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ABSTRACT

Background: Closed-loop phase-locked stimulation experiments are rare due to the unavailability of user-friendly
algorithms and devices. Our goal is to provide an algorithm for the detection of oscillatory activity in local field
potentials (LFPs) and phase prediction, which is user-friendly and robust to non-stationarities in LFPs of behaving
animals.

New method: We propose an algorithm that only requires specification of the frequency range within which
oscillatory episodes are tracked. Frequency-specific detection thresholds and filter parameters are adjusted
automatically based on the short-time LFP power spectrum. Estimates of instantaneous frequency and instan-
taneous phase are used for phase extrapolation, taking advantage of Bayesian estimation. We used real LFP
signals, recorded from a variety of different species and different brain areas, as well as artificial LFP signals with
known properties to assess the detection and prediction performance of our algorithm and three previously
published reference algorithms under various conditions.

Results and comparison with existing methods: Our algorithm, while significantly more user-friendly than previous
approaches, provides a solid detection and prediction performance over a wide range of realistic conditions and,
in many cases, has a longer prediction horizon than the reference algorithms. Due to its ability to adjust to
changes in the signal, the algorithm is well-prepared to deal with non-stationarities in oscillation frequency, even
in the presence of multiple oscillation components.

Conclusions: We have created a universal algorithm for oscillation detection and phase prediction, which per-
forms well and is user-friendly at the same time, making closed-loop phase-locked stimulation experiments easier

to accomplish.

1. Introduction

Synchronized oscillatory activity across ensembles of neurons or
brain areas has been proposed to play an important role in essential
mechanisms like modulating functional connectivity (“Communication
through Coherence” theory) (Fries, 2005) or memory retrieval (Watrous
et al., 2013). The experimental evidence supporting these hypotheses,
however, is largely correlational (Bosman et al., 2012; Gregoriou et al.,
2009; Grothe et al., 2012). Proving a functional coupling between syn-
chronous oscillatory activity and the proposed mechanisms would
require a causal manipulation of the timing of neural activity in one
neural ensemble relative to ongoing neural activity in another ensemble.
In principle, closed-loop phase-locked stimulation should be able to at
least inject time-locked artificial neural activity. Theoretical work sug-
gests that phase-locked optogenetic stimulation might also be used to

change the phase relationship between ongoing oscillations itself (Witt
et al., 2013). Detecting and predicting oscillatory activity is challenging
in awake behaving animals due to associated non-stationarities (oscil-
latory episodes tend to be short, the oscillation frequency can change
over time, etc.) (Akam and Kullmann, 2014). Despite a number of al-
gorithms for the detection and prediction of oscillatory activity having
been published, some of them quite sophisticated (e.g., (Chen et al.,
2013; Rutishauser et al., 2013), experimental studies taking advantage
of closed-loop phase-locked stimulation are still rare. A closer look at the
existing algorithms suggests that a potential reason could be that they
are not particularly user-friendly. For example, the algorithm proposed
by Chen et al. (Chen et al., 2013) requires the user to record a sample of
the to-be-tracked oscillatory activity and submit it to a potentially
lengthy offline optimization process to obtain optimal parameters for an
autoregressive model. If the characteristics of the signal change over
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time, the determined parameters might no longer be optimal. The al-
gorithm proposed by Rutishauser et al. (Rutishauser et al. (2013)) re-
quires the user to specify an absolute detection threshold for the
presence of oscillatory activity as well as a fixed narrow frequency band
that is going to be monitored. How these parameters should be chosen is
not obvious, and even if the experimenter knew the current oscillation
frequency, it could still change over time.

Here we propose a user-friendly algorithm for the detection of
oscillatory activity in the local field potential (LFP) and the prediction of
oscillation phase for the purpose of closed-loop phase-locked stimula-
tion. The user only has to specify a range of frequencies within which
oscillations are to be tracked and a statistical confidence level for the
oscillation detection. All other parameters are determined automatically
and adjust to the signal. The algorithm is therefore able to handle
changes in signal properties like signal amplitude or oscillation fre-
quency. We explain how the algorithm works and demonstrate that its
detection and prediction performance can compete with or, in many
cases, even outperform a selection of published algorithms. In addition
to the already mentioned algorithms by Chen et al. and Rutishauser
et al., we also evaluated a more recent algorithm by Mansouri et al.
(Mansouri et al. (2017)), which the authors found to be competitive with
the Chen et al. algorithm. A brief description of each of these reference
algorithms as well as how they were adapted for the comparisons re-
ported here can be found in the Materials and Methods section.

2. Materials and methods
2.1. Algorithm

The overall structure of our algorithm is shown in Fig. 1. The basic
processing steps are:

1 Obtain an estimate of the background spectrum

2 Is there any activity in the frequency range of interest, which
significantly exceeds the background spectrum? If so, an oscillatory
episode is detected.

3 Obtain the range of frequencies exceeding the background spectrum
and use it to specify the passband of a zero-phase bandpass filter

4 Apply the bandpass filter and a Hilbert transform to obtain the
instantaneous phase

5 Use robust linear regression to obtain the phase at the end of the
analysis window, assuming a constant oscillation frequency within
the analysis window and avoiding edge artefacts

6 Obtain an estimate of the oscillation frequency from the peak loca-
tion in the spectrum

7 Use Bayesian estimation to combine the current estimate with a prior
distribution of recently observed oscillation frequencies

8 Use the estimated frequency for a linear phase extrapolation

The individual processing steps will now be explained in more detail:
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The LFP signal (sampled at 1 kHz) is analyzed in short segments. We
considered analysis windows ranging from 100 ms (corresponding to
about 5 cycles of the fastest analyzed oscillations near 50 Hz) to 800 ms
(corresponding to about 3.5 cycles of the slowest analyzed oscillations
near 4.5 Hz). The window is then stepped forward for the next analysis.
All of the results reported here are based on a step size of half the
window length (with the exception of the detection delay analysis,
where we are also considering smaller step sizes). The signal segment
was multiplied with a single Slepian taper (which provided overall
better results than using a Hamming or Hanning window; data not
shown). Fig. 2(A) shows an example of a signal segment before (black)
and after applying the taper (blue). We then obtained the power spec-
trum using a 1024-point FFT. The combination of applying the taper and
obtaining the spectrum was achieved by calling the function “mtspec-
trumc” from the Chronux toolbox (http://chronux.org) with “tapers =
[11]” (Mitra and Bokil, 2008). For detecting the presence of oscillations
we adopted an idea from BOSC, an established algorithm for offline
analysis of oscillatory activity (Hughes et al., 2012). The LFP power
spectrum in the absence of any oscillatory activity is expected to
resemble a power-law function (colored noise), which corresponds to a
line in log f vs. log power space. Oscillatory activity would add a bump
on top. Hughes et al. (Hughes et al., 2012) used standard linear
regression to estimate the background spectrum. Since our short-time
spectra are substantially bumpier than the wavelet-based spectra in
BOSC, we use robust linear regression (MATLAB’s “robustfit” function),
applied to the power spectrum for frequencies ranging from 2 to 100 Hz,
to estimate the background spectrum, which is also less prone to be
biased by the presence of oscillatory activity. An example of this pro-
cedure is shown in Fig. 2(B). Actual power values in the absence of
oscillatory activity are expected to be y? distributed around the mean
given by the fit (Hughes et al., 2012). The tail of the distribution can
therefore be used to define a frequency-dependent detection threshold
for oscillatory activity. Power values exceeding this threshold are
assumed to reflect oscillations. Determining the threshold location re-
quires picking a statistical confidence level, which has to be provided by
the user of the algorithm. After evaluating the algorithm’s detection
performance for a variety of confidence levels, we settled on a single
value of 0.998, which was used for all datasets and all results reported in
this manuscript. Since all FFT frequencies in the user-specified range of
interest are tested for threshold crossing, we also apply Bonferroni
correction. The red line in Fig. 2(B) shows an example of such a
frequency-dependent detection threshold.

