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Abstract Recent investigations of underactuated sys-
tems have demonstrated the benefits of control inputs
that are impulsive in nature. Here we consider the prob-
lem of stabilization of energy level sets of underactu-
ated systems exploiting impulsive braking.Weconsider
systems with one passive degree-of-freedom (DOF)
and the energy level set is a manifold where the active
coordinates are fixed and the mechanical energy equals
some desired value. A control strategy comprised of
continuous inputs and intermittent impulsive braking
inputs is presented. The generality of the approach is
shown through simulation of a three-DOF Tiptoebot;
the feasibility of implementation of impulsive control
using standard hardware is demonstrated using a rotary
pendulum.
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1 Introduction

In many applications, such as legged locomotion [1,2],
underactuated systems are required to undergo repet-
itive motion and orbital stabilization is the control
objective. To achieve repetitive motion, geometric con-
straints are imposed on the generalized coordinates
using the virtual holonomic constraint (VHC) approach
[3–6]. Orbital stabilization has also been used for
swing-up control of underactuated systems with one
passive degree of freedom (DOF). Some examples
include two-DOF systems such as the pendubot [7], the
acrobot [8], the reaction-wheel pendulum [9], inverted
pendulum on a cart [10,11], the rotary pendulum [12],
and the three-DOF gymnast robot [13]. These con-
trollers stabilize an energy level set that includes the
equilibrium, which is typically unstable. Unlike the
VHC approach, geometric constraints are not imposed;
instead, the controllers are designed to pump energy in
and out of the system and converge the active DOFs to
their desired configuration. Such control designs are
typically based on a Lyapunov-like function that is
comprised of terms involving positions and velocities
of the active DOFs and the total mechanical energy of
the system. Although the structure of the Lyapunov-
like function is identical, the stability analysis is differ-
ent for each system due to the difference in the nature
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of their nonlinear dynamics. Despite the effectiveness
of the individual controllers, a general methodology
for stabilizing an energy level set does not exist. In
this paper, we present a control strategy for n-DOF
underactuated systems with one passive DOF based
on continuous-time inputs and intermittent impulsive
braking inputs.1

Prior works on impulsive control [15–21] have been
theoretical in nature, but in recent works [6,22–29],
impulsive inputs have been utilized for control of
underactuated systems in both simulations and exper-
iments. In experiments, impulsive inputs have been
implemented in standard hardware using high-gain
feedback [23,24], dispelling the notion that impulsive
inputs require large actuators and are impractical. A
combination of continuous and impulsive inputs was
used recently for stabilization of homoclinic orbits of
two-DOF underactuated systems [27]. This work pro-
vides a generalization of the theory to n-DOF systems
and experimental validation.

In this paper, we present a control design for sta-
bilizing an energy level set for underactuated systems
with one passive revolute joint. The energy level set
is defined by fixed positions of the active coordinates
and a desired mechanical energy of the system. The
controller is comprised of continuous-time inputs and
impulsive braking inputs. At first, a general result for
underactuated systems is presented which shows that
an impulsive input causes an instantaneous jump in the
energy of the system; this jump is shown to be explic-
itly dependent on the change in the active velocities.
This result is then used to show that impulsive brak-
ing causes a negative jump in the energy of the sys-
tem as well as in a Lyapunov-like function. Finally,
using a state-dependent impulsive dynamical system
model [16], we present sufficient conditions for stabi-
lization. To demonstrate the generality of our approach,
we demonstrate stabilization of energy level sets for the
three-DOFTiptoebot [24] through simulations. Experi-
mental validation is carried out on a rotary pendulum to
show the applicability of our approach in real hardware.
The main contributions of this work are as follows:

1. Our control design is applicable to a class of under-
actuated systems; a majority of underactuated sys-
tems investigated in the literature belong to this
class.

1 Impulsive braking for control of the underctuated systems was
first proposed in [14] for swing-up of the pendubot.

2. The stability analysis is presented for the general
case and it results in sufficient conditions that are
not restrictive and can be verified.

3. Experimental validation is provided.
4. Impulsive braking is accomplished using a friction

brake; this eliminates the need for high-gain feed-
back [23] which may result in actuator saturation.

2 Problem statement

Consider an n-DOF underactuated system with one
passive DOF. The generalized coordinates of the sys-

tem are denoted by q, q �
[
qT1 q2

]T
, where q1 ∈ Rn−1

and q2 ∈ R are the coordinates associated with the
active and passive DOFs. Our control objective is to
stabilize the orbit defined by

(q1, q̇1, E) = (0, 0, Edes) (1)

where E is the total mechanical energy of the system
and is given by the relation

E(q, q̇) = 1

2
q̇T M(q) q̇ + F(q) (2)

and Edes is the desired value of E . In (2),M(q) ∈ Rn×n

is the mass matrix, assumed to be positive definite, and
F(q) is the potential energy, assumed to be a smooth
function of q. The mass matrix is partitioned as

M(q) =
[
M11(q) M12(q)

MT
12(q) M22(q)

]
(3)

where M11 ∈ R(n−1)×(n−1) and M22 ∈ R.

Assumption 1 The energy of the system is periodic
in the passive coordinate q2, such that E(q2 + 2π) =
E(q2).

Remark 1 Assumption 1 is easily satisfied if the pas-
sive DOF is a revolute joint.

Assumption 2 The elements of the mass matrix M(q)

are bounded and the potential energy F(q) is lower
bounded.

