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Abstract Juggling a devil-stick can be described as
a problem of non-prehensile manipulation. Assum-
ing that the devil-stick remains confined to the verti-
cal plane, the problem of juggling the stick between
two symmetric configurations is considered. Impulsive
forces are applied to the stick intermittently and the
impulse of the force and its point of application are
modeled as control inputs to the system. The dynamics
of the devil-stick due to the impulsive forces andgravity
is described by half-return maps between two Poincaré
sections; the symmetric configurations are fixed points
of these sections. A coordinate transformation is used
to convert the juggling problem to that of stabiliza-
tion of one of the fixed points. Inclusion of the coor-
dinate transformation in the dynamic model results in
a nonlinear discrete-time system. A dead-beat design
for one of the inputs simplifies the control problem and
results in a linear time-invariant discrete-time system.
Standard control techniques are used to show that sym-
metric juggling can be achieved from arbitrary initial
conditions.
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1 Introduction

A devil-stick is typically juggled using two hand sticks
and several tricks can be performed depending on the
proficiency of the juggler. Some of the common tricks
are: standard-idle, flip-idle, airplane-spin or propeller,
top-only idle, and helicopter [1]. The top-only idle is
one of the simplest tricks and is the focus of this inves-
tigation; a video tutorial for learning this trick can be
found in [2]. In top-only idle, intermittent forces are
applied to the devil-stick. Since the devil-stick is never
grasped, the juggling problem can be viewed as a non-
prehensile manipulation problem [3–7]. If robots are to
perform this trick, the motion of the end-effectors will
have to be coordinated and controlled to apply the cor-
rectmagnitude of forces to the devil-stick at appropriate
locations. We do not focus on the end-effector motion
planning and control problems; instead, we investigate
the magnitude and location of the forces needed to per-
form the top-only idle trick.

It should be mentioned that the complete prob-
lem, where the manipulator and the object being jug-
gled are both controlled, has been studied by several
researchers—see [8–11], for example. In one of the ear-
liest works, Brogliato and Zavala Rio [11] investigated
the problem of ball juggling using a controlled one-
DOF table that imparts intermittent impulsive forces.
This work was later extended to develop a feedback
control method for complementary-slackness hybrid
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mechanical systems; ball juggling using a two-DOF
manipulatorwas demonstrated through simulations [8].

Many control tasks, including the top-only idle trick,
involve intermittent application of impulsive forces and
several researchers [12–17] have studied the controlla-
bility and stability of such systems.Although impulsive
control of the devil-stick has not been investigated, the
control problem associated with juggling of balls and
air-hockey pucks has seen several solutions [8,11,18–
21]. In all of these solutions, the object being juggled
has been modeled as a point mass and its orientation
is excluded from the dynamic model. In contrast, for
devil-stick tricks such as top-only idle, the stick is shuf-
fled between two symmetric configurations about the
vertical; therefore, the orientation of the stick must be
included in the dynamic model.

In earlier works on the devil-stick [22,23], con-
trollers have been designed for airplane-spin or pro-
peller-type motion; a single hand-stick is used to rotate
the devil-stick about a virtual horizontal axis using
continuous-time inputs. The dynamics model and con-
trol design of top-only idlemotion of the devil-stick has
not appeared in the literature; to the best of our knowl-
edge, it is presented here for the first time. It is assumed
that impulsive forces are applied intermittently to the
devil-stick and the control inputs are the impulse of
the force and its point of application on the stick. The
control inputs are designed to juggle the stick between
two symmetric configurations about the vertical, start-
ing from an arbitrary initial configuration.

This paper is organized as follows. The juggling
problem is formally described in Sect. 2. The dynamics
of the devil-stick is presented in Sect. 3; it is comprised
of impulsive dynamics due to the control inputs and
continuous dynamics due to torque-free motion under
gravity. A coordinate transformation is used to simplify
the control problem and the dynamics is described by
a nonlinear discrete-time system. The control design
is provided in Sect. 4. By choosing one of the con-
trol inputs to be dead-beat, the nonlinear system is
simplified to a linear discrete-time system. For stable
juggling, the linear system is controlled using linear
quadratic regulator (LQR) andmodel predictive control
(MPC) techniques. Simulation results are presented in
Sect. 5 and concluding remarks are provided in Sect. 6.

