate for the filter’s phase delay at the selected 
frequency. 

The filter passbands were identical to the frequency ranges of interest 
used with our own algorithm and picked such that, for artificial datasets 
with a fixed oscillation frequency, they contained the actual frequency 
and neighboring frequencies (depending on the actual oscillation fre
quency between 6 and 16 Hz wide). For artificial datasets with varying 
oscillation frequency, the frequency range of interest spanned the full 
range of possible oscillation frequencies, plus neighboring frequencies 
(between 19 and 29 Hz wide). For the real datasets, we obtained the 
power spectrum across the whole file and made sure that the major 
oscillation-related bump was fully included in the frequency range of 
interest. 

2.2.9. Average detection and prediction performance across analysis 
window sizes 

Since it is not a priori clear which analysis window size should be 
used for a particular dataset, we evaluated the performance for a range 
of window sizes and report the average performance. The window sizes 
that were used are: 100, 200, 400, 600, and 800 ms. Whenever possible, 
all of these window sizes were used with the following exceptions:  

• The “AR” algorithm requires a minimum window length depending 
on the lowest possible oscillation frequency (see “Reference algo
rithm 1”).  

• A few of our real datasets consisted of individually recorded trials 
with a length of one second. We did not use the 800 ms analysis 
window for these datasets, as only 200 ms would have remained for 
analyzing the predicted phase. 

For a particular dataset, the same set of analysis window sizes was 
always used across all evaluated algorithms. 

2.2.10. Statistical analysis of the detection and prediction performance 
To test whether the Detection and Prediction Performance were 

significantly different across algorithms and whether they were signifi
cantly affected by particular parameters like the oscillation frequency or 
the SNR, we applied mixed-design ANOVAs, with the algorithm as the 
repeated measures factor, and the parameter on the horizontal axis of a 
particular plot as the between-groups factor. In case of a significant main 
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effect of the algorithm, we followed up with a post-hoc test (Tukey’s 
HSD test, a multiple comparison procedure controlling the family-wise 
error rate) to reveal which pairwise differences were the drivers of the 
main effect. 

3. Results 

In this section we will evaluate the oscillation detection and phase 
prediction performance of our algorithm using both artificial and real 
LFP datasets and make comparisons with three previously published 
reference algorithms. First, we will have a look at artificial datasets with 
different properties, for which the ground truth about the presence of 
oscillatory activity at any given point in time and the oscillation phase is 
known. 

3.1. Detection and prediction performance across oscillation frequencies 

The detection performance for datasets with different oscillation 
frequencies is shown in Fig. 4(A). Each datapoint represents the average 
over different datasets with SNRs ranging from -16 to +12 dB and both 
short and long episode durations. Across the range of studied oscillation 
frequencies, from 4.5–47 Hz, our algorithm (red) provided a better 
detection performance than both the Rutishauser (green) and the AR 
algorithm (blue). The mixed-design ANOVA (see Methods for evaluating 
algorithm performance) revealed a significant main effect of the algorithm 
(p = 9⋅10−6). Tukey’s HSD test indicated two significant pairwise dif
ferences: Our algorithm detected better than both the AR (p = 10−4) and 
Rutishauser (p = 0.005) algorithms. The corresponding prediction 
performance is shown in Fig. 4(B), thick solid lines. Again, across the 
range of studied oscillation frequencies, our algorithm (red) provided a 
better prediction performance than the AR (blue), Rutishauser (green), 
and Mansouri (cyan) algorithms, with the AR algorithm showing com
parable performance at 4.7 Hz, but then falling behind the other algo
rithms at higher frequencies. The ANOVA indicated a significant main 
effect of the algorithm (p < 10−6) as well as a significant interaction 
between frequency and algorithm (p < 10−6). Tukey’s HSD test indi
cated four significant differences: Our algorithm predicted better than 
the AR (p = 10−4), Rutishauser (p = 10−4), and Mansouri (p = 10−4) 
algorithms; the Rutishauser algorithm performed better than the AR 
algorithm (p = 0.026). The dashed and dotted red lines mark the time 
horizons for the expected absolute phase error staying below 60◦ and 
30◦, respectively, to provide additional insight into how the phase error 
evolves over time (only shown for our algorithm). 