Power values exceeding the threshold are indicators of possible os-
cillations. To further reduce spurious threshold crossings, we required at
least two neighboring frequencies to exceed threshold, which was
interpreted as detecting the presence of oscillatory activity. A group of
neighboring frequencies exceeding threshold was treated as a candidate
oscillation. In case there was more than one such group in the frequency
range of interest, we prioritized the group with the largest number of
neighboring frequencies as the most robust oscillation. In case there
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Fig. 1. Overall structure of the proposed algorithm for detecting the presence of oscillatory activity and predicting its phase. The text colors correspond to the colors

of the illustrations in Fig. 2.
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Fig. 2. Illustration of signal processing, oscillation detection, and phase pre-
diction (based on a signal segment taken from real Dataset 1). (A) Windowing
and filtering. Signal segment before (black) and after (blue) applying the Sle-
pian taper. The red trace shows the signal after applying the zero-phase
bandpass filter. (B) Oscillation detection. The blue trace is the short-time
power spectrum. The grey shaded area indicates the frequency range of inter-
est (ROI). The green line is the estimate of the background spectrum based on
robust linear regression. The red line is the frequency-dependent detection
threshold. The red points mark the frequencies in the ROI, where the power
spectrum exceeded the threshold. The orange arrow indicates the estimated
oscillation frequency based on a local interpolation of the power spectrum near
the peak. (C) Phase prediction. The blue trace is the instantaneous phase in the
analysis window. The dashed orange line reflects a robust linear regression. The
phase on this line at the end of the analysis window (green dot) is used as the
starting phase for the phase prediction. The predicted phase (red line) is a linear
extrapolation; the slope is determined by a Bayesian estimate of the oscillation
frequency (purple).

were multiple groups with the same number of frequencies, we priori-
tized the candidate oscillation that exceeded threshold power by the
largest amount. The range of frequencies in the selected group was
stored for later use in the algorithm.

This frequency range was used to specify the passband of a bandpass
filter. The lower cutoff frequency of a 2nd-order Butterworth filter was
set to the lowest frequency minus the frequency resolution of the FFT
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(about 1 Hz), the upper cutoff frequency to the highest frequency plus
the frequency resolution of the FFT. The signal segment was then
convolved twice with the filter kernel, once in the forward and once in
the backward direction using MATLAB’s “filtfilt” function, resulting in a
zero-phase 4th-order bandpass filter. Thus, the algorithm uses an
adaptive filter that passes the selected frequencies exceeding threshold
through, without inducing any systematic phase shifts. The red line in
Fig. 2(A) shows the result of this filtering process. The filtered signal was
then subjected to a Hilbert transform to obtain the instantaneous phase.
An example of such an instantaneous phase signal is shown in Fig. 2(C).
Since the instantaneous phase is prone to edge artefacts, we used
another robust linear regression to obtain a phase estimate based on the
assumption of a constant oscillation frequency in the analysis window.
Initially, we used the resulting line directly for linearly extrapolating the
phase into the future. We also considered a robust 2nd order fit, which
would allow the oscillation frequency to change over time, but did not
find a clear advantage and therefore stayed with the simpler linear
model (data not shown). Thus, our phase prediction is based on the
assumption that the oscillation frequency will remain stationary in the
very near future.

Overall, however, we observed better prediction performance when
estimating the oscillation frequency from the spectrum rather than the
slope of the robust fit to the instantaneous phase. Thus, the robust fit is
only used to obtain a reliable phase estimate at the end of the analysis
window (beginning of the prediction window), which we name ¢,. An
estimate of the current oscillation frequency is obtained from the loca-
tion of the peak in the spectrum in the selected range of frequencies
during detection. To be able to obtain estimates in between the discrete
FFT frequencies we adopted the Gaussian local approximation approach
proposed by (Gasior and Gonzalez, 2004). Assuming that S[0] is the
peak power in the discrete spectrum in the selected range, and S[-1] and
S[+11] are the power values at the left and right neighboring frequencies,
the inferred true peak location (as an index ranging from -1 to +1) is
given by

S[+1
in(3:4)
=N
" (e

I W)

If faiscrere i the frequency associated with the peak in the discrete

spectrum, the estimate of the oscillation frequency f . can be calculated
as

fose = fatiscrete + kypAf

with Af being the frequency resolution of the FFT. The variance 33“ of
the local Gaussian interpolation can be determined to be

o=
sjo?
In (S[H]-S[—l])

which is needed in the next step. While fasc could be used directly for the
phase prediction, it is a noisy estimate, and it turns out that the overall
prediction quality can be further improved (data not shown) by taking
advantage of the oscillation frequency typically showing some conti-
nuity over time. This can be exploited to obtain a Bayesian estimate of
the oscillation frequency by combining the current frequency estimate
with a prior distribution given by recently observed oscillation fre-
quencies. Ideally, the number of recent observations contributing to the
prior should be tailored to how (non-)stationary the oscillation fre-
quency is. Since this information is typically not available, we used a
fixed number. After initial tests with the most recent 10 and 20 obser-
vations, which resulted in comparable prediction performance (data not
shown), we settled on the most recent 15 observations as a compromise,
which has been used for all results reported in this paper. If we take the
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. o . . 2
prior to be a normal distribution with mean fprior and variance o,

given
by the sample mean and sample variance of the 15 most recently
observed oscillation frequencies (estimates resulting from the local

Gaussian interpolation near the peak of the spectrum), the a posteriori
estimate of the oscillation frequency ?Bﬂyes is given by

- 5 ~2
}T _ fos(: .O-priur +fﬁ'i(”. 0 osc
Bayes — ~2
2
O-pr[or +o0

osc

Thus, phase (in degrees) was predicted to be
o(t) = 0, +?Bayes‘t‘3600

with time zero corresponding to the end of the analysis window, which
is also the beginning of the prediction window.

2.2. Methods for evaluating Algorithm Performance

2.2.1. Datasets

We needed suitable datasets to evaluate the performance of the al-
gorithm. Artificial datasets have the advantage that parameters like
oscillation frequency, signal-to-noise ratio (SNR), oscillation episode
duration, and non-stationarities in the oscillation frequency can be
tightly controlled. Furthermore, the ground truth about the presence/
absence of oscillatory activity and the current phase is known. However,
the algorithm is supposed to be applied to real LFPs, which might have
properties that deviate from the properties of artificial data. Real LFP
recordings have the disadvantage though that the ground truth about
whether there is currently ongoing oscillatory activity and what the
current phase of the oscillation is, is not known. We therefore took a
hybrid approach, evaluating the performance of the algorithm using a
combination of artificial and real data.