2 Problem description

Consider the three degree-of-freedomdevil-stick shown
in Fig. 1,which canmove freely in the xy vertical plane.
The stick has length �, mass m, and mass moment of
inertia J about its center-of-mass G. The configuration
of the stick is described by the three generalized coordi-
nates: (θ, hx , hy), where θ is the orientation of the stick
with respect to the positive x-axis, measured counter-
clockwise, and (hx , hy) are the Cartesian coordinates
of G. The objective is to juggle the stick between two
configurations that are symmetric with respect to the
vertical axis. The coordinates of the stick in these two
configurations are (θ∗, h∗

x , h
∗
y) and (π − θ∗,−h∗

x , h
∗
y),

where θ∗ ∈ (0, π/2)—see Fig. 2. It is assumed that
juggling is achieved by applying impulsive forces per-
pendicular to the stick; they are applied only when the
orientation of the stick is θ = θ∗ or θ = π − θ∗.
Therefore, the timeof applicationof the impulsive force
is not a part of the control design. The control inputs
are the pair (I, r), where I , I ≥ 0, is the impulse of
the impulsive force and r is the distance of the point
of application of the force from G. The value of r is
considered to be positive if the angular impulse of the
impulsive force about G is in the positive z direction
when θ = θ∗, and is in the negative z direction when
θ = π − θ∗. The control inputs that juggle the stick

Fig. 1 A three degree-of-freedom devil stick

Fig. 2 Symmetric configurations of the devil-stick in Fig. 1
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Non-prehensile manipulation of a devil-stick 2411

between the symmetric configurations are denoted by
the pair (I ∗, r∗).

3 Dynamics of the devil-stick

3.1 Impulsive dynamics

The dynamics of the three-DOFdevil-stick is described
by the six-dimensional state vector X , where

X =[
θ ω hx vx hy vy

]T
, ω � θ̇ , vx � ḣx , vy � ḣ y

Let tk , k = 1, 2, 3, · · · , denote the instants of timewhen
the impulsive inputs are applied. Furthermore, without
loss of generality, let k = (2n − 1), n = 1, 2, · · ·
denote the instants of time when the impulsive inputs
are applied at θ = θ∗, and k = 2n, n = 1, 2, · · · denote
the instants of time when the impulsive inputs are
applied at θ = π − θ∗. If t−k and t+k denote the instants
of time immediately before and after application of
the impulsive inputs, the linear and angular impulse-
momentum relationships can be used to describe the
impulsive dynamics1 as follows, for k = 1, 3, 5, · · ·

X (t+k ) = X (t−k ) +

⎡

⎢⎢⎢⎢
⎢⎢
⎣

0
(Ik rk/J )

0
−(Ik/m) sin θ∗

0
(Ik/m) cos θ∗

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(1)

and for k = 2, 4, 6, · · ·

X (t+k ) = X (t−k ) +

⎡

⎢
⎢⎢⎢⎢⎢
⎣

0
−(Ik rk/J )

0
(Ik/m) sin θ∗

0
(Ik/m) cos θ∗

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(2)

where (Ik, rk) denote the control inputs at time tk .
Between two consecutive impulsive inputs, the devil-
stick undergoes torque-free motion under gravity; this
is discussed next.

1 Impulsive inputs cause discontinuous jumps in the velocity
coordinates but no change in the position coordinates [24]. The
dynamics of underactuated systems subjected to impulsive inputs
is discussed in [25–29].

3.2 Continuous-time dynamics

Over the interval t ∈ [t+k , t−k+1], the devil-stick will be
in flight; its center-of-mass G will undergo projectile
motion and its angular momentum will remain con-
served. This dynamics is described by the differential
equation:

Ẋ = [
ω 0 vx 0 vy −g

]T
(3)

where the initial condition X (t+k ) can be obtained from
(1) or (2), depending on whether k is odd or even.

3.3 Poincaré sections and half-return maps

For the hybrid system, described by impulsive dynam-
ics of Sect. 3.1 and continuous dynamics of Sect. 3.2,
we define two Poincaré sections2,3 [32] Sr and Sl as
follows:

Sr : {X ∈ R
6 | θ = θ∗}

Sl : {X ∈ R
6 | θ = π − θ∗} (4)

These Poincaré sections are chosen since the impulsive
inputs are applied onlywhen θ is equal to θ∗ or (π−θ∗).
Any point on Sr and Sl can be described by the vector
Y , Y ⊂ X , where

Y = [
ω hx vx hy vy

]T
(5)

The map Pr : Sr → Sl can be determined from (1) and
(3) as follows:

Y (t−k+1) = A Y (t−k ) + Br

A �

⎡

⎢⎢
⎢⎢
⎣

1 0 0 0 0
0 1 δk 0 0
0 0 1 0 0
0 0 0 1 δk
0 0 0 0 1

⎤

⎥⎥
⎥⎥
⎦

,

Br �

⎡

⎢⎢⎢⎢
⎣

(Ik rk/J )

−(Ik/m) sin θ∗δk
−(Ik/m) sin θ∗

(Ik/m) cos θ∗δk−(1/2)g δ2k
(Ik/m) cos θ∗−gδk

⎤

⎥⎥⎥⎥
⎦

(6)

2 Poincaré sections have been previously used for design of gaits
for bipedal robots [30,31]. and orbital stabilization of underac-
tuated systems [27].
3 It is assumed that the initial conditions of the devil-stick are
such that its trajectory intersects one of the two Poincaré sections
before the first impulsive control input is applied.
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where δk � (t−k+1−t−k ) and k = (2n−1), n = 1, 2, · · · .
Similarly, the map Pl : Sl → Sr can be determined
from (2) and (3) as follows

Y (t−k+1) = A Y (t−k ) + Bl

Bl �

⎡

⎢⎢
⎢⎢
⎣

−(Ik rk/J )

(Ik/m) sin θ∗δk
(Ik/m) sin θ∗

(Ik/m) cos θ∗δk−(1/2)g δ2k
(Ik/m) cos θ∗−gδk

⎤

⎥⎥
⎥⎥
⎦

(7)

where k = 2n, n = 1, 2, · · · . Both Pr and Pl in (6) and
(7), respectively, can be viewed as half-return maps4

since the composition of thesemaps are the returnmaps
Pr ◦ Pl : Sl → Sl and Pl ◦ Pr : Sr → Sr . In the
next section we introduce a coordinate transformation
to show that themapPl , in the transformed coordinates,
is identical to Pr . This simplifies the analysis of the
problem.

3.4 Coordinate transformation

Consider Fig. 3, where z = 0 denotes the xy plane in
which the devil-stick is juggled. Typically, the juggler
will stand at a point on the positive z-axis, denoted by
P in Fig. 3a, and face the z = 0 plane. The juggler will
apply a control actionwith the right handwhen θ = θ∗,
and with the left hand when θ = π − θ∗, i.e., the jug-
gler is ambidextrous. Instead of alternating between the
right and left hands, the juggler can choose to apply all
control actions using the right hand only. This juggler,
whom we will now refer to as the handed juggler, will
apply the control action standing at P when θ = θ∗—
see– Fig. 3b, and apply the next control action after
changing location to Q (mirror image of P) and facing
the z = 0 plane when θ = π − θ∗—see Fig. 3c. When
the devil stick has the orientation θ = π−θ∗, as seen by
an observer at P , it will have the orientation θ = θ∗ for
the right-handed juggler. After applying control action
at Q, the right-handed juggler will return back to P . If
xyz denotes the rotating coordinate frame of the right-
handed juggler, the change in position of this juggler
can be described by the coordinate transformation:

4 Half-return maps have been used to analyze the behavior of
dynamical systems such as the van der Pol oscillator [33,34].

(a)

(b)

(c)

Fig. 3 aAmbidexterous juggler standing at P and applying con-
trol actionswith both hands, b right-handed juggler standing at P
and applying control action with right hand, c right-handed jug-
gler standing at Q and applying control action with right hand

⎡

⎣
x
y
z

⎤

⎦

Q

= Ry,π

⎡

⎣
x
y
z

⎤

⎦

P

,

⎡

⎣
x
y
z

⎤

⎦

P

= Ry,π

⎡

⎣
x
y
z

⎤

⎦

Q

where

Ry,π � diag[−1, 1, −1]

Since Ry,π changes the sign of the x and z coordinates
and leaves the y coordinate unchanged, we can show

YQ = R YP , YP = R YQ

where

R = R−1 � diag[−1, −1, −1, 1, 1]

and YP and YQ denote the vector Y as seen by the right-
handed juggler standing at points P and Q, respec-
tively.
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Non-prehensile manipulation of a devil-stick 2413

3.5 Single return map and discrete-time model

In the reference frame of the right-handed juggler, who
alternates between positions P and Q, the two Poincaré
sections Sl and Sr are identical, and equal to

S : {X ∈ R
6 | θ = θ∗} (8)

This follows from our discussion in Sect. 3.4 as well as
Fig. 3b, c. The half-return maps Pr and Pl in (6) and
(7) can be rewritten as follows:

YP (t−k+1) = A YP (t−k ) + Br , k = 1, 3, 5, · · · (9a)

YP (t−k+1) = A YP (t−k ) + Bl , k = 2, 4, 6, · · · (9b)

to explicitly indicate the reference frame of Y . Since
the right-handed juggler alternates between positions
P and Q, the half-return map Pl in (9b) can be trans-
formed as follows:

RYP (t−k+1) = RA YP (t−k ) + RBl

⇒ YQ(t−k+1) = AR YP (t−k ) + RBl

⇒ YQ(t−k+1) = A YQ(t−k ) + Br , k = 2, 4, 6, · · ·
(10)

where we used the relations RA = AR and RBl = Br .
It is clear from (9a) and (10) that the half-return maps
Pr and Pl in (6) and (7) are identical in the reference
frame of the right-handed juggler. This implies that the
hybrid dynamics of the devil-stick between any two
control actions can be described by a single return map
if the change in reference frame of the right-handed
juggler is incorporated in the dynamicmodel. Thismap,
P : S → S, can be obtained by first rewriting (9a) and
(10) as follows:

RYQ(t−k+1) = A YP (t−k ) + Br , k = 1, 3, 5, · · ·
⇒ YQ(t−k+1) = R

[
A YP (t−k ) + Br

]
, k = 1, 3, 5, · · ·

(11a)

RYP (t−k+1) = A YQ(t−k ) + Br , k = 2, 4, 6, · · ·
⇒ YP (t−k+1) = R

[
A YQ(t−k ) + Br

]
, k = 2, 4, 6, · · ·

(11b)

Then, by accounting for the change in reference frame
of the right-handed juggler after each control action,
(11a) and (11b) can be combined into the following
single equation which represents the return map P:

Ȳ (t−k+1) = R
[
AȲ (t−k ) + Br

]
, k = 1, 2, 3, · · ·

where Ȳ denotes the state vector Y in the reference
frame of the right-handed juggler. The above equation
results in the following discrete-time equations:

ω(t−k+1) = −ω(t−k ) − (Ik rk/J ) (12a)

hx (t
−
k+1) = −hx (t

−
k )−[

vx (t
−
k )−(Ik/m) sin θ∗]δk

(12b)

vx (t
−
k+1) = −vx (t

−
k ) + (Ik/m) sin θ∗ (12c)

hy(t
−
k+1) = hy(t

−
k ) − (1/2)g δ2k

+ [
vy(t

−
k ) + (Ik/m) cos θ∗] δk (12d)

vy(t
−
k+1) = vy(t

−
k ) + (Ik/m) cos θ∗−g δk (12e)

where δk � (t−k+1 − t−k ), k = 1, 2, · · · , is the time of
flight between two consecutive control actions. During
this time duration, the devil-stick rotates by a net angle
π −2θ∗. Since the angular velocity of the stick remains
constant in the interval [t+k , t−k+1], δk is given as follows

δk = Δθ

ω(t−k ) + (Ik rk/J )
, Δθ � (π − 2θ∗) (13)

The control design for juggling is presented next.

4 State feedback control design

4.1 Steady-state dynamics

From the discussion in Sect. 3.5 it becomes clear
that when the change of reference frame of the jug-
gler is taken into account, the problem of juggling
between the two distinct configurations (θ∗, h∗

x , h
∗
y)

and (π − θ∗,−h∗
x , h

∗
y) is converted to the problem of

juggling between identical configurations (θ∗, h∗
x , h

∗
y)

and (θ∗, h∗
x , h

∗
y). If the state variables at this configu-

ration are denoted by

Ȳ ∗ �
[
ω∗ h∗

x v∗
x h∗

y v∗
y

]T
(14)

then Ȳ ∗ = P(Ȳ ∗) is a fixed point and (12) and (13) give

ω∗ = −ω∗ − (I ∗
k r

∗
k /J ) (15a)

h∗
x = −h∗

x−
[
v∗
x −(I ∗

k /m) sin θ∗]δ∗ (15b)

v∗
x = −v∗

x + (I ∗
k /m) sin θ∗ (15c)
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h∗
y = h∗

y − (1/2)g δ∗2 +
[
v∗
y + (I ∗

k /m) cos θ∗] δ∗

(15d)

v∗
y = v∗

y + (I ∗
k /m) cos θ∗−g δ∗ (15e)

δ∗ = Δθ

ω∗ + (I ∗
k r

∗
k /J )

