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Abstract - Spontaneous capillary flow of liquids in narrow spaces plays a key role in a

plethora of applications including lab-on-a-chip devices, heat pipes, propellant management

devices in spacecrafts, and flexible printed electronics manufacturing. In this work we use a

combination of theory and experiment to examine capillary-flow dynamics in open rectangu-

lar microchannels, which are often found in these applications. Scanning electron microscopy

and profilometry are used to highlight the complexity of the free-surface morphology. We

develop a self-similar lubrication-theory-based model accounting for this complexity and

compare model predictions to those from the widely used modified Lucas-Washburn model,

as well as experimental observations over a wide range of channel aspect ratios λ and equi-

librium contact angles θ0. We demonstrate that for large λ the two model predictions are

indistinguishable, whereas for smaller λ the lubrication-theory-based model agrees better

with experiments. The lubrication-theory-based model is also shown to have better agree-

ment with experiments at smaller θ0, although as θ0 → π/4 it fails to account for important

axial curvature contributions to the free surface and the agreement worsens. Finally, we

show that the lubrication-theory-based model also quantitatively predicts the dynamics of

fingers which extend ahead of the meniscus. These findings elucidate the limitations of

the modified Lucas-Washburn model and demonstrate the importance of accounting for the

effects of complex free-surface morphology on capillary-flow dynamics in open rectangular

microchannels.
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1 Introduction

Capillary flow is the spontaneous wicking of liquid in narrow spaces without the assistance

of, or even in opposition to, external forces such as gravity. This phenomenon has been

investigated since the early twentieth century and has been exploited for a diverse range of

applications including lab-on-a-chip devices (Olanrewaju et al., 2018), heat pipes (Faghri,

1995), propellant management devices in spacecrafts (Levine et al., 2015), and fabrication

of flexible printed electronics (Cao et al., 2018; Jochem et al., 2018).

Early studies focused on understanding the physical mechanism driving spontaneous

capillary flow in capillary tubes. Lucas (1918) and Washburn (1921) appear to have been

the first to propose theoretical models describing the meniscus position z̃m as a function

of time t̃ for flow of a Newtonian liquid in cylindrical capillaries. Lucas (1918) assumed

the flow is driven by the capillary-pressure gradient caused by the circular-arc meniscus

front, while Washburn (1921) also included hydrostatic pressure gradients and an imposed

pressure difference between the two ends of the capillary. For a horizontal capillary tube

open at both ends, an analytical solution z̃m =
√
k̃t̃ is obtained, commonly referred to as the

Lucas-Washburn relation, where k̃ is known as the mobility parameter and depends on the

cylinder radius, liquid viscosity, surface tension, and contact angle. The mobility parameter

k̃ can be thought of as a diffusion coefficient driving the growth of the liquid interface.

Numerous studies extended the theoretical work of Lucas (1918) and Washburn (1921)

by including inertial (Bosanquet, 1923; Quéré, 1997; Rideal, 1922), dynamic contact angle

(Ouali et al., 2013; Popescu et al., 2008; Siebold et al., 2000), and surface roughness (Ouali

et al., 2013) effects. Additionally, these theoretical models have been extensively compared

to experiments (Fisher & Lark, 1979; Ichikawa et al., 2004; Ichikawa & Satoda, 1994; Ouali

et al., 2013; Quéré, 1997; Rideal, 1922), confirming the z̃m ∼ t̃1/2 scaling.

Due to breakthroughs in lithographic fabrication techniques, open microchannels with

various cross-sectional geometries can be fabricated easily and inexpensively, including rect-

angular (Kolliopoulos et al., 2019; Lade et al., 2018; Sowers et al., 2016; Yang et al., 2011),

trapezoidal (Chen, 2014), U-shaped (Yang et al., 2011), and V-shaped (Mann et al., 1995;

Rye et al., 1996, 1998; Yost et al., 1997) cross sections. The lack of a top provides access

to the inside of the channel, and has been exploited in applications such as capillary mi-

cromolding and microfluidics. Some studies have generalized the Lucas-Washburn relation

to arbitrary cross-sectional geometries (Berthier et al., 2015; Ouali et al., 2013). However,

predictions of the modified Lucas-Washburn models for open capillaries have resulted in
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varying agreement with experiments (Chen, 2014; Kolliopoulos et al., 2019; Ouali et al.,

2013; Sowers et al., 2016; Yang et al., 2011). This is because the mechanism for capillary

flow in open channels is more complex than for closed channels. While for closed channels

the force driving the flow is due to the pressure gradient caused by the circular-arc meniscus

front, for open channels the additional free-surface also contributes to driving the flow (this

will be discussed in more detail when presenting figure 4).

The additional contribution of the free-surface curvature to capillary flow has been theo-

retically and experimentally investigated primarily for V-shaped channels (Mann et al., 1995;

Romero & Yost, 1996; Rye et al., 1996, 1998; Weislogel, 2012; Weislogel & Lichter, 1998; Yost

et al., 1997). However, while the most widely used open-channel cross-sectional geometry

is rectangular (Olanrewaju et al., 2018), previous theoretical studies have only considered

capillary flow in open rectangular channels for liquids with contact angles of θ0 = 0◦ and

large channel aspect ratios λ = H/W (height/width) (Nilson et al., 2006; Tchikanda et al.,

2004), or reported three-dimensional simulations using the volume-of-fluid method to study

the effects of gravity on capillary rise in open rectangular channels (Gurumurthy et al., 2018).

In open rectangular channels the free-surface morphology is more complex than in V-

shaped channels. From the channel inlet to the meniscus front the upper meniscus spans the

entire channel width. However, at the meniscus front the flow splits into the channel corners

provided the equilibrium contact angle θ0 < π/4 (Concus & Finn, 1969). This splitting of

the flow leads to filaments or fingers extending ahead of the meniscus front and influencing

the meniscus-front propagation. Such a transition is not observed in V-shaped channels.

In this work we use a combination of experiment (§2) and theory (§3) to study capillary-

flow dynamics in open rectangular channels. This is achieved by developing a self-similar

lubrication-theory-based model (§3.2), and comparing model predictions to the modified

Lucas-Washburn (MLW) model (§3.1) and complementary flow visualization experiments.

We investigate the effects of the complex free-surface morphology on the flow dynamics

over a wide range of channel aspect ratios λ and equilibrium contact angles θ0 (§4.1) and

identify limitations of the MLW model (§4.2). Finally, we show good agreement between

lubrication-theory-based model predictions of the finger dynamics and experiments (§4.3).

2 Capillary-Flow Experiments

Experiments with a nonvolatile liquid are used to study capillary flow in open rectangular

microchannels. Flow visualization is used to track the meniscus front and a combination of

scanning electron microscopy (SEM) and profilometry is used to characterize the effect of

channel aspect ratio on the free-surface morphology.
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2.1 Channel Fabrication and Materials Characterization
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Figure 1: (a) Schematic of microchannel connected to reservoir and (b) SEM image of channel

cross section for λ = H/W = 0.45 (scale bar: 20 µm).