Remark 2 The boundedness property of M(q) and
F(q) is satisfied for systems that have no prismatic
joints.
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Stabilization of energy level sets of underactuated mechanical systems 281

3 Modeling of system dynamics

3.1 Euler–Lagrange equations

For our system described in Sect. 2, the equations of
motion can be written as:

d

dt

(
∂L
∂q̇1

)
−

(
∂L
∂q1

)
= u

d

dt

(
∂L
∂q̇2

)
−

(
∂L
∂q2

)
= 0

(4)

where L(q, q̇) is the Lagrangian and u ∈ Rn−1 is the
vector of independent control inputs. Each element of
the vector u is a continuous function of time for all
t ≥ 0 except at discrete instants t = τk , k = 1, 2, . . .,
where it is impulsive in nature. At t = τk , the impulsive
input vector has the form u(τk) = Ik δ(t − τk), where
δ(t−τk) is the Diracmeasure at time τk and Ik ∈ Rn−1

is the impulse of the impulsive input. The Lagrangian
is

L(q, q̇) = 1

2
q̇T M(q) q̇ − F(q) (5)

By substituting (3) in (5), the Lagrangian is written as

L(q, q̇) = 1

2
q̇T1 M11q̇1 + 1

2
M22q̇

2
2 (6)

+q̇T1 M12q̇2 − F
and by substituting (6) in (4), the equations of motion
become:

M11 q̈1 + M12 q̈2 + h1(q, q̇) = u (7a)

MT
12 q̈1 + M22 q̈2 + h2(q, q̇) = 0 (7b)

where

h1 = Ṁ11 q̇1 + Ṁ12 q̇2 − 1

2

[
∂

∂q1
(M11 q̇1)

]
q̇1

−
[
∂(M12 q̇2)

∂q1

]
q̇1 − 1

2

[
∂M22

∂q1

]T

q̇22

+
[

∂F
∂q1

]T

(8a)

h2 = Ṁ22 q̇2 + q̇T1 Ṁ12 − 1

2
q̇T1

[
∂(M11 q̇1)

∂q2

]

− 1

2

[
∂M22

∂q2

]
q̇22 − q̇T1

[
∂(M12q̇2)

∂q1

]

+ ∂F
∂q2

(8b)

Equations (7a) and (7b) is rewritten in the form

q̈1 = A(q, q̇) + B(q)u (9a)

q̈2 = −(1/M22)
[
MT

12 {A(q, q̇) + B(q)u} + h2
]

(9b)

where

B(q) =
[
M11 − (1/M22)M12 M

T
12

]−1
(10)

A(q, q̇) = (1/M22)B(q) [M12 h2 − h1M22] (11)

Usingproperties of themassmatrixM(q) and theSchur
complement theorem [30], it can be shown that B(q) is
symmetric and positive-definite, i.e., B(q) = BT (q) >

0.

3.2 Effect of impulsive inputs

When the input u in (7a) is impulsive, it causes discon-
tinuous jumps in the velocities (q̇1, q̇2), while the coor-
dinates (q1, q2) remain unchanged. For the impulsive
input at t = τk , the jump in the velocities is computed
by integrating (7) as follows [31]:
[
M11 M12

MT
12 M22

] [
Δq̇1
Δq̇2

]
=

[Ik
0

]
, Ik �

∫ t+k

t−k
u(tk) dt

In the above equation, Δq̇1 and Δq̇2 are defined as

Δq̇1 � (q̇+
1 − q̇−

1 ), Δq̇2 � (q̇+
2 − q̇−

2 )

where q̇− � q̇(τ−
k ) and q̇+ � q̇(τ+

k ) denote the gener-
alized velocities immediately before and after applica-
tion of the impulsive inputs. Since the system is under-
actuated, the jump in q̇2 is dependent on the jumps in q̇1;
this dependence is described by the one-dimensional
impulse manifold [23] or impulse line, obtained from
the equation above:

q̇+
2 = q̇−

2 − (1/M22)M
T
12(q̇

+
1 − q̇−

1 ) (12)

The kinetic energy undergoes an instantaneous change
due to jumps in the generalized velocities. This change
is also equal to the change in the total mechanical
energy of the system since the potential energy is only a
function of the generalized coordinates. A formal state-
ment of this result is provided next.
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Lemma 1 For the dynamical system in (7), the jump
in the total mechanical energy due to application of an
impulsive input is given by

ΔE � (E+ − E−) = 1

2
q̇+T

1 B−1(q) q̇+
1 (13)

− 1

2
q̇−T

1 B−1(q) q̇−
1

where E− and E+ are the energies immediately before
and after application of the impulsive input.

Proof See Sect. 8.1 of Appendix. ��
Remark 3 The proof of Lemma 1 is provided for the
general case where the number of active and passive
DOFs are (n − m) and m, respectively. This general
result indicates that the change in mechanical energy
due to an impulsive input depends only on the veloc-
ities of the active DOFs immediately before and after
application of the input. The result is analogous to the
passivity property for the continuous-time case [32],
where the power input to the system is the inner product
of the velocities of the active DOFs and control inputs.
It is important to note that results similar to Lemma 1
appeared earlier in [33].

Impulsive braking results in q̇+
1 = 0. Thus it follows

from Lemma 1 that impulsive braking results in a loss
of mechanical energy, given by the expression

ΔE = −1

2
q̇−T

1 B−1(q) q̇−
1 (14)

We now state an important result related to impulsive
braking.

Lemma 2 Consider the scalar function

V = 1

2

[
qT1 Kp q1 + q̇T1 Kd q̇1 + Ke(E − Edes)

2
]

(15)

where K p and Kd are diagonal positive definite con-
stant matrices and Ke is a positive constant. Impulsive
braking results in a discontinuous jump in the function
given by

ΔV � (V+ − V−)

= −1

2
q̇−T

1

[
1

4

{
Ke q̇

−T

1 B−1(q) q̇−
1

}
B−1(q)

+ Kd + Ke(E
+ − Edes)B

−1(q)

]
q̇−
1

(16)

where V− and V+ are values of the function immedi-
ately before and after impulsive braking. Furthermore,
if

[
Kd + Ke(E+ − Edes)B−1(q)

]
is positive definite,

then ΔV ≤ 0, and ΔV = 0 if and only if q̇−
1 = 0.