3.2. Detection and prediction performance across signal-to-noise ratios 

The detection performance for datasets with different SNRs is shown 
in Fig. 5(A). Each datapoint represents the average over different 
datasets with frequencies ranging from 4.5–47 Hz and all long episode 
durations (as we had only created short episode duration datasets with 
two different SNRs in the range that was also observed in the real 
datasets; see below). Our algorithm (red) showed a small disadvantage 
at the lowest studied SNR level (-16 dB), but performed better than the 
AR (blue) and Rutishauser algorithms (green) for the remaining SNR 
levels (-9 to +12 dB). When analyzing the SNRs of our real LFP datasets, 
we typically found values between -10 and 0 dB. Our algorithm is 
therefore expected to show a solid detection performance in the most 
relevant SNR range for practical applications. According to the ANOVA, 
there was a significant main effect of SNR (p < 10−6), a significant main 
effect of the algorithm (p < 10−6), as well as a significant interaction 
(p = 10−6). The post-hoc test revealed two significant pairwise differ
ences: Our algorithm detected better than both the AR (p = 10−4) and 
Rutishauser (p = 10−4) algorithms. The corresponding prediction per
formance is shown in Fig. 5(B). Across the range of studied SNR levels, 
our algorithm (red) showed a better prediction performance than the 
Rutishauser (green), Mansouri (cyan), and AR (blue) algorithms, with 
the Rutishauser algorithm showing comparable performance at -16 dB, 
but then starting to fall behind. The saturation of the red curve at 800 ms 
is a consequence of having limited the phase prediction to 800 ms into 
the future. The ANOVA indicated significant main effects of both SNR 
(p < 10−6) and the algorithm (p < 10−6). According to Tukey’s HSD test, 
there were four significant pairwise differences: Our algorithm predicted 
better than the AR (p = 10−4), Rutishauser (p = 10−4), and Mansouri 
(p = 10−4) algorithms; the Mansouri algorithm performed better than 
the AR algorithm (p = 0.022). 

3.3. Effect of oscillatory episode duration on detection and prediction 
performance 

Since we had artificial datasets with both long-lasting oscillatory 
activity (several seconds) as well as shorter oscillatory episodes (3–12 
cycles), we were able to analyze the detection and prediction perfor
mance for each of these situations separately. Fig. 6(A) shows the 
detection performance. Each datapoint represents the average over 
different datasets with frequencies ranging from 4.5–47 Hz and SNRs of 
either -9 or -2 dB. Our algorithm (red) showed a small disadvantage 
compared to the Rutishauser algorithm (green) for short oscillatory 
episodes. One should keep in mind, however, that we ran the Rutish
auser algorithm with different threshold levels and then selected an 
optimized one post-hoc. It is unlikely that such an optimal performance 

Fig. 4. Artificial datasets with different oscillation frequencies. (A) Detection Performance. (B) Prediction Performance (time horizon below 90◦, solid lines). The red 
dashed and dotted lines additionally mark the time horizons below 60◦ and 30◦, respectively (only for our proposed algorithm). For reference, two cycles are shown 
as a black dashed line. 
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could be achieved in a real-world situation, where a human operator 
would have to pick a particular absolute detection threshold. Our al
gorithm does not have this issue, as detection thresholds are determined 
automatically. For long oscillatory episodes, our algorithm (red) per
formed better than both the AR (blue) and Rutishauser (green) algo
rithms. The detection performance should not be directly compared 
between short and long episodes, as the datasets were not matched for 
the proportion of time when oscillatory activity was present. The sig
nificant main effect of episode duration indicated by the ANOVA is 
therefore not particularly meaningful, but there was also a significant 
main effect of the algorithm (p = 10−6) as well as a significant inter
action (p = 2⋅10−4). The post-hoc test indicated three pairwise signifi
cant differences: Our algorithm detected better than both the AR (p =

10−4) and Rutishauser (p = 0.023) algorithms; the Rutishauser algo
rithm performed better than the AR algorithm (p = 0.005). The corre
sponding prediction performance is shown in Fig. 6(B). Here, our 
algorithm (red) showed better prediction performance than the refer
ence algorithms for both short- and long-lasting oscillatory episodes. 
According to the ANOVA, there were significant main effects of both 
episode duration (p = 5⋅10−4) and algorithm (p < 10−6) as well as a 
significant interaction (p = 0.005). Tukey’s HSD test indicated three 
significant pairwise differences: Our algorithm predicted better than the 
AR (p = 2⋅10−4), Rutishauser (p = 2⋅10−4), and Mansouri (p = 2⋅10−4) 
algorithms. 