(15f)

where I ∗
k , r

∗
k denote the steady-state values of the con-

trol inputs and δ∗ denote the steady-state value of the
time of flight. Since h∗

y is eliminated from (15d), (15)
represents six equations in seven unknowns, namely,
ω∗, h∗

x , v∗
x , v∗

y , I
∗, r∗, and δ∗. By choosing δ∗, the

remaining six unknowns are obtained as follows:

ω∗ = −Δθ/δ∗, h∗
x = g δ∗2 tan θ∗/4

v∗
x = g tan θ∗δ∗/2, v∗

y = −g δ∗/2

I ∗ = mgδ∗/ cos θ∗, r∗ = 2J cos θ∗Δθ/(mgδ∗2)
(16)

Since the point of application of the impulsive force
must lie on the stick, r∗ in (16) must satisfy 0 < r∗ <

�/2. This imposes the following constraint of the value
of δ∗:

δ∗ > δ̄, δ̄ � 2

√
J cos θ∗Δθ

mg�
(17)

It should be noted that for a given value of δ∗, the value
of h∗

y is not unique.

4.2 Error dynamics

To converge the states to their desired values, we first
define the discrete error variables:

ω̃(k) � ω(t−k ) − ω∗

h̃x (k) � hx (t
−
k ) − h∗

x , ṽx (k) � vx (t
−
k ) − v∗

x

h̃ y(k) � hy(t
−
k ) − h∗

y , ṽy(k) � vy(t
−
k ) − v∗

y

ũ1(k) � (Ikrk − I∗r∗)/J, ũ2(k) � (Ik − I∗)/m

(18)

Using (12) and (15a)–(15e), the error dynamics can
now be written as

ω̃(k + 1) = −ω̃(k) − ũ1(k) (19a)

h̃x (k + 1) = −h̃x (k)−δk ṽx (k) + δk sin θ∗ ũ2(k)
(19b)

ṽx (k + 1) = −ṽx (k) + sin θ∗ ũ2(k) (19c)

h̃ y(k + 1) = h̃ y(k) + δk ṽy(k) + δk cos θ∗ ũ2(k)

+ (g/2)
[
δkδ

∗
k − δ2k

]
(19d)

ṽy(k + 1) = ṽy(k) + cos θ∗ũ2(k)−g [δk − δ∗
k ]

(19e)

where δk , defined in (13), can be written in terms of the
error variables as follows:

δk = Δθ δ∗

[ω̃(k) + ũ1(k)] δ∗ + Δθ
(20)

It is clear from (19) and (20) that the error dynamics
is nonlinear. In the next section we present a partial
control design that converts the nonlinear system into
a linear system and simplifies the remaining control
design.

4.3 Partial control design: dead-beat control

The error dynamics in (19) involves two control inputs,
namely, ũ1(k) and ũ2(k). The input ũ1(k) appears only
in (19a). To this end, we first design ũ1(k) as follows:

ũ1(k) = −ω̃(k) (21)

to guarantee dead-beat convergence5 of the error state
ω̃(k). Substitution of (21) in (20) yields δk = δ∗. Since
δ∗ is user-defined and is a constant, the choice of con-
trol in (21) is special as it transforms the remaining
dynamics in (19b)–(19e) into the linear system:

z(k + 1) = A z(k) + B ũ2(k)

z(k) �
[
h̃x (k) ṽx (k) h̃ y(k) ṽy(k)

]T

A �

⎡

⎢⎢
⎣

−1 −δ∗ 0 0
0 −1 0 0
0 0 1 δ∗
0 0 0 1

⎤

⎥⎥
⎦ , B �

⎡

⎢⎢
⎣

δ∗ sin θ∗
sin θ∗

δ∗ cos θ∗
cos θ∗

⎤

⎥⎥
⎦

(22)

It can be verified that the pair (A,B) is controllable
since θ∗ ∈ (0, π/2) and δ∗ > 0.