Artificial datasets were constructed by starting with pink noise and
embedding oscillatory activity. Oscillation frequencies ranged from
4.5-47 Hz and were either constant, allowed to change between oscil-
latory episodes (within a particular range, either 10...20 Hz or 20...
40 Hz), or even within oscillatory episodes (combination of linear fre-
quency drift with a random slope up to 7.5Hz/s and random fluctua-
tions according to Brownian motion with a diffusion coefficient of
22.5 sz/s). The SNR ranged from -16 to +12 dB (total signal power vs.
total noise power). Oscillatory episodes could be either long (3s) or
short (3-12 cycles). We also considered signals with two simultaneously
embedded oscillations at two different frequencies and different SNR (-9
and -2 dB) to test whether the algorithm could track the stronger oscil-
lation component.

The real datasets were LFP recordings from different species
(humans, nonhuman primates, and rodents) and different brain areas
(visual cortex, parietal cortex, hippocampus, and thalamus) and had
oscillation frequencies ranging from 6 to 50 Hz. SNR (following the same
definition as in the case of the artificial datasets) was typically between
-10 and 0 dB. A monkey LFP recording from parietal cortex was provided
by the Ditterich Lab (Dataset 1; oscillation frequency: 15 Hz), a monkey
LFP recording from the thalamus was contributed by the Usrey Lab (UC
Davis; Dataset 2; oscillation frequency: 12 Hz), and rat LFP recordings
from the hippocampus were provided by the Gurkoff Lab (UC Davis;
Datasets 3 and 4; oscillation frequency: 8 Hz). Human ECoG recordings
from visual cortex were from (Hermes et al., 2015) and are available as
Supplementary Data (Datasets 5 and 6; oscillation frequencies: 40...
50 Hz). Human iEEG recordings from hippocampus were from (Ekstrom
et al., 2005) and requested through the Kahana Lab’s Cognitive Elec-
trophysiology Data Portal (Datasets 7 through 9; oscillation frequencies:
6...16 Hz). Datasets 8 and 9 were originally the same dataset, which
contains two oscillatory components, one at 6 Hz, one at 16 Hz. In
Dataset 8 we are testing how well the component with the lower fre-
quency can be tracked (by having extracted reference information for
the lower frequency component and setting algorithm parameters such
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that this component should be evaluated; in this case frequency ranges
were set such that they only included one of the oscillation frequencies);
in Dataset 9 we are testing how well the component with the higher
frequency can be tracked (by having extracted reference information for
the higher frequency component and setting algorithm parameters such
that this component should be evaluated). Table 1 provides a summary
of the real datasets.

2.2.2. Generating reference information for real datasets

While information about the presence/absence of oscillatory activity
as well as the oscillation phase at any given time is known a priori for the
artificial datasets, such reference information is not available for the real
datasets and needs to generated. We used the BOSC algorithm (Hughes
etal. (2012)) to determine the presence of oscillatory episodes in the LFP
recordings. MATLAB code is available as Supplementary Material to
(Whitten et al., 2011). The confidence level was set to 0.95, and oscil-
latory episodes had to be at least three cycles long to be detected. The
background spectrum is estimated using the complete dataset. Since the
BOSC algorithm is wavelet-based, it requires a minimum,
frequency-dependent signal length. Some of our real datasets contained
only one-second-long recording chunks, which are too short for BOSC at
low frequencies. We therefore developed an alternative method for
obtaining the spectrum based on a windowed 512-point FFT. The win-
dow length was chosen to be about 2.5 cycles of the dominant oscillation
frequency, and a single Slepian taper was used. The background spec-
trum was obtained by stepping the window through the dataset without
overlaps, the time-resolved spectrum for detecting oscillatory activity
was obtained by sliding the window over the signal in 1 ms steps. Once
the time-resolved spectrum was computed, the algorithm followed the
same detection logic as the wavelet-based BOSC algorithm.

For obtaining the reference phase, for each detected oscillatory
episode, we found the frequency with the largest power and defined a
zero-phase 4th order bandpass filter with the passband ranging from the
next lower to the next higher analyzed frequency. Thus, when using the
FFT, the passband was about 4 Hz wide. The wavelet-based approach
uses a logarithmic frequency spacing, so the width of the passband was
frequency-dependent. The filter was applied to the signal segment cor-
responding to the oscillatory episode, and a Hilbert transform was used
to obtain the instantaneous phase. We only kept the longest continuous
phase segment with a positive derivative. Decreasing phase indicates an
artefact that sometimes occurs, primarily at the edges.

Table 1
Properties of real LFP datasets. “?” indicates that detailed information was not
available.

Dataset Species Brain area Task Oscillation
# frequency near
1 Rhesus Parietal cortex Perceptual 15Hz
monkey (LIP) decision-
making
2 Rhesus Thalamus Visospatial 12Hz
monkey attention
3 Rat Hippocampus ? 8Hz
(CA1)
4 Rat Hippocampus ? 8Hz
5 Human Visual cortex Visual 50 Hz
(ECoG) stimulation
6 Human Visual cortex Visual 40 Hz
(ECoG) stimulation
7 Human ? Virtual 6Hz
(ECoG) navigation
8 Human ? Virtual 6Hz and 16 Hz
(ECoG) navigation (reference phase
extracted for 6 Hz)
9 Human ? Virtual 6Hz and 16 Hz
(ECoG) navigation (reference phase

extracted for 16 Hz)
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2.2.3. Evaluation of the detection and prediction performance

Our goal was to come up with simple metrics for quantifying the
detection and prediction performance of the algorithms. Each time an
analysis is performed, the algorithm has to make a decision about the
presence of oscillatory activity. There are two possible outcomes:
“oscillation detected” or “no oscillation detected”. We compared this
against the reference information about whether oscillatory activity was
present at the beginning of the prediction window or not. Again, there
are two possible states: “oscillation present” or “no oscillation present”.
We defined the Detection Performance (DP; or Detection Accuracy) as
the relative frequency of the algorithm making a decision that was
consistent with the reference information (i.e., either “oscillation
detected” & “oscillation present” or “no oscillation detected” & “no
oscillation present”); i.e., it can be calculated as the sum of true positives
(TP; correct detections) and true negatives (TN; correct rejections),
divided by the total number of detection decisions (DD):

_ TP+ 1N
~ DD

DP

The two remaining combinations indicate two different types of
mistakes:

e False positives: “oscillation detected” & “no oscillation present”
e Misses: “no oscillation detected” & “oscillation present”

To quantify the prediction performance, we analyzed the phase
prediction error. Each individual phase prediction can be compared with
the reference information, given an oscillation was present. We let the
algorithms predict the phase for 800 ms. The reference phase was ob-
tained for the same amount of time, if available, or until the end of the
current oscillatory episode if it ended earlier. Since oscillatory episodes
can be multiple cycles long, we had to work with the unwrapped phase.
As a consequence, predicted phase and reference phase can be offset by
multiples of 360°. Thus, we first adjusted the predicted phase to mini-
mize the (absolute) difference at the beginning of the prediction win-
dow. The absolute phase error (as a function of time into the future) was
obtained by calculating the difference between predicted phase and
reference phase and taking the absolute value. Averaging across indi-
vidual predictions results in the expected absolute phase error. (We
averaged for each time point independently, using all available absolute
phase errors for that time point.) We defined the Prediction Perfor-
mance (or Prediction Horizon) as the time horizon, for which the ex-
pected absolute phase error stayed below a critical value. This value can
be chosen arbitrarily. We decided to go with 90°, a quarter of a cycle,
reasoning that stimulation that was more than a quarter cycle off target
would not really be considered phase-locked anymore. Fig. 3(A) shows
an example time course of the expected absolute phase error for our
algorithm for one of the artificial datasets (oscillation frequency of
14 Hz, SNR of -2 dB, short oscillatory episodes, analysis window size of
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400 ms). To provide more insight into how the expected absolute phase
error evolves over time in the case of our algorithm, we extracted two
additional critical values: for how long it stayed below 60°, and for how
long it stayed below 30°. The Prediction Performance (time horizon
below 90°) will be shown as thick solid lines for all algorithms in the
prediction performance plots in the Results section. The additional time
horizons below 60° (dashed thin red line) and below 30° (dotted thin red
line) will only be shown for our algorithm.