Fabrication of Master Pattern. Traditional microfabrication techniques were used

to form silicon master patterns of capillary channels. A 10.2 cm diameter silicon wafer was

cleaned in an oxygen asher (Technics Oxygen Asher) for 5 min with 200 SCCM oxygen flow

and 250 W RF power. MicroChem SU-8 2010 negative tone photoresist was spin coated

onto the wafer at 300 rpm for 5 s and 1000 rpm for 30 s, followed by edge-bead removal with

MicroChem EBR PG. These coating conditions target a 20 µm layer thickness. Fabrication

of capillary channels using SU-8 was chosen because it gives smother side walls, sharper

bottom corners, and a flatter channel bottom than deep reactive-ion etching. The resist

was soft-baked on a hot plate at 95◦C for 4 min. The photoresist was exposed through a

photomask using a Karl Suss MA6 contact mask aligner in soft contact mode for 12.5 s with

a 50 µm gap to define the capillary channels. Measurement gradient marks were included

in the master pattern to facilitate tracking of the capillary flow. The wafer was then baked

at 95◦C for 4 min. The exposed wafer was developed in propylene glycol momomethyl

ether acetate (Sigma Aldrich) and rinsed with isopropanol. The resist was then hard baked

at 150◦C for 30 min and an anti-stick fluorinated monolayer was formed by placing the

dried wafer in a reduced pressure chamber with trichloro(1H,1H,2H,2H-perfluorooctyl)silane

(Sigma Aldrich) vapor overnight. The resulting microchannel height was 22.5 µm, measured

with a KLA Tencor P16 surface profilometer.

Substrate Fabrication. Capillary channels were prepared by first casting a silicone

stamp (Sylgard 184) over the master pattern, curing the stamp, and then using the stamp
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to imprint UV-curable adhesive (Norland Products NOA68 or NOA73) as explained in Kol-

liopoulos et al. (2019). Briefly, the UV-curable adhesive was coated on glass slides and then

the silicone stamp was pressed into the adhesive. The adhesive was solidified by exposure

to 365 nm UV light (Honle UV Spot 100) at 30 mW/cm2 for 270 s. The stamp was then

delaminated from the prepared capillary channels and the channels were inspected with a

digital microscope for defects. Any channels with defects were not used for capillary-flow

experiments. The microchannel length and height were 30 mm and 22.5 µm, respectively.

Microchannels widths were 17, 25, 50, 75, 100, and 200 µm. The reservoir radius was 3 mm.

A schematic of the microchannel geometry and a SEM image of a 100 µm wide and 22.5 µm

deep channel are shown in figure 1.

Table 1: Physical properties and equilibrium contact angles of test liquids.

Liquid ρ (g/cm3) µ (mPa·s) σ (mN/m) θ0 (◦)

NOA74 >1 541.1 ± 2.2 29.1 ± 0.2 10 ± 3a

silicone oil 1.07 43.0 ± 0.2 23.5 ± 0.2 18 ± 3a

mineral oil 0.838 27.2 ± 0.1 29.8 ± 0.7 32 ± 2a

propylene glycol 1.04 43.4 ± 0.2 33.8 ± 0.2 42 ± 2b

aSolid NOA73 substrate. bSolid NOA68 substrate.

Materials Characterization. The nonvolatile test liquids chosen for capillary-flow

experiments included UV-curable adhesive (Norland Products, NOA74), silicone oil (Dow

Corning Corporation, DC-704), mineral oil (Sigma-Aldrich), and propylene glycol (Froggy’s

Fog). Shear viscosity µ was measured using a stress-controlled rheometer (AR-G2, TA

Instruments) with a stainless-steel cone-and-plate geometry (40 mm, 2◦ cone angle). Surface

tension σ was measured using a Krüss DSA-30 digital tensiometer. A Krüss goniometer

was used to measure equilibrium contact angles θ0 on flat test substrates prepared in the

same way as the capillary channels. Density values were obtained from the manufacturer

specifications. The physical properties and equilibrium contact angles of the test liquids are

shown in table 1. Note that all liquids have θ0 < 45◦.
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Figure 2: (a) Schematic of experimental apparatus. (b) Meniscus position z̃m as a function

of time t̃ for different channel aspect ratios λ with NOA74. The solid lines and shaded areas

represent the average and range of experimental results, respectively. The solid symbols

indicate the meniscus position and flow time at which samples were cured to obtain SEM

and profilometry images (figure 3). For λ = 0.45 the shaded region is so small it cannot be

seen.

2.2 Experimental Methods

Capillary-Flow Visualization. The experimental investigation of capillary flow was con-

ducted with the apparatus depicted in figure 2a. Capillary channels were placed on a custom-

built motorized stage assembly which was lit from below through the transparent stage and

substrate. A controlled volume of the test liquid was placed into the reservoir attached to

the capillary channel using a Nordson EFD ValveMate 7100 drop dispensing system with

a 25 GA Nordson EFD tip mounted above the reservoir. Sufficient liquid was deposited

at the center of the reservoir to fully fill the reservoir. After deposition, a programmed

microstepping motor (Automation Direct STP-MTRD-23042RE) moved the stage assembly

and ensured the liquid front remained in the field of view, allowing for visualization of longer

flow distances compared to prior studies (Kolliopoulos et al., 2019; Lade et al., 2018; Sowers

et al., 2016; Yang et al., 2011). A high-speed camera (Photron Fastcam-Ultima APX) with

a Micro-Nikkor 105 mm lens, Nikon PN-11, Nikon PK-13, and Kenko 20 mm and 36 mm ex-

tension tubes, and a Kenko N-AFD 2x Teleplus MC7 lens was used to visualize the flow at 60

fps. Flow was recorded until the liquid meniscus reached the end of the 30 mm long channel

or until the maximum recording time of the camera (∼400 s) was reached. Experiments were

conducted at ambient conditions (23 ± 1◦C). Flow visualization experiments were analyzed

6



using ImageJ software. A minimum of 4 trials was conducted for a given channel aspect

ratio and test liquid. The meniscus-position time evolution z̃m(t̃) was averaged over all trials

and the maximum and minimum z̃m(t̃) were used for the range of experimental results. The

meniscus-position time evolution z̃m(t̃) for different channel aspect ratios λ using NOA74 as

the test liquid can be seen in figure 2b. Results using the other test liquids are reported in

§4.2.

Free-Surface Profile Characterization. The following experiments were conducted

to investigate the effect of channel aspect ratio λ on the free-surface morphology. A UV-

curable liquid (Norland Optical Adhesives, NOA74) was deposited in the reservoir connected

to the microchannel and allowed to flow along the channel length. The flow was terminated

at a desired time by exposing the NOA74 to a high-intensity UV light source (Omnicure

S1500A with a custom light guide) at approximately 1.6 W/cm2 UV dosage. The liquid

was fully cured in <2 s, but the flow terminates well before full solidification, so the process

essentially creates a snapshot of the free-surface profile at a given time. The position of the

meniscus front and the time at which curing occurred are represented by the solid symbols

in figure 2b for two channel aspect ratios λ.

After solidification, the free-surface profile was measured with a stylus profilometer (KLA-

Tencor P16) by making repeated scans across the channel width. The samples were then

coated with a conductive gold film and the region near the meniscus front was imaged with

a scanning electron microscope (JEOL JSM-6010PLUS/LA, SEM) in secondary electron

imaging mode with a sample rotated 40◦ about the z̃ axis (figure 3f). SEM images and

profilometry scans for channels of aspect ratio λ = 0.45 and λ = 0.225 corresponding to the

solid symbols in figure 2b are shown in figure 3.

2.3 Free-Surface Morphology

We investigate the effect of channel aspect ratio λ on the free-surface morphology by initially

examining the profilometry scans in figures 3a and 3c. It is observed that for both channel

aspect ratios the liquid height h̃ at the center of the channel decreases down the channel

length. This decrease in h̃ at the center of the channel results in an increase of the free-

surface curvature, causing capillary-pressure gradients that drive the flow. At a certain

distance down the channel, h̃ at the center of the channel goes to zero and the liquid splits

into two filaments along the bottom corners. The filament morphology can be seen in the

SEM images in figures 3b and 3d.
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Figure 3: Profilometry scans and SEM images of cured NOA74 in channels of aspect ratios

(a-b) λ = 0.45 and (c-d) λ = 0.225. Dashed boxes in (a) and (c) represent the corresponding

locations of SEM images in (b) and (d), respectively. SEM images were obtained from

samples rotated 40◦ about the z̃ axis as seen in (f) (scale bars: (b) 50 µm and (d) 100

µm). Regimes: (I) meniscus deformation, (II) meniscus recession, (III) corner flow, and (IV)

corner transition. (e) SEM image of cured NOA74 in a channel with λ = 0.225 depicting the

pinned contact line at the top of the channel side wall. (f) Schematic of sample orientation

for SEM visualization.