Proof See Sect. 8.2 of Appendix. ��

3.3 Impulsive dynamical model

To stabilize the orbit in (1), we propose a control strat-
egy comprised of continuous and impulsive inputs. The
impulsive inputs will be used for impulsive braking of
the active coordinates, i.e., q̇+

1 = 0. As a result, the
change in the velocities can be obtained using (12) as
follows:

Δq̇1 = 0 − q̇−
1 = −q̇−

1

Δq̇2 = q̇+
2 − q̇−

2 = (1/M22)M
T
12 q̇

−
1

(17)

In addition to the impulsive braking inputs, we will
reset the passive coordinate q2 periodically to confine
it to the compact set [−3π/2, π/2]2. To describe the
dynamics of our system, we adopt the state-dependent
impulsive dynamical model in [16, pg.20]:

ẋ(t) = fc[x(t)], x(0) = x0, x(t) /∈ Z (18a)

Δx(t) = fd [x(t)], x(t) ∈ Z (18b)

where Z defines the set where the impulsive inputs
are applied and/or periodic resetting occurs. For our
system,

x(t) � [qT1 q2 q̇T1 q̇2]T ∈ D ⊆ R2n

Δx(t) � x(t+) − x(t−)

In the above expression, D is the open set where q2 ∈
(a, b), a < −3π/2, b > π/2, and x(t−), x(t+) are
the values of the state variables immediately before
and after application of impulsive inputs or coordinate
resetting. Using (9), (12) and (17), it can be shown

fc =

⎡

⎢
⎢
⎣

q̇1
q̇2

A(q, q̇) + B(q)u
−(1/M22)

[
MT

12 {A(q, q̇) + B(q)u} + h2
]

⎤

⎥
⎥
⎦

(19)

2 This choice of the compact set is not unique.
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fd =

⎧
⎪⎨

⎪⎩

[
0 0 −q̇−

1 (1/M22)MT
12 q̇

−
1

]T : x(t) ∈ Z1[
0 2π 0 0

]T : x(t) ∈ Z2[
0 −2π 0 0

]T : x(t) ∈ Z3

(20)

Z = Z1 ∪ Z2 ∪ Z3, Z1 is the set where impulsive
braking inputs are applied (to be defined in Theorem 2
where the control design will be presented), and Z2 �
{q2 = −3π/2, q̇2 < 0} and Z3 � {q2 = π/2, q̇2 > 0}
are the sets where coordinate resetting occurs.

We assume existence and uniqueness of the solution
of (18) to exclude the possibility of complex phenom-
ena such as Zeno switching [16,21]. Simulations and
experimental results presented later will validate this
assumption.

4 Control design

4.1 Main result

For the objective in (1), we propose a control design
comprised of continuous and intermittent impulsive
braking inputs3. Theorem 2 provides the design of the
continuous controller and defines the set Z1, where
impulsive braking is applied. The proof of Theorem
2 is based on a Lyapunov-like function. The continu-
ous controller is invoked as long as the derivative of
the Lyapunov-like function is negative semi-definite;
when this condition is not satisfied, impulsive braking
is applied to produce negative jumps in the Lyapunov-
like function. Before stating Theorem 2, we present an
invariant set theorem [16, pg.38] that will be used in
the proof of Theorem 2 and state one Assumption.

Theorem 1 [16, pg. 38]Consider the impulsive dynam-
ical system given by (18), assume that Dc ⊂ D is a
compact positively invariant set with respect (18), and
assume that there exists a continuously differentiable
function W : D → R such that

[∂W (x)/∂x] fc(x) ≤ 0, x ∈ Dc, x /∈ Z
(21a)

W (x + fd(x)) ≤ W (x), x ∈ Dc, x ∈ Z
(21b)

3 It is assumed that the active DOFs will have a friction brake
such that they can be stopped instantaneously.

Let R � {x ∈ Dc : x /∈ Z, [∂W (x)/∂x] fc(x) =
0} ∪ {x ∈ Dc : x ∈ Z,W (x + fd(x)) = W (x)} and
letM denote the largest invariant set contained inR.
If x0 ∈ Dc, then x(t) → M as t → ∞.

Assumption 3 For the system in (7) subjected to con-
tinuous control, q2 is constant if q̇1 and u̇ are identically
zero.

Remark 4 Assumption 3 implies that the active and
passive generalized coordinates are dynamically cou-
pled. Due to this coupling, the active generalized coor-
dinates cannot be held stationary by constant general-
ized forces when the passive generalized coordinate is
non-stationary. The existence of such coupling has been
verified for an inverted pendulum on a cart [27], rotary
pendulum [34], pendubot, acrobot, and reaction-wheel
pendulum; in this paper, it is shown for the tiptoebot.

Theorem 2 For the impulsive dynamical systemdefined
by (18–20), and x0 ∈ D such that

−3π/2 < q2(0) < π/2 (22)

the following choice of control design:

u = − [(Kd + Kc) B(q) + Ke (E − Edes) I ]
−1 ×

[
Kp q1 + (Kd + Kc)A(q, q̇)

]
(23a)

Z1 = {x(t) | [A(q, q̇) + B(q)u]T Kc q̇1

≤ 0, q̇1 �= 0} (23b)

where I is the identity matrix and Kc is a diagonal
positive-definite matrix, guarantees asymptotic stabil-
ity of the orbit in (1) if the gain matrices K p, Kd and
Ke satisfy the following conditions:

(1)
[
Kd + Ke(E − Edes)B−1(q)

]
is positive definite

for all q and q̇,
(2) If q∗

1 and q∗
2 are constant values of q1 and q2, then

the following system of equations:

[
∂F
∂q1

]T

q=q∗
= − Kp q∗

1

Ke [F(q∗) − Edes]
[

∂F
∂q2

]

q=q∗
= 0

yields a finite number of solutions with q∗
1 = 0, and
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(3) For all possible solutions of q∗
2 obtained from

(ii) and for the function V in (15), the following
inequality is satisfied

V (t=0) < min{V | q1 = 0, q̇1 = 0, E ∈ SE \{Edes}}

where SE is the set of values of E evaluated at
q1 = 0, q2 = q∗

2 , q̇ = 0.

Proof Consider the Lyapunov-like function V defined
in (15); V is zero on the orbit defined in (1) and positive
everywhere else. The time derivative of V is

V̇ = qT1 Kp q̇1 + q̈T1 Kd q̇1 + Ke(E − Edes)Ė

=
[
qT1 Kp + q̈T1 Kd + Ke(E − Edes) u

T
]
q̇1

(24)

where Ė = uT q̇1 follows from the passivity property
of underactuated Euler-Lagrange systems—see [32]4

and proposition 2.5 of [35]. By substituting q̈1 from
(9a) in (24) and using the symmetry of B(q), we get

V̇ =
[
qT1 Kp + AT Kd

+uT B
{
Kd + Ke(E − Edes)B

−1
}]

q̇1
(25)

The following choice of u

uT = −
[
qT1 Kp + AT Kd + q̈T1 Kc

]

×
[
B

{
Kd + Ke(E − Edes)B

−1
}]−1

,

(26)

which is well defined based on condition (i), results in

V̇ = −q̈T1 Kc q̇1 (27)

Substitution of (9a) in (26) followed by algebraic
manipulation gives the expression for u in (23a). Sub-
stitution of (9a) in (27) gives

V̇ = − [A(q, q̇) + B(q)u]T Kc q̇1 (28)

Based on the expression of V̇ , three cases may arise:

case (a) if [A + Bu]T Kc q̇1 > 0, then V̇ < 0,
case (b) if [A + Bu]T Kc q̇1 ≤ 0, q̇1 �= 0, then

x ∈ Z1 and impulsive braking is applied - see
(23b). Since condition (i) is satisfied, Lemma
2 indicates that V undergoes a discontinuous
change ΔV , where ΔV < 0, and

case (c) if q̇1 = 0, then V̇ = 0.

