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1 | INTRODUCTION

| Gal Mishne?

| Eric C. Chi?

Abstract

Many machine learning algorithms depend on weights that quantify row and
column similarities of a data matrix. The choice of weights can dramatically
impact the effectiveness of the algorithm. Nonetheless, the problem of choos-
ing weights has arguably not been given enough study. When a data matrix is
completely observed, Gaussian kernel affinities can be used to quantify the local
similarity between pairs of rows and pairs of columns. Computing weights in the
presence of missing data, however, becomes challenging. In this paper, we pro-
pose a new method to construct row and column affinities even when data are
missing by building off a co-clustering technique. This method takes advantage
of solving the optimization problem for multiple pairs of cost parameters and
filling in the missing values with increasingly smooth estimates. It exploits the
coupled similarity structure among both the rows and columns of a data matrix.
We show these affinities can be used to perform tasks such as data imputation,
clustering, and matrix completion on graphs.
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affinity matrix as a new representation space in which to

In many applications, data are two-dimensional and rep-
resented as data matrices where each row represents an
observation, whereas each column represents a feature
of each observation. Weights, or affinities, quantifying
pairwise similarity between observations or features in a
dataset are widely used in many machine learning prob-
lems. The choice of weights can dramatically impact the
effectiveness of the algorithm. In unsupervised learning,
the success of clustering techniques depends on the choice
of the similarity measure between data points being clus-
tered. Such pairwise similarity measures or pairwise dis-
tances of data points can be used to construct a graph on
the data. Spectral clustering [31, 38], treating data points as
nodes of a graph, makes use of the eigenvectors of a graph

partition data into disjoint meaningful groups. An ideal
affinity graph gives a perfect clustering result [38]. In con-
vex clustering [20, 24, 32], a proper choice of weights will
ensure the construction of a well-nested hierarchical par-
tition tree [9]. In supervised learning, kernel regression
[30, 39] is a nonparametric estimation technique that uses
a kernel function to weight the observations of the learning
sample, depending on their “distance” from the predicted
observation. In the k-nearest neighbors (k-NN) algorithm,
which can be used for both classification and regression, a
useful technique is to assign weights to the contributions
of the neighbors so that closer neighbors contribute more
to the average than more distant ones. Setting the weights
appropriately can dramatically improve the generalization
of the k-NN algorithm [25].
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When there is no missing data, the most common prac-
tice to quantify similarities as weights between pairs of
rows and pairs of columns of the data matrix is to use
Gaussian kernel affinities. When data are missing, how-
ever, computing affinity weights becomes nontrivial. For
example, kernel-based manifold learning methods rely on
calculating a similarity matrix between observations to
yield a new embedding of the data through an eigen-
decomposition [2, 12]. Naively ignoring missing values
can distort the distances between data points and sabo-
tage efforts to learn representative embeddings. Recently,
Gilbert and Sonthalia [17] proposed the MR-MISSING
algorithm and used a graph metric repair strategy to
learn metrics and metric embeddings from incompletely
observed data. They first estimated an initial distance
matrix from the incomplete data. Then they used the
increase only metric repair (IOMR) [16] method to fix
the distance matrix so that it can be used as the met-
ric to compute low-dimensional representations. Meth-
ods like MR-MISSING, however, account for similarities
along either only the rows (observations) or only the
columns (features) of a data matrix and do not account
for any potential coupled structure of the rows and the
columns.

Yet in many applications, for example, gene expres-
sion analysis [6], neuroscience [29], and recommendation
systems [3], there is an underlying geometry to both the
rows (observations) and the columns (features) of the data
matrix [6, 11, 15, 28, 29, 33, 35, 36, 40]. In gene expres-
sion data, subsets of samples (observations) have similar
genetic profiles, and subsets of genes (features) have simi-
lar expressions across groups of samples. The relationships
between the rows may be informed by the relationships
between the columns, and vice versa.

