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Abstract - Spontaneous capillary flow of liquids in narrow spaces plays a key role in a
plethora of applications including lab-on-a-chip devices, heat pipes, propellant management
devices in spacecrafts, and flexible printed electronics manufacturing. In this work we use a
combination of theory and experiment to examine capillary-flow dynamics in open rectangu-
lar microchannels, which are often found in these applications. Scanning electron microscopy
and profilometry are used to highlight the complexity of the free-surface morphology. We
develop a self-similar lubrication-theory-based model accounting for this complexity and
compare model predictions to those from the widely used modified Lucas-Washburn model,
as well as experimental observations over a wide range of channel aspect ratios A and equi-
librium contact angles #,. We demonstrate that for large A the two model predictions are
indistinguishable, whereas for smaller A the lubrication-theory-based model agrees better
with experiments. The lubrication-theory-based model is also shown to have better agree-
ment with experiments at smaller 6y, although as 6, — /4 it fails to account for important
axial curvature contributions to the free surface and the agreement worsens. Finally, we
show that the lubrication-theory-based model also quantitatively predicts the dynamics of
fingers which extend ahead of the meniscus. These findings elucidate the limitations of
the modified Lucas-Washburn model and demonstrate the importance of accounting for the
effects of complex free-surface morphology on capillary-flow dynamics in open rectangular

microchannels.
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1 Introduction

Capillary flow is the spontaneous wicking of liquid in narrow spaces without the assistance
of, or even in opposition to, external forces such as gravity. This phenomenon has been
investigated since the early twentieth century and has been exploited for a diverse range of
applications including lab-on-a-chip devices (Olanrewaju et al., 2018), heat pipes (Faghri,
1995), propellant management devices in spacecrafts (Levine et al., 2015), and fabrication
of flexible printed electronics (Cao et al., 2018; Jochem et al., 2018).

Early studies focused on understanding the physical mechanism driving spontaneous
capillary flow in capillary tubes. Lucas (1918) and Washburn (1921) appear to have been
the first to propose theoretical models describing the meniscus position z,, as a function
of time ¢ for flow of a Newtonian liquid in cylindrical capillaries. Lucas (1918) assumed
the flow is driven by the capillary-pressure gradient caused by the circular-arc meniscus
front, while Washburn (1921) also included hydrostatic pressure gradients and an imposed
pressure difference between the two ends of the capillary. For a horizontal capillary tube
open at both ends, an analytical solution z,, = \/l%_f is obtained, commonly referred to as the
Lucas-Washburn relation, where k is known as the mobility parameter and depends on the
cylinder radius, liquid viscosity, surface tension, and contact angle. The mobility parameter
k can be thought of as a diffusion coefficient driving the growth of the liquid interface.

Numerous studies extended the theoretical work of Lucas (1918) and Washburn (1921)
by including inertial (Bosanquet, 1923; Quéré, 1997; Rideal, 1922), dynamic contact angle
(Ouali et al., 2013; Popescu et al., 2008; Siebold et al., 2000), and surface roughness (Ouali
et al., 2013) effects. Additionally, these theoretical models have been extensively compared
to experiments (Fisher & Lark, 1979; Ichikawa et al., 2004; Ichikawa & Satoda, 1994; Ouali
et al., 2013; Quéré, 1997; Rideal, 1922), confirming the Z,, ~ /2 scaling.

Due to breakthroughs in lithographic fabrication techniques, open microchannels with
various cross-sectional geometries can be fabricated easily and inexpensively, including rect-
angular (Kolliopoulos et al., 2019; Lade et al., 2018; Sowers et al., 2016; Yang et al., 2011),
trapezoidal (Chen, 2014), U-shaped (Yang et al., 2011), and V-shaped (Mann et al., 1995;
Rye et al., 1996, 1998; Yost et al., 1997) cross sections. The lack of a top provides access
to the inside of the channel, and has been exploited in applications such as capillary mi-
cromolding and microfluidics. Some studies have generalized the Lucas-Washburn relation
to arbitrary cross-sectional geometries (Berthier et al., 2015; Ouali et al., 2013). However,

predictions of the modified Lucas-Washburn models for open capillaries have resulted in
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varying agreement with experiments (Chen, 2014; Kolliopoulos et al., 2019; Ouali et al.,
2013; Sowers et al., 2016; Yang et al., 2011). This is because the mechanism for capillary
flow in open channels is more complex than for closed channels. While for closed channels
the force driving the flow is due to the pressure gradient caused by the circular-arc meniscus
front, for open channels the additional free-surface also contributes to driving the flow (this
will be discussed in more detail when presenting figure 4).

The additional contribution of the free-surface curvature to capillary flow has been theo-
retically and experimentally investigated primarily for V-shaped channels (Mann et al., 1995;
Romero & Yost, 1996; Rye et al., 1996, 1998; Weislogel, 2012; Weislogel & Lichter, 1998; Yost
et al., 1997). However, while the most widely used open-channel cross-sectional geometry
is rectangular (Olanrewaju et al., 2018), previous theoretical studies have only considered
capillary flow in open rectangular channels for liquids with contact angles of 8y, = 0° and
large channel aspect ratios A = H/W (height/width) (Nilson et al., 2006; Tchikanda et al.,
2004), or reported three-dimensional simulations using the volume-of-fluid method to study
the effects of gravity on capillary rise in open rectangular channels (Gurumurthy et al., 2018).

In open rectangular channels the free-surface morphology is more complex than in V-
shaped channels. From the channel inlet to the meniscus front the upper meniscus spans the
entire channel width. However, at the meniscus front the flow splits into the channel corners
provided the equilibrium contact angle 6y < 7/4 (Concus & Finn, 1969). This splitting of
the flow leads to filaments or fingers extending ahead of the meniscus front and influencing
the meniscus-front propagation. Such a transition is not observed in V-shaped channels.

In this work we use a combination of experiment (§2) and theory (§3) to study capillary-
flow dynamics in open rectangular channels. This is achieved by developing a self-similar
lubrication-theory-based model (§3.2), and comparing model predictions to the modified
Lucas-Washburn (MLW) model (§3.1) and complementary flow visualization experiments.
We investigate the effects of the complex free-surface morphology on the flow dynamics
over a wide range of channel aspect ratios A and equilibrium contact angles 6y (§4.1) and
identify limitations of the MLW model (§4.2). Finally, we show good agreement between

lubrication-theory-based model predictions of the finger dynamics and experiments (§4.3).

2 Capillary-Flow Experiments

Experiments with a nonvolatile liquid are used to study capillary flow in open rectangular
microchannels. Flow visualization is used to track the meniscus front and a combination of
scanning electron microscopy (SEM) and profilometry is used to characterize the effect of

channel aspect ratio on the free-surface morphology.
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2.1 Channel Fabrication and Materials Characterization

(a) (b)

reservoir

-
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~

Figure 1: (a) Schematic of microchannel connected to reservoir and (b) SEM image of channel
cross section for A\ = H/W = 0.45 (scale bar: 20 um).