4 Theproof of the passivity property follows from the fact that the
matrix [Ṁ−2C] is skew-symmetric for our choice of generalized
coordinates.

For case (b), impulsive braking results in q̇1 = 0 at t+
and the trajectories of the system leaveZ1. If q̇1 ≡ 0 for
all t > t+, the trajectories of the system remain outside
Z1 and V̇ ≡ 0. If q̇1 �≡ 0 for t > t+, V decreases since
(27) implies

V̇ (t+) = 0, V̈ (t+) = −q̈T1 (t+)Kc q̈1(t
+) < 0

⇒ V̇ (τ ) < 0, τ ∈ (t+, t+ + ε)

for some ε > 0 since Kc is positive-definite and q̈1 �= 0.
Case (c) implies that either q̇1 ≡ 0 ⇒ V̇ ≡ 0, or
q̇1 �≡ 0 and V continues to decrease again; this follows
from our discussion of the nature of trajectories after
impulsive braking. Cases (a), (b) and (c) imply that for
t > 0, V (t) ≤ V (0) � c and therefore the set

Dc � {V ≤ c} ∩ {−3π/2 ≤ q2 ≤ π/2}

is positively invariant.
Cases (a), (b) and (c) together satisfy the con-

ditions in Theorem 1 with Dc defined above and
W (x) = V (x). Since (b) implies ΔV < 0, {x ∈
Dc : x ∈ Z,ΔV = 0} is an empty set. Therefore,
x(t) → M ⊂ R = {x ∈ Dc : x /∈ Z, V̇ = 0} as
t → ∞. From case (c), V̇ = 0 implies q̇1 = 0 and thus
R = {x ∈ Dc : q̇1 ≡ 0}. In R, q̈1 = 0. Substitution of
q̈1 = 0 in (9a) and (26) yields

uT = −AT B−1 (29a)

uT BKd = −Ke(E − Edes)u
T

− qT1 Kp − AT Kd (29b)

Substitution of (29a) into (29b) gives

uT Ke (E − Edes) + qT1 Kp = 0 (30)

The definition ofR in Theorem 1 implies V is constant
inR. Also, q1 is constant and q̇1 = 0 inR. Therefore,
from the definition of V in (15), we can claim that E
is constant inR. Let q∗

1 and E∗ be the constant values
of q1 and E . We now discuss two cases that can arise:

case 1 If E∗ = Edes, we have q∗
1 = 0 from (30). This

implies that M is the orbit in (1).
case 2 if E∗ �= Edes, we get from (30)

u � u∗ = − Kp q∗
1

Ke(E∗ − Edes)
(31)

where u∗ is the constant value of the continuous
control inR.
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Stabilization of energy level sets of underactuated mechanical systems 285

For case 2, bothq1 andu are constants. Therefore, based
on Assumption 3, we claim q2 = q∗

2 is a constant. It
follows from (2) that E∗ = F(q∗). Using (7) and (8),
we can show that the trajectories in R satisfy

[
∂F
∂q1

]T

q=q∗
= u∗,

[
∂F
∂q2

]

q=q∗
= 0

Substituting the expression for u∗ from (31) in the
above equation along with E∗ = F(q∗), we can use
condition (ii) to claim q∗

1 = 0. Using (15) and cases (a)
and (b), we can claim that as t → ∞, V → V ∗, where

V ∗ = 1

2
Ke(E

∗ − Edes)
2 ≤ V (t = 0)

where E∗ ∈ SE . Since V ∗ ≤ V (t = 0), we can claim
using condition (iii) that E∗ = Edes, i.e., V ∗ = 0. Thus
the largest invariant set M is the orbit defined in (1).
This concludes the proof. ��

4.2 Choice of controller gains

It can be easily shown that condition (i) in Theorem 2
is satisfied if

(1/Ke)λmin(Kd) > [Edes − min(F)] λmax[B−1(q)]
where λmin(Kd) and λmax[B−1(q)] are the mini-
mum and maximum eigenvalues of Kd and [B−1(q)].
Assumption 2 implies λmax[B−1(q)] and min(F) exist
and therefore Kd and Ke can always be chosen to sat-
isfy condition (1).

For the choice of Ke satisfying condition (i), Kp

has to be chosen to satisfy condition (ii). Although we
do not prove that condition (ii) can be simultaneously
satisfied for the general case, several combinations of
gains (Kp, Kd , Ke)were found to exist for the inverted
pendulum on a cart [27]. The authors have indepen-
dently verified that condition (ii) can be easily satisfied
for several other underactuated mechanical systems,
namely, the pendubot, the acrobot, and the reaction-
wheel pendulum. It is shown in this paper that condi-
tions (i) and (ii) can be simultaneously satisfied for the
three-DOF Tiptoebot and the rotary pendulum. These
examples indicate that condition (ii) is not restrictive.

Once the controller gains Kp, Kd and Ke have been
chosen to satisfy conditions (i) and (ii) in Theorem 2,
condition (iii) imposes no additional restrictions on the

Fig. 1 The three-link
underactuated tiptoebot has
two active joints and one
passive joint

11

2

3

θ1

θ2

θ3

τ2

τ3

x

y

g

gains but simply provides an estimate of the region
of attraction of the orbit. Since Kc does not appear in
conditions (i)–(iii), it can be chosenwithout restriction.