From figures 3a and 3b, it appears that the free-surface morphology can be divided into

three regimes. The first is a meniscus-deformation regime (I) (or accomodation regime)

where the liquid is pinned to the top of side walls and the top meniscus curvature increases
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down the length of the channel. The second is a meniscus-recession regime (II) where the

liquid depins from the top of the channel wall and the meniscus begins to recede down the

channel walls. The third is a corner-flow regime (III) where the liquid splits and recedes into

the corners.

Examination of figures 3c and 3d also suggests the presence of three regimes. The first is

the meniscus-deformation regime (I) similar to that seen in figure 3b. However, in this case

the meniscus splits into filaments prior to the liquid depinning from the top of the channel

wall (see figure 3e) so that the meniscus-recession regime (II) is absent. After the splitting

of the meniscus a corner-transition regime (IV) is observed, where the liquid remains pinned

to the top of the channel wall. This is followed by a corner-flow regime (III) similar to that

seen in figure 3b.

The above visualizations suggest that there is a critical channel aspect ratio λc at which

the free-surface morphology transitions from that seen in figures 3a and 3b to that seen in

figures 3c and 3d. This is in agreement with experimental observations of Seemann et al.

(2005). In their study, polystyrene droplets were deposited on grooves with rectangular cross

sections via vapor condensation. The polystyrene droplets flowed in the grooves and were

solidified by lowering the temperature of the polymer below its glass transition temperature.

The solidified samples were then characterized using atomic force microscopy (AFM).

The expression Seemann et al. (2005) used for λc was

λc =
1− sin θ0
2 cos θ0

, (1)

by assuming a circular upper meniscus contacting the bottom of the rectangular channel

while being attached to the top of the channel walls. For NOA74 with θ0 = 10◦ we ob-

tain λc = 0.42 from (1), which is consistent with the free-surface morphology transition

observed in figure 3. While the corner-transition (IV) regime has been previously observed

experimentally, it has not, to the best of our knowledge, been accounted for in theoretical

studies.

In the following sections we will evaluate the importance of the free-surface morphology in

model predictions. This is achieved by comparing two theoretical models describing capillary

flow, where one accounts for the complexity of the free-surface morphology (§3.2) whereas

the other assumes it is flat (§3.1).
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3 Mathematical Modeling

Here, we describe two mathematical models for capillary flow of a nonvolatile, isothermal

Newtonian liquid in an open rectangular channel in contact with an ambient passive gas. We

consider a liquid of density ρ, viscosity µ, surface tension σ, and equilibrium contact angle

θ0. The open rectangular channel has width W , height H, and length L. In this work, we

use the notation f̃ to denote the dimensional version of a variable f .

3.1 Modified Lucas-Washburn Model

In this model, the flow is assumed to be driven by the capillary-pressure gradient caused by

the circular-arc meniscus front, while viscous forces resist the flow and inertial and gravita-

tional forces are neglected. The capillary driving force is obtained by assuming a flat upper

liquid-air interface and a circular-arc meniscus front governed by fluid statics, while the vis-

cous force is obtained by assuming a fully developed parallel flow. Through conservation of

linear momentum in the axial direction an analytical expression is obtained for the meniscus

front position z̃m as a function of time t̃, which in dimensional form is

z̃m =
√
k̃t̃, where k̃ =

2σHζo(λ)

3µ
[cos θ0(1 + 2λ)− 1]. (2)

Here, k̃ is the mobility parameter and has units of (length)2/time, λ = H/W is the channel

aspect ratio, and ζo(λ) is an aspect-ratio function defined as

ζo(λ) =
24

π4λ2

∞∑
n=0

1

(2n+ 1)4

[
1− tanh[(2n+ 1)πλ]

(2n+ 1)πλ

]
. (3)

Detailed derivation of ζo(λ) can be found in the work of Ouali et al. (2013). Equation (2) will

be referred to as the modified Lucas-Washburn (MLW) model and has been used in several

other studies (Baret et al., 2007; Kolliopoulos et al., 2019; Ouali et al., 2013; Sowers et al.,

2016; Yang et al., 2011).

3.2 Lubrication-Theory-Based Model

We develop a model describing capillary flow in open rectangular channels that accounts

for the non-flat shape of the upper liquid-air interface, which results in capillary-pressure

gradients that drive flow. This is a more complex model than the modified Lucas-Washburn

model (2), which assumes a flat upper liquid-air interface.
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Figure 4: Schematic of liquid undergoing capillary flow in an open rectangular channel for

aspect ratios (a) λ ≥ λc and (b) λ < λc.

3.2.1 Model Geometry

We begin by considering flow in an open rectangular channel as depicted in figure 4, mo-

tivated by the experiments in §2.3. Recall that λc is the aspect ratio at which the circular

upper meniscus contacts the bottom of the rectangular channel while being attached to the

top of the channel side walls with a contact angle of θ0.

For λ ≥ λc (figure 4a) the free-surface morphology is divided into three regimes along the

z̃-axis as discussed in §2.3: a meniscus-deformation [0, z̃d(t̃)], a meniscus-recession [z̃d(t̃), z̃m(t̃)],

and a corner-flow regime [z̃m(t̃), z̃t(t̃)]. In the meniscus-deformation regime, the liquid is

pinned to the top of the channel wall (ã = H). The channel inlet is assumed to be fully filled

(θ(0, t̃) = π/2) and the upper meniscus curvature increases down the channel length (θ(z̃, t̃)

decreases) until the contact angle θ(z̃d, t̃) = θ0, where z̃d is the end of meniscus-deformation

regime.
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We then transition to the meniscus-recession regime, where the contact angle θ = θ0 and

the liquid height starts to recede down the channel side walls (ã(z̃, t̃) decreases) until the

upper meniscus contacts the channel bottom. From (1), here ã(z̃m, t̃) = Wλc, where z̃m is

the meniscus position. This results in a morphology transition where the flow splits into the

channel corners, leading to the corner-flow regime. In the corner-flow regime, θ = θ0 at the

channel bottom and the side wall, and the liquid height on the side wall ã(z̃, t̃) decreases

from ã(z̃m, t̃) = Wλc to ã(z̃t, t̃) = 0, where z̃t is the finger tip position.

For λ < λc (figure 4b) the free-surface morphology is also divided into three regimes: a

meniscus-deformation [0, z̃m(t̃)], a corner-transition [z̃m(t̃), z̃c(t̃)], and a corner-flow regime

[z̃c(t̃), z̃t(t̃)] as discussed in §2.3. In the meniscus-deformation regime the liquid is pinned

to the top of the channel wall (ã = H). The channel inlet is assumed to be fully filled

(θ(0, t̃) = π/2) and the upper meniscus curvature increases down the channel length (θ(z̃, t̃)

decreases) until the contact angle θ(z̃m, t̃) = θC , where θC is the contact angle at the channel

side wall when the upper meniscus touches the channel bottom.