2.2.4. Measuring the detection delay

To measure how much time typically passes between the onset of
oscillatory activity and when it is first detected by our algorithm, we
created additional artificial LFP signals with no oscillatory activity at the
beginning (only pink noise), but oscillatory activity starting at a random
onset time (with a random phase) and then remaining present. We used
six different oscillation frequencies (4.5, 9, 14, 22, 33, and 47 Hz), the
corresponding optimal analysis windows that will be determined later in
this article (800, 400, 400, 200, 200, and 100 ms, respectively), two
different SNRs (-2 and +5 dB), and three different window step sizes (50
%, 25 %, and 10 % of the window size). Fig. 3(B) shows an example of a
signal with an oscillation frequency of 14 Hz, an SNR of -2dB, and a
window step size of 200ms (50 % of the analysis window size of
400 ms). We measured the time difference between the end of the
analysis window, when the oscillation was first detected, (shown in
green in Fig. 3(B)) and the oscillation onset time (dashed black line and
black arrow). The procedure was repeated 1000 times for each condi-
tion, and the median detection time will be reported in Results.

2.2.5. More detailed analysis of the ability to separate two frequency
components

To gain more detailed insight into our algorithm’s ability to separate
two frequency components, we created additional artificial LFP signals
with two frequency components embedded in pink noise. The two
components were either centered around 11 Hz, with possible absolute
frequency differences of 1, 2, 3, 4, or 5Hz, or centered around 22 Hz,
with possible absolute frequency differences of 1, 2, 3, 4, 5, 6, 7, 8, or
9 Hz. The SNR of the stronger component was always -2 dB, the weaker
component had an SNR of either -5 or -8 dB. We used the corresponding
optimal analysis windows that will be determined later in this article
(400 ms for the center frequency of 11 Hz, 200 ms for the center fre-
quency of 22Hz). The frequency range of interest was set to 6.5...
15.5 Hz for the center frequency of 11 Hz and to 15.5...28.5 Hz for the
center frequency of 22 Hz. We ran our algorithm on each of these cases
until it had made 1000 detections. For each of these detections we
determined whether the bandpass filter had been placed such that the
frequency of the stronger component was inside the passband of the
filter and the frequency of the weaker component was outside the
passband of the filter. If so, we called it a successful separation. How the
relative frequency of successful separations depended on the different
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S 100 ,—*—L\;mow when  the expected absolute phase error (blue)
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§ 70 | S | dicates the Prediction Performance
S g | (time horizon below 90°), the dashed
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s 40 ! 5 | rizon below 30°. (B) Detection delay.
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parameters will be reported in Results.

2.2.6. Reference algorithm 1: “AR”

The first algorithm we used as a reference for comparing the detec-
tion and prediction performance was (Chen et al. (2013)). The MATLAB
code is available here: https://github.com/transcranial/cortical-stim.
By default, the code uses a fixed analysis window length of one second.
We adjusted the code to also work with other window lengths, which
was necessary to evaluate the performance at higher oscillation fre-
quencies. The way the algorithm works poses a constraint on the length
of the analysis window: it has to be longer than 1.25 times the cycle
length at the lowest possible frequency of interest. As a consequence, we
imposed this constraint on all compared algorithms and never used
analysis window lengths shorter than this limit.

Details about how the algorithm works can be found in (Chen et al.,
2013). Briefly, the algorithm obtains an autoregressive (AR)
model-based power spectral density for the current signal segment. The
existence of a local peak in the power spectrum is interpreted as oscil-
latory activity being present (detection). An optimal frequency range
with high power concentration is used to define the passband of a
zero-phase bandpass filter. The central part of the filtered signal (an
offline optimization process determines how long this part is; see below)
is used to estimate an AR model, which is then used to predict how the
time series is expected to continue (until the end of the analysis window
and, for the same amount of time, into the prediction window). Only this
predicted part is then subjected to a Hilbert transform to obtain the
instantaneous phase and the instantaneous frequency at the end of the
analysis window (beginning of the prediction window). The predicted
phase starts with this instantaneous phase and continues to increase
linearly with this instantaneous frequency.

A number of parameters for this algorithm are selected in an offline
optimization process based on a sample of the to-be-tracked signal. For
each of our datasets, we hand-selected a representative signal segment
with clearly present oscillatory activity and subjected it to an optimi-
zation process for each analysis window length that was used for this
particular dataset.

2.2.7. Reference algorithm 2: “Rutishauser”

The second algorithm that was used as a reference is (Rutishauser
et al. (2013)). The MATLAB code is available here: https://github.
com/StimOMatic/StimOMatic. In this algorithm, the signal is sent
through a fixed zero-phase 8th order bandpass filter. We used a (total)
width of the passband of 6 Hz as in the example provided in (Rutishauser
et al. (2013)). The StimOMatic code uses a default of 10 Hz, which
would not have allowed center frequencies below 5 Hz (see below). The
center frequency has to be provided by the user. The filtered signal is
submitted to a Hilbert transform to obtain the instantaneous phase as
well as the instantaneous power. If the average power during the last
50 ms of the analysis window exceeded a fixed detection threshold
(which also has to be provided by the user), an oscillation was detected.
The frequency of the oscillation is determined by finding the time dif-
ference between successive peaks in the filtered time series. The pre-
dicted phase starts with the instantaneous phase at the end of the
analysis window and then linearly increases with the oscillation
frequency.

For all artificial datasets with fixed oscillation frequencies the
bandpass center frequency was set to the actual oscillation frequency.
For artificial datasets with varying oscillation frequencies the bandpass
center frequency was set to the center of the frequency range. For the
real datasets the center frequency was set to the location of the major
oscillation-related bump in the overall power spectrum. Since the
“Rutishauser” algorithm does not provide a recipe for selecting the
detection threshold, we ran the algorithm with 9 different individual-
ized thresholds for each dataset. We first created a histogram of the
distribution of power in the frequency band of interest across the whole
dataset. An algorithm then selected 9 different values, spanning most of
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the range of the histogram (from 2/3 of the median power to the
midpoint between the median power and the largest observed power).
Once the detection results were available for all 9 thresholds, we picked
the threshold maximizing the difference between the Detection Perfor-
mance and the false positive rate. When continuously lowering the
detection threshold, the Detection Performance initially increases, but
then tends to plateau, whereas the false positive rate starts to increase.
Our goal was to catch the sweet spot with nearly optimal Detection
Performance and low false positive rate. The results reported for the
“Rutishauser” algorithm in this paper are the ones for this particular
detection threshold, optimized for each dataset.