Recent works [1, 11, 15, 28, 29] exploit this cou-
pled correlation structure of both rows and columns to
co-organize matrices. Gavish and Coifman [15] introduced
an approach for matrix structured datasets to recover the
smooth joint organization of the features and observations.
The organization of the data relies on the construction of
a pair of hierarchical partition trees on the observations
and on the features. Mishne et al. [28] proposed multi-scale
data-driven transforms and metrics based on trees that are
smooth with respect to an underlying geometric structure
in the data. None of these methods, however, learns the
geometry of both rows and columns simultaneously. Addi-
tionally, these constructed metrics are based on the com-
plete data and do not address the critical problem of miss-
ing data. If we are given those metrics as prior knowledge,
we can reliably recover the underlying coupled geometry
[11]. Yet how to construct them in the presence of missing
data remains an open question. In these cases, we seek a
method that can exploit the correlations among both the

rows and columns of the data matrix to efficiently compute
the affinities in a missing data setting.

In this paper, we propose a flexible framework to com-
pute affinity weights that simultaneously account for the
coupled structure of the rows and columns in the pres-
ence of missing data. We present a multi-scale metric that
captures the geometry of the complete data matrix and rep-
resents the row and column similarities. This metric can
be used to calculate the affinity weights in many appli-
cations where data are often missing. Mishne et al. [27]
exploited the multi-scale metric to learn low-dimensional
co-manifold embeddings of both the rows and columns
of a data matrix. By applying diffusion maps [13], a
dimension reduction technique, on the multi-scale dis-
tances, local connections found in the data are inte-
grated into a global representation. We will show how
this affinity construction strategy can address a wider
range of machine learning problems beyond learning
low-dimensional co-manifold embeddings.

In the multi-scale approach, we estimate a collection
of complete matrix approximations of a partially observed
data matrix that have been smoothed along their rows and
columns to different degrees. Row and column multi-scale
metrics are calculated based on the collection of estimated
completed matrices to encode the affinities between pairs
of rows and columns. We offer the following contributions:

+ We propose a general method to simultaneously con-
struct row and column affinities of the data matrix when
the matrix is only partially observed. This method is dis-
tinct from other related methods in that our ultimate
goal is not to perform specific tasks such as manifold
learning or clustering. We present a general framework
that integrates the task of encoding similarity structure
as hyperparameters in many real applications and aim
to provide better solutions to those applications through
our multi-scale procedure.

+ We present a multi-scale metric that leverages both row
and column smoothness between pairs of rows and
pairs of columns under an optimization framework. By
exploiting correlations that exist among both rows and
columns, the new metric introduces a coupling between
the rows and the columns.

« The estimation runs at multiple scales to encode differ-
ent levels of smoothness instead of determining a single
scale of the solution as in Reference [6]. We aggregate
solutions at different scales to estimate the underlying
geometry both locally and globally. Consequently, our
approach eliminates the need to identify a single “ideal”
scale at which to fill in the points.

» We present experimental results to illustrate the effec-
tiveness of the method on common machine learning
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problems, and show the metric can be easily adapted to
other applications.

The rest of the paper is organized as follows. In
Section 2, we present an optimization framework obtain-
ing smooth estimates of a partially observed data matrix
that will be combined to calculate row and column
multi-scale metrics. In Sections 3-5, we show a sampling
of the breadth of how our multi-scale affinities can be
used in common problems in supervised and unsupervised
learning to demonstrate its effectiveness and flexibility. We
apply the new metric in different applications and com-
pare the performance of the proposed methods through
experimental results on different tasks.

2 | PRELIMINARIES

Let X € R™? be a partially observed data matrix, where
® c [n] X [p] is the subset of indices for which x; is
observed and [n] denotes the set of indices {1, ... ,n}. Let
Pe denote the projection operator of n X p matrices onto
the index set ® such that [Pe(X)];; is x;; if (i, j) € ® and is 0
otherwise. The ith row and jth column of the matrix X are
denoted by X;. and X.;, respectively. Let G, = (V,, &, W;)
denote an undirected weighted row graph with a vertex set
V, = [n]and an edgeset £, = V, x V, where (i,i’) € £, has
an edge weight w;y defined by the ii’th entry of a nonneg-
ative symmetric weight matrix W, € R™". The column
graph G. = (V,, £, W,) is defined analogously.