3.4. Effects of non-stationarities in the oscillation frequency on detection 
and prediction performance 

To study how the algorithms behave in the presence of non- 

stationarities in the oscillation frequency, we analyzed datasets with a 
fixed oscillation frequency throughout (14 Hz in the case of the first 
analysis, 33 Hz in the second, an SNR of either −9 or −2 dB, and all short 
episodes), datasets where the oscillation frequency could change from 
oscillatory episode to oscillatory episode (between 10 and 20 Hz in the 
first analysis, and between 20 and 40 Hz in the second, an SNR of either 
−9 or −2 dB, and all short episodes), and datasets where the oscillation 
frequency was allowed to drift within oscillatory episodes (with the 
same specifications). We also analyzed the situation of two different 
oscillation frequencies being present at the same time (within the same 
frequency limits) and asked how well the algorithms could track the 
stronger of the two (with an SNR of −2 dB; the weaker component had 
an SNR of −9 dB). 

First, we confined the frequencies to be in the range 10…20 Hz. The 
detection performance is shown in Fig. 7(A). Across the board, the 
Rutishauser algorithm (green) showed a slightly better detection per
formance than our algorithm (red), but one should again keep in mind 
that this is the optimized performance based on a post-hoc selection of 
the detection threshold. Our algorithm performed much better than the 
AR algorithm (blue). The ANOVA indicated a significant main effect of 
the algorithm (p = 0.002). The post-hoc test revealed two significant 
pairwise differences: Both our algorithm (p = 0.006) and the Rutish
auser algorithm (p = 0.003) detected better than the AR algorithm. The 
corresponding prediction performance is shown in Fig. 7(B). Our algo
rithm (red) and the Rutishauser algorithm (green) showed a similar 
performance when the oscillation frequency was completely stationary 
and when the frequency was allowed to drift within episodes. Our al
gorithm showed a clear advantage when the oscillation frequency could 
change across episodes and when two different oscillation frequencies 
were present at the same time. The advantage results from the passband 

Fig. 5. Artificial datasets with different Signal-to-Noise Ratios. (A) Detection Performance. (B) Prediction Performance.  

Fig. 6. Artificial datasets with either short or long oscillatory episodes. (A) Detection Performance. (B)Prediction Performance.  
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of the bandpass filter being adjusted automatically based on the 
currently present signal in our algorithm, compared to the fixed band
pass filter in the Rutishauser algorithm. According to the ANOVA, there 
were significant main effects of both the non-stationarity condition (p =

0.027) and the algorithm (p = 10−6) as well as a significant interaction 
(p = 10−4). Tukey’s HSD test indicated five significant pairwise differ
ences: Our algorithm predicted better than the AR (p = 2⋅10−4), 
Rutishauser (p = 0.007), and Mansouri (p = 2⋅10−4) algorithms; the 
Rutishauser algorithm performed better than both the AR (p = 3⋅10−4) 
and the Mansouri (p = 4⋅10−4) algorithms. 

Next, we assessed the performance in a higher frequency band. In 
this case the frequencies were confined to be in the range 20…40 Hz. 
The detection performance is shown in Fig. 8(A). Similar to what we had 
seen in Fig. 7(A), the Rutishauser algorithm (green) provided a slightly 
better detection performance than our algorithm (red), which, in turn, 
performed much better than the AR algorithm (blue). According to the 
ANOVA, there were significant main effects of both the non-stationarity 
condition (p = 0.033) and the algorithm (p < 10−6) as well as a signif
icant interaction (p = 0.007). The post-hoc test indicated three signifi
cant pairwise differences: The Rutishauser algorithm detected better 
than both our algorithm (p = 0.008) and the AR algorithm (p = 2⋅10−4); 
our algorithm performed better than the AR algorithm (p = 2⋅10−4). The 

prediction performance can be seen in Fig. 8(B). In this case, the 
Rutishauser algorithm (green) provided the best performance when the 
oscillation frequency was completely stationary. It was, however, pro
vided with exact knowledge of the oscillation frequency such that the 
bandpass filter was centered perfectly on the oscillation frequency. In a 
real-life situation, the center frequency would have to be set by a human 
operator, and it is unlikely that this optimal performance could be 
achieved. In the remaining cases (oscillation frequency can change 
across episodes or within episodes, two oscillation frequencies being 
present at the same time), our algorithm (red) provided a clear advan
tage over all reference algorithms. The ANOVA indicated a significant 
main effect of the algorithm (p = 5⋅10−5) as well as a significant 
interaction between the non-stationarity condition and the algorithm 
(p = 0.010). Tukey’s HSD test revealed four significant pairwise dif
ferences: Our algorithm predicted better than both the AR (p = 2⋅10−4) 
and the Mansouri (p = 4⋅10−4) algorithms; likewise, the Rutishauser 
algorithm also performed better than both the AR (p = 5⋅10−4) and the 
Mansouri (p = 0.003) algorithms. 