2.2.8. Reference algorithm 3: “Mansouri”

The third algorithm that was used as a reference is (Mansouri et al.
(2017)). MATLAB code was obtained from the authors. In contrast to the
other algorithms, the “Mansouri” algorithm does not have an oscillation
detection mechanism. We therefore cannot report a Detection Perfor-
mance. We had the algorithm always make a prediction and compared it
to a reference phase whenever available.

The algorithm uses a 20th order elliptic bandpass filter to extract the
frequency range of interest and then performs a high resolution
(0.05 Hz) FFT. The frequency with the largest amplitude is selected, and
this frequency and the associated phase are used directly for a linear
phase extrapolation. Since the algorithm does not make use of a zero-
phase filter, the filter delay should be corrected for. The authors’ code
allowed for a manual correction. We added code to automatically
determine and compensate for the filter’s phase delay at the selected
frequency.

The filter passbands were identical to the frequency ranges of interest
used with our own algorithm and picked such that, for artificial datasets
with a fixed oscillation frequency, they contained the actual frequency
and neighboring frequencies (depending on the actual oscillation fre-
quency between 6 and 16 Hz wide). For artificial datasets with varying
oscillation frequency, the frequency range of interest spanned the full
range of possible oscillation frequencies, plus neighboring frequencies
(between 19 and 29 Hz wide). For the real datasets, we obtained the
power spectrum across the whole file and made sure that the major
oscillation-related bump was fully included in the frequency range of
interest.

2.2.9. Average detection and prediction performance across analysis
window sizes

Since it is not a priori clear which analysis window size should be
used for a particular dataset, we evaluated the performance for a range
of window sizes and report the average performance. The window sizes
that were used are: 100, 200, 400, 600, and 800 ms. Whenever possible,
all of these window sizes were used with the following exceptions:

e The “AR” algorithm requires a minimum window length depending
on the lowest possible oscillation frequency (see “Reference algo-
rithm 17).

e A few of our real datasets consisted of individually recorded trials
with a length of one second. We did not use the 800 ms analysis
window for these datasets, as only 200 ms would have remained for
analyzing the predicted phase.

For a particular dataset, the same set of analysis window sizes was
always used across all evaluated algorithms.

2.2.10. Statistical analysis of the detection and prediction performance
To test whether the Detection and Prediction Performance were
significantly different across algorithms and whether they were signifi-
cantly affected by particular parameters like the oscillation frequency or
the SNR, we applied mixed-design ANOVAs, with the algorithm as the
repeated measures factor, and the parameter on the horizontal axis of a
particular plot as the between-groups factor. In case of a significant main
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effect of the algorithm, we followed up with a post-hoc test (Tukey’s
HSD test, a multiple comparison procedure controlling the family-wise
error rate) to reveal which pairwise differences were the drivers of the
main effect.

3. Results

In this section we will evaluate the oscillation detection and phase
prediction performance of our algorithm using both artificial and real
LFP datasets and make comparisons with three previously published
reference algorithms. First, we will have a look at artificial datasets with
different properties, for which the ground truth about the presence of
oscillatory activity at any given point in time and the oscillation phase is
known.

3.1. Detection and prediction performance across oscillation frequencies

The detection performance for datasets with different oscillation
frequencies is shown in Fig. 4(A). Each datapoint represents the average
over different datasets with SNRs ranging from -16 to +12 dB and both
short and long episode durations. Across the range of studied oscillation
frequencies, from 4.5-47 Hz, our algorithm (red) provided a better
detection performance than both the Rutishauser (green) and the AR
algorithm (blue). The mixed-design ANOVA (see Methods for evaluating
algorithm performance) revealed a significant main effect of the algorithm
(p = 9-107°). Tukey’s HSD test indicated two significant pairwise dif-
ferences: Our algorithm detected better than both the AR (p = 10~4) and
Rutishauser (p = 0.005) algorithms. The corresponding prediction
performance is shown in Fig. 4(B), thick solid lines. Again, across the
range of studied oscillation frequencies, our algorithm (red) provided a
better prediction performance than the AR (blue), Rutishauser (green),
and Mansouri (cyan) algorithms, with the AR algorithm showing com-
parable performance at 4.7 Hz, but then falling behind the other algo-
rithms at higher frequencies. The ANOVA indicated a significant main
effect of the algorithm (p < 107%) as well as a significant interaction
between frequency and algorithm (p < 107%). Tukey’s HSD test indi-
cated four significant differences: Our algorithm predicted better than
the AR (p = 10~*), Rutishauser (p = 10~*), and Mansouri (p = 107%)
algorithms; the Rutishauser algorithm performed better than the AR
algorithm (p = 0.026). The dashed and dotted red lines mark the time
horizons for the expected absolute phase error staying below 60° and
30°, respectively, to provide additional insight into how the phase error
evolves over time (only shown for our algorithm).
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3.2. Detection and prediction performance across signal-to-noise ratios

The detection performance for datasets with different SNRs is shown
in Fig. 5(A). Each datapoint represents the average over different
datasets with frequencies ranging from 4.5-47 Hz and all long episode
durations (as we had only created short episode duration datasets with
two different SNRs in the range that was also observed in the real
datasets; see below). Our algorithm (red) showed a small disadvantage
at the lowest studied SNR level (-16 dB), but performed better than the
AR (blue) and Rutishauser algorithms (green) for the remaining SNR
levels (-9 to +12 dB). When analyzing the SNRs of our real LFP datasets,
we typically found values between -10 and 0dB. Our algorithm is
therefore expected to show a solid detection performance in the most
relevant SNR range for practical applications. According to the ANOVA,
there was a significant main effect of SNR (p < 1079), a significant main
effect of the algorithm (p < 107°), as well as a significant interaction
(p = 107%). The post-hoc test revealed two significant pairwise differ-
ences: Our algorithm detected better than both the AR (p = 10~*) and
Rutishauser (p = 10~*) algorithms. The corresponding prediction per-
formance is shown in Fig. 5(B). Across the range of studied SNR levels,
our algorithm (red) showed a better prediction performance than the
Rutishauser (green), Mansouri (cyan), and AR (blue) algorithms, with
the Rutishauser algorithm showing comparable performance at -16 dB,
but then starting to fall behind. The saturation of the red curve at 800 ms
is a consequence of having limited the phase prediction to 800 ms into
the future. The ANOVA indicated significant main effects of both SNR
(p < 107%) and the algorithm (p < 107%). According to Tukey’s HSD test,
there were four significant pairwise differences: Our algorithm predicted
better than the AR (p = 10~*), Rutishauser (p = 10~*), and Mansouri
(p = 10~*) algorithms; the Mansouri algorithm performed better than
the AR algorithm (p = 0.022).