After the upper meniscus contacts the channel bottom, it splits into the channel corners,

leading to the corner-transition regime. In this regime the liquid remains pinned to the top

of the channel wall (ã = H), and we assume that the contact angle at the channel bottom

reaches θ0 instantaneously. To conserve mass, the contact angle at the side wall must change

from θC to θ(z̃m, t̃) = θT , where θT is defined in §3.2.4 (note that θT = θC if θ0 = 0). The

upper meniscus curvature increases down the channel length (θ(z̃, t̃) at side wall decreases)

until θ(z̃c, t̃) = θ0, where z̃c is the finger depinning position (the position at which the liquid

depins from the top of the channel wall). Once θ = θ0 on the channel bottom and side wall,

the morphology transitions to the corner-flow regime where the liquid height on the channel

side wall ã(z̃, t̃) decreases from ã(z̃c, t̃) = H to ã(z̃t, t̃) = 0.

In the following sections we develop a mathematical model for capillary flow considering

both λ ≥ λc (figure 4a) and λ < λc (figure 4b) and accounting for the complex upper

liquid-air interface morphology.

3.2.2 Governing Equations

We consider mass and momentum conservation of an incompressible Newtonian liquid with

constant density, given by

∇̃ · ũ = 0, (4a)
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ρ

[
∂ũ

∂t̃
+ (ũ · ∇̃)ũ

]
= −∇̃p̃+ µ∇̃2ũ + ρg̃, (4b)

where ũ = (ũ, ṽ, w̃) is the velocity field in Cartesian coordinates, p̃ is the liquid pressure, and

g̃ = (g̃x, g̃y, g̃z) is the gravitational acceleration. The no-slip and no-penetration conditions

are applied along the solid walls as

ũ = 0. (5)

The boundary conditions for the normal and tangential stresses at the liquid-air interface

h̃(x̃, z̃, t̃) are given by

[[n · T̃ · n]] = σ(∇̃s · n), (6a)

[[t1 · T̃ · n]] = 0, (6b)

[[t2 · T̃ · n]] = 0. (6c)

Here, T̃ = −p̃I + µ[∇̃ũ + (∇̃ũ)T ] is stress tensor, I is the identity tensor, ∇̃s = ∇̃ − n(n ·
∇̃) is the surface gradient operator, n is the unit outward normal vector, and t1, t2 are

the two tangent vectors at the interface in the transverse and axial directions, respectively

(expressions for these vectors can be found in the supplementary material).

Equations (4a) and (4b) are rendered dimensionless using the following scalings

(x̃, ỹ, z̃) = (Hx,Hy, Lz), t̃ =
L

U
t, p̃ =

µU

εH
p,

(ũ, ṽ, w̃) = (εUu, εUv, Uw), ε =
H

L
, U =

2εσ

µ
.

Additionally, the gravitational acceleration vector is scaled as (g̃x, g̃y, g̃z) = (ggx, ggy, ggz)

where g is the magnitude of the gravitational acceleration. The dimensionless parameters

that arise are the Reynolds number Re = ρUH/µ (ratio of inertial to viscous forces), the

capillary number Ca = µU/εσ (ratio of viscous to surface-tension forces), and the Bond

number Bo = ρgH2/σ (ratio of gravitational to surface-tension forces).

In the limits where ε2 � 1, εRe � 1, and Bo/Ca � ε, the governing equations reduce

to
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (7a)

∂p

∂x
=
∂p

∂y
= 0, (7b)

∂p

∂z
=
∂2w

∂x2
+
∂2w

∂y2
. (7c)
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The boundary conditions for the normal (6a), transverse tangential (6b), and axial tangential

(6c) stresses at the free surface reduce to

p = −Ca−1 ∂2xh

[1 + (∂xh)2]3/2
= −Ca−1

[
∂xh

[1 + (∂xh)2]1/2

]
x

, (8a)

0 = [1− (∂xh)2]

(
∂u

∂y
+
∂v

∂x

)
+ 2∂xh

(
− ∂u

∂x
+
∂v

∂y

)
− ∂zh

(
∂w

∂x
+ ∂xh

∂w

∂y

)
, (8b)

0 =
∂w

∂y
− ∂xh

∂w

∂x
, (8c)

The normal stress balance in (6a) has as a special case the Young-Laplace equation p =

−Ca−1κ, where κ accounts for both transverse and axial curvature contributions. However,

in the limit ε2 � 1, axial curvature contributions are negligible and only the leading-order

transverse curvature contributions are accounted for in (8a). Based on (7b) the O(1) term in

p is only dependent on z and t, and thus the leading-order curvature term (term in brackets

on far right of (8a)) is actually independent of x and must only depend on z and t. The

derivation of (7) and (8) can also be seen in Yang & Homsy (2006) and White & Troian

(2019), who considered V-shaped channel cross sections.

(a)

θ(z,t)

h(x,z,t)
a(z,t)

x

y

kn

(b)

θ(z,t)θ0

a(z,t)

x

y

h(x,z,t) β

n

k

Figure 5: Cross-sectional schematics of (a) meniscus-deformation (a = 1) and meniscus-

recession (θ = θ0) regimes, and (b) corner-transition (a = 1) and corner-flow (θ = θ0)

regimes.

Up to this point no assumption has been made regarding the channel cross-sectional

geometry. Here, we consider two geometries for the channel cross section: (a) rectangular

(figure 5a) and (b) V-shaped (figure 5b). Using these two geometries we can describe all the

liquid cross sections in figure 4a and 4b in terms of the liquid height on the solid wall a(z, t)

and the contact angle θ(z, t). The meniscus-deformation (a = 1) and meniscus-recession
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(θ = θ0) regimes are described using the rectangular cross section, while the corner-transition

(a = 1) and corner-flow (θ = θ0) regimes are described using the V-shaped cross section.

Each cross-sectional geometry requires three additional boundary conditions to obtain

expressions for p(z, t) and h(x, z, t): the contact-line location on the solid wall, a symme-

try condition, and the definition of the contact angle θ. Expressions for these boundary

conditions can be found in the supplementary material. We obtain expressions for p(z, t)

and h(x, z, t) as a function of a(z, t) and θ(z, t) for each regime in figure 4 by integrating

(8a) twice with respect to x and imposing the boundary conditions. The resulting O(1)

expressions are

p = −λ cos θ(z, t)

h = 1 +
tan θ(z, t)

2λ
−
[

1

4λ2 cos2 θ(z, t)
− x2

]1/2
 meniscus deformation, (9a)

p = −λ cos θ0

h = a(z, t) +
tan θ0

2λ
−
[

1

4λ2 cos2 θ0
− x2

]1/2
 meniscus recession, (9b)

p = −cos θ0 − sin θ(z, t)

2

h =
cos θ(z, t)

cos(θ(z, t) + β)
−
[(

sin β

cos(θ(z, t) + β)

)2

− x2
]1/2

 corner transition, (9c)

p = −cos θ0 − sin θ0
2a(z, t)

h =
a(z, t) cos θ0

cos(θ0 + π/4)
−
[(

a(z, t) sin π/4

cos(θ0 + π/4)

)2

− x2
]1/2

 corner flow, (9d)

where θ0 is the equilibrium contact angle, β = arctan(cos θ/ cos θ0) (see supplementary ma-

terial for further details), and λ is the channel aspect ratio. Equations (9a) and (9b) were

also used by Tchikanda et al. (2004) and Nilson et al. (2006). A similar expression to (9c)

can be found in Weislogel & Nardin (2005). The expressions in (9d) were also used by

Romero & Yost (1996), Weislogel & Lichter (1998), Nilson et al. (2006), Yang & Homsy

(2006), and White & Troian (2019). We note that to reconstruct free-surface profiles, the

height profiles h in (9c) and (9d) corresponding to figure 5b must be rotated by angles

β = arctan(cos θ/ cos θ0) and β = π/4, respectively, to match the orientation of the channel

cross section in figures 4a and 4b.
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3.2.3 Diffusion Equations

Lenormand & Zarcone (1984) derived the following expression from system (7), relating

the gradient in the dimensionless flux q to the time derivative of the dimensionless liquid

cross-sectional area A
∂A

∂t
= −∂q

∂z
. (10)

The dimensionless flux is defined as

q =

∫
A

w dA = −∂p
∂z
w̄iA, (11)

where w̄i is a rescaled cross-sectional-averaged dimensionless velocity. Here, i is equal to D,

T , or C for the meniscus-deformation, corner-transition, and corner-flow regimes, respec-

tively. (As will be discussed below, the meniscus-recession regime will be neglected.) Details

of the calculation of w̄i are discussed in the supplementary material.