Fabrication of Master Pattern. Traditional microfabrication techniques were used
to form silicon master patterns of capillary channels. A 10.2 cm diameter silicon wafer was
cleaned in an oxygen asher (Technics Oxygen Asher) for 5 min with 200 SCCM oxygen flow
and 250 W RF power. MicroChem SU-8 2010 negative tone photoresist was spin coated
onto the wafer at 300 rpm for 5 s and 1000 rpm for 30 s, followed by edge-bead removal with
MicroChem EBR PG. These coating conditions target a 20 pum layer thickness. Fabrication
of capillary channels using SU-8 was chosen because it gives smother side walls, sharper
bottom corners, and a flatter channel bottom than deep reactive-ion etching. The resist
was soft-baked on a hot plate at 95°C for 4 min. The photoresist was exposed through a
photomask using a Karl Suss MA6 contact mask aligner in soft contact mode for 12.5 s with
a b0 um gap to define the capillary channels. Measurement gradient marks were included
in the master pattern to facilitate tracking of the capillary flow. The wafer was then baked
at 95°C for 4 min. The exposed wafer was developed in propylene glycol momomethyl
ether acetate (Sigma Aldrich) and rinsed with isopropanol. The resist was then hard baked
at 150°C for 30 min and an anti-stick fluorinated monolayer was formed by placing the
dried wafer in a reduced pressure chamber with trichloro(1H,1H,2H,2H-perfluorooctyl)silane
(Sigma Aldrich) vapor overnight. The resulting microchannel height was 22.5 pm, measured
with a KLA Tencor P16 surface profilometer.

Substrate Fabrication. Capillary channels were prepared by first casting a silicone

stamp (Sylgard 184) over the master pattern, curing the stamp, and then using the stamp
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to imprint UV-curable adhesive (Norland Products NOA68 or NOA73) as explained in Kol-
liopoulos et al. (2019). Briefly, the UV-curable adhesive was coated on glass slides and then
the silicone stamp was pressed into the adhesive. The adhesive was solidified by exposure
to 365 nm UV light (Honle UV Spot 100) at 30 mW /cm? for 270 s. The stamp was then
delaminated from the prepared capillary channels and the channels were inspected with a
digital microscope for defects. Any channels with defects were not used for capillary-flow
experiments. The microchannel length and height were 30 mm and 22.5 pm, respectively.
Microchannels widths were 17, 25, 50, 75, 100, and 200 gm. The reservoir radius was 3 mm.
A schematic of the microchannel geometry and a SEM image of a 100 um wide and 22.5 ym

deep channel are shown in figure 1.

Table 1: Physical properties and equilibrium contact angles of test liquids.

Liquid p (g/ecm?®)  u (mPa-s) o (mN/m) 6 (°)

NOAT4 >1 541.1 £2.2 291 £0.2 10 &+ 3*
silicone oil 1.07 43.0 £ 0.2 235+02 18+ 3
mineral oil 0.838 272 +£01 298&+£0.7 32+2*

propylene glycol 1.04 43.44+0.2 338402 42+2b

2Solid NOAT73 substrate. PSolid NOA6G8 substrate.

Materials Characterization. The nonvolatile test liquids chosen for capillary-flow
experiments included UV-curable adhesive (Norland Products, NOA74), silicone oil (Dow
Corning Corporation, DC-704), mineral oil (Sigma-Aldrich), and propylene glycol (Froggy’s
Fog). Shear viscosity p was measured using a stress-controlled rheometer (AR-G2, TA
Instruments) with a stainless-steel cone-and-plate geometry (40 mm, 2° cone angle). Surface
tension ¢ was measured using a Kriiss DSA-30 digital tensiometer. A Kriiss goniometer
was used to measure equilibrium contact angles 6y on flat test substrates prepared in the
same way as the capillary channels. Density values were obtained from the manufacturer
specifications. The physical properties and equilibrium contact angles of the test liquids are

shown in table 1. Note that all liquids have 6, < 45°.
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Figure 2: (a) Schematic of experimental apparatus. (b) Meniscus position Z,, as a function
of time ¢ for different channel aspect ratios A with NOA74. The solid lines and shaded areas
represent the average and range of experimental results, respectively. The solid symbols
indicate the meniscus position and flow time at which samples were cured to obtain SEM
and profilometry images (figure 3). For A = 0.45 the shaded region is so small it cannot be

seel.

2.2 Experimental Methods

Capillary-Flow Visualization. The experimental investigation of capillary flow was con-
ducted with the apparatus depicted in figure 2a. Capillary channels were placed on a custom-
built motorized stage assembly which was lit from below through the transparent stage and
substrate. A controlled volume of the test liquid was placed into the reservoir attached to
the capillary channel using a Nordson EFD ValveMate 7100 drop dispensing system with
a 25 GA Nordson EFD tip mounted above the reservoir. Sufficient liquid was deposited
at the center of the reservoir to fully fill the reservoir. After deposition, a programmed
microstepping motor (Automation Direct STP-MTRD-23042RE) moved the stage assembly
and ensured the liquid front remained in the field of view, allowing for visualization of longer
flow distances compared to prior studies (Kolliopoulos et al., 2019; Lade et al., 2018; Sowers
et al., 2016; Yang et al., 2011). A high-speed camera (Photron Fastcam-Ultima APX) with
a Micro-Nikkor 105 mm lens, Nikon PN-11, Nikon PK-13, and Kenko 20 mm and 36 mm ex-
tension tubes, and a Kenko N-AFD 2x Teleplus MC7 lens was used to visualize the flow at 60
fps. Flow was recorded until the liquid meniscus reached the end of the 30 mm long channel
or until the maximum recording time of the camera (~400 s) was reached. Experiments were

conducted at ambient conditions (23 4+ 1°C). Flow visualization experiments were analyzed
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using ImageJ software. A minimum of 4 trials was conducted for a given channel aspect

ratio and test liquid. The meniscus-position time evolution Z,,(f) was averaged over all trials
and the maximum and minimum Z,,(f) were used for the range of experimental results. The
meniscus-position time evolution Z,,(f) for different channel aspect ratios A using NOA74 as
the test liquid can be seen in figure 2b. Results using the other test liquids are reported in
§4.2.

Free-Surface Profile Characterization. The following experiments were conducted
to investigate the effect of channel aspect ratio A\ on the free-surface morphology. A UV-
curable liquid (Norland Optical Adhesives, NOA74) was deposited in the reservoir connected
to the microchannel and allowed to flow along the channel length. The flow was terminated
at a desired time by exposing the NOAT74 to a high-intensity UV light source (Omnicure
S1500A with a custom light guide) at approximately 1.6 W/cm? UV dosage. The liquid
was fully cured in <2 s, but the flow terminates well before full solidification, so the process
essentially creates a snapshot of the free-surface profile at a given time. The position of the
meniscus front and the time at which curing occurred are represented by the solid symbols
in figure 2b for two channel aspect ratios .

After solidification, the free-surface profile was measured with a stylus profilometer (KLA-
Tencor P16) by making repeated scans across the channel width. The samples were then
coated with a conductive gold film and the region near the meniscus front was imaged with
a scanning electron microscope (JEOL JSM-6010PLUS/LA, SEM) in secondary electron
imaging mode with a sample rotated 40° about the Z axis (figure 3f). SEM images and

profilometry scans for channels of aspect ratio A = 0.45 and A\ = 0.225 corresponding to the

solid symbols in figure 2b are shown in figure 3.