3.3. Effect of oscillatory episode duration on detection and prediction
performance

Since we had artificial datasets with both long-lasting oscillatory
activity (several seconds) as well as shorter oscillatory episodes (3-12
cycles), we were able to analyze the detection and prediction perfor-
mance for each of these situations separately. Fig. 6(A) shows the
detection performance. Each datapoint represents the average over
different datasets with frequencies ranging from 4.5-47 Hz and SNRs of
either -9 or -2dB. Our algorithm (red) showed a small disadvantage
compared to the Rutishauser algorithm (green) for short oscillatory
episodes. One should keep in mind, however, that we ran the Rutish-
auser algorithm with different threshold levels and then selected an
optimized one post-hoc. It is unlikely that such an optimal performance
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Fig. 4. Artificial datasets with different oscillation frequencies. (A) Detection Performance. (B) Prediction Performance (time horizon below 90°, solid lines). The red
dashed and dotted lines additionally mark the time horizons below 60° and 30°, respectively (only for our proposed algorithm). For reference, two cycles are shown

as a black dashed line.
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could be achieved in a real-world situation, where a human operator
would have to pick a particular absolute detection threshold. Our al-
gorithm does not have this issue, as detection thresholds are determined
automatically. For long oscillatory episodes, our algorithm (red) per-
formed better than both the AR (blue) and Rutishauser (green) algo-
rithms. The detection performance should not be directly compared
between short and long episodes, as the datasets were not matched for
the proportion of time when oscillatory activity was present. The sig-
nificant main effect of episode duration indicated by the ANOVA is
therefore not particularly meaningful, but there was also a significant
main effect of the algorithm (p = 107°) as well as a significant inter-
action (p = 2:10~*). The post-hoc test indicated three pairwise signifi-
cant differences: Our algorithm detected better than both the AR (p =
10~*) and Rutishauser (p = 0.023) algorithms; the Rutishauser algo-
rithm performed better than the AR algorithm (p = 0.005). The corre-
sponding prediction performance is shown in Fig. 6(B). Here, our
algorithm (red) showed better prediction performance than the refer-
ence algorithms for both short- and long-lasting oscillatory episodes.
According to the ANOVA, there were significant main effects of both
episode duration (p = 5-10~*) and algorithm (p < 107%) as well as a
significant interaction (p = 0.005). Tukey’s HSD test indicated three
significant pairwise differences: Our algorithm predicted better than the
AR (p = 2-10~%), Rutishauser (p = 2-10~*), and Mansouri (p = 2:10%)
algorithms.

3.4. Effects of non-stationarities in the oscillation frequency on detection
and prediction performance

To study how the algorithms behave in the presence of non-

stationarities in the oscillation frequency, we analyzed datasets with a
fixed oscillation frequency throughout (14 Hz in the case of the first
analysis, 33 Hz in the second, an SNR of either —9 or —2 dB, and all short
episodes), datasets where the oscillation frequency could change from
oscillatory episode to oscillatory episode (between 10 and 20 Hz in the
first analysis, and between 20 and 40 Hz in the second, an SNR of either
—9 or —2dB, and all short episodes), and datasets where the oscillation
frequency was allowed to drift within oscillatory episodes (with the
same specifications). We also analyzed the situation of two different
oscillation frequencies being present at the same time (within the same
frequency limits) and asked how well the algorithms could track the
stronger of the two (with an SNR of —2 dB; the weaker component had
an SNR of —9 dB).

First, we confined the frequencies to be in the range 10...20 Hz. The
detection performance is shown in Fig. 7(A). Across the board, the
Rutishauser algorithm (green) showed a slightly better detection per-
formance than our algorithm (red), but one should again keep in mind
that this is the optimized performance based on a post-hoc selection of
the detection threshold. Our algorithm performed much better than the
AR algorithm (blue). The ANOVA indicated a significant main effect of
the algorithm (p = 0.002). The post-hoc test revealed two significant
pairwise differences: Both our algorithm (p = 0.006) and the Rutish-
auser algorithm (p = 0.003) detected better than the AR algorithm. The
corresponding prediction performance is shown in Fig. 7(B). Our algo-
rithm (red) and the Rutishauser algorithm (green) showed a similar
performance when the oscillation frequency was completely stationary
and when the frequency was allowed to drift within episodes. Our al-
gorithm showed a clear advantage when the oscillation frequency could
change across episodes and when two different oscillation frequencies
were present at the same time. The advantage results from the passband
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of the bandpass filter being adjusted automatically based on the
currently present signal in our algorithm, compared to the fixed band-
pass filter in the Rutishauser algorithm. According to the ANOVA, there
were significant main effects of both the non-stationarity condition (p =
0.027) and the algorithm (p = 10°) as well as a significant interaction
(p = 10~*). Tukey’s HSD test indicated five significant pairwise differ-
ences: Our algorithm predicted better than the AR (p = 2:107%),
Rutishauser (p = 0.007), and Mansouri (p = 2-10~*) algorithms; the
Rutishauser algorithm performed better than both the AR (p = 3-10~%)
and the Mansouri (p = 4-10~*) algorithms.

Next, we assessed the performance in a higher frequency band. In
this case the frequencies were confined to be in the range 20...40 Hz.
The detection performance is shown in Fig. 8(A). Similar to what we had
seen in Fig. 7(A), the Rutishauser algorithm (green) provided a slightly
better detection performance than our algorithm (red), which, in turn,
performed much better than the AR algorithm (blue). According to the
ANOVA, there were significant main effects of both the non-stationarity
condition (p = 0.033) and the algorithm (p < 107%) as well as a signif-
icant interaction (p = 0.007). The post-hoc test indicated three signifi-
cant pairwise differences: The Rutishauser algorithm detected better
than both our algorithm (p = 0.008) and the AR algorithm (p = 2-10~);
our algorithm performed better than the AR algorithm (p =2:10~%). The
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prediction performance can be seen in Fig. 8(B). In this case, the
Rutishauser algorithm (green) provided the best performance when the
oscillation frequency was completely stationary. It was, however, pro-
vided with exact knowledge of the oscillation frequency such that the
bandpass filter was centered perfectly on the oscillation frequency. In a
real-life situation, the center frequency would have to be set by a human
operator, and it is unlikely that this optimal performance could be
achieved. In the remaining cases (oscillation frequency can change
across episodes or within episodes, two oscillation frequencies being
present at the same time), our algorithm (red) provided a clear advan-
tage over all reference algorithms. The ANOVA indicated a significant
main effect of the algorithm (p = 5-107%) as well as a significant
interaction between the non-stationarity condition and the algorithm
(p = 0.010). Tukey’s HSD test revealed four significant pairwise dif-
ferences: Our algorithm predicted better than both the AR (p = 2:10~%)
and the Mansouri (p = 4-10~*) algorithms; likewise, the Rutishauser
algorithm also performed better than both the AR (p = 5-10~*) and the
Mansouri (p = 0.003) algorithms.