It is evident from (9a)-(9d) that the dimensionless streamwise flux q in (11) is either a

function of the dimensionless liquid height a(z, t) on the side wall or the liquid contact angle

θ(z, t) depending on the regime. Rather than considering a(z, t) and θ(z, t) separately, we

introduce the liquid saturation s = Ã(a, θ)/HW = λA (ratio of channel cross-sectional area

filled with liquid to total channel cross-sectional area). For each regime the liquid saturation

s is given by

s =
1

2λ

[
2λ− arcsin(cos θ)

2 cos2 θ
+

1

2
tan θ

]
, meniscus deformation, (12a)

s =
1

2λ

[
2λa− arcsin(cos θ0)

2 cos2 θ0
+

1

2
tan θ0

]
, meniscus recession, (12b)

s =
λB̂(θ, θ0)

(cos θ0 − sin θ)2
, corner transition, (12c)

s = a2
2λÂ(θ0)

(cos θ0 − sin θ0)2
, corner flow, (12d)

where the geometric functions B̂ and Â can be found in (20) and (21) in the Appendix,

respectively. Equations (12a), (12b), and (12d) are equivalent to expressions reported by

Nilson et al. (2006).

Since the pressure p in (9b) is constant in the meniscus-recession regime, the flux q = 0

for this regime based on (11). This is because the transverse curvature gradients are zero

and the only contribution to q is from the O(ε2) axial curvature gradients, which we did

not account for. Nilson et al. (2006) estimated that the meniscus-recession regime size
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δ ≈ L(ε2λ/2)1/3. For the microchannel dimensions considered in our study δ ≈ 180 − 320

µm, which is negligible considering the channel length is 30 mm. This estimate for δ agrees

with the observations in figure 3b where the meniscus-recession regime size is < 50µm.

Therefore, effects of the meniscus-recession regime will be neglected (i.e., z̃d = z̃m in figure

4a) and the regime transition from meniscus deformation to corner flow (for λ/λc > 1) will

be treated as a saturation jump.

By using (12a)-(12d) in (10) we obtain the following system of nonlinear partial differ-

ential equations governing the liquid saturation

∂s

∂t
=

∂

∂z

(
DDs

∂s

∂z

)
, meniscus deformation, (13a)

∂s

∂t
=

∂

∂z

(
DT s

1/2 ∂s

∂z

)
, corner transition, (13b)

∂s

∂t
=

∂

∂z

(
DCs

1/2 ∂s

∂z

)
, corner flow, (13c)

where

DD = w̄D

(
2λ2 sin θ cos2 θ

1− tan θ arcsin(cos θ)

)
, (14a)

DT = w̄T
(cos θ0 − sin θ)2

4

(
1

λB̂(θ, θ0)

)1/2(
B̂(θ, θ0)

B̂(θ, θ0)− tan θ(cos θ0 − sin θ)2

)
, (14b)

DC = w̄C
(cos θ0 − sin θ0)

2

4

(
1

2λÂ(θ0)

)1/2

. (14c)

The quantities DD, DT , and DC can be thought of as dimensionless diffusion coefficients

describing the interface growth.

Recall that λc (see (1)) is the aspect ratio at which the circular upper meniscus contacts

the bottom of the rectangular channel while being attached to the top of the channel side

walls with a contact angle of θ0. When λ ≥ λc (figure 4a), the bounds of the meniscus-

deformation and corner-flow regimes are (0, zm) and (zm, zt), respectively, where zm is the

meniscus position and zt is the finger tip position. When λ < λc (figure 4b), the bounds

of the meniscus-deformation, corner-transition, and corner-flow regimes are (0, zm), (zm, zc),

and (zc, zt), respectively, where zc is the finger depinning position.
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3.2.4 Similarity Transformation

We exploit the self-similar nature of the nonlinear diffusion equations (13) by introducing

the variable η = z/
√
t (Chen et al., 2006; Romero & Yost, 1996; Weislogel & Lichter, 1998;

White & Troian, 2019). For λ ≥ λc shown in figure 4a, the self-similar governing equations

are

−1

2
η
ds

dη
=

d

dη

(
DDs

ds

dη

)
, η ∈ [0, δ0η0), meniscus deformation, (15a)

−1

2
η
ds

dη
=

d

dη

(
DCs

1/2 ds

dη

)
, η ∈ (δ0η0, η0], corner flow, (15b)

subject to

s(0) = 1, s(δ0η0)
− = sD, s(δ0η0)

+ = sC , s(η0) = 0, (15c)

where η0 = zt/
√
t is the rescaled finger tip position and δ0η0 = zm/

√
t is the rescaled meniscus

position. The channel cross section at the inlet is assumed to be fully filled and θ = π/2. At

the end of the meniscus-deformation regime θ = θ0, which is used in (12a) to calculate sD.

At the beginning of the corner-flow regime a = λc/λ, which is used in (12d) to determine

sC . (Recall from §3.2.1 that the corner-flow regime begins when ã = Wλc, which in dimen-

sionless form is a = λc/λ.) Finally at the finger tip, the liquid height goes to zero. Note that

sD = sC only for λ = λc (meniscus contacts channel bottom at end of meniscus-deformation

regime). Equation (1) is used to determine λc, which depends only on θ0. For all λ, it

is assumed in the corner-flow regime that the contact angle on the channel side wall and

bottom is always θ0, and thus independent of speed. This is the simplest assumption and

allows us to focus on the influence of other problem parameters.

Two additional conditions are required to determine η0 and δ0, which specify the bounds

of each regime. The first condition is the flux matching condition given by[
−DDs

ds

dη
− 1

2
sη

]
−
−
[
−DCs

1/2 ds

dη
− 1

2
sη

]
+

= 0, at η = δ0η0, (15d)

where the second term in each bracket accounts for the potential discontinuity in s due to

transitioning from the meniscus-deformation to the corner-flow regime. A derivation of (15d)

can be seen in §B in the Appendix. The second condition is that the flux approaches zero

at the finger tip (i.e., DCs
1/2ds/dη → 0, as η → η0). Following Romero & Yost (1996) and

using (15b), it can be shown that to satisfy this condition, the following must be true

−DCs
−1/2 ds

dη
=

1

2
η0, at η = η0. (15e)

18



For λ < λc shown in figure 4b, the self-similar governing equations are

−1

2
η
ds

dη
=

d

dη

(
DDs

ds

dη

)
, η ∈ [0, δ0η0), meniscus deformation, (16a)

−1

2
η
ds

dη
=

d

dη

(
DT s

1/2 ds

dη

)
, η ∈ (δ0η0, δ1η0), corner transition (16b)

−1

2
η
ds

dη
=

d

dη

(
DCs

1/2 ds

dη

)
, η ∈ (δ0η1, η0], corner flow (16c)

subject to

s(0) = 1, s(δ0η0)
− = sD, s(δ0η0)

+ = sT , s(δ1η0)
− = s(δ1η0)

+ = sC , s(η0) = 0 (16d)

where δ1η0 = zc/
√
t is the rescaled finger depinning position (§3.2.1). The channel cross

section at the inlet is assumed to be fully filled and θ = π/2. At the end of the meniscus-

deformation regime θ = θC (critical angle at which upper meniscus touches channel bottom,

calculated from λ = (1 − sin θC)/2 cos θC), which is used in (12a) to calculate sD, and the

contact angle at the channel bottom is θ = 0.