We construct affinity weights through a multi-scale
procedure that requires computing a collection of smooth
estimates of the incomplete data matrix at different levels
of row and column smoothness. A new multi-scale met-
ric is presented to estimate a coupled row and column
geometry of the complete data matrix both locally and
globally. Our approach consists of two stages. In the first
stage, given the partially observed data matrix, we solve
a collection of co-clustering problems to obtain a smooth
estimate of the observed data matrix and a filled-in data
matrix. Then a weighted distance between pairs of rows
and pairs of columns is calculated based on the filled-in
data matrix. Multiple weighted distances are computed for
different combinations of row and column smoothness. In
the second stage, new row and column multi-scale met-
rics are obtained by taking a weighted average of distances
computed across different smoothness scales.

Thus, in our multi-scale distance approach, we esti-
mate a collection of complete matrix approximations of a
partially observed data matrix that have been smoothed
along their rows and columns to different degrees. Row
and column multi-scale metrics are calculated based on
the collection of estimated completed matrices to encode

the affinities between pairs of rows and columns. This
multi-scale metric captures the geometry of the complete
data matrix both locally and globally, and encodes the row
and column similarities.

2.1 | Smooth estimates

We use a variation on the co-clustering method proposed
in Reference [6] to estimate the complete matrix from a
partially observed matrix. To recover the smooth estimate
of the incomplete data matrix X along both the rows and
columns, we seek a minimizer U (y,,y.) of the objective
function described below:

f W17 = 3 1Po(X) = Po(O)I2 + 1T, (D) + 1oTu(D).
(€]
Here y, and y, are nonnegative tuning parameters,
and J(U) and J.(U) are regularization terms that impose
smoothness in U along its rows and columns. By varying
the penalty parameters y, and y., we can trade off how well
the estimate U agrees with X over the observed indices
© against how smooth U is along its rows and column.
Smaller y, and y,. enforce less smoothness on rows and
columns of the data matrix.
Following [27], we employ the following regularization
terms in Equation (1)

LU= 3 Q(|U.-U;,) and
(i.))EE,

J.(U) = Z Q(|ui-uy|,).

(.h)eEE,

where Q is a folded concave penalty [14, 41], which will
induce sparsity in differences between pairs of rows and
pairs of columns in U. This sparsity will be useful for deter-
mining which U (y,, y.) to use in our multi-scale affinities.
In this paper, Q is an approximate snowflake metric:

Ve
Q<z>=1/ L au,
2 0 \/a+e

where € is a small positive number. As ¢ tends to
zero, Q (||Ul~. - Uj.||2) converges to a snowflake metric

d(U.,U,.) = 1/||U. — U,.||,- As aresult, small differences
between rows and columns are penalized significantly
more than larger differences. We refer readers to Refer-
ence [27] for more detailed discussion about this choice.
The graphs &, and &, quantify the similarities between
pairs of rows and pairs of columns of the data matrix.
When the data matrix is fully observed, £, and &, are typi-
cally computed using a k-NN graph based on the observed
values [38]. Since we do not observe a complete matrix,
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however, a distance based on the observed values, used in
related work for image inpainting [34], is used to calcu-
late the k-NN graph. We use the CO-CLUSTER-MISSING
algorithm proposed by Mishne et al. [27] to solve the
minimization problem in Equation (1).

2.2 | Multi-scale affinities

After obtaining a smooth estimate U (y,,y.), we fill in
the data matrix as X = PoX) + Poc (U (yr,vc)) - We repeat
the co-clustering procedure with multiple pairs of param-
eters (y,7.) to encode different scales of the row and
column smoothness. Then we leverage those estimates
of X to calculate a new multi-scale metric. This metric
takes full advantage of the coupling between both modes
by taking into account all joint scales of the data as the
estimate U is smoothed across rows and columns simulta-
neously.

Instead of determining an optimal single scale of the
solution, namely a single pair of (y,, y.), we aggregate solu-
tions over a wide range of different scales to better estimate
the underlying geometry. This eliminates the need to iden-
tify a single “ideal” scale at which to fill in the missing
elements, as different elements in the matrix may have
different optimal scales. We create a collection of pairs of
(7r» vc) as follows. We first pick small values of y, and y.. By
solving the optimization problem (1), each pair of the cost
parameters yields a smooth estimate U (y,, y.), a filled-in
matrix )NK, and the numbers of distinct row and column
clusters denoted by n, and n. respectively. We increase y,
and y. along a log-linear scale of y, = 2!, y. = 2, until both
n, and n. shrink to 1 [27]. In the end, we obtain the collec-

tion {)Nf(l’k) }1 ) witheach X" at different smoothing levels
ranging from coarse to fine. Here  and k denote the power
of 2 taken for specific row and column cost parameters
(¥, vr) in the solution.