3.5. Detection and prediction performance with real LFP datasets 

The detection performance across nine real LFP datasets is shown in 
Fig. 9(A). The Rutishauser algorithm (green) provided the best detection 

Fig. 7. Artificial datasets with oscillation frequencies between 10 and 20 Hz and either fixed oscillation frequencies, frequencies that can change across oscil
latory episodes, frequencies that can drift within episodes, or two oscillatory components with different frequencies. (A) Detection Performance. (B)Prediction 
Performance. For reference, two cycles are shown as a black dashed line. 

Fig. 8. Artificial datasets with oscillation frequencies between 20 and 40 Hz and either fixed oscillation frequencies, frequencies that can change across oscil
latory episodes, frequencies that can drift within episodes, or two oscillatory components with different frequencies. (A) Detection Performance. (B)Prediction 
Performance. For reference, two cycles are shown as a black dashed line. 
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performance for seven of these, with an average detection performance 
of 65 %, followed by our algorithm (red), with an average detection 
performance of 62 %, and the AR algorithm (blue), with an average 
detection performance of 60 %. Again, it should be kept in mind that the 
reported detection performance of the Rutishauser algorithm is the 
consequence of a post-hoc selection of an optimized detection threshold 
for each combination of dataset and analysis window size and therefore 
most likely better than what could be achieved in a real experiment. The 
ANOVA indicated significant main effects of both the dataset (p < 10−6) 
and the algorithm (p = 5⋅10−4) as well as a significant interaction (p =

0.027). The post-hoc test revealed two significant pairwise differences: 
The Rutishauser algorithm detected better than both our algorithm (p =

0.034) and the AR algorithm (p = 3⋅10−4). The prediction performance 
is shown in Fig. 9(B), plotted as number of cycles rather than time in ms, 
due to the large variability of oscillation frequencies across datasets. Our 
algorithm (red) provided the best performance for six of the nine data
sets, the Rutishauser algorithm (green) performed better for the 
remaining three. Two of the datasets (5 and 6) stand out, because the 
Rutishauser algorithm was the only one that was able to make accurate 
phase predictions beyond one cycle. Both datasets were human ECoG 
recordings from visual cortex with high oscillation frequencies 
(40–50 Hz). We will return to this point below. According to the 
ANOVA, there were significant main effects of both the dataset 
(p < 10−6) and the algorithm (p < 10−6) as well as a significant inter
action (p < 10−6). Tukey’s HSD test indicated five significant pairwise 
differences: Our algorithm predicted better than the AR (p = 2⋅10−4), 
Rutishauser (p = 0.029), and Mansouri (p = 2⋅10−4) algorithms; the 
Rutishauser algorithm performed better than both the AR (p = 2⋅10−4) 
and the Mansouri (p = 9⋅10−4) algorithms. 

To gain more insight into why the Rutishauser algorithm had a 
substantially better prediction performance in the case of Datasets 5 and 
6, we performed additional analyses. First, we looked at the two com
ponents of the detection performance separately. While our algorithm 
had an average true positive rate (correct detections) of about 6% 
(fraction of analyzed signal segments that were marked by the offline 
BOSC analysis as containing oscillatory activity and also marked by our 
algorithm as an oscillation being present), it was only about 1% in the 
case of the Rutishauser algorithm. Rutishauser’s detection approach was 
therefore much more conservative (a consequence of finding an optimal 
detection threshold for each combination of dataset and analysis win
dow size, while also trying to minimize false positives) compared to our 
algorithm, which also made it miss more signal segments that were 
marked by BOSC as oscillatory (14 % of all segments) compared to our 
algorithm (8%). Detecting fewer segments means that these will contain, 
on average, more oscillatory power. This was confirmed by comparing 
the average power time courses in the frequency band of interest, as 
calculated by the Rutishauser algorithm, between Rutishauser’s true 

