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Abstract—Modern technologies produce a deluge of complicated data. In neuroscience, for
example, minimally invasive experimental methods can take recordings of large populations of
neurons at high resolution under a multitude of conditions. Such data arrays possess non-trivial
interdependencies along each of their axes. Insights into these data arrays may lay the
foundations of advanced treatments for nervous system disorders. The potential impacts of such
data, however, will not be fully realized unless the techniques for analyzing them keep pace.
Specifically, there is an urgent, growing need for methods for estimating the low-dimensional
structure and geometry in big and noisy data arrays. This article reviews a framework for
identifying complicated underlying patterns in such data and also recounts the key role that the
Department of Energy Computational Sciences Graduate Fellowship played in setting the stage
for this work to be done by the author.

B IT is a great privilege to have the opportunity
to describe the impact that the Department of
Energy (DOE) Computational Sciences Graduate
Fellowship (CSGF) has had on my career. The
fellowship has several distinguishing features,
but I will highlight two features that have non-
trivially influenced me during my formative years
as a graduate student and beyond.

The first feature is the national laboratory
practicum experience. Fellows are required to
complete a practicum at a DOE national lab.
The CSGF program generously funded me to
complete three practica: one at Lawrence Berke-
ley National Laboratory and two at Sandia Na-
tional Laboratories in Livermore, California. My
experiences at Sandia, in particular, played a

IT Professional

Published by the IEEE Computer Society

central role in introducing me to problems that I
continue to study today. I owe a lot to my practica
supervisor, Dr. Tamara Kolda. We worked on two
variations on tensor decompositions; the latter one
on nonnegative decompositions for sparse count
data was published in the SIAM Journal of Matrix
Analysis and Applications [1]. Tensor decom-
positions can be employed as a dimensionality
reduction technique and are often computed as
solutions to optimization problems. As I will de-
scribe in more detail in this article, major themes
of my research interests and efforts continue to
revolve around dimensionality reduction and opti-
mization algorithms. Moreover, under Dr. Kolda’s
guidance (and high standards!), I acquired scien-
tific computing and software development skills
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that are uncommon in a PhD statistics program.
It was also through my collaborations with Dr.
Kolda that I developed a taste for designing
algorithms that not only behave well on paper but
also admit practical implementations. Developing
these skills under the supervision of a leading
computational scientist and mathematician at a
national lab was especially timely with a data
science revolution just on the horizon.

The second feature is the CSGF’s emphasis on
building a community of computational scientists.
For example, the CSGF holds an annual pro-
gram review bringing together fellows and alumni
working across an extremely wide spectrum of
disciplines. The meeting is a unique melting pot
experience with poster presentations by junior
fellows and oral presentations by outgoing senior
fellows that are aimed for the non-specialist.
The program also regularly hosts gatherings for
fellows and alumni at larger meetings, e.g., SIAM
CS&E. Through these efforts, the CSGF program
has created an environment where computational
scientists can build and develop connections and
collaborations across disciplines. In my case, I
owe two such collaborations to the CSGF pro-
gram. | am currently working with a fellow alum
of the program and professor of biomedical engi-
neering at Duke University, Dr. Amanda Randles,
to develop machine learning algorithms to better
characterize a poorly understood type of coronary
artery disease so that more effective treatment
plans can be devised. I have also worked with
Dr. Mary Ann Leung, who is not only an alum
of the program but was also its program manager
during my tenure as a fellow, to develop an
outreach program for high school students that
is connected to my research. I will defer details
on this outreach and its CSGF influences to the
end of this article. I first describe the research I
alluded to earlier.

The Data Revolution

We are in the midst of a data revolution;
data are being collected at not only increasingly
higher volumes and speed, but also at previ-
ously unimaginable resolution. For example, min-
imally invasive experimental methods have en-
abled recordings of large populations of neurons
at high resolution [2]. As another example, recent
technological innovations have made it feasible

to extract and amplify minuscule quantities of
RNA, enabling the quantification of genome-wide
transcriptional activity at the level of a single
cell [3]. In the former case, such detailed physio-
logical measurements hold the promise of under-
standing how information is represented, stored,
and modified in cortical networks. In the latter
case, the ability to finely discriminate between
cell types based on their transcriptional profiles
could yield insights that lay the foundations of
advanced treatments for genetic disorders. In
many cases, such high resolution measurements
are being acquired under multiple combinations
of different experimental conditions leading to
data that consist of multiway arrays.