4.4 Residual control design

The error dynamics in (22) is linear and therefore a lin-
ear controller can be designed to converge the states

5 It should be noted that dead-beat inputs have been used in
earlier works on juggling [8,11,17].
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Non-prehensile manipulation of a devil-stick 2415

to the origin. However, it should be noted that the
control input ũ2(k) determines the value of Ik which
also appears in the dead-beat control design ũ1(k)—see
(18). By using the values of ũ2(k) from (18) in (21),
we get:

rk = [
I ∗r∗ − J ω̃(k)

]
/Ik (23)

Since the point of application of impulsive force must
lie of the stick, rk must satisfy −�/2 < rk < �/2. By
imposing this condition on the value of rk in (23), we
get the following constraints on the input ũ2(k):

ũ2(k) >
[
2I ∗r∗ − 2J ω̃(k) − I ∗�

]
/(m�)

ũ2(k) >
[ −2I ∗r∗ + 2J ω̃(k) − I ∗�

]
/(m�)

(24)

Since I ∗ and r∗ are both positive, as it can be seen from
(16), the inequalities in (24) can be combined into the
single inequality:

ũ2(k) > ā + b̄ | ω̃(k) |
ā � (2r∗ − �)I ∗/(m�), b̄ � 2J/(m�) (25)

Since ũ1(k) is dead-beat, ω̃(k) = 0, k = 2, 3 · · · . Thus,
(25) can also be written as

ũ2(k) > ā + b̄ | ω̃(k) |, k = 1

ũ2(k) > ā, k = 2, 3, · · · (26)

The input ũ2(k) is designed using Linear Quadratic
Regulator (LQR) andModel Predictive Control (MPC)
methods. For an LQRdesign, the control minimizes the
cost function

J =
∞∑

k=1

[
z(k)T Q z(k) + R ũ22(k)

]
(27)

where, Q and R are constant weighting matrices that
can be chosen by trial and error to satisfy the constraints
in (26). The closed-form solution of the control input
ũ2(k) can be obtained by solving the Ricatti equation
[35].

For a receding horizon MPC design, the constraint
in (26) can be explicitly included in the optimization
problem. In the MPC design6, it is necessary to calcu-
late the predicted output with future control input as
the adjusted variable. Since the current control input

6 A detailed discussion ofMPC design for discrete-time systems
can be found in Chapters 1-3 in [36].

cannot affect the output at the same time for receding
horizon control, the system dynamics must be repre-
sented in terms of the difference between the current
and the predicted control input. To this end, we define
the following variables based on the augmented state-
space model7 in [36]:

Δu(ki ) � ũ2(ki ) − ũ2(ki − 1)

ΔUi �

⎡

⎢⎢⎢
⎣

Δu(ki )
Δu(ki + 1)

...

Δu(ki + Nc − 1)

⎤

⎥⎥⎥
⎦

,

Zi �

⎡

⎢⎢
⎢
⎣

z(ki + 1 | ki )
z(ki + 2 | ki )

...

z(ki + Np | ki )

⎤

⎥⎥
⎥
⎦

(28)

where ki is the current sampling instant, z(ki ) is the
state vector in (22) measured at ki , Nc is the control
horizon, Np is the prediction horizon, and z(ki + m |
ki ) is the predicted state variable at ki + m with state
measurements z(ki ).

We now construct the following N -step receding
horizon optimal control problem:

minimize J =
N∑

i=1

[
ZT
i Zi + ΔUT

i ΔUi

]
(29)

subject to

z(ki + 1) = A z(ki ) + B ũ2(ki )
ũ2(ki ) > ā + b̄ | ω̃(1) |, i = 1
ũ2(ki ) > ā, i = 2, 3 · · · , N

(30)

In every sampling period, the optimization prob-
lem determines the best control parameter ΔUi that
attempts to converge the sequence of states in Zi to
zero. Although ΔUi contains Nc number of future
control inputs, only the first entry is implemented as
the actual control input. This optimization process is
repeated using amore recentmeasurement of the states.
It shouldbe emphasized that the input constraint in (30),
namely, ũ2(ki ) > ā + b̄ | ω̃(1) | is imposed only in
the first optimization window. In subsequent optimiza-
tion windows, the constraint is relaxed to ũ2(ki ) > ā.

7 The augmented state-space model is controllable; this was ver-
ified using Theorem 1.2 in [36].
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This is necessary for ũ2 to converge to zero since ā is
negative—see (25), whereas ā + b̄ | ω̃(1) | can assume
positive values based on the initial value of ω̃.

Remark 1 The control input ũ2(k) is obtained as the
numerical solution of the optimal control problem in
(29) and (30). These inputs are applied at discrete time
instants and the optimization solver is required to com-
pute these inputs within the sampling time interval,
which is equal to the time of flight δ∗. Since δ∗ is rela-
tively large, there is sufficient time for the optimization
solver to generate the solution. This, alongwith the fact
that the input constraint can be explicitly considered in
the problem formulation, makes MPC well-suited for
this problem.