positives and our true positives. The average power across time was 
between 37 % and 125 % higher for Rutishauser’s true positives 
compared to ours. As a consequence of the better SNR, the parameters of 
the oscillation can be estimated more accurately. The difference in the 
prediction horizons was clearly reflected in how accurately the phase of 
the oscillation at the end of the analysis window could be estimated. 
While the average expected absolute phase error at the end of the 
analysis window across window sizes was not too different in the case of 
Dataset 5 (77◦ vs. 82◦), it was substantially smaller (49◦) for one 
particular analysis window size (600 ms), which was the only window 
size where the Rutishauser algorithm had a higher prediction perfor
mance than our algorithm, driving the substantially larger average 
shown in Fig. 9(B). In the case of Dataset 6, the average expected ab
solute phase error at the end of the analysis window across window sizes 
was substantially lower for the Rutishauser algorithm (53◦ vs. 80◦), 
providing it with a higher prediction performance across window sizes. 
In summary, Rutishauser’s better prediction performance in the case of 
Datasets 5 and 6 resulted from a more conservative detection approach, 
limiting the detections to stronger oscillations, which could be analyzed 
more accurately, resulting in a better phase prediction. 

3.6. Recommendations for picking a suitable analysis window 

The results we have reported so far were an average across a number 
of studied analysis window sizes. When using our algorithm in a real- 
world scenario, one would have to select a particular analysis window 
size to work with. To provide some guidance for this selection process, 
we analyzed which window size provided the best detection and pre
diction performance for each dataset, focusing on the, probably more 
realistic, artificial datasets with shorter oscillatory episodes and the real 
datasets. In case multiple window sizes provided an identical perfor
mance, we used the average of these window sizes. Fig. 10 shows the 
optimal window sizes as a function of the oscillation frequency, for 
detection in blue, for prediction in red. The dashed lines are robust fits of 
the form af + b, with a and b being free parameters. This diagram suggests 
that the optimal analysis window size for detection and prediction is not 
identical: the window should be slightly larger for an optimal prediction 
compared to optimal detection. One therefore has to find a compromise 
between best detection and best prediction. Second, the analysis win
dow clearly should be longer for lower oscillation frequencies, and 
shorter for higher oscillation frequencies. The green solid line illustrates 
a possible mapping between oscillation frequencies and window sizes, 
when only considering the window sizes that were used in this study:  

• An analysis window size of 800 ms could be used for frequencies up 
to 7 Hz,  

• a window size of 400 ms for higher frequencies up to 15 Hz,  
• a window size of 200 ms for higher frequencies up to 40 Hz, 

Fig. 9. Real LFP datasets. (A) Detection Performance. (B) Prediction Performance.  
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• and a windows size of 100 ms for frequencies above 40 Hz. 

As can be seen from the diagram, a slightly longer analysis window is 
probably advisable for high oscillation frequencies. We have run some 
experiments with window sizes of 120 and 140 ms, focusing on the 
datasets with the highest oscillation frequencies, and have seen some 
advantages over using a 100 ms-long window (data not shown). 

3.7. Evaluation of the detection delay 

To measure how much time typically passes between the onset of 
oscillatory activity and when it is first detected by our algorithm, we 
created additional artificial LFP signals with different oscillation fre
quencies and SNRs and random oscillation onset times, and used the 
recommended window sizes from the previous section in combination 
with different window step sizes (by how much the analysis window is 
advanced; details can be found in Measuring the detection delay). We 
determined the median time difference between the end of the analysis 
window, when the oscillation was first detected, and the oscillation 
onset time (see Fig. 3(B)). When measured in number of oscillation cy
cles, the detection delay turned out not to change systematically with 
oscillation frequency. The SNR and window step size, however, had a 
clear impact on the detection delay. On average, the recommended 
analysis window was 4.8 cycles long. For an SNR of -2 dB, a value in the 
range covered by our real LFP signals, the oscillation was typically 
detected 4.1 (± 0.2; standard error) cycles after its onset when the 
window step size was 50 %, 3.4 (± 0.1) cycles when the window step 
size was 25 %, and 3.1 (± 0.1) cycles for 10 %. Thus, although we did not 
see any major effects on the overall detection and prediction accuracy 
when increasing the window overlap (reducing the window step size 
from 50 % to 25 %; data not shown), the detection delay actually can be 
improved. The detection is also faster when the signal is stronger: with 
an SNR of +5 dB, the detection delays were 3.1 (± 0.1) cycles, 2.5 (±
0.1) cycles, and 2.1 (± 0.1) cycles (for a window step size of 50 %, 25 %, 
and 10 %, respectively). 