Multiway arrays, also referred to as tensors,
are the generalization of matrices, which are two-
way arrays, to arrays that store values that are
indexed along three or more ways or modes. A
3-way tensor X € R*/*K 5 a data cube that
contains /JK elements x;;;, where the indices
1,7, and k run from 1 to I, J, and K respectively.
For example, a data cube X may consist of neural
activity recordings that are indexed three ways
where ;5 is the activity level of the ith neuron
during the jth time frame of the kth experimental
condition.

A major aim of my research is to develop
tools for analyzing multiway data. In this article,
I focus on the special case of two-way arrays
or data matrices as an example for notational
simplicity and for expositional clarity. In this con-
text, my research seeks to answer the following
basic question: Does a data matrix have a latent
or intrinsic organization or geometry along its
rows and columns? Sometimes the organization
that we seek is precisely defined: Do the rows
and columns of a data matrix form well-defined
clusters? Other times the organization that we
seek is more nuanced: Is there a pair of lower
dimensional representations where the rows and
columns of a data matrix lie on similarity con-
tinua? I have two interrelated lines of work in
this major focus on multiway data: co-clustering
and co-manifold learning.

Co-Clustering

The simplest version of the co-clustering
problem is biclustering. Biclustering aims to si-
multaneously group observations (rows) and fea-
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(a) Raw Data

(b) Convex Co-clustering Estimate

Figure 1: Heatmaps of the expression of 500 genes (rows) across 56 tissue samples (columns). Figure 1a
depicts the clustered dendrogram applied to the raw data; Figure 1b depicts the smooth estimate
computed by convex co-clustering. Tissue samples belong to one of four subgroups: Normal (o),
Carcinoid (x), Colon (*), and Small Cell (+). Used, with permission, from Chi et al. [4]

tures (columns) in a data matrix and is a principal
tool for visualization and exploratory analysis in
a wide array of applications.

Figure 1a illustrates an example of a clustered
dendrogram, a widely used method for bicluster-
ing in bioinformatics, applied to expression data
from a lung cancer study. The clustered dendro-
gram constructs similarity trees, or dendrograms,
on the rows and columns of the data matrix and
displays these dendrograms along with a heatmap
of the data matrix with its rows and columns

permuted with respect to the dendrograms.

This luncer cancer data matrix X € R590%56

consists of the expression levels of 500 genes
across 56 tissue samples, a subset of the data
studied in Bhattacharjee et al. [5]. The matrix ele-
ment x;; quantifies the expression level or degree
of activity of the ith gene in the jth individual. In
Figure la darker colors in the heatmaps indicate
greater expression levels. Tissue samples belong
to one of four subgroups: Normal, Carcinoid,
Colon, or Small Cell. The latter three subgroups
are distinct subtypes of lung cancer. Cancer is
the result of cellular dysfunction where some
genes are more active than they should be while
other genes are not as active as they should be.
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While a cancer, such as lung cancer, may appear
homogenous macroscopically at the clinical level,
it often consists of several distinct subtypes mi-
croscopically at the gene level. A fundamental
task of cancer research is to identify subtypes
of cancerous tumors that have similar expression
profiles as well as the genes that characterize each
of the subtypes. Identifying these patterns is the
first step towards developing personalized treat-
ment strategies targeted to a patient’s particular
cancer subtype.

We see in Figure la that the clustered den-
drogram reveals a ‘“checkerboard” biclustering
pattern in the expression data which seems to
reasonably recover the ground truth subtypes of
tissues and identify groups of genes with similar
expression levels that characterize the subgroups
of tissues. Nonetheless, there are two non-trivial
issues with the simple strategy. First, the clus-
tered dendrogram clusters the rows and columns
separately. We will discuss shortly why clustering
rows and columns jointly is better, even though
it may be computationally more expensive, than
doing them separately. Second, as an algorithmic
procedure, the clustered dendrogram is not sta-
ble in the sense that small perturbations in the
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data can lead to large changes in the clustering
assignments. Robustness or insensitivity to per-
turbations in the data is a critically missing prop-
erty of existing biclustering methods as stability
in this sense is a necessary building block for
reproducible research.