3.5. Detection and prediction performance with real LFP datasets

The detection performance across nine real LFP datasets is shown in
Fig. 9(A). The Rutishauser algorithm (green) provided the best detection
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Fig. 8. Artificial datasets with oscillation frequencies between 20 and 40 Hz and either fixed oscillation frequencies, frequencies that can change across oscil-
latory episodes, frequencies that can drift within episodes, or two oscillatory components with different frequencies. (A) Detection Performance. (B)Prediction

Performance. For reference, two cycles are shown as a black dashed line.
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Fig. 9. Real LFP datasets. (A) Detection Performance. (B) Prediction Performance.

performance for seven of these, with an average detection performance
of 65 %, followed by our algorithm (red), with an average detection
performance of 62 %, and the AR algorithm (blue), with an average
detection performance of 60 %. Again, it should be kept in mind that the
reported detection performance of the Rutishauser algorithm is the
consequence of a post-hoc selection of an optimized detection threshold
for each combination of dataset and analysis window size and therefore
most likely better than what could be achieved in a real experiment. The
ANOVA indicated significant main effects of both the dataset (p < 107)
and the algorithm (p = 5-10~*) as well as a significant interaction (p =
0.027). The post-hoc test revealed two significant pairwise differences:
The Rutishauser algorithm detected better than both our algorithm (p =
0.034) and the AR algorithm (p = 3-10~*). The prediction performance
is shown in Fig. 9(B), plotted as number of cycles rather than time in ms,
due to the large variability of oscillation frequencies across datasets. Our
algorithm (red) provided the best performance for six of the nine data-
sets, the Rutishauser algorithm (green) performed better for the
remaining three. Two of the datasets (5 and 6) stand out, because the
Rutishauser algorithm was the only one that was able to make accurate
phase predictions beyond one cycle. Both datasets were human ECoG
recordings from visual cortex with high oscillation frequencies
(40-50Hz). We will return to this point below. According to the
ANOVA, there were significant main effects of both the dataset
(p < 107°) and the algorithm (p < 107°) as well as a significant inter-
action (p < 107°%). Tukey’s HSD test indicated five significant pairwise
differences: Our algorithm predicted better than the AR (p = 2:107%),
Rutishauser (p = 0.029), and Mansouri (p = 2-10~*) algorithms; the
Rutishauser algorithm performed better than both the AR (p = 2:10~%)
and the Mansouri (p = 9-10~*) algorithms.

To gain more insight into why the Rutishauser algorithm had a
substantially better prediction performance in the case of Datasets 5 and
6, we performed additional analyses. First, we looked at the two com-
ponents of the detection performance separately. While our algorithm
had an average true positive rate (correct detections) of about 6%
(fraction of analyzed signal segments that were marked by the offline
BOSC analysis as containing oscillatory activity and also marked by our
algorithm as an oscillation being present), it was only about 1% in the
case of the Rutishauser algorithm. Rutishauser’s detection approach was
therefore much more conservative (a consequence of finding an optimal
detection threshold for each combination of dataset and analysis win-
dow size, while also trying to minimize false positives) compared to our
algorithm, which also made it miss more signal segments that were
marked by BOSC as oscillatory (14 % of all segments) compared to our
algorithm (8%). Detecting fewer segments means that these will contain,
on average, more oscillatory power. This was confirmed by comparing
the average power time courses in the frequency band of interest, as
calculated by the Rutishauser algorithm, between Rutishauser’s true
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positives and our true positives. The average power across time was
between 37 % and 125 % higher for Rutishauser’s true positives
compared to ours. As a consequence of the better SNR, the parameters of
the oscillation can be estimated more accurately. The difference in the
prediction horizons was clearly reflected in how accurately the phase of
the oscillation at the end of the analysis window could be estimated.
While the average expected absolute phase error at the end of the
analysis window across window sizes was not too different in the case of
Dataset 5 (77° vs. 82°), it was substantially smaller (49°) for one
particular analysis window size (600 ms), which was the only window
size where the Rutishauser algorithm had a higher prediction perfor-
mance than our algorithm, driving the substantially larger average
shown in Fig. 9(B). In the case of Dataset 6, the average expected ab-
solute phase error at the end of the analysis window across window sizes
was substantially lower for the Rutishauser algorithm (53° vs. 80°),
providing it with a higher prediction performance across window sizes.
In summary, Rutishauser’s better prediction performance in the case of
Datasets 5 and 6 resulted from a more conservative detection approach,
limiting the detections to stronger oscillations, which could be analyzed
more accurately, resulting in a better phase prediction.

3.6. Recommendations for picking a suitable analysis window

The results we have reported so far were an average across a number
of studied analysis window sizes. When using our algorithm in a real-
world scenario, one would have to select a particular analysis window
size to work with. To provide some guidance for this selection process,
we analyzed which window size provided the best detection and pre-
diction performance for each dataset, focusing on the, probably more
realistic, artificial datasets with shorter oscillatory episodes and the real
datasets. In case multiple window sizes provided an identical perfor-
mance, we used the average of these window sizes. Fig. 10 shows the
optimal window sizes as a function of the oscillation frequency, for
detection in blue, for prediction in red. The dashed lines are robust fits of
the forrnj% + b, with a and b being free parameters. This diagram suggests

that the optimal analysis window size for detection and prediction is not
identical: the window should be slightly larger for an optimal prediction
compared to optimal detection. One therefore has to find a compromise
between best detection and best prediction. Second, the analysis win-
dow clearly should be longer for lower oscillation frequencies, and
shorter for higher oscillation frequencies. The green solid line illustrates
a possible mapping between oscillation frequencies and window sizes,
when only considering the window sizes that were used in this study:

e An analysis window size of 800 ms could be used for frequencies up
to 7 Hz,

¢ a window size of 400 ms for higher frequencies up to 15 Hz,

e a window size of 200 ms for higher frequencies up to 40 Hz,
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Fig. 10. Finding an optimal analysis window size based on the window sizes
providing best Detection (blue dots) and Prediction (red dots) Performance for
each real dataset and artificial dataset with short oscillatory episodes. The
dashed lines are robust nonlinear regressions. The optimal analysis window for
prediction is slightly larger than the one for detection, and one therefore has to
find a compromise. The green solid line indicates a suggested mapping between
oscillation frequency and analysis window (for the set of window sizes used in
this study).

e and a windows size of 100 ms for frequencies above 40 Hz.

As can be seen from the diagram, a slightly longer analysis window is
probably advisable for high oscillation frequencies. We have run some
experiments with window sizes of 120 and 140 ms, focusing on the
datasets with the highest oscillation frequencies, and have seen some
advantages over using a 100 ms-long window (data not shown).

3.7. Evaluation of the detection delay

To measure how much time typically passes between the onset of
oscillatory activity and when it is first detected by our algorithm, we
created additional artificial LFP signals with different oscillation fre-
quencies and SNRs and random oscillation onset times, and used the
recommended window sizes from the previous section in combination
with different window step sizes (by how much the analysis window is
advanced; details can be found in Measuring the detection delay). We
determined the median time difference between the end of the analysis
window, when the oscillation was first detected, and the oscillation
onset time (see Fig. 3(B)). When measured in number of oscillation cy-
cles, the detection delay turned out not to change systematically with
oscillation frequency. The SNR and window step size, however, had a
clear impact on the detection delay. On average, the recommended
analysis window was 4.8 cycles long. For an SNR of -2 dB, a value in the
range covered by our real LFP signals, the oscillation was typically
detected 4.1 (+ 0.2; standard error) cycles after its onset when the
window step size was 50 %, 3.4 (£ 0.1) cycles when the window step
size was 25 %, and 3.1 (4 0.1) cycles for 10 %. Thus, although we did not
see any major effects on the overall detection and prediction accuracy
when increasing the window overlap (reducing the window step size
from 50 % to 25 %; data not shown), the detection delay actually can be
improved. The detection is also faster when the signal is stronger: with
an SNR of +5 dB, the detection delays were 3.1 (+ 0.1) cycles, 2.5 (+
0.1) cycles, and 2.1 (£ 0.1) cycles (for a window step size of 50 %, 25 %,
and 10 %, respectively).

