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nanoparticle formation point process modeling

copy (E-TEM) with automated image processing and statistical machine learning
to uniquely formulate interpretable mathematical models and accurate simulation
tools for complex nanoscale phenomena involving coupled physical and chemical
processes and interactions that are otherwise hard to model. In particular, there is a
need for a better understanding, characterization, and prediction of the proximity
effects among dense populations of metal nanocatalysts as they form and evolve
over time. Here, we leverage point process theory, a branch of statistical machine
learning, to “learn” the spatial dependencies among ensembles of adjacent alumina-
supported iron nanoparticles from a time sequence of E-TEM images. We
construct a set of point process models to make statistical inferences about the nature of spatial dependencies that govern the rapid
formation, or “popping” of nanoparticles during thin film dewetting, concomitant with metal reduction in the presence of acetylene
at 750 °C. We show that nanoparticles exhibit strong dispersion behavior, i.e., new nanoparticles pop in dispersed locations at a
predictable distance from their existing territorial neighbors. We also show that Gibbs point processes adequately describe the
pairwise interactions underlying such time-dependent spatial variations. Further, we build on our machine-learned models to develop
a computational simulation tool capable of producing accurate spatiotemporal simulations of nanoparticle formation at finer time
resolutions and larger spatial domains than those of experimental observations. This is a much needed capability to overcome
current limitations in computational methods supporting the design, analysis, and control of the collective behavior of nanocatalyst
populations.

1. INTRODUCTION nanoparticles, as well as the collective growth rates of CNTs."?
Hence, revealing proximity effects extending from the
nanoscale to the micron scale is crucial for controlling the
morphology and properties of micropillars of vertically aligned
CNTs that are needed for many applications including thermal
interfaces'* and electrical interconnects.

The most common approach for preparing substrate-bound
catalyst nanoparticles for CNT forest growth is by solid-state
dewetting of thin metal films,'® wherein atomic surface
diffusion at high temperature drives film breakage and
formation of nanoparticles.'” During this thermal treatment
step, the chemical state of the catalyst typically also changes,
which is revealed by employing various in situ surface
characterization techniques including X-ray photoelectron
spectroscopy (XPS),'® X-ray diffraction (XRD)," electron
diffraction (ED),”® and electron energy loss spectroscopy

An increasing number of chemical conversion technologies
depends on oxide-supported metal catalysts, such as iron (Fe),
nickel (Ni), and copper (Cu)." In these heterogeneous catalyst
systems, it has been abundantly shown that the support
material, as well as the size, shape, composition, and chemical
state of metal nanoparticles, determines the catalytic activity at
different temperatures and chemical environments.””* Im-
portantly, mounting experimental evidence indicates that
interparticle distances also strongly influence catalyst stability
and lifetime.”>° Nevertheless, a comprehensive quantitative
understanding of these collective effects is still largely missing.

For Al,Os-supported Fe catalyst, which is widely used for
the synthesis of carbon nanotubes (CNTs) by chemical vapor
deposition (CVD),” Bedewy et al. have studied the population
behavior of Fe nanoparticle catalytic activity by measuring the
time evolution of CNT density during growth.*” In these
densely packed conditions, where 10—100 s of billions of
CNTs grow simultaneously per square centimeter, mechanical
interactions among individual CNTs and their bundling
behavior vary spatially."’"'* Moreover, the synergistic chemical
coupling between neighboring areas of catalyst nanoparticles
was shown to affect the areal density of catalytically active
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(EELS).*" In addition, real-time imaging using environmental
transmission electron microscopy (E-TEM) enables character-
izing the structural evolution of individual catalyst nano-
particles before and during catalytic activation.'®"***~** While
these studies provide time-dependent information on catalyst
evolution, they do not provide information on the spatial
dependencies among ensembles of nanoparticles, either during
their formation by dewetting or during the progressive
activation of individual catalyst nanoparticles (ie., during
nucleation of individual CNTs from specific catalyst nano-
particles).