2.3 Free-Surface Morphology

We investigate the effect of channel aspect ratio A on the free-surface morphology by initially
examining the profilometry scans in figures 3a and 3c. It is observed that for both channel
aspect ratios the liquid height h at the center of the channel decreases down the channel
length. This decrease in h at the center of the channel results in an increase of the free-
surface curvature, causing capillary-pressure gradients that drive the flow. At a certain
distance down the channel, & at the center of the channel goes to zero and the liquid splits
into two filaments along the bottom corners. The filament morphology can be seen in the

SEM images in figures 3b and 3d.
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Figure 3: Profilometry scans and SEM images of cured NOA74 in channels of aspect ratios
(a-b) A = 0.45 and (c-d) A = 0.225. Dashed boxes in (a) and (c) represent the corresponding
locations of SEM images in (b) and (d), respectively. SEM images were obtained from
samples rotated 40° about the Z axis as seen in (f) (scale bars: (b) 50 pm and (d) 100
pum). Regimes: (I) meniscus deformation, (II) meniscus recession, (III) corner flow, and (IV)
corner transition. (e) SEM image of cured NOA74 in a channel with A = 0.225 depicting the
pinned contact line at the top of the channel side wall. (f) Schematic of sample orientation

for SEM visualization.

From figures 3a and 3b, it appears that the free-surface morphology can be divided into
three regimes. The first is a meniscus-deformation regime (I) (or accomodation regime)

where the liquid is pinned to the top of side walls and the top meniscus curvature increases



down the length of the channel. The second is a meniscus-recession regime (II) where the
liquid depins from the top of the channel wall and the meniscus begins to recede down the
channel walls. The third is a corner-flow regime (III) where the liquid splits and recedes into
the corners.

Examination of figures 3¢ and 3d also suggests the presence of three regimes. The first is
the meniscus-deformation regime (I) similar to that seen in figure 3b. However, in this case
the meniscus splits into filaments prior to the liquid depinning from the top of the channel
wall (see figure 3e) so that the meniscus-recession regime (II) is absent. After the splitting
of the meniscus a corner-transition regime (IV) is observed, where the liquid remains pinned
to the top of the channel wall. This is followed by a corner-flow regime (III) similar to that
seen in figure 3b.

The above visualizations suggest that there is a critical channel aspect ratio A. at which
the free-surface morphology transitions from that seen in figures 3a and 3b to that seen in
figures 3c and 3d. This is in agreement with experimental observations of Seemann et al.
(2005). In their study, polystyrene droplets were deposited on grooves with rectangular cross
sections via vapor condensation. The polystyrene droplets flowed in the grooves and were
solidified by lowering the temperature of the polymer below its glass transition temperature.
The solidified samples were then characterized using atomic force microscopy (AFM).

The expression Seemann et al. (2005) used for A\, was

. 1—sin€0

Ao = (1)

2cosby ’

by assuming a circular upper meniscus contacting the bottom of the rectangular channel
while being attached to the top of the channel walls. For NOA74 with 6, = 10° we ob-
tain A\, = 0.42 from (1), which is consistent with the free-surface morphology transition
observed in figure 3. While the corner-transition (IV) regime has been previously observed
experimentally, it has not, to the best of our knowledge, been accounted for in theoretical
studies.

In the following sections we will evaluate the importance of the free-surface morphology in
model predictions. This is achieved by comparing two theoretical models describing capillary
flow, where one accounts for the complexity of the free-surface morphology (§3.2) whereas

the other assumes it is flat (§3.1).



3 Mathematical Modeling

Here, we describe two mathematical models for capillary flow of a nonvolatile, isothermal
Newtonian liquid in an open rectangular channel in contact with an ambient passive gas. We
consider a liquid of density p, viscosity u, surface tension o, and equilibrium contact angle
fy. The open rectangular channel has width W, height H, and length L. In this work, we

use the notation f to denote the dimensional version of a variable f.

3.1 Modified Lucas-Washburn Model

In this model, the flow is assumed to be driven by the capillary-pressure gradient caused by
the circular-arc meniscus front, while viscous forces resist the flow and inertial and gravita-
tional forces are neglected. The capillary driving force is obtained by assuming a flat upper
liquid-air interface and a circular-arc meniscus front governed by fluid statics, while the vis-
cous force is obtained by assuming a fully developed parallel low. Through conservation of
linear momentum in the axial direction an analytical expression is obtained for the meniscus
front position Z,, as a function of time ¢, which in dimensional form is

Zm = \/lg_f, where k= %fj(/\)[cos Oo(1+2X) —1]. (2)

Here, k is the mobility parameter and has units of (length)?/time, A = H/W is the channel
aspect ratio, and (,(A) is an aspect-ratio function defined as

o0

24 1 tanh[(2n + 1)7A]
G = N2 ; Cn+ 14" (2n+1)7wA 3)

Detailed derivation of (,(\) can be found in the work of Ouali et al. (2013). Equation (2) will
be referred to as the modified Lucas-Washburn (MLW) model and has been used in several
other studies (Baret et al., 2007; Kolliopoulos et al., 2019; Ouali et al., 2013; Sowers et al.,
2016; Yang et al., 2011).

3.2 Lubrication-Theory-Based Model

We develop a model describing capillary flow in open rectangular channels that accounts
for the non-flat shape of the upper liquid-air interface, which results in capillary-pressure
gradients that drive flow. This is a more complex model than the modified Lucas-Washburn

model (2), which assumes a flat upper liquid-air interface.
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Figure 4: Schematic of liquid undergoing capillary flow in an open rectangular channel for
aspect ratios (a) A > A. and (b) A < A..

3.2.1 Model Geometry

We begin by considering flow in an open rectangular channel as depicted in figure 4, mo-
tivated by the experiments in §2.3. Recall that . is the aspect ratio at which the circular
upper meniscus contacts the bottom of the rectangular channel while being attached to the
top of the channel side walls with a contact angle of 6.

For A > A. (figure 4a) the free-surface morphology is divided into three regimes along the

Z-axis as discussed in §2.3: a meniscus-deformation [0, Z4(%)], a meniscus-recession [Z4(%), Z,.(1)],

and a corner-flow regime [Z,,(t), Z(¢)]. In the meniscus-deformation regime, the liquid is
pinned to the top of the channel wall (@ = H). The channel inlet is assumed to be fully filled
(6(0,) = 7/2) and the upper meniscus curvature increases down the channel length (0(Z, 1)
decreases) until the contact angle 0(Z,, f) = 6y, where Z; is the end of meniscus-deformation

regime.
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We then transition to the meniscus-recession regime, where the contact angle § = 6, and
the liquid height starts to recede down the channel side walls (@(Z,t) decreases) until the
upper meniscus contacts the channel bottom. From (1), here a(Z,,,f) = W, where %, is
the meniscus position. This results in a morphology transition where the flow splits into the
channel corners, leading to the corner-flow regime. In the corner-flow regime, 6 = 6, at the
channel bottom and the side wall, and the liquid height on the side wall @(Z,#) decreases
from @(Z,,t) = W to a(%,t) = 0, where 2 is the finger tip position.