3.8. More in-depth evaluation of the ability to separate two frequency
components

We had seen above that our algorithm made better phase predictions
than the comparison algorithms in the presence of two frequency com-
ponents in the signal. This is due to its ability to adjust the bandpass
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filter based on the current signal properties. To be able to exclude a
weaker frequency component, it either needs to remain below the
detection threshold, or it needs to be separated from the group of
neighboring frequencies comprising the stronger component by at least
one frequency bin, whose power does not exceed the detection
threshold. To gain more detailed insight into when the algorithm is able
so successfully separate two components, we created additional artificial
LFP signals with two embedded frequency components centered around
different frequencies, with different frequency differences, and with
different SNRs (details can be found in More detailed analysis of the ability
to separate two frequency components). We again used the recommended
window sizes and, each time our algorithm detected the presence of
oscillatory activity, evaluated whether the bandpass filter had been
placed such that the frequency of the stronger component was inside the
passband of the filter and the frequency of the weaker component was
outside the passband, which we called a successful separation. The
relative frequency of successful separations is plotted in Fig. 11. It
largely was an approximately linear function of the relative frequency
difference of the two components (difference between the two fre-
quencies, divided by the center frequency), but also affected by the
absolute frequency difference/center frequency and the relative
strength of the two components. The separability improved with
increasing relative frequency difference and was also better for the
larger center frequency, equivalent to a larger absolute frequency dif-
ference, and the more different the SNRs of the two components were.
All datapoints were captured well by a function of the form

p(successful separation) = 1.95-(Af,, — 0.065) + 0.01-Af - (ASNR — 1.8)

limited to the range 0...1 (i.e., negative values have to be converted into
zero, values larger than one into one), with Af,,; being the relative fre-
quency difference, Afy,s being the absolute frequency difference (in Hz),
and ASNR being the difference between the SNR of each component (in
dB), which is represented by the lines in the plot. This suggests that the
algorithm can start separating frequencies when the relative frequency
difference exceeds 6.5 % and when the difference in SNR exceeds 1.8 dB.
A relative frequency difference of 25 % results in a chance of a successful
frequency separation of about 50 %. Close to perfect separation can be
achieved when the relative frequency difference exceeds at least 40 %.
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Fig. 11. Ability to separate two frequency components as a function of the
relative frequency difference (main horizontal axis), the center frequency (CF;
11 vs. 22 Hz), and the difference in SNR between the two components (3 vs.
6 dB). The cyan auxiliary horizontal axis shows the corresponding absolute
frequency differences for each CF.
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4. Discussion
4.1. User-friendliness

Whereas previously proposed algorithms were typically difficult to
use in a real-world experimental scenario, our algorithm is straightfor-
ward to use and does not require the user to specify any parameters they
might not be familiar with. For example, the algorithm proposed by
Chen et al. (Chen et al. (2013)), referred to as the “AR” algorithm in this
study, requires the user to first record a sample of the to-be-tracked
oscillatory activity and to submit it to a potentially lengthy offline
optimization process, before the parameters for tracking the oscillations
online are available and the closed-loop stimulation experiment can be
started. In our evaluation, using Chen et al.’s MATLAB code, we have
seen runtimes of up to half an hour on current Intel Core and Xeon
processors. In contrast, our algorithm does not require the user to
perform any preparatory steps. Oscillatory activity can be detected and
tracked right away. Similarly, the algorithm proposed by Rutishauser
et al. (Rutishauser et al. (2013)), referred to as “Rutishauser” algorithm
in this study, requires the user to specify both the oscillation frequency
and an absolute detection threshold, which the user probably doesn’t
know going into an experiment. In contrast, our algorithm requires the
user only to specify a range of frequencies, within which oscillations
should be tracked, and a statistical confidence level for the detection of
oscillatory activity, which we didn’t have to change for any of our re-
sults. We just left it at its default setting. The actual
frequency-dependent detection threshold is then determined automati-
cally by the algorithm, as is the current filter passband for tracking the
ongoing oscillatory activity.

4.2. Tracking oscillations with changes in frequency and multiple
oscillatory components

In contrast to the Rutishauser algorithm, which uses a fixed bandpass
filter, our algorithm chooses the passband of the analysis filter dynam-
ically based on short-term spectral analysis. This allows it to track os-
cillations with non-stationarities in the oscillation frequency and to
selectively process one oscillatory component, while filtering out a
weaker neighboring component. A corresponding advantage in the
prediction horizon was clearly seen when analyzing artificial datasets
with changes in oscillation frequency across oscillatory episodes or with
multiple embedded oscillatory components.

4.3. Difficulty predicting the phase of high-frequency oscillations in
human ECoG recordings

As mentioned in Results, we noticed that the Rutishauser algorithm
was the only one that had a prediction horizon of more than one cycle
when applying it to two human ECoG recordings from visual cortex with
high oscillation frequencies (40...50 Hz). Our additional analyses indi-
cated that this was primarily the consequence of the Rutishauser algo-
rithm taking a very conservative detection approach, limiting the
detection to stronger oscillations, which could be analyzed more accu-
rately, leading to a better phase prediction, but also made it miss more
oscillatory episodes. Another contribution is likely made by one specific
feature that sets the Rutishauser algorithm apart from all other algo-
rithms, including ours: Due to using a fixed bandpass filter, the
Rutishauser algorithm can track the power in a narrow frequency band
of interest as a function of time. It can therefore make a decision about
the presence of oscillatory activity based on the situation at the end of
the analysis window. If oscillatory activity is present there, it is quite
likely to continue after the analysis window. In contrast, the other
methods primarily use information around the center of the analysis
window: the AR algorithm is explicitly designed to base its time series
prediction on a signal segment that is centered in the analysis window,
our algorithm uses spectral information that is obtained through the
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application of a taper that puts the largest weight on the center of the
analysis window. These methods are therefore more likely to make a
prediction based on oscillatory activity that was still strong near the
center of the window, but might be about to end, or to miss oscillatory
episodes that are just starting towards the end of the analysis window.
When comparing the time courses of the power in the frequency band of
interest, we noticed that, in the case of 600 ms-long analysis windows,
the power peaked at a substantially later point in time for Rutishauser’s
true positives compared to our true positives. We have some ideas how
this problem could be addressed in our algorithm by not scheduling a
stimulation when there are indications that the phase prediction is likely
to be inaccurate or that the oscillatory episode is about to end, and we
plan to implement them in a future, further improved version of our
algorithm. Another possible avenue would be to further optimize the
choice of the bandpass filter, which could help reduce edge artefacts that
are caused by the filtering and therefore potentially improve the phase
prediction.

5. Conclusion

We have proposed a user-friendly algorithm for the detection of
oscillatory activity in LFP signals and for predicting its phase, as needed
for closed-loop, phase-locked stimulation experiments. We have seen
that the algorithm is able to provide a robust oscillation detection and
phase prediction performance over a wide range of oscillation condi-
tions, which often either rivals or exceeds the performance of the
reference algorithms. Only in rare cases it is not competitive, but it
provides a clear advantage when oscillation frequencies are non-
stationary or when different oscillation components have to be sepa-
rated. All of this could be achieved with only having to specify a range of
frequencies, within which oscillatory activity is tracked. The detection
confidence level was set to the same default value across all analyzed
datasets, and detection thresholds and filter passbands were chosen
automatically by our algorithm.

5.1. Future plans

We are currently in the process of implementing the algorithm for
real-time use on embedded hardware, and we are planning to share this
design with the research community. How the algorithm can be opti-
mized for real-time implementation and the specifics of mapping it onto
particular target hardware will be reported on separately.
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