To study such collective behavior for Fe/Al,O;, we have
previously used in situ E-TEM while adjusting the degree of
magnification to enable simultaneously imaging hundreds of
nanoparticles within the same field of view and combined these
images with time-evolving ED and EELS measurements.'"*’
ED results showed that catalyst reduction proceeds very slowly
while heating in hydrogen at the low-pressure conditions of
our experiments (40 mTorr). However, individual nano-
particles only started to appear abruptly, i.e., to “pop” in view,
after introducing the acetylene gas, which accelerated the
reduction of the catalyst. The sudden nature of nanoparticle
formation by dewetting was also observed from in situ high-
speed grazing-incidence small-angle X-ray scattering (GI-
SAXS) experiments, in which the iron film was heated rapidly
in ethylene.” These studies provided insights into the complex
interplay between the chemical evolution (e.g., reduction and
carbide formation) and the physical changes (e.g., nanoparticle
formation and ripening) over time during the thermal
treatment step that immediately precedes CNT nucleation
and growth. Nevertheless, fully understanding spatial depend-
encies is largely limited by our ability to not only carry out
these challenging in situ/operando experiments but also do
comprehensive data analytics for quantifying and modeling
proximity effects.

Starting from a time sequence of E-TEM images, this paper
investigates the following set of scientific questions, which can
only be addressed adequately by bringing machine learning to
bear on, typically noisy, real-time electron microscopy
measurements:

(Q1) Do nanoparticles pop uniformly over space? or do
they in contrast exhibit spatial nonuniformity, wherein the
formation of a nanoparticle is more probable in certain
locations than others?

(Q2) Do nanoparticles exhibit spatial dependencies
(proximity effects)? and if yes, what is the nature of these
proximity effects (clustering versus dispersion behavior)?

(Q3) How to probabilistically model the spatial variations
and dependencies so as to accurately describe, simulate, and
predict the spatiotemporal evolution of nanoparticle formation
during film dewetting?

To answer these questions, referred to hereinafter as Ql—
Q3, this paper leverages point process theory—a branch of
statistical machine learning—concerned with the probabilistic
inference and prediction using point pattern data—a type of
data represented as arrangements of points/events/objects
observed in a spatial domain. The overarching aim of the point
process theory is to make inference about the spatial variations
and dependencies governing the formation/occurrence of such
points in space by investigating systematic trends, clustering/
dispersion patterns, spatial correlations, etc. Point pattern data
is abundant in several real-world contexts. For instance, in
climatology, modeling the locations of rain occurrence events

across vast geographical areas can help us better understand
rainfall distribution across space and, hence, enable better
atmospheric predictability.”® In ecological sciences, spatiotem-
poral wildfire occurrences can be modeled and represented as
point 2I;atterns to inform optimal firefighting resource deploy-
ment.

Other applications include but are not limited to forestry,*®
public health,””*° and biological sciences.”’ Baddeley et al.
provide a comprehensive review of point process theory and its
applications in science and engineering.32 In nanoscience,
microscopy image data can be naturally regarded as point
patterns (e.g, nanoparticles distributed over space). Never-
theless, the utility of point process theory in nanoscience is still
highly underappreciated, notwithstanding recent efforts.**~>*
This is likely due to the historical technical barriers associated
with processing noisy electron microscopy ima%es into a
format that is accessible by point process models.”” Here, we
leverage point process theory as a methodical framework to
formulate verifiable statistical tests of hypotheses, as well as
physically interpretable statistical machine learning models,
which enable us to reach statistically derived answers to the
scientific questions Q1—Q3 listed above.

We start our analysis by leveraging a new image processing
technique to extract location and size information of
nanoparticles and then statistically demonstrate the spatial
nonuniformity in nanoparticle popping during dewetting with
a clear inverse-cubic relation between the areal density of
nanoparticles and their sizes. Afterward, we statistically show
that nanoparticles exhibit spatial dependencies among
themselves, particularly a dispersion behavior among formation
sites. In light of that, we show that Gibbs point processes, a
class of point process models, adequately describe these
proximity effects, which are shown to be time- and space-
dependent. Finally, we leverage the probabilistic nature of
these “learned” point process models to create spatiotemporal
simulations that accurately capture and predict dewetting
dynamics beyond the limited spatial and temporal ranges of
experimental observations. This machine learning-based
approach is powerful because such a complex process that
involves coupling between chemical reduction and physical
diffusion is otherwise exceedingly challenging to model and
simulate.

2. METHODS

Our proposed statistical methods hinge on our ability to collect
and transform the noisy raw E-TEM images into a format that
is accessible by point process theory. In Section 2.1, we
describe our approach to collect in situ E-TEM images for
metal catalyst evolution during dewetting (Figure 1), followed
by a unique image processing method to segment the images
and extract important attributes such as nanoparticles’
locations and sizes over time (Section 2.2). We then conclude
this section by listing the set of methods for modeling and
simulation in Section 2.3, for which the details will be
discussed in Section 3.