At the transition from the meniscus-recession to the corner-transition regime, the liquid

remains pinned to the top of the channel side wall and the upper meniscus contacts the

channel bottom with the flow splitting into the channel corners. At the beginning of the

corner-transition regime we assume the liquid instantaneously attains θ0 at the channel

bottom and θC → θT at the channel side wall. To conserve mass, we equate the amount of

liquid in the channel cross section on each side of this transition. This specifies θT , which is

calculated (via Newton’s method) by setting (12c) equal to sD. If the calculated θT ≤ π/4,

then sT = sD. If θT > π/4, then DT < 0 which makes the problem ill-posed (Romero &

Yost, 1996). In this case, we set θT = π/4, leading to a saturation jump. Equation (12c) is

then used to determine sT based on θT . Note that in the corner-transition regime the contact

line at the channel side wall is assumed to be pinned while the contact line at the channel

bottom is allowed to move with constant contact angle θ0. At the end of the corner-transition

and the beginning of the corner-flow regime a = 1, which is used in (12d) to determine sC .

(Recall from §3.2.1 that the corner-flow regime begins when ã = H, which in dimensionless

form is a = 1.) Finally at the finger tip, the liquid height goes to zero.

Three additional conditions are required to determine η0, δ0, and δ1, which are[
−DDs

ds

dη
− 1

2
sη

]
−
−
[
−DT s

1/2 ds

dη
− 1

2
sη

]
+

= 0, at η = δ0η0, (16e)
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[
−DT s

1/2 ds

dη
− 1

2
sη

]
−
−
[
−DCs

1/2 ds

dη
− 1

2
sη

]
+

= 0, at η = δ1η0, (16f)

−DCs
−1/2 ds

dη
=

1

2
η0, at η = η0, (16g)

where (16e) and (16f) are flux matching conditions (see Appendix §B) and (16g) is the

condition setting the flux to zero at the finger tip.

For λ ≥ λc the system of governing equations is (15), whereas for λ < λc the system

consists of (16). What is required to solve these systems are the cross-sectional-averaged

dimensionless velocities w̄D(s), w̄T (s), and w̄C(s), which influence the values of DD, DT , and

DC through (14). The cross-sectional-averaged dimensionless velocities are calculated for a

given cross section by solving (7c) subject to no-slip and no-penetration conditions along

the solid walls and no-stress condition (8c) at the liquid-air interface (see supplementary

material for further details).

3.2.5 Numerical Methods

Velocity fields (see supplementary material) are numerically solved for with a Galerkin finite-

element method (FEM) using quadratic basis functions. To validate our computations, our

results for w̄D(s), w̄T (s), and w̄C are compared to results from prior studies. Results for

w̄D(s) and w̄T (s) are in agreement with results by Tchikanda et al. (2004) and Weislogel &

Nardin (2005), respectively. Results for w̄C agree with results by Ayyaswamy et al. (1974),

Ransohoff & Radke (1988), and Yang & Homsy (2006). Note that these prior studies do not

consider capillary flow in open rectangular channels over the range of contact angles θ0 and

aspect ratios λ examined in the present work.

Results for w̄D(s) and w̄T (s) from the FEM simulations are fitted using Chebyshev poly-

nomials of the first kind using the least-squares method. These Chebyshev polynomials are

then used in the system of equations (15) (λ ≥ λc) and (16) (λ < λc) to evaluate DD and DT .

Since w̄C does not depend on s, an exact expression for DC can be obtained via (14c). Both

nonlinear systems of equations (15) and (16) are discretized using a second-order centered

finite-difference method and solved using the fsolve solver in MATLAB.
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4 Results and Discussion

Similarity solutions for the liquid saturation profiles s(η) and their dependence on the chan-

nel aspect ratio λ and equilibrium contact angle θ0 are presented first (§4.1). Using these

similarity solutions, three-dimensional liquid height profiles are obtained to highlight the

complex free-surface morphology similar to that seen in figure 3. Model predictions for

the evolution of the meniscus position z̃m(t̃) from the lubrication-theory-based and MLW

models are then compared to experimental observations (§4.2). Finally, lubrication-theory-

based model predictions of the finger length evolution lf (t) = zt(t)− zm(t) are compared to

experimental results (§4.3).

(a) (b)

Figure 6: Effect of (a) aspect ratio λ and (b) equilibrium contact angle θ0, on liquid saturation

profiles s(η). The two solid symbols on each curve correspond to the end of the meniscus-

deformation regime and the beginning of the corner-flow regime, respectively (see figures

4a and 4b). The dashed lines indicate the saturation jump due to neglecting the meniscus-

recession regime when λ > λc (see §3.2.3). Note that λc = 0.42 for θ0 = 10◦.

4.1 Saturation Profiles

Computed similarity solutions of the liquid saturation s(η) for different aspect ratios λ and

an equilibrium contact angle θ0 = 10◦ are shown in figure 6a. Solutions for λ > λc and

λ < λc are obtained solving the system of equations (15) and (16), respectively. These
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(a) (b)

(c) (d)

Figure 7: Lubrication-theory-based model predictions of the rescaled finger tip position η0,

meniscus position δ0η0, and finger depinning position δ1η0 as a function of channel aspect

ratio λ for (a) θ0 = 10◦, (b) θ0 = 18◦, (c) θ0 = 32◦, and (d) θ0 = 42◦. The shaded areas

between the curves represent the sizes of the meniscus-deformation (I), corner-flow (III), and

corner-transition (IV) regimes.

similarity solutions are valid for intermediate times, when channel entrance and end effects

can be neglected.

In figure 6a when λ > λc (here λc = 0.42), s(0) = 1 corresponds to a fully filled channel

cross section. Moving down the length of the channel, s decreases monotonically and at

the meniscus position (solid symbol) the flow transitions from the meniscus-deformation to

the corner-flow regime (see figure 4a). A jump in s (dashed lines) is observed because we
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neglected the meniscus-recession regime as discussed in §3.2.3. In the corner-flow regime s

continues to decrease until s(η0) = 0 at the finger tip.

From figure 6a, the s(η) profiles have a non-monotonic dependence on λ, suggesting that

there is an optimal λ for capillary flow. The effect of the equilibrium contact angle θ0 on s(η)

for an aspect ratio λ = 0.75 is shown in figure 6b. Decreasing θ0 results in more capillary

filling. Although in figure 6b we consider λ > λc, the same trend is observed for λ < λc.

The non-monotonic effect of λ on capillary flow becomes more clear in figure 7. Here,

the rescaled finger tip position η0, meniscus position δ0η0, and finger depinning position

δ1η0 (defined in §3.2.4) are presented as a function of λ for different θ0. The shaded areas

between the curves represent the sizes of the meniscus-deformation (I), corner-flow (III), and

corner-transition (IV) regimes (seen in figures 4a and 4b), which depend on λ and θ0.

We first consider results in figure 7a, where θ0 = 10◦. When λ� λc the flow is dominated

by the meniscus-deformation (I) regime. With decreasing λ, the size of the corner-flow

(III) regime monotonically increases. However, the size of the meniscus-deformation (I)

regime increases and then decreases, with decreasing λ. When λ drops below λc, the corner-

transition (IV) regime appears. As λ is further decreased, the sizes of the corner-flow (III)

and corner-transition (IV) regimes increase, while the size of the meniscus-deformation (I)

regime decreases. These trends are observed for the other θ0 considered in figures 7b-7d.