For A < A, (figure 4b) the free-surface morphology is also divided into three regimes: a
meniscus-deformation [0, Z,,(%)], a corner-transition [Z,,(f), Z.(#)], and a corner-flow regime
[Z.(t), %(%)] as discussed in §2.3. In the meniscus-deformation regime the liquid is pinned
to the top of the channel wall (@ = H). The channel inlet is assumed to be fully filled
(6(0,%) = 7/2) and the upper meniscus curvature increases down the channel length (6(Z, %)
decreases) until the contact angle 6(Z,,,%) = ¢, where ¢ is the contact angle at the channel
side wall when the upper meniscus touches the channel bottom.

After the upper meniscus contacts the channel bottom, it splits into the channel corners,
leading to the corner-transition regime. In this regime the liquid remains pinned to the top
of the channel wall (@ = H), and we assume that the contact angle at the channel bottom
reaches 0y instantaneously. To conserve mass, the contact angle at the side wall must change
from O¢ to 0(Z,,t) = Or, where 07 is defined in §3.2.4 (note that 67 = ¢ if 6y = 0). The
upper meniscus curvature increases down the channel length (6(Z,#) at side wall decreases)
until 0(Z.,t) = 6y, where Z, is the finger depinning position (the position at which the liquid
depins from the top of the channel wall). Once § = 6, on the channel bottom and side wall,
the morphology transitions to the corner-flow regime where the liquid height on the channel
side wall a(Z,t) decreases from a(Z.,t) = H to a(z,t) = 0.

In the following sections we develop a mathematical model for capillary flow considering
both A > A, (figure 4a) and A < . (figure 4b) and accounting for the complex upper

liquid-air interface morphology.

3.2.2 Governing Equations

We consider mass and momentum conservation of an incompressible Newtonian liquid with

constant density, given by
V.i=0, (4a)
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ot - - .
p [a—]; +(a- V)ﬁ] = —Vp+ uV’a+ pg, (4b)

where @ = (@, 0, W) is the velocity field in Cartesian coordinates, p is the liquid pressure, and
g = (Gx, Jy, G-) is the gravitational acceleration. The no-slip and no-penetration conditions

are applied along the solid walls as
u=0. (5)

The boundary conditions for the normal and tangential stresses at the liquid-air interface

h(z, Z,t) are given by

[n-T-n]=0(V,- n), (6a)
[t; - T -n] =0, (6b)
[t - T. n] = 0. (6¢)

Here, T = —pI + pu[Vii + (Va1)7] is stress tensor, I is the identity tensor, V, = V — n(n -
@) is the surface gradient operator, n is the unit outward normal vector, and t;, ty are
the two tangent vectors at the interface in the transverse and axial directions, respectively
(expressions for these vectors can be found in the supplementary material).

Equations (4a) and (4b) are rendered dimensionless using the following scalings

. L wlU
T.1.2) = H H L t:_t p = —
(%,9,2) = (Hz, Hy, Lz), b p= b
H 2
(a,v,w) = (eUu, eUv,Uw), €= U=
L

Additionally, the gravitational acceleration vector is scaled as (s, gy, J:) = (99z, 99y, 99-)
where ¢ is the magnitude of the gravitational acceleration. The dimensionless parameters
that arise are the Reynolds number Re = pUH/u (ratio of inertial to viscous forces), the
capillary number Ca = pU/eo (ratio of viscous to surface-tension forces), and the Bond
number Bo = pgH? /o (ratio of gravitational to surface-tension forces).

In the limits where €2 < 1, eRe < 1, and Bo/Ca < ¢, the governing equations reduce

to

ou Ov Jw

% + a—y + & - O, (7&)
dp Op
R b

2 2
@ _ 0w 0 w‘ (7c)
0z  0x*  0y?
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The boundary conditions for the normal (6a), transverse tangential (6b), and axial tangential

(6¢) stresses at the free surface reduce to

9%h Ozh
_ -1 x — -1 x
p=—Ca 15 (0.1 Ca Ll n (3$h)2]1/2] ) (8a)
ou Ov ou Ov ow ow
_ o 21 27 il " e el et
0= [1— (2,h) ]<8y ‘ ax) +2axh( du ) 8y) @h(ax +axh8y), (8h)
0= 2_1; — 8xh%, (8¢)

The normal stress balance in (6a) has as a special case the Young-Laplace equation p =
—Ca~ 'k, where k accounts for both transverse and axial curvature contributions. However,
in the limit €2 < 1, axial curvature contributions are negligible and only the leading-order
transverse curvature contributions are accounted for in (8a). Based on (7b) the O(1) term in
p is only dependent on z and ¢, and thus the leading-order curvature term (term in brackets
on far right of (8a)) is actually independent of x and must only depend on z and t. The
derivation of (7) and (8) can also be seen in Yang & Homsy (2006) and White & Troian

(2019), who considered V-shaped channel cross sections.

(a)
yr

0(z,t)

h(z,zt)

Figure 5: Cross-sectional schematics of (a) meniscus-deformation (¢ = 1) and meniscus-
recession (6 = 6) regimes, and (b) corner-transition (a = 1) and corner-flow (§ = 6)

regimes.

Up to this point no assumption has been made regarding the channel cross-sectional
geometry. Here, we consider two geometries for the channel cross section: (a) rectangular
(figure 5a) and (b) V-shaped (figure 5b). Using these two geometries we can describe all the
liquid cross sections in figure 4a and 4b in terms of the liquid height on the solid wall a(z, t)

and the contact angle 6(z,t). The meniscus-deformation (¢ = 1) and meniscus-recession
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(0 = 6y) regimes are described using the rectangular cross section, while the corner-transition
(a = 1) and corner-flow (6 = 6y) regimes are described using the V-shaped cross section.
Each cross-sectional geometry requires three additional boundary conditions to obtain
expressions for p(z,t) and h(z,z,t): the contact-line location on the solid wall, a symme-
try condition, and the definition of the contact angle 6. Expressions for these boundary
conditions can be found in the supplementary material. We obtain expressions for p(z,t)
and h(z,z,t) as a function of a(z,t) and 6(z,t) for each regime in figure 4 by integrating
(8a) twice with respect to z and imposing the boundary conditions. The resulting O(1)

expressions are

p=—MAcosO(z,t)

j 1y tan 0(z,1) 1 1 meniscus deformation, (9a)
= - —x
2\ 42 cos? 0(z, t)
p = —Acosby
h=a(at) + tan 6, 1 R meniscus recession, (9b)
= alz — — X
’ 2\ 4)2 cos? 0,

cos By — sinf(z, t)
2

h= cos(z(;s(j,(;? B8) KCOS(OZ]?g + 6))2 - IZ} N

cos 6y — sin 6y
2a(z,t)

a(z,t) cos b, [(a(z,t) sin n/4)2 B 932] 1/2

- cos(fp +7/4) |\ cos(fy + 7 /4)

p=-
corner transition, (9c)

p=—
corner flow, (9d)

where 6 is the equilibrium contact angle, § = arctan(cos/ cosfy) (see supplementary ma-
terial for further details), and A is the channel aspect ratio. Equations (9a) and (9b) were
also used by Tchikanda et al. (2004) and Nilson et al. (2006). A similar expression to (9c)
can be found in Weislogel & Nardin (2005). The expressions in (9d) were also used by
Romero & Yost (1996), Weislogel & Lichter (1998), Nilson et al. (2006), Yang & Homsy
(2006), and White & Troian (2019). We note that to reconstruct free-surface profiles, the
height profiles h in (9¢) and (9d) corresponding to figure 5b must be rotated by angles
B = arctan(cos 0/ cosy) and = 7/4, respectively, to match the orientation of the channel

cross section in figures 4a and 4b.
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3.2.3 Diffusion Equations

Lenormand & Zarcone (1984) derived the following expression from system (7), relating
the gradient in the dimensionless flux ¢ to the time derivative of the dimensionless liquid

cross-sectional area A

0A  8q

oA _ 99 1
ot 0z (10)

The dimensionless flux is defined as

q:/AwdA: —%@A, (11)
where w; is a rescaled cross-sectional-averaged dimensionless velocity. Here, 7 is equal to D,
T, or C for the meniscus-deformation, corner-transition, and corner-flow regimes, respec-
tively. (As will be discussed below, the meniscus-recession regime will be neglected.) Details
of the calculation of w; are discussed in the supplementary material.