Based on this collection, a new multi-scale metric for
both rows and columns using the filled-in matrices at mul-
tiple scales is defined. This new metric estimates both local
and global geometry of the complete data matrix. We next
detail how we compute our new metric.

Ateach joint scale, we calculate the Euclidean distance
between columns for the filled-in matrix and weigh it by
the product of y, and y, raised to a parameter a:

d (;?F:,k);?(},k)) = (rrve)”

Lk Lk
X0 X >||2 NG

The parameter « can be chosen to emphasize local
or global structure. Negative values of a favor local
over global structure, and positive values of « favor
global over local structure. The decision to emphasize

local structure over global structure or vice versa is
application-dependent.

After solving the joint optimization for multiple pairs
from the solution surface at different scales, we obtain
the multi-scale distance for pairwise columns by summing
over the distances at different joint scales:

de(i.j) = Yd ()?_(i”"%)?_(}")) . 3)
Lk

As noted earlier, the choice of @ depends on the appli-
cation, but typically we will take a to be large in order to
emphasize differences at the coarser scales. If two columns
are very similar at all smoothing levels, their multi-scale
distance will be small. If two columns are different at
all but the most smoothed scale, they will be far apart
in the multi-scale distance. In this way, small differences
between pairs of columns will be washed out, whereas
material differences in pairs of columns will persist. The
multi-scale distance for pairwise rows is calculated in a
similar way. This computed distance matrix adheres to a
metric that quantifies data affinities.

Algorithm 1 provides a detailed summary of how
multi-scale row and column affinities are computed. For
all examples in the paper, we set [y and k, to be —6. Figure 1
provides a higher-level overview of our approach. In many
cases, one does not observe a full data matrix (A), but
rather an incompletely sampled matrix (B). Smooth esti-
mates of the data matrix at different scales are computed
by co-clustering for different combinations of the trade-off
parameters y, and y.. These control the level of row and
column smoothing, respectively. We construct multi-scale
affinities in the presence of missing data (D) by leverag-
ing this collection of smooth estimates of the matrix at
multiple scales through Formulas (2) and (3). In our exper-
iments, given a full data matrix, we remove a sub-sample
of the entries at random.

3 | DATAIMPUTATION
Missing data present a challenge for machine learning
algorithms that require completely observed data. Conse-
quently, imputation of missing data is often performed as a
preprocessing step for downstream tasks. Commonly used
nonparametric imputation methods for missing response
values include kernel imputation, which depends on the
“distance” between data points. In general, if good distance
measurements are available, estimation by interpolation is
straightforward.

The inverse distance weighting (IDW) method is an
interpolation approach to estimate the unknown value at
a location using some known values with corresponding
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Algorithm 1. Multi-scale affinities with missing data

Initialize &, and &,
Setd,(i,j)=0and d.(i,j) =0
Setn,=m,n.=n,k=kyandl =1,
while n, > 1 do
while n. > 1 do
Utto X nc} « CO-CLUSTER-MISSING (Po(X), 7, = 2, 7. = 2¥)
dX. X)) « (o) |IXH = X9,
A&, X19) « (rr IX0 = X9
Update row distances:d, (i, j)+= d()N(i(.l’k),)N(J(f’k))
Update column distances:d.(i, j) += d()N( (il’k),)? (;’k))
k—<k+1
end while
l<1l+1
end while
Return d,(i, j) and d.(i, j)

