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Abstract—Modern technologies produce a deluge of complicated data. In neuroscience, for

example, minimally invasive experimental methods can take recordings of large populations of

neurons at high resolution under a multitude of conditions. Such data arrays possess non-trivial

interdependencies along each of their axes. Insights into these data arrays may lay the

foundations of advanced treatments for nervous system disorders. The potential impacts of such

data, however, will not be fully realized unless the techniques for analyzing them keep pace.

Specifically, there is an urgent, growing need for methods for estimating the low-dimensional

structure and geometry in big and noisy data arrays. This article reviews a framework for

identifying complicated underlying patterns in such data and also recounts the key role that the

Department of Energy Computational Sciences Graduate Fellowship played in setting the stage

for this work to be done by the author.

IT is a great privilege to have the opportunity

to describe the impact that the Department of

Energy (DOE) Computational Sciences Graduate

Fellowship (CSGF) has had on my career. The

fellowship has several distinguishing features,

but I will highlight two features that have non-

trivially influenced me during my formative years

as a graduate student and beyond.

The first feature is the national laboratory

practicum experience. Fellows are required to

complete a practicum at a DOE national lab.

The CSGF program generously funded me to

complete three practica: one at Lawrence Berke-

ley National Laboratory and two at Sandia Na-

tional Laboratories in Livermore, California. My

experiences at Sandia, in particular, played a

central role in introducing me to problems that I

continue to study today. I owe a lot to my practica

supervisor, Dr. Tamara Kolda. We worked on two

variations on tensor decompositions; the latter one

on nonnegative decompositions for sparse count

data was published in the SIAM Journal of Matrix

Analysis and Applications [1]. Tensor decom-

positions can be employed as a dimensionality

reduction technique and are often computed as

solutions to optimization problems. As I will de-

scribe in more detail in this article, major themes

of my research interests and efforts continue to

revolve around dimensionality reduction and opti-

mization algorithms. Moreover, under Dr. Kolda’s

guidance (and high standards!), I acquired scien-

tific computing and software development skills
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that are uncommon in a PhD statistics program.

It was also through my collaborations with Dr.

Kolda that I developed a taste for designing

algorithms that not only behave well on paper but

also admit practical implementations. Developing

these skills under the supervision of a leading

computational scientist and mathematician at a

national lab was especially timely with a data

science revolution just on the horizon.

The second feature is the CSGF’s emphasis on

building a community of computational scientists.

For example, the CSGF holds an annual pro-

gram review bringing together fellows and alumni

working across an extremely wide spectrum of

disciplines. The meeting is a unique melting pot

experience with poster presentations by junior

fellows and oral presentations by outgoing senior

fellows that are aimed for the non-specialist.

The program also regularly hosts gatherings for

fellows and alumni at larger meetings, e.g., SIAM

CS&E. Through these efforts, the CSGF program

has created an environment where computational

scientists can build and develop connections and

collaborations across disciplines. In my case, I

owe two such collaborations to the CSGF pro-

gram. I am currently working with a fellow alum

of the program and professor of biomedical engi-

neering at Duke University, Dr. Amanda Randles,

to develop machine learning algorithms to better

characterize a poorly understood type of coronary

artery disease so that more effective treatment

plans can be devised. I have also worked with

Dr. Mary Ann Leung, who is not only an alum

of the program but was also its program manager

during my tenure as a fellow, to develop an

outreach program for high school students that

is connected to my research. I will defer details

on this outreach and its CSGF influences to the

end of this article. I first describe the research I

alluded to earlier.

The Data Revolution
We are in the midst of a data revolution;

data are being collected at not only increasingly

higher volumes and speed, but also at previ-

ously unimaginable resolution. For example, min-

imally invasive experimental methods have en-

abled recordings of large populations of neurons

at high resolution [2]. As another example, recent

technological innovations have made it feasible

to extract and amplify minuscule quantities of

RNA, enabling the quantification of genome-wide

transcriptional activity at the level of a single

cell [3]. In the former case, such detailed physio-

logical measurements hold the promise of under-

standing how information is represented, stored,

and modified in cortical networks. In the latter

case, the ability to finely discriminate between

cell types based on their transcriptional profiles

could yield insights that lay the foundations of

advanced treatments for genetic disorders. In

many cases, such high resolution measurements

are being acquired under multiple combinations

of different experimental conditions leading to

data that consist of multiway arrays.