5 Illustrative example: the tiptoebot

5.1 System description

Consider the tiptoebot shown in Fig. 1 - it is a human-
like three DOF underactuated system with one passive
joint. The three links are analogous to the lower leg,
the upper leg, and the upper body comprised of the
torso and head of a human. The knee joint connecting
the upper and lower legs, and the hip joint connecting
the upper body and upper leg are actuated; the torques
applied by the actuators in these joints are assumed to
be positive in the counterclockwise direction and are
denoted by τ2 and τ3. The toe provides a simple point
of support and is modeled as a passive joint. The lower
leg, upper leg, and upper body have link lengths 	1, 	2
and 	3 and masses m1, m2 and m3 respectively. In this
study, for the sake of simplicity, each link is assumed
to be a rigid massless rod with a point mass attached to
its distal end. The joint angles of the links are denoted
by θ1, θ2 and θ3 and are assumed to be positive in the
counterclockwise direction; θ1 is measured relative to
the x-axis whereas θ2 and θ3 are measured relative to
the first and second links. The dynamics of the system
is presented next.
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5.2 Tiptoebot dynamics and control objective

Using the following definition for the joint angles

qT1 = [θ2 θ3 ]T , q2 = θ1 (32)

the dynamics of the tiptoebot can be expressed in the
form of (7); the components of mass matrix in (3) are

M11 =
[
α2+α3+2α5 cos θ3 α3+α5 cos θ3

α3+α5 cos θ3 α3

]

M12 =
[
α2+α3+α4 cos θ2+2α5 cos θ3+α6 cos(θ2+θ3)

α3+α5 cos θ3+α6 cos(θ2+θ3)

]

M22 = α1+α2+α3

+ 2 [α4 cos θ2 + α5 cos θ3+α6 cos(θ2+θ3)]

(33)

where αi , i = 1, 2, · · · , 6, are lumped parameters,
defined as follows:

α1 � m1(	
2
1 + 	22 + 	23), α2 � (m2 + m3)	

2
2

α3 � m3	
2
3, α4 � m2	1	2 + m3	1	2

α5 � m3	2	3, α6 � m3	1	3

(34)

The sum of Coriolis, centrifugal and gravitational force
terms, h1 and h2, can be obtained using (8),whereF(q)

has the expression

F = β1 sin θ1 + β2 sin(θ1 + θ2) + β3 sin(θ1 + θ2 + θ3)

β1 � (m1 + m2 + m3)	1 g

β2 � (m2 + m3)	2 g, β3 � m3	3 g (35)

The control input is defined as u = [τ2 τ3]T . In the
compact set θ1 ∈ [−3π/2, π/2], as defined in Sect. 3.3,
the upright equilibrium configuration of the tiptoebot
is defined by

θ1 = −3π/2 or π/2,
[
θ2 θ3 θ̇1 θ̇2 θ̇3

] = [
00000

]

is unstable, but can be stabilized, by a linear controller,
for example. The stabilized equilibrium will typically
have a finite region of attraction; therefore, to stabilize
from an arbitrary initial configurations, we first use the
controller in Sect. 3 to stabilize an energy level set that
intersects the region of attraction. The obvious choice
for such a level set is the one where Edes equals the

potential energy of the system at the equilibrium. Sub-
stitution of θ1 = −3π/2 or π/2 and θ2 = θ3 = 0 in
(35) yields Edes = β1 +β2 +β3. The control objective
in (1) can therefore be written as

θ2 = θ3 = 0, θ̇2 = θ̇3 = 0,

Edes = (β1 + β2 + β3) (36)

The feasibility of our control design is discussed next.

5.3 Selection of controller gains

The initial configuration of the tiptoebot is taken as

[θ1 θ2 θ3 θ̇1 θ̇2 θ̇3 ] = [0π π 000 ] (37)

In this configuration, the tiptoebot is coiled up: the first
link is horizontal, the second link folds back on the
first link, and the third link folds back on the second
link. The links were chosen to have the same mass
m1 = m2 = m3 = 0.1 kg and the same length
	1 = 	2 = 	3 = 0.6 m. For this choice of mass and
length parameters, the lumped parameters of the tiptoe-
bot, defined in (34) and (35), are provided in Table 1.

The passive joint of the tiptoebot is revolute and
therefore assumption 1 hold good. From the expres-
sions in (33) and (35), it can be verified that assumption
2 holds good. Assumption 3 also holds good—This is
discussed in Appendix 8.3.

The following choice of gains satisfy condition (i)
and (ii):

Kp =
[
70 0
0 70

]
, Kd =

[
2.8 0
0 2.8

]
, Ke = 2.2 (38)

Condition (ii) results in θ∗
2 = θ∗

3 = 0, which upon
substitution in (7b) and (8b) yields

∂F
∂q2

= 0 ⇒ cos θ∗
1 = 0 (39)

From Sect. 3.3 we know that q2 lies in the compact set
[−3π/2, π/2]. Thus θ1 lies in the same compact set -
see (32). In this set, the possible solutions of (39) are
θ∗
1 = {−3π/2,−π/2, π/2}. For θ∗

1 = −3π/2 or π/2,
and θ∗

2 = θ∗
3 = 0, we know that E = Edes. Therefore,

to satisfy condition (iii),weuse θ∗
1 = −π/2; this results
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Table 1 Tiptoebot lumped parameters in SI units

α1 0.108 α4 0.072 β1 1.764

α2 0.072 α5 0.036 β2 1.176

α3 0.036 α6 0.036 β3 0.588

in the following inequality

V (t = 0) < 2Ke
[
E(q∗

1 = 0, q∗
2 = −π/2) − Edes

]2

= 2Ke(β1 + β2 + β3)
2

For the initial configuration in (37), Ke in (38) satisfies
the inequality above. The matrix Kc was chosen as

Kc =
[
1.2 0
0 1.2

]
(40)

5.4 Simulation results

For the initial configuration in (37) and controller gains
in (38) and (40), the simulation results are shown in
Figs. 2 and 3. The effect of impulsive braking can be
seen in Fig. 2d, f where θ̇2 and θ̇3 (the velocities of the
active joints) jump to zero on multiple occasions. Each
impulsive braking also results in a negative jump in
the mechanical energy (follows from Lemma 1) which
can be seen in Fig. 2b. Since impulsive inputs cause no
jumps in the joint angles, there is no change in θ1, θ2
and θ3 at the time of impulsive braking—see Fig. 2a, c,
e. In Fig. 2a, θ1 never leaves the set [−3π/2, π/2] and
therefore virtual impulsive inputs are not applied.