First issue: To develop some intuition on why
using the column clustering structure affects the
row clustering structure, consider the following
thought experiment. Imagine trying to cluster row
vectors x; € R100900 for 4 =1, ..., 100 drawn
from the following two-component mixture of
Gaussians, namely

x; & %N(u,az’l) + %N(V,JQI),
where N (p, oI) denotes a multivariate Gaussian
distribution with mean vector p and covariance
matrix ol. We are attempting to solve an inverse
problem using only 100 observations to estimate
200,000 parameters in the mean vectors p €
R100.000 and v € R'9%900 This is a hopelessly
underdetermined clustering problem due to the
glaringly small number of observations compared
to the number of features. One can view this
problem as a nonlinear version of seeking a least
squares solution to a system 100 linear equations
in 200,000 unknowns. Suppose, however, that
we were told that p; = py and v; = 1y
for j = 1,...,50,000, and p; = po and
v; = 1y for 7 = 50,001,...,100,000. In other
words, the features are clustered into two groups.
So, we only need to estimate four parameters:
41, o, V1, and v5. Now we have an abundance of
observations compared to the number of effective
features. One can view this latter problem as
a nonlinear version of seeking a least squares
solution to a system 100 linear equations in 4
unknowns. Thus, even if we lack a clear-cut
clustering structure in the features, this exercise
suggests that leveraging similarity structure along
the columns can expedite identifying similarity
structure along the rows, and vice versa. Another
way to view jointly estimating structure in a
matrix is as introducing regularization along the
rows to improve estimation of column structure,
and vice versa.

Second issue: To address the lack of stability
guarantees in existing biclustering methods, I in-
troduced a new convex formulation of the biclus-

tering problem [4], as well as a generalization of
this convex formulation to tensors [6]. The convex
formulation not only produces co-clusterings with
the desired stability properties but also admits
practical computation via linear time and space
complexity algorithms.

Figure 1b shows the solution to the convex
optimization problem, which exhibits a visually
sharper row and column clustering structure. In
fact, row and column clusters can be automati-
cally extracted by inspecting the pairwise differ-
ences of the rows and columns in the solution
matrix. We first review how to cast the problem
of clustering the columns of a matrix as a con-
vex optimization problem before showing how to
extend the formulation to co-clustering.

Convex Clustering

Following up on the initial proposal by Pelck-
mans et al. [7], several recent works have shown
that solving a sequence of convex optimization
problems can recover tree organizations [8], [9],
[10]. Given m points Xi,...,X, in R”, we
seek cluster centers (centroids) u; in R™ attached
to point x; that minimize the convex objective
function

1 m
By(w) = 5 3l — w3
=1

+9) wijllu — w2,

i<j

(D

where v is a nonnegative tuning parameter, w;; is
a nonnegative weight that quantifies how similar
x; and x; are, and u is the vector in R™" that
follows from stacking the vectors uy, ..., u,, on
top of each other. The sum of squares data-fidelity
term in (1) quantifies how well the centroids u;
approximate the data x;, while the sum of norms
regularization term penalizes the differences be-
tween pairs of centroids u; and u;. The regu-
larization term incentivizes sparsity in the pair-
wise differences of centroid pairs. The objective
function £, (u) is the energy of a configuration
of centroids u for a given relative weighting
between data-fidelity and model complexity as
quantified by the regularization term.

For each value of =y, the objective function
E.(u) in (1) possesses a unique minimizer u(7y),
whose m subvectors in R™ we denote by u;(7y)

IT Professional



(6) = 1070.10

(f) = 100.23

Figure 2: Snapshots of the convex clustering solution path u(y) of a point cloud X, ...
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parameter y increases. The path (blue lines) recovers a multiscale organization of the point cloud.