Multiway arrays, also referred to as tensors,

are the generalization of matrices, which are two-

way arrays, to arrays that store values that are

indexed along three or more ways or modes. A

3-way tensor X ∈ R
I×J×K is a data cube that

contains IJK elements xijk where the indices

i, j, and k run from 1 to I, J, and K respectively.

For example, a data cube X may consist of neural

activity recordings that are indexed three ways

where xijk is the activity level of the ith neuron

during the jth time frame of the kth experimental

condition.

A major aim of my research is to develop

tools for analyzing multiway data. In this article,

I focus on the special case of two-way arrays

or data matrices as an example for notational

simplicity and for expositional clarity. In this con-

text, my research seeks to answer the following

basic question: Does a data matrix have a latent

or intrinsic organization or geometry along its

rows and columns? Sometimes the organization

that we seek is precisely defined: Do the rows

and columns of a data matrix form well-defined

clusters? Other times the organization that we

seek is more nuanced: Is there a pair of lower

dimensional representations where the rows and

columns of a data matrix lie on similarity con-

tinua? I have two interrelated lines of work in

this major focus on multiway data: co-clustering

and co-manifold learning.

Co-Clustering
The simplest version of the co-clustering

problem is biclustering. Biclustering aims to si-

multaneously group observations (rows) and fea-
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(a) Raw Data

xxxxxxxxxxxxxxxxxxx+x++++*************+ooooooooooooooooo

(b) Convex Co-clustering Estimate

Figure 1: Heatmaps of the expression of 500 genes (rows) across 56 tissue samples (columns). Figure 1a

depicts the clustered dendrogram applied to the raw data; Figure 1b depicts the smooth estimate

computed by convex co-clustering. Tissue samples belong to one of four subgroups: Normal (o),

Carcinoid (x), Colon (*), and Small Cell (+). Used, with permission, from Chi et al. [4]

tures (columns) in a data matrix and is a principal

tool for visualization and exploratory analysis in

a wide array of applications.

Figure 1a illustrates an example of a clustered

dendrogram, a widely used method for bicluster-

ing in bioinformatics, applied to expression data

from a lung cancer study. The clustered dendro-

gram constructs similarity trees, or dendrograms,

on the rows and columns of the data matrix and

displays these dendrograms along with a heatmap

of the data matrix with its rows and columns

permuted with respect to the dendrograms.

This luncer cancer data matrix X ∈ R
500×56

consists of the expression levels of 500 genes

across 56 tissue samples, a subset of the data

studied in Bhattacharjee et al. [5]. The matrix ele-

ment xij quantifies the expression level or degree

of activity of the ith gene in the jth individual. In

Figure 1a darker colors in the heatmaps indicate

greater expression levels. Tissue samples belong

to one of four subgroups: Normal, Carcinoid,

Colon, or Small Cell. The latter three subgroups

are distinct subtypes of lung cancer. Cancer is

the result of cellular dysfunction where some

genes are more active than they should be while

other genes are not as active as they should be.

While a cancer, such as lung cancer, may appear

homogenous macroscopically at the clinical level,

it often consists of several distinct subtypes mi-

croscopically at the gene level. A fundamental

task of cancer research is to identify subtypes

of cancerous tumors that have similar expression

profiles as well as the genes that characterize each

of the subtypes. Identifying these patterns is the

first step towards developing personalized treat-

ment strategies targeted to a patient’s particular

cancer subtype.

We see in Figure 1a that the clustered den-

drogram reveals a “checkerboard” biclustering

pattern in the expression data which seems to

reasonably recover the ground truth subtypes of

tissues and identify groups of genes with similar

expression levels that characterize the subgroups

of tissues. Nonetheless, there are two non-trivial

issues with the simple strategy. First, the clus-

tered dendrogram clusters the rows and columns

separately. We will discuss shortly why clustering

rows and columns jointly is better, even though

it may be computationally more expensive, than

doing them separately. Second, as an algorithmic

procedure, the clustered dendrogram is not sta-

ble in the sense that small perturbations in the
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data can lead to large changes in the clustering

assignments. Robustness or insensitivity to per-

turbations in the data is a critically missing prop-

erty of existing biclustering methods as stability

in this sense is a necessary building block for

reproducible research.