It is evident from (9a)-(9d) that the dimensionless streamwise flux ¢ in (11) is either a
function of the dimensionless liquid height a(z,t) on the side wall or the liquid contact angle
0(z,t) depending on the regime. Rather than considering a(z,t) and 6(z,t) separately, we
introduce the liquid saturation s = A(a,8)/HW = MA (ratio of channel cross-sectional area

filled with liquid to total channel cross-sectional area). For each regime the liquid saturation

s is given by

1 i 0) 1

s =53 [2)\ — %(SC;;S) + 5 tan 0] : meniscus deformation, (12a)
1 i ) 1

s= 5% [2)@ — %;0500) + 5 tan 00} , meniscus recession, (12b)

AB(0,0
s = roos 90(_7 Sjorz B corner transition, (12c¢)
20\A(6)
s =a’ (%) corner flow, (12d)

(cos By — sin 6y)?’

where the geometric functions B and A can be found in (20) and (21) in the Appendix,
respectively. Equations (12a), (12b), and (12d) are equivalent to expressions reported by
Nilson et al. (2006).

Since the pressure p in (9b) is constant in the meniscus-recession regime, the flux ¢ = 0
for this regime based on (11). This is because the transverse curvature gradients are zero
and the only contribution to ¢ is from the O(e?) axial curvature gradients, which we did

not account for. Nilson et al. (2006) estimated that the meniscus-recession regime size
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§ ~ L(e?\/2)'/3. For the microchannel dimensions considered in our study & ~ 180 — 320
pm, which is negligible considering the channel length is 30 mm. This estimate for § agrees
with the observations in figure 3b where the meniscus-recession regime size is < 50um.
Therefore, effects of the meniscus-recession regime will be neglected (i.e., Z; = Z,, in figure
4a) and the regime transition from meniscus deformation to corner flow (for A/A. > 1) will
be treated as a saturation jump.

By using (12a)-(12d) in (10) we obtain the following system of nonlinear partial differ-

ential equations governing the liquid saturation

% = % (DDS%), meniscus deformation, (13a)
% - % (DTsl/Q%) corner transition, (13b)
% = % (chl/Q%) corner flow, (13c)
where 22 sin 0 cos? 0
Dp =wp ( 1- tan?grc:?r?(cos 9)) ’ (14a)

~

a2 1/2
Dy — (cos By — sin 6) < i 1 ) ( i B(6,6,) )7 (14D)
4 AB(0,6y) B(0,6y) — tan O(cos §y — sin 6)?

o 2 1/2
Do — @ (cos By — sin by) ( } ) . (14¢)
4 2)\A(6y)

The quantities Dp, Dy, and D¢ can be thought of as dimensionless diffusion coefficients

describing the interface growth.

Recall that A. (see (1)) is the aspect ratio at which the circular upper meniscus contacts
the bottom of the rectangular channel while being attached to the top of the channel side
walls with a contact angle of 6y. When A > A. (figure 4a), the bounds of the meniscus-
deformation and corner-flow regimes are (0, z,,) and (2, 2;), respectively, where z,, is the
meniscus position and z; is the finger tip position. When A < A, (figure 4b), the bounds
of the meniscus-deformation, corner-transition, and corner-flow regimes are (0, z,,), (zm, 2c),

and (z., z;), respectively, where z. is the finger depinning position.
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3.2.4 Similarity Transformation

We exploit the self-similar nature of the nonlinear diffusion equations (13) by introducing
the variable = z/v/t (Chen et al., 2006; Romero & Yost, 1996; Weislogel & Lichter, 1998;
White & Troian, 2019). For A > A. shown in figure 4a, the self-similar governing equations

are
1
—5 Z—; = %(DDSZ—;), n € [0,00m0), meniscus deformation, (15a)
1 d d d
—57761—; = d_77 (Dcsl/Qd—;?), n € (dono, Mo, corner flow, (15Db)
subject to
s(0) =1, s(dom0)” =sp, s(dom0)" =sc, s(n) =0, (15¢)

where 1y = 2,/ \/t is the rescaled finger tip position and dgng = 2,/ V/t is the rescaled meniscus
position. The channel cross section at the inlet is assumed to be fully filled and 6 = 7/2. At
the end of the meniscus-deformation regime 6 = 6, which is used in (12a) to calculate sp.

At the beginning of the corner-flow regime a = A\./\, which is used in (12d) to determine
sc. (Recall from §3.2.1 that the corner-flow regime begins when a = W \., which in dimen-
sionless form is a = A./A.) Finally at the finger tip, the liquid height goes to zero. Note that
sp = s¢ only for A = A. (meniscus contacts channel bottom at end of meniscus-deformation
regime). Equation (1) is used to determine ., which depends only on 6. For all )\, it
is assumed in the corner-flow regime that the contact angle on the channel side wall and
bottom is always #, and thus independent of speed. This is the simplest assumption and
allows us to focus on the influence of other problem parameters.

Two additional conditions are required to determine 7y and dy, which specify the bounds
of each regime. The first condition is the flux matching condition given by

d 1 d 1
- DDS—S — —sn] — [— Dcsl/Q—S ——sn| =0, at n=dono, (15d)
dn 2 7| 1 .

where the second term in each bracket accounts for the potential discontinuity in s due to
transitioning from the meniscus-deformation to the corner-flow regime. A derivation of (15d)
can be seen in §B in the Appendix. The second condition is that the flux approaches zero
at the finger tip (i.e., Dgs'/?ds/dn — 0, as  — 1,). Following Romero & Yost (1996) and

using (15b), it can be shown that to satisfy this condition, the following must be true

d 1
g-1/2%5

= —n, at n=nmn. (15e)

- D
¢ dn 2
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For A < A, shown in figure 4b, the self-similar governing equations are

1 d d d
-5 d_; — an (DDSd_;)7 n € 10,80m0), meniscus deformation, (16a)
1 d d d
-3 d_; — an (DTSI/Qd_Z)’ n € (dono,d17M0), corner transition (16b)
1 d d d
-5 d_; = i (Dcsl/Qd—;)7 n € (dom1, M), corner flow (16¢)
subject to

s(0)=1, s(dom)” =sp, s(6omo)" =sr, s(Gimo)” = s(dimo)t =sc,  s(no) =0 (16d)

where 0179 = z./V/t is the rescaled finger depinning position (§3.2.1). The channel cross
section at the inlet is assumed to be fully filled and § = /2. At the end of the meniscus-
deformation regime 6 = 6. (critical angle at which upper meniscus touches channel bottom,
calculated from A\ = (1 — sinf¢)/2cos ), which is used in (12a) to calculate sp, and the
contact angle at the channel bottom is 6 = 0.