[10]. The tuning parameter -y trades off the rel-
ative emphasis between data fit and differences
between pairs of centroids. When v = 0, the
minimum is attained when u; = Xx;, namely
when each point occupies a unique cluster. As
~ increases, the regularization term encourages
cluster centroids to fuse together. Two points x;
and x; with u; = u; are said to belong to the
same cluster. For sufficiently large ~, the u; fuse
into a single cluster, namely u; = X, where X is
the average of the data x; [10]. Moreover, the
unique global minimizer u(y) is a continuous
function of the tuning parameter vy [4]; we refer
to the continuous paths wu,(7y), traced out from
each x; to X as -y varies, collectively as the
solution path. Thus, by computing u;(y) for a
sequence of < over an appropriately sampled
range of values, we hope to recover a sensible
tree organization of the data. Figure 2 shows
snapshots of the solution path u(~y) computed on
a point cloud consisting of two interlocking “half
moons.” Each half moon represents a cluster. The
blue solid lines in Figures 2b to 2h show a linear
interpolation of centroids u;(y) computed over a
grid of 100 ~ values. We see that there are only
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four unique centroid values u;(10°??) indicating
that when v = 10°-23 the data points have fused
into four clusters. There are only two unique
centroid values of u;(10°-57) indicating that when
v = 10°57 the data points have fused into two
clusters. Finally, all the centroid values u;(10°7)
are identical indicating that when v = 10%% the
data points have fused into a single cluster. We
see that the solution path u(y) recovers a tree
organization where the two main branches are
subtrees that hierarchically organize the points in
each half moon cluster.

The example shown in Figure 2 illustrates
that remarkably, solving a sequence of convex
optimization problems can recover a hierachical
tree or multiscale organization of a point cloud
- a problem often posed as a discrete optimiza-
tion problem. From a computational perspective,
solving a convex optimization problem is often
preferable to solving a discrete one. Many con-
vex optimization problems, including the convex
clustering optimization problem, can be solved
with algorithms that can scale to large problems.
By contrast, the majority of discrete optimiza-
tion problems are inherently combinatorial and
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require searching through potential solution sets
that grow exponentially fast as the problem size
grows. Moreover, formulating this discrete orga-
nization task as a family of convex optimization
problems produces solutions with desirable sta-
bility properties and also generalizes easily to the
co-clustering task. A natural question is: Does the
convex clustering solution path always return a
tree organization of a point cloud? The answer
to this question lies in the choice of the weights
w;;. Indeed, it is possible to choose the w;; so
that the solution path is not a tree. Fortunately,
one has to make deliberate effort to engineer such
pathological weights and simple and intuitive
data-adaptive choices are guaranteed to ensure the
recovery of a tree organization that respects the
geometry of a point cloud [11].

Convex Co-Clustering

Extending convex clustering to convex co-
clustering is straightforward. To bicluster a matrix
X € R™*", we seek the unique global minimizer
to the following convex objective function

B,(U) = X - UJ; o
+7 [ 2w (U) + Q0w (UT)]

where Qw (U) = >, wi;[|[U; — U2, and
U.; (U;.) denotes the ith column (row) of the
matrix U. The energy function incorporates a
regularization term that includes both a penalty
on the pairwise differences of columns Qw (U)
and rows Q. (UT). Thus, the rows and columns
of U are simultaneously shrunk towards each
other as the parameter v increases. The unique
global minimizer, which we refer to as the Con-
vex Co-clustering (CoCo) estimator, exhibits a
checkerboard structure as seen in Figure 1b. The
biclustering obtained by the CoCo estimator is
fundamentally different from methods like the
clustered dendrogram, which independently clus-
ters the rows and columns. By coupling row
and column clustering, our formulation explicitly
seeks a solution with a “checkerboard” structure.