5 Simulation results

5.1 System parameters and initial conditions

We present simulation results of both LQR- and MPC-
based control designs. The physical parameters of the
devil-stick are provided below in SI units:

m = 0.1, � = 0.5, J = 0.0021 (31)

Using these physical parameters and by choosing the
values of θ∗ = π/6 rad and δ∗ = 0.5 sec, the steady-
state values of state variables and control inputs are
obtained from (16) as

ω∗ = −4.18 rad/s h∗
x = 0.353m v∗

x = 1.414m/s

v∗
y = −2.45m/s I∗ = 0.565Ns r∗ = 0.030m

(32)

Since h∗
y can be chosen arbitrarily, we chose

h∗
y = 3.0m (33)

At the initial time, we assume θ = θ∗ = π/6 rad and
the states variables (in SI units) are

ω(0) = 0, hx (0) = 0.53, vx (0) = 2.0

hy(0) = 1.0, vy(0) = −2.0
(34)

For the physical parameters in (31), steady-state val-
ues of the states in (32) and (33), and initial condi-
tions in (34), the control ũ1(k) was chosen according
to (21). The control input ũ2(k) was designed using
LQR andMPCmethods and simulation results are pre-
sented next.

(a) (b)

(c) (d)

(e) (f)

Fig. 4 State variables and total energy E of the devil-stick at
sampling instants k, k = 1, 2, · · · , 10, for the LQR design

(a) (b)

Fig. 5 Control inputs for the devil-stick at sampling instants k,
k = 1, 2, · · · , 10, for the LQR design

5.2 Results for the LQR-based design

For the LQR design, the weight matrix Q for the states
was chosen to be the identity matrix and the control
weight R was chosen as 0.2. The control was obtained
as

ũ2(k) = Fz(k), F = [−0.43 −0.77 0.43 0.66
]

(35)

The simulation results are shown in Figs. 48 and 5 .
It can be seen from Fig. 4a that the dead-beat control
ũ1(k) converges ω(k) to ω∗ in one sampling interval.
The control ũ2(k) converges the remaining states to
their steady-state values given in (32) in approximately
k = 10 steps—see Fig. 4c–f. The control inputs Ik and
rk are shown in Fig. 5a, b. It can be seen that both con-
trol inputs converge to their steady-state values defined

8 It should be noted that the state variables are shown in the
reference frame of the right-handed juggler.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 State variables and total energy E of the devil-stick at
sampling instants k, k = 1, 2, · · · , 20, for the LQR design in
the presence of parameter uncertainty, sensor noise and input
disturbance

(a) (b)

Fig. 7 Control inputs for the devil-stick at sampling instants k,
k = 1, 2, · · · , 20, for the LQR design in the presence of param-
eter uncertainty, sensor noise and input disturbance

in (32); also the control input rk remains well inside
the constraint boundary | rk |< �/2. The convergence
of both the states and control inputs to their desired val-
ues imply that the devil-stick is juggled between two
symmetric configurations. Since the magnitudes of vx ,
vy , ωx , and hy are the same in the two symmetric con-
figurations, the total energy E (kinetic plus potential)
reaches a constant value at steady state—see Fig. 4b.

Remark 2 The total energy of the devil-stick is the
same at the symmetric configurations. Also, it is con-
served during the flight phase. Therefore, in steady-
state, the control inputs I ∗ and r∗ do zero work on the
system.

The behavior of the devil-stick was also simulated
in the presence of parameter uncertainty, sensor noise,
and input disturbance. For the same initial conditions in
(34) and controller gains in (35), the results are shown

in Figs. 6 and 7. In the dynamic model, the values of
the mass m and length � were purposely chosen to be
2% less and 2%more, respectively, than the values pro-
vided in (31). The velocity measurements, which are
used to compute the control inputs ũ1(k) and ũ2(k) in
(21) and (35), were corrupted by random noise in the
range of ±2% of the actual values. Random noise in
the range of ±2% was also added to the computed val-
ues of the physical inputs Ik and rk to simulate input
disturbance. It is clear from Figs. 5 and 7 that the inputs
Ik and rk are significantly perturbed from their nominal
values; this is because of the combined effect of mea-
surement noise and input disturbance. Despite the large
perturbations in the physical inputs from their nominal
values, it can be seen from Fig. 6 that the states of the
system become ultimately bounded in a neighborhood
of their desired values. The state ω is bounded in a
small neighborhood of its desired value as ũ1(k) is not
exactly dead-beat. Among the other states, hx , vx and
vy oscillate around their respective desired values but
hy oscillates around a higher value, mainly because of
the higher value of the mass parameter used in the con-
trol law. Since the potential energy of the devil-stick is
proportional the state hy , the energy E also oscillates
around a value that is higher than its desired value. The
simulation was carried out for a longer period of time
than shown; the results indicate stable behavior with
ultimate boundedness of the state trajectories.