Similarity solutions for s(η) are used to construct three-dimensional (3D) free-surface

profiles. These solutions for s(η) are used in (12) to determine θ(η) (via Newton’s method)

and a(η) for each regime. The 3D free-surface profiles h are determined using (9). Since the

h expressions in (9c) and (9d) for the corner-transition and corner-flow regimes correspond

to figure 5b, they require rotation by angles β = arctan(cos θ/ cos θ0) and β = π/4, respec-

tively, to match the channel orientation seen in figure 4. By solving the system of ordinary

differential equations (15) and (16) we can construct 3D free-surface profiles for any time t̃.

Dimensional free-surface profiles h̃ for λ > λc and λ < λc after 100s of flow of NOA74 are

depicted in figure 8.

Qualitative agreement is observed between the 3D free-surface profiles in figure 8 and

the profilometry measurements in figure 3a and 3c. The channel is fully filled at the channel

inlet and the upper meniscus bows down as we move down the length of the channel until it

contacts the channel bottom and splits into the channel corners. A quantitative comparison

between theory and experiment is made in the following section.
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(a) (b)

Figure 8: Simulated liquid height profiles of NOA74 after t̃ = 100s of flow for (a) λ = 0.45

(λ > λc) and (b) λ = 0.225 (λ < λc). For NOA74 λc = 0.42.

4.2 Comparison with Experiments

We compare predictions of the meniscus-position time evolution z̃m(t̃) from the lubrication-

theory-based and MLW models to experimental observations. This comparison is made

in figure 9 for the test liquids detailed in table 1. Solid and dashed lines represent the

lubrication-theory-based and MLW model predictions, respectively, while experimental ob-

servations are shown as symbols. Each panel in figure 9 includes experiments for λ > λc and

λ < λc, except for the case of propylene glycol (figure 9d) where only experiments for λ > λc

were conducted.

When λ > λc, the lubrication-theory-based and MLW models are in good agreement with

experiments for NOA74 (figure 9a) and silicone oil (figure 9b). For mineral oil (figure 9c)
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(a) (b)

(c) (d)

Figure 9: Dimensional meniscus position z̃m as a function of time t̃ for different channel

aspect ratios λ with (a) NOA74 (θ0 = 10◦, λc = 0.42), (b) silicone oil (θ0 = 18◦, λc = 0.36),

(c) mineral oil (θ0 = 32◦, λc = 0.28), and (d) propylene glycol (θ0 = 42◦, λc = 0.22). Symbols

and shaded areas represent average and range of experimental results, respectively. Solid and

dashed lines represent lubrication-theory-based and MLW model predictions, respectively.

and propylene glycol (figure 9d), the lubrication-theory-based model agrees well with the

experiments but the MLW model underpredicts z̃m(t̃).

For NOA74 (figure 9a) and silicone oil (figure 9b), the lubrication-theory-based model

agrees with experiments for λ < λc, but the MLW model overpredicts z̃m(t̃). For mineral oil

(figure 9c), both models overpredict z̃m(t̃) for λ < λc. For propylene glycol (figure 9d), at

larger λ the lubrication-theory-based model predictions agree better with experiments than
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predictions of the MLW model. However, as λ→ λc the MLW model predictions agree with

experiments, whereas the lubrication-theory-based model overpredicts z̃m(t̃).

(a) (b)

(c) (d)

Figure 10: Dimensionless mobility parameter k as a function of aspect ratio λ for (a) NOA74

(θ0 = 10◦, λc = 0.42), (b) silicone oil (θ0 = 18◦, λc = 0.36), (c) mineral oil (θ0 = 32◦,

λc = 0.28), and (d) propylene glycol (θ0 = 42◦, λc = 0.22). Solid symbols represent exper-

imental results, dashed and solid lines represent MLW and lubrication-theory-based model

predictions, respectively, and shaded areas represent λ < λc. Insets: Fitted scaling exponent

n (from zm = (kt)n) as a function of aspect ratio λ for liquids with different equilibrium con-

tact angles θ0. Solid lines represent lubrication-theory-based and MLW model predictions of

n = 0.5.

To further compare theory and experiment we consider the dimensionless mobility pa-
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rameter k = z2m/t, which can be thought of as a diffusion coefficient driving the growth of

the meniscus position. In the lubrication-theory-based model,

k = (δ0η0)
2, (17a)

since δ0η0 = zm/
√
t from (15a) and (16a). Computed values of δ0η0 for different λ and θ0

are shown in figure 7. In the MLW model,

k = k̃/UL, (17b)

where k̃ is defined in (2), U is the characteristic velocity (see §3.2), and L is the channel

length. Experimentally, k is determined by fitting the function zm = (kt)n to experiments

similar to those shown in figure 9 using nonlinear regression. A comparison of theoretically

predicted and experimentally determined k values as a function of λ and θ0 is shown in figure

10.

When λ � λc, the lubrication-theory-based and MLW model predictions are indistin-

guishable regardless of θ0. In this limit the finger contribution to the flow becomes negligible

and the flow asymptotically approaches that between two parallel plates. Note that when

λ = H/W � λc the effects from the channel bottom become negligible compared to the

effects from the side walls. As λ → 1 the two model predictions begin to deviate because

the viscous resistance in the fingers becomes significant, and fingers are not accounted for in

the MLW model. However, both model predictions for k are in reasonable agreement with

experiments. As λ→ λc the lubrication-theory-based model agrees better with experiments,

compared to the MLW model (except in figure 10d). The disagreement between the MLW

model and experiments becomes more evident as λ decreases because the free-surface height

profiles (figure 3b and 3d) become more non-uniform. Therefore, the assumption of a flat

free-surface height profile used in the MLW model becomes less valid with decreasing λ.

However, the lubrication-theory-based model does not always perform better than the

MLW model (figure 10d). As θ0 → π/4 the transverse free-surface curvature in the corner-

transition and corner-flow regimes vanishes and the flow in these regimes is then driven

by axial curvature gradients (Yang & Homsy, 2006). These axial curvature gradients are

neglected in the lubrication-theory-based model (see (8a)) because they are O(ε2) terms.

When the axial curvature contributions are included in the pressure, then

p = −Ca−1
[
CT (s) + ε2CA

(
s, ∂zs, ∂

2
zs
)]
, (18)
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where CT (s) and CA
(
s, ∂zs, ∂

2
zs
)
, are the transverse and axial curvature contributions, respec-

tively. Including the axial curvature gradients in the model results in fourth-order spatial

derivatives of s, for which we were unable to find similarity solutions. An additional reason

for the deviation between the lubrication-theory-based model predictions and the experi-

mental observations as θ0 → π/4 is that the lubrication approximation itself is expected to

become less accurate as the contact angle increases.

For predicting zm(t), the choice of using the lubrication-theory-based or MLW model

depends on λ and θ0. For large λ both models give similar results, so the MLW model

is preferred because of its simplicity, but for small λ the lubrication-theory-based model is

more accurate. Additionally, the lubrication-theory-based model performs better for smaller

θ0 compared to the MLW model. However, it neglects key physical contributions as θ0 → π/4

which results in poorer agreement. Nevertheless, when additional information is desired, such

as the free-surface morphology (figure 8) or finger dynamics (§4.3), then the lubrication-

theory-based model must be chosen.