3.8. More in-depth evaluation of the ability to separate two frequency 
components 

We had seen above that our algorithm made better phase predictions 
than the comparison algorithms in the presence of two frequency com
ponents in the signal. This is due to its ability to adjust the bandpass 

filter based on the current signal properties. To be able to exclude a 
weaker frequency component, it either needs to remain below the 
detection threshold, or it needs to be separated from the group of 
neighboring frequencies comprising the stronger component by at least 
one frequency bin, whose power does not exceed the detection 
threshold. To gain more detailed insight into when the algorithm is able 
so successfully separate two components, we created additional artificial 
LFP signals with two embedded frequency components centered around 
different frequencies, with different frequency differences, and with 
different SNRs (details can be found in More detailed analysis of the ability 
to separate two frequency components). We again used the recommended 
window sizes and, each time our algorithm detected the presence of 
oscillatory activity, evaluated whether the bandpass filter had been 
placed such that the frequency of the stronger component was inside the 
passband of the filter and the frequency of the weaker component was 
outside the passband, which we called a successful separation. The 
relative frequency of successful separations is plotted in Fig. 11. It 
largely was an approximately linear function of the relative frequency 
difference of the two components (difference between the two fre
quencies, divided by the center frequency), but also affected by the 
absolute frequency difference/center frequency and the relative 
strength of the two components. The separability improved with 
increasing relative frequency difference and was also better for the 
larger center frequency, equivalent to a larger absolute frequency dif
ference, and the more different the SNRs of the two components were. 
All datapoints were captured well by a function of the form 

p(successful separation) = 1.95⋅(Δfrel − 0.065) + 0.01⋅Δfabs⋅(ΔSNR − 1.8)

limited to the range 0…1 (i.e., negative values have to be converted into 
zero, values larger than one into one), with Δfrel being the relative fre
quency difference, Δfabs being the absolute frequency difference (in Hz), 
and ΔSNR being the difference between the SNR of each component (in 
dB), which is represented by the lines in the plot. This suggests that the 
algorithm can start separating frequencies when the relative frequency 
difference exceeds 6.5 % and when the difference in SNR exceeds 1.8 dB. 
A relative frequency difference of 25 % results in a chance of a successful 
frequency separation of about 50 %. Close to perfect separation can be 
achieved when the relative frequency difference exceeds at least 40 %. 

Fig. 10. Finding an optimal analysis window size based on the window sizes 
providing best Detection (blue dots) and Prediction (red dots) Performance for 
each real dataset and artificial dataset with short oscillatory episodes. The 
dashed lines are robust nonlinear regressions. The optimal analysis window for 
prediction is slightly larger than the one for detection, and one therefore has to 
find a compromise. The green solid line indicates a suggested mapping between 
oscillation frequency and analysis window (for the set of window sizes used in 
this study). 

Fig. 11. Ability to separate two frequency components as a function of the 
relative frequency difference (main horizontal axis), the center frequency (CF; 
11 vs. 22 Hz), and the difference in SNR between the two components (3 vs. 
6 dB). The cyan auxiliary horizontal axis shows the corresponding absolute 
frequency differences for each CF. 
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4. Discussion 

4.1. User-friendliness 

Whereas previously proposed algorithms were typically difficult to 
use in a real-world experimental scenario, our algorithm is straightfor
ward to use and does not require the user to specify any parameters they 
might not be familiar with. For example, the algorithm proposed by 
Chen et al. (Chen et al. (2013)), referred to as the “AR” algorithm in this 
study, requires the user to first record a sample of the to-be-tracked 
oscillatory activity and to submit it to a potentially lengthy offline 
optimization process, before the parameters for tracking the oscillations 
online are available and the closed-loop stimulation experiment can be 
started. In our evaluation, using Chen et al.’s MATLAB code, we have 
seen runtimes of up to half an hour on current Intel Core and Xeon 
processors. In contrast, our algorithm does not require the user to 
perform any preparatory steps. Oscillatory activity can be detected and 
tracked right away. Similarly, the algorithm proposed by Rutishauser 
et al. (Rutishauser et al. (2013)), referred to as “Rutishauser” algorithm 
in this study, requires the user to specify both the oscillation frequency 
and an absolute detection threshold, which the user probably doesn’t 
know going into an experiment. In contrast, our algorithm requires the 
user only to specify a range of frequencies, within which oscillations 
should be tracked, and a statistical confidence level for the detection of 
oscillatory activity, which we didn’t have to change for any of our re
sults. We just left it at its default setting. The actual 
frequency-dependent detection threshold is then determined automati
cally by the algorithm, as is the current filter passband for tracking the 
ongoing oscillatory activity. 