5.3 Results for the MPC-based design

The control horizon, prediction horizon, and the num-
ber of steps were taken as

Nc = 5, Np = 10, N = 15

The MPC problem, defined by (29) and (30) were
solved using quadratic programming in MATLAB9.
The state variables hx (k), hy(k), vx (k) and vy(k) and
the control inputs Ik and rk are shown in Fig. 8. The
state variable ω(k) is not shown as it converged to its
desired value in one sampling interval by the dead-
beat controller. Similar to the LQR design, the control
input rk remains well inside the constraint boundary.
The trajectory of the center-of-mass of the devil stick
is shown in Fig. 9a; it starts from the initial configu-
ration (hx , hy) = (0.53, 1.00) and is eventually jug-
gled between the symmetric coordinates (h∗

x , h
∗
y) =

9 The quadprog MATLAB function was used.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 State variables and control inputs of the devil-stick at
sampling instants k, k = 1, 2, · · · , 15, for the MPC design

(a) (b)

Fig. 9 a Trajectory of the center-of-mass from the initial config-
uration to steady-state and b symmetric configurations and seven
intermediate configurations of the devil-stick in steady state for
the MPC design

(0.353, 3.00), (−h∗
x , h

∗
y) = (−0.353, 3.00) in steady

state. Typically, N is chosen to be large to guarantee
convergence. For our system, the states rapidly con-
verged to zero with N = 15. In Fig. 9b, the devil-stick
is shown at the two symmetric configurations where
θ∗ = π/6 and several intermediate configurations that
are equal time intervals apart.

Remark 3 In all the simulations, the stick rotates by
an angle (π − 2θ∗) between two consecutive control
inputs. This corresponds to “top-only idle” juggling
[1]. The dynamic model and control design are quite
general and the stick can be controlled to rotate by
(qπ − 2θ∗), q = 2, 3, · · · , by simply changing the
definition of Δθ in (13) from Δθ = (π − 2θ∗) to
Δθ = (qπ−2θ∗). In otherwords, the stick can bemade
to flip multiple times in the flight phase, if desired. The
“flip-idle” in [1] corresponds to the case where q = 2.

6 Conclusion

Impulsive forces are applied intermittently for juggling
a devil-stick between two symmetric configurations. A
dynamic model of the devil-stick and a control design
for the juggling task is presented here for the first time.
The control inputs are the impulse of the impulsive
force and its point of application on the stick. The con-
trol action is event-based and the inputs are applied
onlywhen the stick has the orientation of one of the two
symmetric configurations. The dynamics of the devil-
stick due to the control action and torque-free motion
under gravity is described by two Poincaré maps; the
symmetric configurations are fixed points of the cor-
responding Poincaré sections. A coordinate transfor-
mation is used to exploit the symmetry and convert the
problem into that of stabilization of a single fixed point.
A dead-beat controller is designed to convert the non-
linear system into a controllable linear discrete-time
system with input constraints. LQR and MPC meth-
ods are used to design the control inputs and achieve
symmetric juggling. The LQR method has a closed-
form solution and is easier to implement but requires
trial and error to satisfy the input constraints. TheMPC
method has no closed-form solution as it is obtained by
solving an optimization problem online. However, the
optimization problem directly takes into account the
input constraint. The computational cost of the MPC
method, which can be a concern for many problems, is
not a concern for the juggling problem since the time
between consecutive control actions is relatively large.
Simulation results validate both control designs and
demonstrate non-prehensile manipulation solely using
impulsive forces. For the LQR controller, the closed-
loop system is shown to have somedegree of robustness
to parameter uncertainty,measurement noise, and input
disturbance. Our future work will focus on robotic jug-
gling; this includes design of experimental hardware,
adaptive compensation of energy losses due to inelas-
tic collisions between the devil-stick and hand sticks,
and motion planning and control of the robot end-
effector for generating the impulsive forces designed
by the control algorithms. In this regard, the works by
Brogliato and co-authors on complete control design
of both the manipulator and the juggled object [8,11]
and adaptive control [17] will provide useful clues.
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