While impulsive brakings cause negative jumps in
the total energy E , the continuous-time controller in
(23a) adds energy to the system; together, they con-
verge the energy to the desired values Edes— see Fig.
2b. The phase portrait of the passive joint is shown in
Fig. 3a. The jumps in the phase portrait (vertical drops
in θ̇1, twice) is due to impulsive braking. The variation
of the Lyapunov-like function V with time is shown in
Fig. 3b it can be seen that V decreases monotonically
due to the action of the continuous-time controller and
undergoes negative jumps intermittently due to impul-
sive brakings. The continuous controller and impulsive
brakings work together to converge V to zero.

The gain matrices in (38) and (40) were chosen such
that convergence to the desired level set is fast. The

0.0

3.0

-14.0

0.0

6060

-4.71

-1.57

1.57 10.0

0.0

3.0

-10.0

0.0

(b)(a)

(d)(c)

(f)(e)

0.0

-3.5

t (s)t (s)

θ1 (rad)

θ2 (rad)

(E − Edes) (J)

θ̇2 (rad/s)

θ3 (rad) θ̇3 (rad/s)

Fig. 2 Plots of the joint angles θ1, θ2, θ3, error in the desired
energy (E − Edes), and the active joint velocities θ̇2, θ̇3 of the
Tiptoebot

-1.57 1.57-4.71 60

(b)(a)

0

700

-5

9

0

t (s)

Vθ̇1 vs θ1

Fig. 3 Plots showing (a) phase portrait of passive joint angle θ1,
and (b) variation of the Lyapunov-like function V . The desired
level set is shown using dashed green line in (a)

simulation results indicate that the system trajectories
reach a close neighborhood of the desired level set very
quickly, at approximately 3 s. For stabilization of the
equilibrium in (37), a linear controller was designed
using LQR. The matrices Q and R of the algebraic
Ricatti equation were chosen to be I6×6 and 2I2×2,
where Ik×k is the identity matrix of size k. The linear
controller was invoked when the following conditions
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Fig. 4 Schematic of a rotary pendulum

were simultaneously satisfied: V ≤ 0.05 and | θ1 −
π/2 |≤ 0.05.

6 Experimental validation

6.1 System description

Experiments were done with a rotary pendulum. As
shown in Fig. 4, the system is comprised of a horizontal
arm OA of massma and length 	a , which rotates about
point O , and a pendulum of mass mp and length 	p,
that rotates about point A. The center-of-mass of the
horizontal arm is located at a distanceda fromO and the
center-of-mass of the pendulum is located at a distance
dp fromA. The horizontal arm is actively controlled by
an external torque τ and its angular displacement about
the z axis is denoted by φ. The pendulum is passive and
its angular displacement about the εr axis is denoted by
θ . The acceleration due to gravity is denoted by g. With
the following definition:

[q1 q2]T = [φ θ ]T (41)

the dynamics of the system can be expressed in the
from given by (7), where u = τ , and

M11 = γ1 + γ2 cos
2 θ, M12 = γ3 sin θ, M22 = γ2

h1 = γ3 cos θ θ̇2 − φ̇ θ̇γ2 sin 2θ,

h2 = γ2 φ̇2 sin θ cos θ + γ4 cos θ

γ1 � mad
2
a + mp 	2a, γ2 � mpd

2
p

γ3 � −mp 	adp, γ4 � mpgdp

(42)

The physical parameters of the experimental setup
are

γ1 = 0.0120, γ2 = 0.0042, γ3 = −0.0038,

γ4 = 0.1190 (43)

The control torque was applied by a 24-Volt permanent
magnet brushed DC motor5.The motor is driven by a
power amplifier6 operating in current mode. The motor
torque constant is 37.7 mNm/A and the amplifier gain
is 4.4 A/volt. An electromagnetic friction brake7 was
integrated to the shaft of the DC motor. In the OFF
state, the brake engages a friction pad to the shaft of
the motor which prevents the shaft from turning; in the
ON state, the brake is disengaged and the motor shaft
rotates freely. For impulsive braking, the brakewas kept
engaged till the active velocity φ̇ reached a close neigh-
borhood of zero. The brake was powered ON/OFF by
sending commandvoltage signals through ann-channel
MOSFET. The rotary pendulum was interfaced with
a dSpace DS1104 board and the MATLAB/Simulink
environment was used for real-time data acquisition
and control with a sampling rate of 1 Khz. The angular
positions of the links were measured using incremental
optical encoders; the angular velocities were obtained
by differentiating and low-pass filtering the position
signals.

Remark 5 It should be mentioned that the DC motor
itself can be used to apply the impulsive inputs; this
has been demonstrated in our earlier works [23,24].
Since the impulsive inputs in this work always bring
the active joint velocity to zero, additional hardware
in the form of a brake is used for simplicity; this also
avoids potential problems that can arise from motor
torque saturation.

6.2 Selection of controller gains

The total energy of the system is obtained from (2) as
follows

E = 1

2
(γ1+γ2 cos

2 θ) φ̇2 + 1

2
γ2 θ̇2

+ γ3 sin θ φ̇ θ̇ + F
F = γ4 sin θ

(44)

5 The motor manufacturer is Faulhaber Drive Systems. The
motor has a gearbox with a reduction ratio of 3.71:1.
6 The amplifier is a product of Advanced Motion Control.
7 The electromagnetic brake is manufactured by Anaheim
Automation, model BRK-20H-480-024. The brake can withhold
torques up to 3.4 Nm.
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For the control objective in (1), we choose Edes to be
equal to the energy associatedwith the homoclinic orbit
that contains the upright equilibrium
[
φ θ φ̇ θ̇

] = [
0π/200

]
or

[
0−3π/200

]

Using (44), the energy associated with the homoclinic
orbit can be written as

Edes = γ4 (45)

The passive joint of the rotary pendulum is revolute
and thus assumption 1 holds good. From the expres-
sions in (42) and (44), it can be verified that assump-
tion 2 holds good. Similar to the Tiptoebot, we can
show that assumption 3 holds good. From (44) we
know that F is only a function of θ and therefore
condition (ii) is trivially satisfied resulting in the solu-
tion φ∗ = 0. In the compact set [−3π/2, π/2], the
possible solutions of θ∗ obtained from condition (ii)
are θ∗ = {−3π/2,−π/2, π/2}. At θ∗ = π/2 or
θ∗ = −3π/2 and φ∗ = 0, E = Edes. Using condi-
tion (iii), we therefore get θ∗ = −π/2; this implies
that Ke should be chosen to satisfy