First issue: To develop some intuition on why

using the column clustering structure affects the

row clustering structure, consider the following

thought experiment. Imagine trying to cluster row

vectors xi ∈ R
100,000 for i = 1, . . . , 100 drawn

from the following two-component mixture of

Gaussians, namely

xi
iid∼ 1

2
N(µ, σ2

I) +
1

2
N(ν, σ2

I),

where N(µ, σI) denotes a multivariate Gaussian

distribution with mean vector µ and covariance

matrix σI. We are attempting to solve an inverse

problem using only 100 observations to estimate

200,000 parameters in the mean vectors µ ∈
R

100,000 and ν ∈ R
100,000. This is a hopelessly

underdetermined clustering problem due to the

glaringly small number of observations compared

to the number of features. One can view this

problem as a nonlinear version of seeking a least

squares solution to a system 100 linear equations

in 200,000 unknowns. Suppose, however, that

we were told that µj = µ1 and νj = ν1
for j = 1, . . . , 50, 000, and µj = µ2 and

νj = ν2 for j = 50, 001, . . . , 100, 000. In other

words, the features are clustered into two groups.

So, we only need to estimate four parameters:

µ1, µ2, ν1, and ν2. Now we have an abundance of

observations compared to the number of effective

features. One can view this latter problem as

a nonlinear version of seeking a least squares

solution to a system 100 linear equations in 4

unknowns. Thus, even if we lack a clear-cut

clustering structure in the features, this exercise

suggests that leveraging similarity structure along

the columns can expedite identifying similarity

structure along the rows, and vice versa. Another

way to view jointly estimating structure in a

matrix is as introducing regularization along the

rows to improve estimation of column structure,

and vice versa.

Second issue: To address the lack of stability

guarantees in existing biclustering methods, I in-

troduced a new convex formulation of the biclus-

tering problem [4], as well as a generalization of

this convex formulation to tensors [6]. The convex

formulation not only produces co-clusterings with

the desired stability properties but also admits

practical computation via linear time and space

complexity algorithms.

Figure 1b shows the solution to the convex

optimization problem, which exhibits a visually

sharper row and column clustering structure. In

fact, row and column clusters can be automati-

cally extracted by inspecting the pairwise differ-

ences of the rows and columns in the solution

matrix. We first review how to cast the problem

of clustering the columns of a matrix as a con-

vex optimization problem before showing how to

extend the formulation to co-clustering.

Convex Clustering

Following up on the initial proposal by Pelck-

mans et al. [7], several recent works have shown

that solving a sequence of convex optimization

problems can recover tree organizations [8], [9],

[10]. Given m points x1, . . . ,xm in R
n, we

seek cluster centers (centroids) ui in R
n attached

to point xi that minimize the convex objective

function

Eγ(u) =
1

2

m
∑

i=1

‖xi − ui‖22

+ γ
∑

i<j

wij‖ui − uj‖2,
(1)

where γ is a nonnegative tuning parameter, wij is

a nonnegative weight that quantifies how similar

xi and xj are, and u is the vector in R
mn that

follows from stacking the vectors u1, . . . ,um on

top of each other. The sum of squares data-fidelity

term in (1) quantifies how well the centroids ui

approximate the data xi, while the sum of norms

regularization term penalizes the differences be-

tween pairs of centroids ui and uj . The regu-

larization term incentivizes sparsity in the pair-

wise differences of centroid pairs. The objective

function Eγ(u) is the energy of a configuration

of centroids u for a given relative weighting γ

between data-fidelity and model complexity as

quantified by the regularization term.

For each value of γ, the objective function

Eγ(u) in (1) possesses a unique minimizer u(γ),
whose m subvectors in R

n we denote by ui(γ)
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(a) γ = 0 (b) γ = 10
−1.43 (c) γ = 10

−1.10 (d) γ = 10
−0.77

(e) γ = 10
−0.10 (f) γ = 10

0.23 (g) γ = 10
0.57 (h) γ = 10

0.90

Figure 2: Snapshots of the convex clustering solution path u(γ) of a point cloud x1, . . . ,xm as the

parameter γ increases. The path (blue lines) recovers a multiscale organization of the point cloud.