At the transition from the meniscus-recession to the corner-transition regime, the liquid
remains pinned to the top of the channel side wall and the upper meniscus contacts the
channel bottom with the flow splitting into the channel corners. At the beginning of the
corner-transition regime we assume the liquid instantaneously attains 6y at the channel
bottom and - — 01 at the channel side wall. To conserve mass, we equate the amount of
liquid in the channel cross section on each side of this transition. This specifies 67, which is
calculated (via Newton’s method) by setting (12¢) equal to sp. If the calculated 07 < /4,
then sy = sp. If 6 > 7/4, then Dy < 0 which makes the problem ill-posed (Romero &
Yost, 1996). In this case, we set Oy = 7/4, leading to a saturation jump. Equation (12¢) is
then used to determine sy based on 7. Note that in the corner-transition regime the contact
line at the channel side wall is assumed to be pinned while the contact line at the channel
bottom is allowed to move with constant contact angle fy. At the end of the corner-transition
and the beginning of the corner-flow regime a = 1, which is used in (12d) to determine s¢.
(Recall from §3.2.1 that the corner-flow regime begins when a = H, which in dimensionless
form is a = 1.) Finally at the finger tip, the liquid height goes to zero.

Three additional conditions are required to determine 7y, dg, and d;, which are

ds 1 ds 1
— Dns— — = | = Dpst/2Z2 =0 t =4 16
Dsdn 2877:|_ [ TS an 2877 N , at m 070, (16e)
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ds 1 ds 1
— DT31/2% — 5377} — {— Dcsl/2% — 58| = 0, at n=dno, (16f)

L 0ds 1
— Dcs 1/2d_77 = 5 at 1 = no, (16g)

where (16e) and (16f) are flux matching conditions (see Appendix §B) and (16g) is the
condition setting the flux to zero at the finger tip.

For A > ). the system of governing equations is (15), whereas for A < A. the system
consists of (16). What is required to solve these systems are the cross-sectional-averaged
dimensionless velocities wp(s), wr(s), and we(s), which influence the values of Dp, Dy, and
D¢ through (14). The cross-sectional-averaged dimensionless velocities are calculated for a
given cross section by solving (7c) subject to no-slip and no-penetration conditions along
the solid walls and no-stress condition (8c) at the liquid-air interface (see supplementary

material for further details).

3.2.5 Numerical Methods

Velocity fields (see supplementary material) are numerically solved for with a Galerkin finite-
element method (FEM) using quadratic basis functions. To validate our computations, our
results for wp(s), wr(s), and we are compared to results from prior studies. Results for
wp(s) and wr(s) are in agreement with results by Tchikanda et al. (2004) and Weislogel &
Nardin (2005), respectively. Results for we agree with results by Ayyaswamy et al. (1974),
Ransohoff & Radke (1988), and Yang & Homsy (2006). Note that these prior studies do not
consider capillary flow in open rectangular channels over the range of contact angles ¢, and
aspect ratios A examined in the present work.

Results for wp(s) and wr(s) from the FEM simulations are fitted using Chebyshev poly-
nomials of the first kind using the least-squares method. These Chebyshev polynomials are
then used in the system of equations (15) (A > A.) and (16) (A < A.) to evaluate Dp and Dy.
Since w¢ does not depend on s, an exact expression for D¢ can be obtained via (14c). Both
nonlinear systems of equations (15) and (16) are discretized using a second-order centered

finite-difference method and solved using the fsolve solver in MATLAB.

20



4 Results and Discussion

Similarity solutions for the liquid saturation profiles s(n) and their dependence on the chan-
nel aspect ratio A\ and equilibrium contact angle 6y are presented first (§4.1). Using these
similarity solutions, three-dimensional liquid height profiles are obtained to highlight the
complex free-surface morphology similar to that seen in figure 3. Model predictions for
the evolution of the meniscus position Z,,() from the lubrication-theory-based and MLW
models are then compared to experimental observations (§4.2). Finally, lubrication-theory-
based model predictions of the finger length evolution [;(t) = 2/(t) — z,,(t) are compared to

experimental results (§4.3).

(a) (b)
A=0.75
1 ‘
0.8 0o = 42
32°
L 18°
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= = : ! |:
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Figure 6: Effect of (a) aspect ratio A and (b) equilibrium contact angle 6y, on liquid saturation
profiles s(n). The two solid symbols on each curve correspond to the end of the meniscus-
deformation regime and the beginning of the corner-flow regime, respectively (see figures
4a and 4b). The dashed lines indicate the saturation jump due to neglecting the meniscus-
recession regime when A > A, (see §3.2.3). Note that \. = 0.42 for 6, = 10°.

4.1 Saturation Profiles

Computed similarity solutions of the liquid saturation s(n) for different aspect ratios A and
an equilibrium contact angle 6, = 10° are shown in figure 6a. Solutions for A > A, and

A < M. are obtained solving the system of equations (15) and (16), respectively. These
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Figure 7: Lubrication-theory-based model predictions of the rescaled finger tip position 7y,
meniscus position dgng, and finger depinning position d17y as a function of channel aspect
ratio A for (a) 6y = 10°, (b) 6y = 18°, (c) Oy = 32°, and (d) 6y = 42°. The shaded areas
between the curves represent the sizes of the meniscus-deformation (I), corner-flow (III), and

corner-transition (IV) regimes.

similarity solutions are valid for intermediate times, when channel entrance and end effects
can be neglected.

In figure 6a when A > A, (here A\, = 0.42), s(0) = 1 corresponds to a fully filled channel
cross section. Moving down the length of the channel, s decreases monotonically and at
the meniscus position (solid symbol) the flow transitions from the meniscus-deformation to

the corner-flow regime (see figure 4a). A jump in s (dashed lines) is observed because we
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neglected the meniscus-recession regime as discussed in §3.2.3. In the corner-flow regime s
continues to decrease until s(1y) = 0 at the finger tip.

From figure 6a, the s(n) profiles have a non-monotonic dependence on A, suggesting that
there is an optimal A for capillary flow. The effect of the equilibrium contact angle 6y on s(n)
for an aspect ratio A = 0.75 is shown in figure 6b. Decreasing 6, results in more capillary
filling. Although in figure 6b we consider A > \., the same trend is observed for A < A..

The non-monotonic effect of A on capillary flow becomes more clear in figure 7. Here,
the rescaled finger tip position 7y, meniscus position dg7ny, and finger depinning position
0110 (defined in §3.2.4) are presented as a function of A for different 6. The shaded areas
between the curves represent the sizes of the meniscus-deformation (I), corner-flow (III), and
corner-transition (IV) regimes (seen in figures 4a and 4b), which depend on A and 6.

We first consider results in figure 7a, where 6y = 10°. When A > \. the flow is dominated
by the meniscus-deformation (I) regime. With decreasing A, the size of the corner-flow
(III) regime monotonically increases. However, the size of the meniscus-deformation (I)
regime increases and then decreases, with decreasing A. When A drops below A., the corner-
transition (IV) regime appears. As A is further decreased, the sizes of the corner-flow (III)
and corner-transition (IV) regimes increase, while the size of the meniscus-deformation (I)
regime decreases. These trends are observed for the other 6, considered in figures 7b-7d.