V (t = 0) < 2Keγ
2
4 (46)

At the lower equilibriumconfigurationwhere [φ θ φ̇ θ̇ ]
= [0 − π/2 0 0], we have V = 2Keγ

2
4 . This vio-

lates the inequality in (46). This implies that our con-
troller cannot swing-up the pendulum when the system
is exactly at the lower equilibrium.Therefore, in experi-
ments, a small external perturbation was provided such
that the system is not at the lower equilibrium at the ini-
tial time. For the experimental results presented herein,
the initial configuration of the system after the pertur-
bation was measured as
[
φ(0) θ(0) φ̇(0) θ̇(0)

]T = [
0.01−1.420.050

]T (47)

For the initial conditions in (47) and physical parameter
values in (43), the following gains satisfied conditions
(i)–(iii):

Kp = 0.5, Kc = 0.08, Kd = 0.3, Ke = 100 (48)

For the above set of gains, the experimental results are
presented next.

6.3 Experimental results

The experimental results are shown in Fig. 5. The con-
troller for level set stabilization was active for the first
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t (s)t (s)

φ (rad)

θ (rad)
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θ̇ (rad/s)

τ (Nm) V̇

Fig. 5 Rotary pendulum experimental results: (a–d) are plots
of joint angles and joint velocities, (e) control torque, and (f)
derivative of Lyapunov-like function. The brake pulses are shown
within plots e and f, the peaks represent time intervals when the
brakes were engaged

20 s. At the end of this period, the system trajectories
reached a close neighborhood of the upright equilib-
rium [φ θ φ̇ θ̇ ] = [0 − 3π/2 0 0] and the following
linear controller was invoked for stabilization:

τs = 1.4φ − 20.23(θ + 3π/2) + 1.14φ̇ − 1.98θ̇

The poles of the closed-loop system were located at
−37.0 ± 20.0 i and −1.0 ± 1.2 i .

The pulses shown on the top of Fig. 5e, f correspond
to the time intervalswhen the brakewas engaged (OFF)
during level set stabilization. The brakewas disengaged
(ON) when the condition | φ̇ |≤ μ was satisfied; the
value of μ was chosen to be small, equal to 0.1 rad/s.
The time intervals required for braking were very short
(≈ 0.04 s, on average); this implies that the brakings
were impulsive in nature. The effect of impulsive brak-
ing can be seen in Fig. 5b where φ̇ jumps to almost zero
value upon engagement of the brake on multiple occa-
sions. It can be seen from Fig. 5c that the amplitude of
the pendulum gradually increases and finally reaches a
close neighborhood of the upright equilibrium config-
uration. The derivative of the Lyapunov-like function
is shown in Fig. 5f. It can be seen that V̇ never becomes
positive; this is because the brake is engaged every time
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Fig. 6 Rotary pendulum simulation results

when V̇ is about to become positive8. Since V̇ is always
negative, V decreases monotonically and stabilization
of the level set is achieved. A plot of the motor torque
is shown in Fig. 5e. To minimize wear and tear of the
brake, the commanded motor torque was set to zero
when the brake was engaged. A video of this experi-
ment has been uploaded as supplementary material.

Simulation results for the same set of initial con-
ditions and controller gains in (47) and (48) are pre-
sented in Fig. 6. High-gain feedback [23,24] was used
to simulate non-ideal impulsive braking. A compari-
son of Figs. 5 and 6 indicate that the joint velocities
in experiments are lower than those in simulations -
this can be attributed to the presence of friction and
other dissipative forces. The amplitude of the active
joint φ is larger in experiments than simulations—this
is due to the fact that the controller has to overcome
the dissipative losses and additional energy is added
through larger amplitude of motion. As expected, the
time needed for stabilization is less in simulations than
experiments.

Remark 6 For comparison, we considered the rotary
pendulum example in [12]. Taking identical initial con-
ditions and physical parameters of the system therein,
we simulated our controller with the gains

Kp = 0.20, Kd = 0.12, Ke = 50, Kc = 0.70

The gains were tuned such that the magnitude of the
motor torque did not exceed 0.3 Nm. The system tra-
jectories converged to the desired level set in approx.
30 s. The controller in [12] took approx. 100 s and the
magnitude of themaximum torque was 8Nm. Our con-
troller performed well, both in terms of motor torque

8 When | φ̇ |≤ μ ≈ 0, the brake is not engaged since V̇ ≈ 0—see
(27).

requirement and speed of convergence. This better per-
formance, however, comes at the cost of additional
brake hardware.

7 Conclusion

A control strategy was presented for stabilization of
energy level sets of underactuated systems with one
passive DOF. The level set is defined with the help
of a Lyapunov-like function that has been commonly
used in the literature. Unlike existing energy-based
methods, that have relied on continuous control inputs
alone, our control strategy uses continuous control
inputs and intermittent impulsive brakings. The con-
tinuous control is designed to make the time derivative
of the Lyapunov-like function negative semi-definite.
When this condition cannot be enforced, the impulsive
inputs are invoked. This results in negative jumps in
the Lyapunov-like function and guarantees its negative
semi-definiteness under continuous control for some
finite time interval. Thus, a combination of continu-
ous and impulsive inputs guaranteesmonotonic conver-
gence of the system trajectories to the desired energy
level set, which can be periodic, or non-periodic as in
the case of homoclinic orbits, depending on the choice
of desired energy. More importantly, it allows us to
develop a general framework for energy-based orbital
stabilization, which is an important contribution of this
paper. A set of conditions, that impose constraints on
the choice of controller gains, have to be satisfied for
applicability of the control strategy. These conditions
are easily satisfied by systems commonly studied in
the literature such as the pendubot, acrobot, inertia-
wheel pendulum, and pendulum on a cart. In this paper,
the control strategy was demonstrated in a three-DOF
underactuated system using simulations and the two-
DOF rotary pendulum using experiments. In exper-
iments, impulsive brakings were not applied by the
motor; instead, they were applied by a friction brake
mounted co-axially with the motor shaft. This requires
additional hardware but there are two important advan-
tages of using the brake. In physical systems, impul-
sive inputs are implemented using high-gain feedback,
which can result in actuator saturation. Since our impul-
sive control strategy requires the active velocities to
be reduced to zero, a brake is a natural choice and it
eliminates the possibility of motor torque saturation.
The advantage of using a brake is also manifested in
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the time required for stabilization. A comparison of
our approach with an approach in the literature shows
significant reduction in the time for convergence for
the same set of initial conditions. Our future work will
focus on extension of our approach to orbital stabiliza-
tion using virtual holonomic constraints.
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8 Appendix