[10]. The tuning parameter γ trades off the rel-

ative emphasis between data fit and differences

between pairs of centroids. When γ = 0, the

minimum is attained when ui = xi, namely

when each point occupies a unique cluster. As

γ increases, the regularization term encourages

cluster centroids to fuse together. Two points xi

and xj with ui = uj are said to belong to the

same cluster. For sufficiently large γ, the ui fuse

into a single cluster, namely ui = x̄, where x̄ is

the average of the data xi [10]. Moreover, the

unique global minimizer u(γ) is a continuous

function of the tuning parameter γ [4]; we refer

to the continuous paths ui(γ), traced out from

each xi to x̄ as γ varies, collectively as the

solution path. Thus, by computing ui(γ) for a

sequence of γ over an appropriately sampled

range of values, we hope to recover a sensible

tree organization of the data. Figure 2 shows

snapshots of the solution path u(γ) computed on

a point cloud consisting of two interlocking “half

moons.” Each half moon represents a cluster. The

blue solid lines in Figures 2b to 2h show a linear

interpolation of centroids ui(γ) computed over a

grid of 100 γ values. We see that there are only

four unique centroid values ui(10
0.23) indicating

that when γ = 100.23 the data points have fused

into four clusters. There are only two unique

centroid values of ui(10
0.57) indicating that when

γ = 100.57 the data points have fused into two

clusters. Finally, all the centroid values ui(10
0.90)

are identical indicating that when γ = 100.90 the

data points have fused into a single cluster. We

see that the solution path u(γ) recovers a tree

organization where the two main branches are

subtrees that hierarchically organize the points in

each half moon cluster.

The example shown in Figure 2 illustrates

that remarkably, solving a sequence of convex

optimization problems can recover a hierachical

tree or multiscale organization of a point cloud

- a problem often posed as a discrete optimiza-

tion problem. From a computational perspective,

solving a convex optimization problem is often

preferable to solving a discrete one. Many con-

vex optimization problems, including the convex

clustering optimization problem, can be solved

with algorithms that can scale to large problems.

By contrast, the majority of discrete optimiza-

tion problems are inherently combinatorial and
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require searching through potential solution sets

that grow exponentially fast as the problem size

grows. Moreover, formulating this discrete orga-

nization task as a family of convex optimization

problems produces solutions with desirable sta-

bility properties and also generalizes easily to the

co-clustering task. A natural question is: Does the

convex clustering solution path always return a

tree organization of a point cloud? The answer

to this question lies in the choice of the weights

wij . Indeed, it is possible to choose the wij so

that the solution path is not a tree. Fortunately,

one has to make deliberate effort to engineer such

pathological weights and simple and intuitive

data-adaptive choices are guaranteed to ensure the

recovery of a tree organization that respects the

geometry of a point cloud [11].

Convex Co-Clustering

Extending convex clustering to convex co-

clustering is straightforward. To bicluster a matrix

X ∈ R
m×n, we seek the unique global minimizer

to the following convex objective function

Eγ(U) =
1

2
‖X−U‖2F

+ γ
[

ΩW(U) + Ω
W̃
(UT)

]

,

(2)

where ΩW(U) =
∑

i<j wij‖U·i − U·j‖2, and

U·i (Ui·) denotes the ith column (row) of the

matrix U. The energy function incorporates a

regularization term that includes both a penalty

on the pairwise differences of columns ΩW(U)
and rows Ω

W̃
(UT). Thus, the rows and columns

of U are simultaneously shrunk towards each

other as the parameter γ increases. The unique

global minimizer, which we refer to as the Con-

vex Co-clustering (CoCo) estimator, exhibits a

checkerboard structure as seen in Figure 1b. The

biclustering obtained by the CoCo estimator is

fundamentally different from methods like the

clustered dendrogram, which independently clus-

ters the rows and columns. By coupling row

and column clustering, our formulation explicitly

seeks a solution with a “checkerboard” structure.

Figure 3 shows snapshots of the CoCo so-

lution path U(γ) on the lung data set, as the

parameter γ takes on an increasing sequence of

values. The path captures biclustering organiza-

tions of the data over a wide range of scales and

resolutions from under-smoothed estimates of the

mean structure (small γ), where each element of

the data matrix X is assigned its own bicluster,

to over-smoothed estimates (large γ), where all

elements of the data matrix X are assigned to a

single bicluster. In between these extremes, we

see rows and columns “fusing” together as γ

increases. Thus we have visual confirmation that

minimizing (2) over a range of γ yields a convex

formulation of the clustered dendrogram.