Similarity solutions for s(n) are used to construct three-dimensional (3D) free-surface
profiles. These solutions for s(n) are used in (12) to determine 6(n) (via Newton’s method)
and a(n) for each regime. The 3D free-surface profiles h are determined using (9). Since the
h expressions in (9¢) and (9d) for the corner-transition and corner-flow regimes correspond
to figure 5b, they require rotation by angles § = arctan(cos @/ costy) and § = /4, respec-
tively, to match the channel orientation seen in figure 4. By solving the system of ordinary
differential equations (15) and (16) we can construct 3D free-surface profiles for any time .
Dimensional free-surface profiles h for A > Ae and A < A, after 100s of flow of NOA74 are
depicted in figure 8.

Qualitative agreement is observed between the 3D free-surface profiles in figure 8 and
the profilometry measurements in figure 3a and 3c. The channel is fully filled at the channel
inlet and the upper meniscus bows down as we move down the length of the channel until it
contacts the channel bottom and splits into the channel corners. A quantitative comparison

between theory and experiment is made in the following section.
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Figure 8: Simulated liquid height profiles of NOA74 after £ = 100s of flow for (a) A = 0.45
(A > A.) and (b) A = 0.225 (A < A.). For NOA74 \, = 0.42.

4.2 Comparison with Experiments

We compare predictions of the meniscus-position time evolution Z,,(¢) from the lubrication-
theory-based and MLW models to experimental observations. This comparison is made
in figure 9 for the test liquids detailed in table 1. Solid and dashed lines represent the
lubrication-theory-based and MLW model predictions, respectively, while experimental ob-
servations are shown as symbols. Each panel in figure 9 includes experiments for A > A\, and
A < A, except for the case of propylene glycol (figure 9d) where only experiments for A > A,
were conducted.

When A > A, the lubrication-theory-based and MLW models are in good agreement with
experiments for NOAT74 (figure 9a) and silicone oil (figure 9b). For mineral oil (figure 9c¢)
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Figure 9: Dimensional meniscus position Z,, as a function of time ¢ for different channel
aspect ratios A with (a) NOA74 (6y = 10°, A. = 0.42), (b) silicone oil (fy = 18°, A\, = 0.36),
(¢) mineral oil (Ay = 32°, A. = 0.28), and (d) propylene glycol (6, = 42°, A. = 0.22). Symbols
and shaded areas represent average and range of experimental results, respectively. Solid and
dashed lines represent lubrication-theory-based and MLW model predictions, respectively.

and propylene glycol (figure 9d), the lubrication-theory-based model agrees well with the
experiments but the MLW model underpredicts Z,, (#).

For NOAT4 (figure 9a) and silicone oil (figure 9b), the lubrication-theory-based model
agrees with experiments for A < )., but the MLW model overpredicts Z,,(f). For mineral oil
(figure 9¢), both models overpredict Z, () for A\ < .. For propylene glycol (figure 9d), at

larger A\ the lubrication-theory-based model predictions agree better with experiments than
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predictions of the MLW model. However, as A — \. the MLW model predictions agree with

experiments, whereas the lubrication-theory-based model overpredicts Z,,(t).
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Figure 10: Dimensionless mobility parameter k as a function of aspect ratio A for (a) NOA74
6y = 10°, A\. = 0.42), (b) silicone oil (fy = 18°, A\, = 0.36), (c) mineral oil (6, = 32°,

« = 0.28), and (d) propylene glycol (6y = 42°, A\, = 0.22). Solid symbols represent exper-
imental results, dashed and solid lines represent MLW and lubrication-theory-based model
predictions, respectively, and shaded areas represent A < A.. Insets: Fitted scaling exponent
n (from z,, = (kt)") as a function of aspect ratio A for liquids with different equilibrium con-
tact angles . Solid lines represent lubrication-theory-based and MLW model predictions of
n = 0.5.

To further compare theory and experiment we consider the dimensionless mobility pa-
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rameter k = 22 /t, which can be thought of as a diffusion coefficient driving the growth of

the meniscus position. In the lubrication-theory-based model,
k= (dom)?, (172)

since 6oy = zm/V/t from (15a) and (16a). Computed values of oo for different A and 6
are shown in figure 7. In the MLW model,

k=k/UL, (17b)

where k is defined in (2), U is the characteristic velocity (see §3.2), and L is the channel
length. Experimentally, k is determined by fitting the function z,, = (kt)" to experiments
similar to those shown in figure 9 using nonlinear regression. A comparison of theoretically
predicted and experimentally determined k values as a function of A and 6, is shown in figure
10.

When A > A, the lubrication-theory-based and MLW model predictions are indistin-
guishable regardless of 5. In this limit the finger contribution to the flow becomes negligible
and the flow asymptotically approaches that between two parallel plates. Note that when
A = H/W > \. the effects from the channel bottom become negligible compared to the
effects from the side walls. As A — 1 the two model predictions begin to deviate because
the viscous resistance in the fingers becomes significant, and fingers are not accounted for in
the MLW model. However, both model predictions for k£ are in reasonable agreement with
experiments. As A\ — ). the lubrication-theory-based model agrees better with experiments,
compared to the MLW model (except in figure 10d). The disagreement between the MLW
model and experiments becomes more evident as A decreases because the free-surface height
profiles (figure 3b and 3d) become more non-uniform. Therefore, the assumption of a flat
free-surface height profile used in the MLW model becomes less valid with decreasing A.

However, the lubrication-theory-based model does not always perform better than the
MLW model (figure 10d). As 6y — 7/4 the transverse free-surface curvature in the corner-
transition and corner-flow regimes vanishes and the flow in these regimes is then driven
by axial curvature gradients (Yang & Homsy, 2006). These axial curvature gradients are
neglected in the lubrication-theory-based model (see (8a)) because they are O(e?) terms.

When the axial curvature contributions are included in the pressure, then
p=—Ca " |Cr(s) + €Ca(s, 0.s,02s) |, (18)
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where Cr(s) and C4 (s, 0.8, 033), are the transverse and axial curvature contributions, respec-
tively. Including the axial curvature gradients in the model results in fourth-order spatial
derivatives of s, for which we were unable to find similarity solutions. An additional reason
for the deviation between the lubrication-theory-based model predictions and the experi-
mental observations as 6y — /4 is that the lubrication approximation itself is expected to
become less accurate as the contact angle increases.

For predicting z,,(t), the choice of using the lubrication-theory-based or MLW model
depends on A and 6y. For large A both models give similar results, so the MLW model
is preferred because of its simplicity, but for small A the lubrication-theory-based model is
more accurate. Additionally, the lubrication-theory-based model performs better for smaller
0y compared to the MLW model. However, it neglects key physical contributions as 6y — 7/4
which results in poorer agreement. Nevertheless, when additional information is desired, such
as the free-surface morphology (figure 8) or finger dynamics (§4.3), then the lubrication-

theory-based model must be chosen.