4.3 Finger Dynamics

(a) (b)

Figure 11: Effect of (a) aspect ratio λ and (b) equilibrium contact angle θ0 on dimen-

sionless finger length lf as a function of dimensionless time t. Solid symbols and shaded

areas represent average and range of experimental results, respectively. Solid lines repre-

sent lubrication-theory-based model predictions. The liquids are mineral oil (θ0 = 32◦) and

silicone oil (θ0 = 18◦).
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A key advantage of the lubrication-theory-based model compared to the MLW model is

that it describes finger dynamics. The dimensionless finger length lf (t) is defined as the

distance between the dimensionless finger tip position zt(t) and the dimensionless meniscus

position zm(t) which can be seen in figure 4. Predictions of the dimensionless finger-length

time evolution lf (t) by the lubrication-theory-based model are compared to experimental

observations in figure 11. Model predictions for lf were computed using

lf = zt(t)− zm(t) = (1− δ0)η0t1/2, (19)

where η0 = zt/
√
t and δ0η0 = zm/

√
t; values for η0 and δ0η0 are shown in figure 7.

The effects of λ and θ0 on lf (t) are shown in figures 11a and 11b. Solid lines and symbols

represent lubrication-theory-based model predictions and experimental observations, respec-

tively. It is important to note the shorter dimensionless times compared to the meniscus-

tracking experiments (figure 9) were caused by the finger tip moving out of the field of view.

In figure 11a, experimental observations are compared to model predictions for mineral oil

(λc = 0.28), where increasing channel aspect ratio λ results in a decrease in lf (t). Good

agreement between theory and experiments is observed, with model predictions being within

the range of experimental observations for all but one trial (i.e., λ = 0.3 in figure 11a).

A possible reason for this discrepancy is the error in identifying the position of the finger

tip where the liquid height goes to zero, which is challenging during the meniscus-tracking

experiments where the stage is moving (figure 2a).

In figure 11b, experimental observations for mineral oil (θ0 = 32◦, λc = 0.28) and silicone

oil (θ0 = 18◦, λc = 0.36) are compared to model predictions for λ = 0.23 (λ < λc). Increasing

θ0 leads to a decrease in lf (t). Model predictions are in good agreement with experimental

observations in this case as well. Hence, the lubrication-theory-based model accurately

captures effects of λ and θ0 on lf (t). Additionally, the good agreement between theory and

experiment in figure 11 emphasizes the importance of accounting for the corner-transition

regime (figure 4b) when describing the finger dynamics in open rectangular channels when

λ < λc.

We make two additional comments about the fingers. First, although curvature of the

channel corners may affect finger length (Chen et al., 2006; Gerlach et al., 2020), the good

agreement observed here suggests that the corner curvature does not play a significant role

in our experiments. Second, although the lubrication-theory-based model overpredicts the

meniscus position for mineral oil (figure 9d), it accurately predicts the finger length (figure

11) which is the difference between the positions of the meniscus and finger tip ((19)). This

indicates that while the lubrication-theory-based model may not predict absolute positions

accurately, it can predict relative positions accurately. A deeper understanding of the rea-

sons for this likely requires a comparison of the lubrication-theory-based model and direct

numerical simulations, which is beyond the scope of the present work.
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5 Conclusions

In this work we combine theory and experiment to examine capillary-flow dynamics in open

rectangular microchannels. For open microchannels, the free surface greatly influences the

capillary-flow dynamics. We visualize the free-surface morphology and its dependence on

the channel aspect ratio λ using scanning electron microscopy and profilometry. The SEM

images suggest a qualitative difference in the free surface morphology at λ = λc and highlight

the significance of a corner-transition regime when λ < λc, which was not accounted for in

previous studies of capillary flow in open rectangular channels.

Effects of the free-surface morphology on capillary-flow dynamics were examined using

two theoretical models. The first model is a modified Lucas-Washburn (MLW) model, which

assumes a flat free surface and has been extensively used in prior studies. The second model

is a self-similar lubrication-theory-based model, which was developed to account for the

complex free-surface morphology observed in the experiments.

Predictions of the lubrication-theory-based and MLW models were compared to comple-

mentary flow visualization experiments over a wide range of channel aspect ratios λ and

equilibrium contact angles θ0. For large λ, predictions from the two models are indistin-

guishable, since free-surface morphology effects are negligible. However, for smaller λ the

lubrication-theory-based model is in better agreement with experiments since the influence

of fingers is significant. Additionally, the lubrication-theory-based model agrees better with

experiments for smaller θ0, although as θ0 → π/4 the agreement worsens because important

axial curvature contributions are neglected. Finally, the lubrication-theory-based model

predictions accurately capture the finger-length time evolution seen in experiments over a

range of λ and θ0, further highlighting the importance of accounting for the corner-transition

regime in the model formulation when λ < λc.

Our lubrication-theory-based model and flow visualization experiments reveal the limita-

tions of the widely used MLW model. In addition, our results significantly advance physical

understanding of capillary-flow dynamics in open rectangular microchannels, which play

a key role in a number of technological applications (§1) but are less well-studied than

V-shaped channels. Finally, the systematic development of our model allows for it to be

readily extended to incorporate other important phenomena such as gravitational effects,

solute transport, and evaporation.
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A Geometric Functions

Geometric functions B̂ and Â, appear in the expressions for the liquid saturation s in the

corner-transition (12c) and corner-flow (12d) regimes, respectively. These geometric func-

tions are defined as

B̂ = θ + θ0 − π/2− cos θ(sin θ − cos θ0) + cos θ0(cos θ − sin θ0) (20)

and

Â = θ0 − π/4 + cos θ0(cos θ0 − sin θ0). (21)

B Flux Matching Condition

We consider the interface between the meniscus-deformation and the corner-flow regime (fig-

ure 4). Following Panton (2013), the global continuity equation assuming no accumulation

at the interface is[ ∫
Ã

n · (ũ− ũI)ρ dÃ

]
−
−
[ ∫

Ã

n · (ũ− ũI)ρ dÃ

]
+

= 0 at z̃ = z̃m, (22)

where n = (0, 0, 1) is the unit normal to the interface, ũ = (ũ, ṽ, w̃) is the liquid velocity,

ũI = (0, 0, dz̃m/dt̃) is the interface velocity, and Ã− and Ã+ are the meniscus-deformation

and corner-flow regime cross-sectional areas, respectively.
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Equation (22) simplifies to[ ∫
Ã

w̃ dÃ− dz̃m

dt̃
Ã

]
−
−
[ ∫

Ã

w̃ dÃ− dz̃m

dt̃
Ã

]
+

= 0 at z̃ = z̃m. (23)

Using the scalings in §3.2.2 and dividing both sides by the channel cross section HW gives[ ∫
s

w ds− dzm
dt

s

]
−
−
[ ∫

s

w ds− dzm
dt

s

]
+

= 0 at z = zm. (24)

Recall that the dimensionless flux is defined as q =
∫
A
w dA = λ

∫
s
w ds. It can be shown

that qD = −λDDs
∂s
∂z

and qC = −λDCs
1/2 ∂s

∂z
, resulting in[

−DDs
∂s

∂z
− dzm

dt
s

]
−
−
[
−DCs

1/2 ∂s

∂z
− dzm

dt
s

]
+

= 0 at z = zm. (25)

We then apply the similarity transformation using η = z/
√
t, which leads to[

−DDs
ds

dη
− 1

2
ηs

]
−
−
[
−DCs

1/2 ds

dη
− 1

2
ηs

]
+

= 0 at η = δ0η0, (26)

which is the flux matching condition shown in (15d). Consequently a jump in the dimension-

less flux is necessary because of the saturation jump across the interface (i.e., s(δ0η0)
− = sD

and s(δ0η0)
+ = sC). Similarly, we can obtain the matching conditions for the meniscus-

deformation and meniscus-transition regimes in (16e) and the meniscus-transition and corner-

flow regimes in (16f).
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