The CoCo estimator has several notable prop-

erties. First, the CoCo estimator is jointly contin-

uous in all input parameters: γ, row and column

weights wij and w̃ij , and data X [4], [6] and is 1-

Lipschitz in the data X [6]. This latter property

warrants further explanation. Suppose we com-

pute the CoCo estimator U(X) using the data X

and compute the CoCo estimator U(X + ∆X)
on the perturbed data X+∆X. Then

‖U(X)−U(X+∆X)‖F ≤ ‖∆X‖F. (3)

The above inequality tells us that the CoCo

estimator is stable in the sense that a small

perturbation ∆X in the data X is guaranteed

to not lead to disproportionately wild variations

in the output. In fact, the change in the CoCo

estimator cannot exceed the change in the input

data.

Second, for a D-way tensor with D ≥ 3
modes or ways, the solution to the optimization

problem will recover a “co-clusterable” under-

lying tensor, in the sense that the underlying

tensor has a “checkerbox” pattern under some

permutation or reshuffling of its elements, with

high probability even if the number of clusters

along each mode is diverging [6]. The remarkable

part of this result is a “Blessings of Dimensional-

ity” phenomenon where the prediction error still

vanishes with high probability even if the number

of clusters grows at the rate o(n(D−2)/(D−1)),
where n is the number of observations along each

mode, or almost as fast as new observations are

observed along each mode [6]. This result gives

us confidence in applying the method in practice,

as the rationale for co-clustering is a prior belief

that there are relatively fewer co-clusters than

there are observations.

Finally, both the computational and storage

complexity of the CoCo estimator is linear in

the size of the data using the commonly used

data-adaptive and theoretically justified sparse
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(a) γ = 0 (b) γ = 10
1.45 (c) γ = 10

1.79 (d) γ = 10
2.01

(e) γ = 10
2.24 (f) γ = 10

2.35 (g) γ = 10
3.03 (h) γ = 10

3.14

Figure 3: Snapshots of the CoCo solution path of the lung cancer data set as the parameter γ increases.

The path captures a dynamic range in model resoluion between under-smoothed estimates of the mean

structure (small γ), where each element of the matrix is assigned its own bicluster, to over-smoothed

estimates (large γ), where all elements of the matrix are assigned to a single common bicluster. Used,

with permission, from Chi et al. [4]

Gaussian kernel weights [11] in conjunction with

a projected gradient method applied to the La-

grangian dual of the objective function given

in Equation (2). Thus, doubling the size of the

input data doubles the runtime and storage re-

quirements. Moreover, continuity of the CoCo

estimator U(γ) in γ can be leveraged to expedite

computation through warm starts, namely using

the solution U(γ) as the initial guess for itera-

tively computing U(γ′) where γ′ is slightly larger

or smaller than γ.

Co-Manifold Learning
In some cases, seeking a co-clustering struc-

ture is overly simplistic; instead of a distinct and

well-defined row and column grouping, the orga-

nizational structure along the rows and columns

may be more continuous. Thus, our goal may be

to identify new row and column representations

that can reveal such structure – in other words,

we seek to perform dimensionality reduction

on the rows and columns of the data matrix.

There are two main challenges in performing

such dimensionality reductions: (i) For modern

data matrices, measurements along the rows or

columns reside in a high dimensional ambient

spaces, and (ii) measurements along the rows

and columns often exhibit non-trivial correlation

structure. Tools exist for dealing with the first

challenge since many high-dimensional datasets

encountered in engineering and science can be

approximated reliably by a lower dimensional

representation. Indeed, manifold learning has

proven to be effective as a nonlinear dimension

reduction technique in many scientific domains

where very high-dimensional measurements are

recorded, such as the examples in neuroscience

and bioinformatics described at the start of this

article. With some reflection, this is not surprising

since these high-dimensional data are generated

from natural processes that are subject to physical

constraints and are consequently intrinsically low-
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dimensional. More concretely, conservation laws

in physics represent lower-dimensional manifolds

in the higher-dimensional state space of possible

solutions. Returning to our two challenges, less

progress has been made to deal with the second

challenge. Naively applying existing nonlinear

dimension reduction techniques separately along

the modes of a tensor fails to take advantage of

the rich correlation structure in many data arrays

of interest. Consequently, I have been developing

methods that leverage the correlations among the

modes of a tensor to simultaneously learn coupled

low-dimensional representations of each mode.