4.3 Finger Dynamics
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Figure 11: Effect of (a) aspect ratio A and (b) equilibrium contact angle 6, on dimen-
sionless finger length [; as a function of dimensionless time ¢. Solid symbols and shaded
areas represent average and range of experimental results, respectively. Solid lines repre-
sent lubrication-theory-based model predictions. The liquids are mineral oil (6, = 32°) and
silicone oil (6, = 18°).
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A key advantage of the lubrication-theory-based model compared to the MLW model is
that it describes finger dynamics. The dimensionless finger length [;(¢) is defined as the
distance between the dimensionless finger tip position z;(¢) and the dimensionless meniscus
position z,,(t) which can be seen in figure 4. Predictions of the dimensionless finger-length
time evolution [;(¢) by the lubrication-theory-based model are compared to experimental

observations in figure 11. Model predictions for {; were computed using
lp=2(t) — z2(t) = (1 — 50)770151/2, (19)

where 19 = 2,/ V/t and dono = 2Zm/ Vt; values for no and dpny are shown in figure 7.

The effects of A and 6, on [(t) are shown in figures 11a and 11b. Solid lines and symbols
represent lubrication-theory-based model predictions and experimental observations, respec-
tively. It is important to note the shorter dimensionless times compared to the meniscus-
tracking experiments (figure 9) were caused by the finger tip moving out of the field of view.
In figure 11a, experimental observations are compared to model predictions for mineral oil
(Ac = 0.28), where increasing channel aspect ratio A results in a decrease in [f(t). Good
agreement between theory and experiments is observed, with model predictions being within
the range of experimental observations for all but one trial (i.e., A = 0.3 in figure 11a).
A possible reason for this discrepancy is the error in identifying the position of the finger
tip where the liquid height goes to zero, which is challenging during the meniscus-tracking
experiments where the stage is moving (figure 2a).

In figure 11b, experimental observations for mineral oil (6, = 32°, A. = 0.28) and silicone
oil (fy = 18°, A\, = 0.36) are compared to model predictions for A = 0.23 (A < \.). Increasing
6y leads to a decrease in [f(¢). Model predictions are in good agreement with experimental
observations in this case as well. Hence, the lubrication-theory-based model accurately
captures effects of A and 6, on [(¢). Additionally, the good agreement between theory and
experiment in figure 11 emphasizes the importance of accounting for the corner-transition
regime (figure 4b) when describing the finger dynamics in open rectangular channels when
A< A

We make two additional comments about the fingers. First, although curvature of the
channel corners may affect finger length (Chen et al., 2006; Gerlach et al., 2020), the good
agreement observed here suggests that the corner curvature does not play a significant role
in our experiments. Second, although the lubrication-theory-based model overpredicts the
meniscus position for mineral oil (figure 9d), it accurately predicts the finger length (figure
11) which is the difference between the positions of the meniscus and finger tip ((19)). This
indicates that while the lubrication-theory-based model may not predict absolute positions
accurately, it can predict relative positions accurately. A deeper understanding of the rea-
sons for this likely requires a comparison of the lubrication-theory-based model and direct

numerical simulations, which is beyond the scope of the present work.
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5 Conclusions

In this work we combine theory and experiment to examine capillary-flow dynamics in open
rectangular microchannels. For open microchannels, the free surface greatly influences the
capillary-flow dynamics. We visualize the free-surface morphology and its dependence on
the channel aspect ratio A using scanning electron microscopy and profilometry. The SEM
images suggest a qualitative difference in the free surface morphology at A = A\, and highlight
the significance of a corner-transition regime when A\ < \., which was not accounted for in
previous studies of capillary flow in open rectangular channels.

Effects of the free-surface morphology on capillary-flow dynamics were examined using
two theoretical models. The first model is a modified Lucas-Washburn (MLW) model, which
assumes a flat free surface and has been extensively used in prior studies. The second model
is a self-similar lubrication-theory-based model, which was developed to account for the
complex free-surface morphology observed in the experiments.

Predictions of the lubrication-theory-based and MLW models were compared to comple-
mentary flow visualization experiments over a wide range of channel aspect ratios A and
equilibrium contact angles 6y. For large A, predictions from the two models are indistin-
guishable, since free-surface morphology effects are negligible. However, for smaller A the
lubrication-theory-based model is in better agreement with experiments since the influence
of fingers is significant. Additionally, the lubrication-theory-based model agrees better with
experiments for smaller 6y, although as 6y — 7/4 the agreement worsens because important
axial curvature contributions are neglected. Finally, the lubrication-theory-based model
predictions accurately capture the finger-length time evolution seen in experiments over a
range of A and 6y, further highlighting the importance of accounting for the corner-transition
regime in the model formulation when A < A..

Our lubrication-theory-based model and flow visualization experiments reveal the limita-
tions of the widely used MLW model. In addition, our results significantly advance physical
understanding of capillary-flow dynamics in open rectangular microchannels, which play
a key role in a number of technological applications (§1) but are less well-studied than
V-shaped channels. Finally, the systematic development of our model allows for it to be
readily extended to incorporate other important phenomena such as gravitational effects,

solute transport, and evaporation.
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A  Geometric Functions

Geometric functions B and A, appear in the expressions for the liquid saturation s in the
corner-transition (12c¢) and corner-flow (12d) regimes, respectively. These geometric func-

tions are defined as
B=60+6,— /2 — cosO(sin O — cos by) + cos Gy(cos O — sin Oy) (20)

and

~

A =0y —m/4+ cosby(cos by — sinby). (21)

B Flux Matching Condition

We consider the interface between the meniscus-deformation and the corner-flow regime (fig-
ure 4). Following Panton (2013), the global continuity equation assuming no accumulation
at the interface is

{/n'(ﬁ_ﬁl)pd;l} _[[n'(ﬁ—ﬁI)Pdfl =0 at Z=2Z,, (22)

A — A +

where n = (0,0, 1) is the unit normal to the interface, 1 = (u,?,w) is the liquid velocity,
iy = (0,0, d%,/di) is the interface velocity, and A_ and A, are the meniscus-deformation

and corner-flow regime cross-sectional areas, respectively.
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Equation (22) simplifies to

[/wdg_dim] _de;x_dim} _0 at
A dt _ i dt N

Using the scalings in §3.2.2 and dividing both sides by the channel cross section HW gives

/wds—dz—ms — /wds—dz—ms =0 at z=2z,. (24)
s dt | _ s dt |,

Recall that the dimensionless flux is defined as ¢ = [, wdA = A [, w ds. It can be shown

13

(23)

e
I
3

that gp = —ADps2 and gc = —AD¢s'/?2, resulting in
0s dz Js dz

DpsZ _ gl | pest2 L g at 2=z 25

l P8 T Tt S]_ [ U T SL wor=s (25)

We then apply the similarity transformation using n = z/+/¢, which leads to

ds 1 ds 1
{_ DDSd_'r] — 5775] - [— D051/2d_7] — §ns}+ =0 at n=dono, (26)

which is the flux matching condition shown in (15d). Consequently a jump in the dimension-
less flux is necessary because of the saturation jump across the interface (i.e., s(dom0)~ = sp
and s(do7mo)t = s¢). Similarly, we can obtain the matching conditions for the meniscus-
deformation and meniscus-transition regimes in (16e) and the meniscus-transition and corner-

flow regimes in (16f).
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