(C) Co-clustering at multiple scales Ye
>

(B) Incomplete data

(D) Multi-scale metric

d(X.,X5) = 3 (7l - | Iz

’71" !’YC

FIGURE 1 Multi-scale affinity calculation in the presence of missing data by leveraging smooth estimates of the data matrix at
multiple scales via co-clustering. Ideally, we would have at our disposal a completely observed data matrix (A), but we may instead only have
on hand an incompletely observed matrix (B). In this example, the entries are missing completely at random (MCAR). Given the incomplete
data (B), we obtain a collection of complete matrix approximations of the incomplete data matrix by performing co-clustering at multiple
scales. The co-clustering problem is posed as an optimization problem in Equation (1) with trade-off parameters y, and y, controlling the
smoothness level along rows and columns. Having solved the co-clustering problem for multiple pairs of the trade-off parameters y, and y. to
obtain a collection of smooth estimates, we calculate the multi-scale metric based on those smooth estimates (D). The red and yellow lines
represent X,; and X, j» the ith column and jth column of the matrix, respectively. For a given pair of parameters y,, y., we calculate pairwise
distance between two columns in Equation (2) and then aggregate these distances by taking their weighted sum across multiple scales of the
smooth estimates (3). For pairs of rows the multi-scale metric is computed in an analogous way
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weighted values. The IDW method is widely applied
because of its low computational cost and easy implemen-
tation. The classical IDW is essentially a zeroth-order local
Nadaraya—Watson kernel regression [30, 39] method with
an inverse distance weight function. To predict x;; for all
(i, j) € ©°, a general form of finding an interpolated value
X;j at a given location based on observed samples using
IDW is given as follows:

vii(s, t)

Xij A Z(s,[)e@) v (S, t)Xst,

where v; : [n] X [p] — Ry and v(s, t) > v;(5,t) for all [ €
[p] if d.(i,s) < d,(i,5) and likewise v(s, t) > vij(s,7) for all
s € [n]ifd.(j, 1) < dc(j, D).

The weight is a function of the distances between pairs
of points that measures the similarity between them. The
underlying assumption is that data points near the tar-
get points carry a larger weight than those further away.
A larger weight means the point has a closer relation-
ship to the estimated one and thus should be given more
importance. To reflect the correlations and similarities of
those data points, it is natural to employ our multi-scale
distances in computing IDW weights. The row and col-
umn multi-scale distances can serve to calculate the IDW
weights by taking the form:

exp (=d, (i, s)) exp (=d.(Jj, 1) -
ZZ=1 exp (—d, (i,)) Zf/zl exp (=dc (j, 1)

vii(s, b) =

When the multi-scale distance is smaller, we put more
weights on those data points.

IDW has the advantage of being intuitive and is popular
for its simplicity, computational speed, and good empir-
ical results. We demonstrate the utility of our affinities
learned through the multi-scale procedure in imputing
missing entries by conducting numerical experiments on
different datasets. We compare a simple IDW approach
using our multi-scale row and column affinities with
the two-directional Laplacian pyramid (2D Pyds) impu-
tation method proposed in Reference [33], which is also
a multi-scale approach based on the pairwise distances
between rows and columns of the known matrix. We
also include in our comparison standard techniques that
replace the missing values in each column by its mean
(Mean) and replace the missing values by the most fre-
quent value (Freq).

We follow the simulations in Reference [33] and test
our methods on two public datasets from the UCI reposi-
tory (http://archive.ics.uci.edu/ml/datasets). The data are
normalized such that each column has mean 0 and stan-
dard deviation 1. The mice protein expression data [19]
contain expression levels of 77 proteins and a total of

TABLE 1 Root mean square errors (RMSE) for the Mice
dataset
% missing IDW 2D Pyds Mean Freq
20% 0.3596 0.381 1.0024 3.0918
50% 0.4392 0.5198 0.9999 3.0890
80% 0.9341 0.7697 1.0028 2.8001
TABLE 2 Root mean square errors (RMSE) for the voice
dataset
% missing IDW 2D Pyds Mean Freq
20% 0.5872 0.7586 0.9952 3.2704
50% 0.6753 0.8207 1.0086 2.9594
80% 0.8840 0.9002 1.0205 2.2059

1080 measurements per protein. Each measurement can
be considered as an independent sample/mouse. While
mice of the same class may have similar protein expres-
sion levels, at the same time, similar protein expres-
sion levels are likely to be in the same class. The orig-
inal dataset has many missing values. We extract a
smaller, complete dataset X of size M X N = 1000 X 66
from the original data in order to evaluate the results.
The voice rehabilitation dataset [37] contains data for 126
patients and 309 features. Each feature corresponds to
the application of a speech signal processing algorithm,
including wavelet-based, frequency-based, and nonlin-
ear time-series algorithms that aim to objectively char-
acterize the signal. Consequently, there is likely correla-
tion between rows of this dataset as well as between its
columns [33].