Figure 3 shows snapshots of the CoCo so-
lution path U() on the lung data set, as the
parameter 7y takes on an increasing sequence of
values. The path captures biclustering organiza-
tions of the data over a wide range of scales and
resolutions from under-smoothed estimates of the

mean structure (small ), where each element of
the data matrix X is assigned its own bicluster,
to over-smoothed estimates (large <), where all
elements of the data matrix X are assigned to a
single bicluster. In between these extremes, we
see rows and columns ‘“fusing” together as -y
increases. Thus we have visual confirmation that
minimizing (2) over a range of y yields a convex
formulation of the clustered dendrogram.

The CoCo estimator has several notable prop-
erties. First, the CoCo estimator is jointly contin-
uous in all input parameters: v, row and column
weights w;; and w;;, and data X [4], [6] and is 1-
Lipschitz in the data X [6]. This latter property
warrants further explanation. Suppose we com-
pute the CoCo estimator U(X) using the data X
and compute the CoCo estimator U(X + AX)
on the perturbed data X + AX. Then

|UX) - UK+ AX) [ < [AX e, 3)

The above inequality tells us that the CoCo
estimator is stable in the sense that a small
perturbation AX in the data X is guaranteed
to not lead to disproportionately wild variations
in the output. In fact, the change in the CoCo
estimator cannot exceed the change in the input
data.

Second, for a D-way tensor with D > 3
modes or ways, the solution to the optimization
problem will recover a “co-clusterable” under-
lying tensor, in the sense that the underlying
tensor has a ‘“checkerbox” pattern under some
permutation or reshuffling of its elements, with
high probability even if the number of clusters
along each mode is diverging [6]. The remarkable
part of this result is a “Blessings of Dimensional-
ity” phenomenon where the prediction error still
vanishes with high probability even if the number
of clusters grows at the rate o(n(P=2/(P=1))
where n is the number of observations along each
mode, or almost as fast as new observations are
observed along each mode [6]. This result gives
us confidence in applying the method in practice,
as the rationale for co-clustering is a prior belief
that there are relatively fewer co-clusters than
there are observations.

Finally, both the computational and storage
complexity of the CoCo estimator is linear in
the size of the data using the commonly used
data-adaptive and theoretically justified sparse
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Figure 3: Snapshots of the CoCo solution path of the lung cancer data set as the parameter 7y increases.
The path captures a dynamic range in model resoluion between under-smoothed estimates of the mean
structure (small ), where each element of the matrix is assigned its own bicluster, to over-smoothed
estimates (large ), where all elements of the matrix are assigned to a single common bicluster. Used,

with permission, from Chi et al. [4]

Gaussian kernel weights [11] in conjunction with
a projected gradient method applied to the La-
grangian dual of the objective function given
in Equation (2). Thus, doubling the size of the
input data doubles the runtime and storage re-
quirements. Moreover, continuity of the CoCo
estimator U(+y) in -y can be leveraged to expedite
computation through warm starts, namely using
the solution U(7y) as the initial guess for itera-
tively computing U(7’) where 7' is slightly larger
or smaller than ~.

Co-Manifold Learning

In some cases, seeking a co-clustering struc-
ture is overly simplistic; instead of a distinct and
well-defined row and column grouping, the orga-
nizational structure along the rows and columns
may be more continuous. Thus, our goal may be
to identify new row and column representations
that can reveal such structure — in other words,
we seek to perform dimensionality reduction
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on the rows and columns of the data matrix.
There are two main challenges in performing
such dimensionality reductions: (i) For modern
data matrices, measurements along the rows or
columns reside in a high dimensional ambient
spaces, and (ii) measurements along the rows
and columns often exhibit non-trivial correlation
structure. Tools exist for dealing with the first
challenge since many high-dimensional datasets
encountered in engineering and science can be
approximated reliably by a lower dimensional
representation. Indeed, manifold learning has
proven to be effective as a nonlinear dimension
reduction technique in many scientific domains
where very high-dimensional measurements are
recorded, such as the examples in neuroscience
and bioinformatics described at the start of this
article. With some reflection, this is not surprising
since these high-dimensional data are generated
from natural processes that are subject to physical
constraints and are consequently intrinsically low-
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dimensional. More concretely, conservation laws
in physics represent lower-dimensional manifolds
in the higher-dimensional state space of possible
solutions. Returning to our two challenges, less
progress has been made to deal with the second
challenge. Naively applying existing nonlinear
dimension reduction techniques separately along
the modes of a tensor fails to take advantage of
the rich correlation structure in many data arrays
of interest. Consequently, I have been developing
methods that leverage the correlations among the
modes of a tensor to simultaneously learn coupled
low-dimensional representations of each mode.