To illustrate the utility of learning a coupled

set of representations, consider a dimensionality

reduction problem in cheminformatics where we

seek to identify groups of compounds with sim-

ilar bioactivity towards a therapeutically-relevant

target. Pharmaceutical companies may use this

information to screen tens of thousands of lead

compounds for desired activity and safety pro-

files. The resulting low-dimensional representa-

tions of compounds can highlight which novel

compounds are most similar to known reference

compounds. Simultaneously, the resulting low-

dimensional representations of bioactivity assays

can reveal redundancies in assays, providing feed-

back on how to streamline future studies. Fig-

ure 4a shows an example of raw cheminformatics

data, where the rows are compounds and the

columns are compound features, e.g., binding

affinity to different proteins. Figure 4b shows

the cheminformatics data matrix after reordering

the rows and columns based on a novel multi-

scale distance that I developed with collabora-

tors [12]. There are clearly two major groups

of columns, while the rows exhibit more of a

continuum of similarities than distinct groups.

The two panels on the bottom of Figure 4 show

the low-dimensional representations on rows and

columns of the cheminformatics matrix recov-

ered by co-manifold learning. The co-manifold

learning framework based on the novel multiscale

distance identifies a pair of two-dimensional co-

ordinate systems that reveals unambiguous geo-

metric relationships among the rows and among

the columns. The compounds (rows) have a clear

ordering along a 1-dimensional curve (the color

coding of the row points in Figure 4c matches

the row ordering in Figure 4b). The features

(columns), meanwhile, have a clear clustered

structure (the color coding of the column points

in Figure 4d matches the column ordering in

Figure 4b).

Interested readers are referred to Mishne et

al. [12] for details, but I will briefly sketch how

these coupled row and column low-dimensional

representations are computed. There is a close

connection between my work in co-manifold

learning and co-clustering. The convex co-

clustering estimator is the key building block

for the co-manifold learning framework as it

provides a way to simultaneously smooth rows

and columns to different varying degrees. In other

words, it provides a way to create a coupled pair

of tree or multiscale organizations of the rows and

columns of a data matrix.

The main work is to compute smooth esti-

mates of the data matrix X along both the rows

and columns, which is the minimizer U(γr, γc)
of the objective function

E(U; γr, γc) =
1

2
‖X−U‖2F

+γrJr(U) + γcJc(U),
(4)

where γr and γc are nonnegative tuning param-

eters, and Jr(U) and Jc(U) are regularization

terms that impose smoothness in U along its

rows and columns similar to ΩW and Ω
W̃

in

Equation (2). Varying the parameters γr and γc
trades off how well the estimate U agrees with X

against how smooth U is along its rows and col-

umn. Smaller γr and γc enforce less smoothness

on rows and columns of the data matrix.

Smooth estimates U(γr, γc) are computed

over a grid of values for γr and γc by computing

a sequence of CoCo estimators. Next a distance

dr(i, j) between the ith and jth rows is computed

by taking a weighted average over the pair-

wise difference over different smoothed estimates

U(γr, γc),

dr(i, j) =
∑

γr,γc

√
γrγc∆ij(γr, γc),

∆ij(γr, γc) = ‖Ui·(γr, γc)−Uj·(γr, γc)‖2.
(5)

Greater weight is given to the smoothed estimates

corresponding to larger parameters γr and γc;

these estimates are more heavily smoothed. Thus,
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(a) Raw cheminformatics data (b) Organized by multiscale distances
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(c) Co-Manifold: Row

●
●

●

●

●

●

●●
●
●

●

●

●

●●

●●

●●●●●●

●

●●

●●●●●●

●

●●

●●●●●●●

●

●●

●●●●●

●

●●

●

−0.2

−0.1

0.0

0.1

0.2

−0.1 0.0 0.1

Coordinate 1

C
o

o
rd

in
a

te
 2

(d) Co-Manifold: Column

Figure 4: (a) Unordered cheminformatics matrix, darker colors indicate greater affinity. (b) Chemin-

formatics matrix with rows and columns ordered according to their low-dimensional representations

discovered by co-manifold learning. (c, d) Low-dimensional representations of the rows and columns

of the cheminformatics matrix that are recovered by co-manifold learning.