Tables 1 and 2 summarize the imputation performance
measured by the average root mean square errors (RMSE)
for 10 replicates of the four methods. Results for 2D Pyds,
Mean, and Freq are reported in Reference [33]. IDW refers
to the proposed procedure of estimating missing entries by
IDW with weights derived from the multi-scale distances.
To obtain the multi-scale distances in this example, we set
a = 0.5 to emphasize a global structure. The performances
are evaluated under different settings with 20%, 50%, and
80% missing entries, respectively. For each mode, each
method is repeated 10 times, and each time the missing
data locations are chosen at random. The average RMSE
for the 10 replicates is computed. We observe that our
method outperforms the multi-scale 2D Pyds approach
in terms of reconstruction errors. By solving the joint
optimization for both rows and columns, this multi-scale
distance accounts for the coupling connections found in
the data, and thus provides a good formulation of those
weights.
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Note that the simple IDW method can suffer from an
underestimation bias when the missing percentage is high,
as seen in Table 1 when the missing fraction is 80%. Since
missing entries are computed as an average over observed
values in IDW, by construction all imputed values will
always lie within the range of the observed data. In short,
IDW can never impute a value with a magnitude larger
than that observed within the data. Despite the intrin-
sic limitation of IDW, our emphasis here is that once we
obtain good affinities, a simple method such as IDW can
still have good performance. These affinity weights can
also be employed in other more sophisticated imputation
methods for future work.

4 | CLUSTERING

Clustering is the task of dividing a collection of objects into
groups so that objects in the same group are more similar
to each other than to those in other groups. The quality of
clustering relies on the similarity criterion between points.
Missing values can complicate the application of cluster-
ing algorithms as similarity criteria are usually computed
between completely observed data points. To deal with
missing values in the context of clustering, it is a common
practice to impute the missing values first and then apply
the clustering algorithm on the completed data [4].

The multi-scale affinity approach learns the underly-
ing geometry that can be exploited to impute missing val-
ues. Depending on the downstream task for which weights
are used, the best single pair of parameters for one task
may not be optimal for another. Specifically, the optimal
pair of cost parameters at a single scale for imputation
and clustering is not necessarily the same. Moreover, it is
unclear whether a single ideal scale exists. Our multi-scale
approach enjoys the property of not requiring the iden-
tification of the ideal scale at which to fill in missing
values. Consequently, our multi-scale approach eliminates
the need for extensively tuning and picking a single pair
of the cost parameters and can fully take advantage of the
estimates at different smoothing levels.

Lung500 is a real-world dataset that contains 56 lung
cancer patients and their gene expressions across 500
genes with the greatest sample variance from the origi-
nal collection of 12,625 genes [23]. Patients belong to one
of four subgroups; they are either normal subjects (Nor-
mal) or have been diagnosed with one of three types of
cancers: pulmonary carcinoid tumors (Carcinoid), colon
metastases (Colon), and small cell carcinoma (Small Cell).

Figure 2 shows the adjusted rand index (ARI) [21]
with respect to the ground-truth labels of the four cancer
types for the Lung500 dataset, comparing our approach
to competing methods. The ARI measures the agreement

Lung500

0.8

e
~

o
3

Adjusted Rand Index
o

—e—k-means on imputed data 0\ \
0.4 1 ——k-means on co-manifold embeddings \‘\ \
k-POD AN}
\
03H= = FRPCAG’y:O.m \ i
-0~ FF{PCAGW:1 \}’
20 2‘0 35 4‘0 5‘0 6‘0 75 8‘0 90