To illustrate the utility of learning a coupled
set of representations, consider a dimensionality
reduction problem in cheminformatics where we
seek to identify groups of compounds with sim-
ilar bioactivity towards a therapeutically-relevant
target. Pharmaceutical companies may use this
information to screen tens of thousands of lead
compounds for desired activity and safety pro-
files. The resulting low-dimensional representa-
tions of compounds can highlight which novel
compounds are most similar to known reference
compounds. Simultaneously, the resulting low-
dimensional representations of bioactivity assays
can reveal redundancies in assays, providing feed-
back on how to streamline future studies. Fig-
ure 4a shows an example of raw cheminformatics
data, where the rows are compounds and the
columns are compound features, e.g., binding
affinity to different proteins. Figure 4b shows
the cheminformatics data matrix after reordering
the rows and columns based on a novel multi-
scale distance that I developed with collabora-
tors [12]. There are clearly two major groups
of columns, while the rows exhibit more of a
continuum of similarities than distinct groups.
The two panels on the bottom of Figure 4 show
the low-dimensional representations on rows and
columns of the cheminformatics matrix recov-
ered by co-manifold learning. The co-manifold
learning framework based on the novel multiscale
distance identifies a pair of two-dimensional co-
ordinate systems that reveals unambiguous geo-
metric relationships among the rows and among
the columns. The compounds (rows) have a clear
ordering along a 1-dimensional curve (the color
coding of the row points in Figure 4c matches

the row ordering in Figure 4b). The features
(columns), meanwhile, have a clear clustered
structure (the color coding of the column points
in Figure 4d matches the column ordering in
Figure 4b).

Interested readers are referred to Mishne et
al. [12] for details, but I will briefly sketch how
these coupled row and column low-dimensional
representations are computed. There is a close
connection between my work in co-manifold
learning and co-clustering. The convex co-
clustering estimator is the key building block
for the co-manifold learning framework as it
provides a way to simultaneously smooth rows
and columns to different varying degrees. In other
words, it provides a way to create a coupled pair
of tree or multiscale organizations of the rows and
columns of a data matrix.

The main work is to compute smooth esti-
mates of the data matrix X along both the rows
and columns, which is the minimizer U(~,,~.)
of the objective function

1
E(U;,7e) = 511X = Ul
+7rJr(U) +'7¢JC(U)7

where 7, and 7. are nonnegative tuning param-
eters, and J,.(U) and J.(U) are regularization
terms that impose smoothness in U along its
rows and columns similar to (dy and () in
Equation (2). Varying the parameters 7y, and -,
trades off how well the estimate U agrees with X
against how smooth U is along its rows and col-
umn. Smaller v, and -y, enforce less smoothness
on rows and columns of the data matrix.
Smooth estimates U(~,,7.) are computed
over a grid of values for ~,. and 7. by computing
a sequence of CoCo estimators. Next a distance
d,(i,j) between the ith and jth rows is computed
by taking a weighted average over the pair-
wise difference over different smoothed estimates

U(¥r, )
dr(i7j> = Z \/WAU(%’,'YC%

YrsVe
Aij (77'7 ’Yc) == HUz (77'7 f}/c) - Uj~ (77'7 f}/c) H2
(&)
Greater weight is given to the smoothed estimates

corresponding to larger parameters 7y, and -.;
these estimates are more heavily smoothed. Thus,

4
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Figure 4: (a) Unordered cheminformatics matrix, darker colors indicate greater affinity. (b) Chemin-
formatics matrix with rows and columns ordered according to their low-dimensional representations
discovered by co-manifold learning. (c, d) Low-dimensional representations of the rows and columns
of the cheminformatics matrix that are recovered by co-manifold learning.

the distance places progressively less weight on
discrepancies at lower levels of smoothing. If the
ith and jth rows are similar at all smoothing
levels, they will be close in the weighted distance
given in (5). If they are different at all but the
most smoothed scale, they will still be close in
the weighted distance given in (5). Only if the
two rows are different at the most smoothed
scales will the two rows be apart in the weighted
distance given in (5). Thus, small perturbations
in the rows that would be amplified if a standard
Euclidean distance were used are washed out,
whereas only truly material differences in pairs
of rows will persist in the multiscale distance.