4.2. Tracking oscillations with changes in frequency and multiple 
oscillatory components 

In contrast to the Rutishauser algorithm, which uses a fixed bandpass 
filter, our algorithm chooses the passband of the analysis filter dynam
ically based on short-term spectral analysis. This allows it to track os
cillations with non-stationarities in the oscillation frequency and to 
selectively process one oscillatory component, while filtering out a 
weaker neighboring component. A corresponding advantage in the 
prediction horizon was clearly seen when analyzing artificial datasets 
with changes in oscillation frequency across oscillatory episodes or with 
multiple embedded oscillatory components. 

4.3. Difficulty predicting the phase of high-frequency oscillations in 
human ECoG recordings 

As mentioned in Results, we noticed that the Rutishauser algorithm 
was the only one that had a prediction horizon of more than one cycle 
when applying it to two human ECoG recordings from visual cortex with 
high oscillation frequencies (40…50 Hz). Our additional analyses indi
cated that this was primarily the consequence of the Rutishauser algo
rithm taking a very conservative detection approach, limiting the 
detection to stronger oscillations, which could be analyzed more accu
rately, leading to a better phase prediction, but also made it miss more 
oscillatory episodes. Another contribution is likely made by one specific 
feature that sets the Rutishauser algorithm apart from all other algo
rithms, including ours: Due to using a fixed bandpass filter, the 
Rutishauser algorithm can track the power in a narrow frequency band 
of interest as a function of time. It can therefore make a decision about 
the presence of oscillatory activity based on the situation at the end of 
the analysis window. If oscillatory activity is present there, it is quite 
likely to continue after the analysis window. In contrast, the other 
methods primarily use information around the center of the analysis 
window: the AR algorithm is explicitly designed to base its time series 
prediction on a signal segment that is centered in the analysis window, 
our algorithm uses spectral information that is obtained through the 

application of a taper that puts the largest weight on the center of the 
analysis window. These methods are therefore more likely to make a 
prediction based on oscillatory activity that was still strong near the 
center of the window, but might be about to end, or to miss oscillatory 
episodes that are just starting towards the end of the analysis window. 
When comparing the time courses of the power in the frequency band of 
interest, we noticed that, in the case of 600 ms-long analysis windows, 
the power peaked at a substantially later point in time for Rutishauser’s 
true positives compared to our true positives. We have some ideas how 
this problem could be addressed in our algorithm by not scheduling a 
stimulation when there are indications that the phase prediction is likely 
to be inaccurate or that the oscillatory episode is about to end, and we 
plan to implement them in a future, further improved version of our 
algorithm. Another possible avenue would be to further optimize the 
choice of the bandpass filter, which could help reduce edge artefacts that 
are caused by the filtering and therefore potentially improve the phase 
prediction. 

5. Conclusion 

We have proposed a user-friendly algorithm for the detection of 
oscillatory activity in LFP signals and for predicting its phase, as needed 
for closed-loop, phase-locked stimulation experiments. We have seen 
that the algorithm is able to provide a robust oscillation detection and 
phase prediction performance over a wide range of oscillation condi
tions, which often either rivals or exceeds the performance of the 
reference algorithms. Only in rare cases it is not competitive, but it 
provides a clear advantage when oscillation frequencies are non- 
stationary or when different oscillation components have to be sepa
rated. All of this could be achieved with only having to specify a range of 
frequencies, within which oscillatory activity is tracked. The detection 
confidence level was set to the same default value across all analyzed 
datasets, and detection thresholds and filter passbands were chosen 
automatically by our algorithm. 

5.1. Future plans 

We are currently in the process of implementing the algorithm for 
real-time use on embedded hardware, and we are planning to share this 
design with the research community. How the algorithm can be opti
mized for real-time implementation and the specifics of mapping it onto 
particular target hardware will be reported on separately. 
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