Missing percentage

FIGURE 2
processed by four techniques. Higher ARI indicates better

Comparing k-means clustering applied to data

agreement between two clusterings

between the clustering results and the ground-truth labels
in a way that higher values indicate better clustering
quality. Four techniques are used to process data of dif-
ferent missing percentages. We evaluate the clustering
result using k-means on data imputed by IDW using the
multi-scale affinity weights, as well as k-means on the
co-manifold embeddings [27] for lower dimension repre-
sentation based on these multi-scale distances. To obtain
the multi-scale distances in these two approaches, we
set @ = 0.5 to emphasize a global structure. For the pur-
pose of clustering, rows and columns are more smoothed
in IDW compared with the imputation task. The k-POD
algorithm [10] is a method of performing k-means clus-
tering on partially observed data. It identifies a cluster
that is in accord with the observed data even when the
missingness mechanism is unknown and when external
information is unavailable. Fast robust PCA on graphs [35]
(FRPCAG) is a fast dimensionality reduction algorithm for
mining clusters from high-dimensional and large low-rank
datasets. It also introduces graph smoothness on both rows
and columns of the data matrix and handles corruption
in the data. FRPCAG targets an approximate recovery of
low-rank signals that exploit the linear coupled geometry
and may fail when the data lie on a nonlinear manifold
or suffer from high percentage of missing values, as it
assumes these are sparse in the data.

The multi-scale metric takes the coupled structure of
the genes and the samples into account and gives the best
clustering result among those methods. When data are
not terribly corrupted, the performance is unaffected by
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increasing the missing fractions of data. FRPCAG aims to
recover an approximate low-rank matrix with dual-graph
regularization and requires tuning the cost parameters for
row graph and column graph. However, it did not address
the problem of how to choose those regularization param-
eters, and it targets solely the recovery of the low-rank
matrix, which makes data-driven approaches to search for
optimal parameters infeasible. We pick two choices of cost
parameters (y = 0.01 and y = 1) and observe they have
similar performance and observe that FRPCAG’s perfor-
mance is more affected by data corruption. In contrast, our
approach eliminates this parameter selection step, and our
approach’s performance begins to significantly degrade
only at 90% missing values.

5 | MATRIXCOMPLETION

The goal of matrix completion is to estimate missing
entries of a partially observed matrix, a task that bears
some similarity to missing data imputation. Indeed, the
matrix completion problem can be cast as a special case
of the missing data analysis (MDA) problem [8], where
one of the inference tasks in MDA is missing data impu-
tation. While matrix completion shares some goals with
missing data imputation, matrix completion problems dif-
fer from standard missing data imputation problems in
nontrivial ways. The MDA problem assumes more gen-
eral models, and the missing mechanism can be more
complex. While the matrix completion problem assumes
data to be missing completely at random (MCAR), the
missing mechanism can depend on the data in the MDA
problem. The missing proportion in matrix completion is
significantly higher than that in MDA. When no missing
data are present, the MDA problem becomes the standard
problem with repeated measurements for the same model
parameters. In matrix completion, we seek to complete
the missing entries of a partially observed matrix with one
sample for each observation. The problem of recovering
the full matrix from incomplete observation, however, is
ill-posed and underdetermined without any assumptions
or restrictions on the completed matrix. The most com-
mon assumption is that the unknown matrix is low rank
or approximately low rank.

Candés and Recht [5] proved that most low-rank
matrix matrices can be completed accurately with high
probability by solving a convex optimization problem.
Mazumder et al. [26] considered the scenarios when
the observations are noisy and proposed the softImpute
algorithm using convex relaxation techniques to solve a
nuclear norm regularized problem. It is pointed out in
Reference [22] that the standard low-rank matrix recov-
ery problem can be further improved by using similarity

information about rows and columns. They borrow ideas
from the field of manifold learning and force the solution
to be smooth on the manifolds of users and movies through
graph regularizations. A similar idea was exploited in Ref-
erence [7], where the authors considered the problem
of performing matrix completion with side information
on row-by-row and column-by-column similarities under
a structural assumption that is closely related to the
low-rank assumption.

In this section, we focus on the matrix completion on
graphs (MCG) model, where the row and column struc-
tures are simultaneously taken into consideration. In Ref-
erence [22], the authors show that the standard low-rank
matrix recovery problem can be further improved using
similarity information about rows and columns. We eval-
uate the proximity structure encoded in the multi-scale
metric and show the effectiveness of these row and column
affinities when data are missing.