8.1 Proof of Lemma 1

The proof of Lemma 1 is provided here for the general
case where the underactuated system hasm passive and
n − m active generalized coordinates, i.e. q1 ∈ Rn−m ,
q2 ∈ Rm and u ∈ Rn−m . The equation of motion has
the form in (7) with M11 ∈ R(n−m)×(n−m), M22 ∈
Rm×m , h1 ∈ R(n−m), and h2 ∈ Rm . The change in the
energy due to application of an impulsive input is equal
to the change in the kinetic energy:

ΔE = 1

2
q̇+T

M(q)q̇+ − 1

2
q̇−T

M(q)q̇−

= 1

2

[
q̇+T

1 M11 q̇
+
1 − q̇−T

1 M11 q̇
−
1

]

+ 1

2

[
q̇+T

2 M22 q̇
+
2 − q̇−T

2 M22 q̇
−
2

]

+ q̇+T

1 M12 q̇
+
2 − q̇−T

1 M12 q̇
−
2 (A.1)

The impulse manifold, given in (12) for m ≥ 1, is

q̇+
2 = q̇−

2 − M−1
22 MT

12(q̇
+
1 − q̇−

1 ) (A.2)

Substitution of q̇+
2 from (A.2) into (A.1) yields

ΔE = 1

2

[
q̇+T

1 M11 q̇
+
1 − q̇−T

1 M11 q̇
−
1

]

+ 1

2

[
q̇−
2 − M−1

22 MT
12(q̇

+
1 − q̇−

1 )
]T

M22

×
[
q̇−
2 − M−1

22 MT
12(q̇

+
1 − q̇−

1 )
]

− 1

2
q̇−T

2 M22 q̇
−
2 − q̇−T

1 M12 q̇
−
2

+ q̇+T

1 M12

[
q̇−
2 − M−1

22 MT
12(q̇

+
1 − q̇−

1 )
]

Expanding, canceling, and regrouping the terms on the
right-hand side of the above equation yields

ΔE = 1

2
q̇+T

1

[
M11 − M12M

−1
22 MT

12

]
q̇+
1

− 1

2
q̇−T

1

[
M11 − M12M

−1
22 MT

12

]
q̇−
1 (A.3)

Similar to (10), B(q) is defined for the general case as
follows

B(q) =
[
M11 − M12M

−1
22 MT

12

]−1
(A.4)

From the properties of the mass matrix M(q), it can be
shown that B(q) is well-defined; also, it is symmetric
and positive-definite, i.e., B(q) = BT (q) > 0. Substi-
tution of (A.4) into (A.3) gives (13).

8.2 Proof of Lemma 2

Impulsive inputs result in no change in the generalized
coordinates. Additionally, impulsive braking results in
q̇+
1 = 0. Therefore, from the definition of V in (15),

ΔV for impulsive braking can be expressed as

ΔV = 1

2

[
Ke(E

+− Edes)
2 − Ke(E

−− Edes)
2

−q̇−T

1 Kd q̇
−
1

]

= 1

2

[
Ke(E

++ E−− 2Edes)ΔE − q̇−T

1 Kd q̇
−
1

]

= 1

2

[
Ke(2E

+− ΔE − 2Edes)ΔE − q̇−T

1 Kd q̇
−
1

]

where ΔE is defined in (13). Substitution of ΔE from
(14) in the equation above yields

ΔV = −1

2

[
(q̇−T

1 B−1q̇−
1 )Ke{E+− Edes

+ 1

4
q̇−T

1 B−1q̇−
1 } + q̇−T

1 Kd q̇
−
1

]

= −1

2
q̇−T

1

[
Ke{E+− Edes + 1

4
q̇−T

1 B−1q̇−
1 }B−1
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+ Kd

]
q̇−
1

= −1

2
q̇−T

1

[
1

4

{
Ke q̇

−T

1 B−1 q̇−
1

}
B−1

+ Kd + Ke(E
+ − Edes)B

−1
]
q̇−
1

which is the same as in (16). Since B, defined in (A.4),
is positive-definite, {Ke q̇

−T

1 B−1 q̇−
1 }B−1 is positive-

definite. Therefore, if
[
Kd + Ke(E+ − Edes)B−1(q)

]

is positive-definite, ΔV ≤ 0 and ΔV = 0 iff q̇−
1 = 0.

8.3 Assumption 3 holds for Tiptoebot

A constant value of u implies τ2 and τ3 are constants.
A constant value of q1 implies θ̇2 = θ̇3 = 0 from (32).
Substituting these conditions in (7), (8) and (2), we get

M12 q̈2 + Ṁ12 q̇2 − 1

2

[
∂M22

∂q1

]T

q̇22 +
[

∂F
∂q1

]T

= u

M22 q̈2 + Ṁ22 q̇2 − 1

2

[
∂M22

∂q2

]
q̇22 + ∂F

∂q2
= 0

E = 1

2
M22q̇

2
2 + F

(A.5)

From (33), it can be seen that M12 and M22 are only
function of q1, which is constant. Therefore, in (A.5)
Ṁ12 = Ṁ22 = 0; also, (∂M22/∂q2) = 0 since M22 is
not a function of q1. Furthermore, from the passivity
property of underactuatedmechanical systems [32,35],
we have Ė = uT q̇1 = 0. This implies E is constant in
(A.5). Manipulating (A.5) to eliminate q̇2 and q̈2, we
get
[

∂F
∂q1

]T

− M12

M22

∂F
∂q2

− (E − F)

M22

[
∂M22

∂q1

]T

= u (A.6)

From(33), it canbe seen thatM12 andM22 are functions
of q1 only; therefore, M12, M22, and (∂M22/∂q1)T are
constants. Furthermore u and E are constants and F is
a function of q2 since q1 is constant. Therefore (A.6)
can be manipulated and written in the form

sin[q2 + c1] = c2 (A.7)

where c1 and c2 are constants. This implies that q2 is
constant.
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