The distance d.(i,j) between the ith and
jth columns is computed analogously using the
same collection of smoothed estimates U(7,., 7.).
Thus, the multiscale distances d,.(i,7) and
d.(i,7) both take into account the correlation
structure among the rows and columns. The
final lower dimensional representations can be
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obtained by applying standard spectral embed-
ding techniques on the row and column distances
respectively.

BROADER IMPACTS

Much of the work presented in this article
is part of my NSF CAREER award. As part of
this award, I also a run a year-long outreach
program, Data Scientists in Training (DST), for
high school students including those from under-
represented minorities in STEM. The goal of the
DST program is to introduce students to careers
in data science through hands-on experience with
projects as well as mentoring and career guid-
ance.

I owe much of the design and conceptualiza-
tion of the DST program to guidance and input
from Dr. Mary Ann Leung, currently Founder
and President of The Sustainable Horizons In-
stitute. While there were many elements to its
execution as I will describe below, the common
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theme and rationale behind these elements was to
implement structures and collaborative activities
to build community in a similar spirit to the
CSGF among these high school students, who
share a common curiosity in data science but
come from different backgrounds. My goal is to
create a supportive environment that would lower
barriers to entry into this important and exciting
field of data science and also nurture connections
with peers and mentors who could help students
buffer challenges that they might encounter while
pursuing careers in data science.

As part of the DST program, I designed
and taught a week-long bootcamp curricula on
statistical concepts, coding practices, and data
analysis. Students also interviewed data scientists
in industry (Netflix, Google, Microsoft, SAS,
HEB), DOE national labs (Lawrence Livermore
and Pacific Northwest), and academia (NC Cen-
tral, Johns Hopkins, Harvard) and presented what
they learned about the ways this diverse group of
individuals arrived at their careers.

Beyond the summer bootcamp, the DST pro-
gram includes mentoring, communication, and
teaching opportunities for undergraduate and PhD
statistics students who serve as mentors to their
juniors. The program culminates each year with
data analysis presentations at the North Car-
olina Junior Science and Humanities Symposium
(NCJHS) for the high school participants, and
the NC State Undergraduate Research Sympo-
sium for the undergraduate participants. The 2020
NCIJSHS poster competition took place virtually
in March due to COVID-19. One team worked on
a year-long project using tensor decompositions
that T developed with Dr. Kolda [1] to perform
exploratory analysis of crime incident report data
obtained from the Raleigh Police Department.
The team employed the computed tensor factors
to identify four clusters of assault patterns in
Raleigh that had distinct spatio-temporal patterns
and received an honorable mention at the 2020
NCIJSHS poster competition.

I aim to expose students to the research com-
ponent of my award through the technical pro-
gramming of DST. Although the work presented
in this article is built upon mathematics that is
beyond the background of the participants in the
DST program, the basic ideas can be readily
grasped by a curious student. As illustrated in

the figures of this article, much of my research
is highly visual and intuitive. Appreciating how
optimization problems can be designed and en-
gineered to have solutions with desired structure
can also be readily grasped. My goal is to spark
an interest in the power of data science tools
to solve problems in science and engineering
and also to give participants guidance on future
choices in their education if this is something
that they would like to pursue. I have had many
wonderful mentors and role models, but if I had
to credit a single person for setting me on my
own career path, it would be my high school ge-
ometry teacher, Dr. Michael Keyton. Dr. Keyton
shared his delight in elegant proofs with all of
his students and helped develop my interests and
tastes early on. My hope for the DST program is
to create a similar environment of discovery and
growth for future data scientists.
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