the distance places progressively less weight on

discrepancies at lower levels of smoothing. If the

ith and jth rows are similar at all smoothing

levels, they will be close in the weighted distance

given in (5). If they are different at all but the

most smoothed scale, they will still be close in

the weighted distance given in (5). Only if the

two rows are different at the most smoothed

scales will the two rows be apart in the weighted

distance given in (5). Thus, small perturbations

in the rows that would be amplified if a standard

Euclidean distance were used are washed out,

whereas only truly material differences in pairs

of rows will persist in the multiscale distance.

The distance dc(i, j) between the ith and

jth columns is computed analogously using the

same collection of smoothed estimates U(γr, γc).
Thus, the multiscale distances dr(i, j) and

dc(i, j) both take into account the correlation

structure among the rows and columns. The

final lower dimensional representations can be

obtained by applying standard spectral embed-

ding techniques on the row and column distances

respectively.

BROADER IMPACTS
Much of the work presented in this article

is part of my NSF CAREER award. As part of

this award, I also a run a year-long outreach

program, Data Scientists in Training (DST), for

high school students including those from under-

represented minorities in STEM. The goal of the

DST program is to introduce students to careers

in data science through hands-on experience with

projects as well as mentoring and career guid-

ance.

I owe much of the design and conceptualiza-

tion of the DST program to guidance and input

from Dr. Mary Ann Leung, currently Founder

and President of The Sustainable Horizons In-

stitute. While there were many elements to its

execution as I will describe below, the common
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theme and rationale behind these elements was to

implement structures and collaborative activities

to build community in a similar spirit to the

CSGF among these high school students, who

share a common curiosity in data science but

come from different backgrounds. My goal is to

create a supportive environment that would lower

barriers to entry into this important and exciting

field of data science and also nurture connections

with peers and mentors who could help students

buffer challenges that they might encounter while

pursuing careers in data science.

As part of the DST program, I designed

and taught a week-long bootcamp curricula on

statistical concepts, coding practices, and data

analysis. Students also interviewed data scientists

in industry (Netflix, Google, Microsoft, SAS,

HEB), DOE national labs (Lawrence Livermore

and Pacific Northwest), and academia (NC Cen-

tral, Johns Hopkins, Harvard) and presented what

they learned about the ways this diverse group of

individuals arrived at their careers.

Beyond the summer bootcamp, the DST pro-

gram includes mentoring, communication, and

teaching opportunities for undergraduate and PhD

statistics students who serve as mentors to their

juniors. The program culminates each year with

data analysis presentations at the North Car-

olina Junior Science and Humanities Symposium

(NCJHS) for the high school participants, and

the NC State Undergraduate Research Sympo-

sium for the undergraduate participants. The 2020

NCJSHS poster competition took place virtually

in March due to COVID-19. One team worked on

a year-long project using tensor decompositions

that I developed with Dr. Kolda [1] to perform

exploratory analysis of crime incident report data

obtained from the Raleigh Police Department.

The team employed the computed tensor factors

to identify four clusters of assault patterns in

Raleigh that had distinct spatio-temporal patterns

and received an honorable mention at the 2020

NCJSHS poster competition.

I aim to expose students to the research com-

ponent of my award through the technical pro-

gramming of DST. Although the work presented

in this article is built upon mathematics that is

beyond the background of the participants in the

DST program, the basic ideas can be readily

grasped by a curious student. As illustrated in

the figures of this article, much of my research

is highly visual and intuitive. Appreciating how

optimization problems can be designed and en-

gineered to have solutions with desired structure

can also be readily grasped. My goal is to spark

an interest in the power of data science tools

to solve problems in science and engineering

and also to give participants guidance on future

choices in their education if this is something

that they would like to pursue. I have had many

wonderful mentors and role models, but if I had

to credit a single person for setting me on my

own career path, it would be my high school ge-

ometry teacher, Dr. Michael Keyton. Dr. Keyton

shared his delight in elegant proofs with all of

his students and helped develop my interests and

tastes early on. My hope for the DST program is

to create a similar environment of discovery and

growth for future data scientists.
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