Let Z € R™® be the matrix that we want to recover. The
MCG problem is formulated as follows:

.1
min ~||Po(X) = Po(2)ll; + rullZIl.
Tr Ye
+ Etr (ZL,Z) + Etr (ZL.Z), @)

where L, is the Laplacian of the row graph given by

E wi, ifi=j
I' =4 aihee "
i=1% f

- wl.’j otherwise,

and L. is the Laplacian of the column graph defined
in the same way. If y, and y. are both 0, problem (4)
solves the same problem as in Reference [26]. If y, is 0,
problem (4) reduces to the biclustered matrix completion
(BMC) problem in Reference [7].

The biggest challenge in Reference [22] is to construct
the graphs of rows and columns that well represent the
similarity structure in the presence of missing data. The
multi-scale distances encode coupling proximity informa-
tion about rows and columns, and this information can be
taken advantage of by introducing structures via graphs.
The graphs for row and column graph Laplacians based on
the row and column multi-scale distances are constructed
by algorithms such as k-NN and then passed into the
MCG algorithm. In this way, we incorporate the additional
row and column structures into the matrix completion
problem.

The MovieLens 10M dataset [18] contains ratings
(“stars”) from 1 to 5 (increments of 1) given by 71,567
users for 10,677 movies. In the original MCG paper [22],
the authors use information outside of the subset matrix as
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FIGURE 3 For the Movielens 10M dataset, in original MCG
model graphs are constructed by leveraging prior information about
F, and F,,,. The blocks F,, and F,, are used to construct the movie and
user graphs. The submatrix M of A is used for training and testing

features to construct the row and column graphs. Figure 3
illustrates how ratings outside of the complete subma-
trix are used as features to construct the column and row
graphs. The rows (users) and columns (movies) are sorted
by order of increasing sampling frequency. After a row and
column permutation, the original MovieLens 10M matrix
A is partitioned in blocks A = [M, F,; F,,, R], where M is
the 100 x 200 complete data matrix we use in the experi-
ment, and F, is used as the users feature matrix and F,,
is used as the movies feature matrix. For comparison, we
consider MCG using row and column graphs constructed
using F,, and F,, as described in Reference [22].

Figure 4 shows the prediction error as a function
of missing percentage for softimpute [26], which lever-
ages only low-rank structure, and MCG using three dif-
ferent ways of generating graphs: oracle graphs, graphs
described in Reference [22], and graphs constructed using
multi-scale affinities. The multi-scale affinities were com-
puted with a« = —0.1 to emphasize a local structure.
Although different methods might call for slightly differ-
ent graph parameters for optimal results, for the given
dataset, we use the same graph parameters for those meth-
ods to ensure a fair comparison. The oracle graphs are
computed as the k-NN graphs based on true complete
data. We see the multi-scale affinities can be used to
construct graphs that capture nearly as much coupling
similarity structure along both rows and columns as the
oracle graphs even when a large fraction of the entries are
missing.

6 | CONCLUSION

In this paper, we presented a new method for learning
pairwise affinities of both the rows and columns of a
matrix with missing data. We seek a collection of estimated

Part of Movielens 10M dataset

15 T T T T T T
—— MCG with oracle graph
14H=0- MCG with original graph 1
-------- MCG with multi-scale affinities

135 softimpute 1
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FIGURE 4 Reconstruction error of experiments on the

complete subset of Movielens 10M. MCG with oracle graph means
generating graphs from the multi-scale affinities algorithm that is
initialized by the oracle graph. MCG with oracle graph is the
procedure mentioned in Reference [22] where additional
information about users and movies are used to build the graph.
MCG with multi-scale affinities uses the k-NN graphs computed
from the multi-scale affinity matrix. softimpute solves the problem
using only nuclear norm regularization

complete matrices at multiple scales of smoothness by
solving a family of optimization problems with different
regularization parameters, which encode a smoothness
scale of the estimate along the rows and columns. We com-
bine these multi-scale estimates into a new metric that
captures the joint row and column geometry of the com-
plete data matrix and represents similarities among rows
and columns when data are partially observed. The new
metric can serve as affinity weights in many applications
even when data are incomplete. The metric presented in
this paper is general and may be adapted to other tasks.
In future work, we can further broaden the scope of this
framework by extending it to more applications.
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