2.1. E-TEM Experiments. E-TEM images used here were
experimentally collected using the FEI Titan 80-300 instru-
ment at the Center for Functional Nanomaterials (Brookhaven
National Laboratory). It is a field-emission TEM microscope
that has aberration correction and is equipped with a heated
sample holder and differential pumping apertures that enable
in situ CVD studies in a microreactor. Samples were prepared
by depositing the catalyst film (1 nm Fe on 10 nm Al,O;)
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Figure 1. Schematic of the dewetting process studied here by E-TEM,
along with the experimental recipe highlighting the 9 s of interest.

directly on commercially available TEM membranes (Norca-
da) with a 30 nm thickness.

After loading the samples inside the E-TEM, the system was
pumped down to below 107> Torr (base pressure). According
to the recipe shown in Figures 1 and S1, the first stage of the
experiment was ramping-up temperature up to 750 °C in 40
mTorr of H,, followed by 15 min of dwell time at this
temperature before introducing C,H,, bringing the total
pressure to S0 mTorr. Control of the partial pressures of
both gases was maintained by using high precision leak valves.
A microheater with a single-tilt sample holder was used to
control temperature during the experiments. Thermal drift was
negligible because we waited for 15 min after reaching the
temperature of the experiment before collecting E-TEM
images. Imaging parameters, such as focus and magnification,
were adjusted before flowing the C,H, gas into the
microreactor.”” A schematic of the CVD microreactor setup
inside the E-TEM is shown in Figure S1.

The time sequence we use for all our analysis here starts at
the point of introducing C,H,. Hence, at time zero, only a few
nanoparticles have already formed, as a result of the partial
reduction and incomplete dewetting of the iron film after the

15 min of exposure to H, at 750 °C.”° We collected 22 E-TEM
images over the 9 s that started with C,H, introduction, which
are analyzed in this study. We exploited the presence of a large
particle at the center of the image as a location reference to
compensate for slight drift during imaging.

2.2. E-TEM Image Segmentation. Nowadays, E-TEM
studies are capable of producing large amounts of image data
that are not readily suitable for statistical analysis in their as-
collected format. Hence, to realize the potential of point
process theory, and of machine learning in general, a necessary
step is to apply image segmentation to extract nanoparticles’
outlines, centroids, and sizes from the E-TEM images. The
output of the segmentation provides a time-evolving map of
metal nanoparticle locations, areal densities, sizes, and
statistical distributions thereof. Then, statistical point process
theory is used to model and simulate the spatiotemporal
evolution of nanoparticle formation to provide insights into the
interfacial coupled phenomena underpinning the observed
dynamics.

Existing image segmentation techniques include but are not
limited to thresholding,40 watershed transform,*' sliding band
filter,™ active contour,™ and iterative voting.44 The high levels
of background noise in E-TEM images make distinguishing
nanoparticles from the noisy background an inherently
challenging task, and it is infeasible to achieve using off-the-
shelf software and classical segmentation approaches (see
Figure S2). This calls for the use of advanced approaches that
can borrow strength across multiple image segmentation
techniques. In this paper, we adopt a modified version of the
method proposed by Qian et al,* which pools the results from
two segmentation techniques based on intensity and gradient
information, respectively. On the one hand, the intensity
information is used to derive a set of segmentation results by
applying a k-means clustering algorithm, which first separates
the background from the foreground, followed by a watershed
transform, which extracts the particle locations from the
foreground. A second set of results, independent of the first
one, is obtained via the gradient information by using an active
contour procedure, which finds the foreground, followed by an
iterative voting method, which determines the particle
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Figure 2. (a—c) Segmentation of E-TEM image #15 (t = 6 s) with values of dy = 5.41 nm (a), 18.91 nm (b), and 9.46 nm (c), showing the
implications of a too small or a too large d,, leading to over- and underdetection, respectively (as compared to a calibrated image-specific d, = 9.46).
(d—f) Histogram of nanoparticle size distribution for image segmentation shown in (a—c). (g) Validating the segmentation results for all images, as
compared to a manual count from Bedewy et al.”*’ The solid line is a sigmoidal model fit, as expressed in eq 1.
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Figure 3. Top row (a—e): E-TEM images #1, S, 10, 16, and 22, captured at ¢ = 0.00, 2.00, 4.00, 6.50, and 9.00 s, respectively. Bottom row (f-j):
image segmentation results for the same images with an image-specific value of d,.

locations. A binary integer program is then formulated to
resolve the conflict between the two sets and pool them into
one combined set of segmentation results.

Hence, the image segmentation approach takes as input the
raw E-TEM image, as well as one input parameter, d,, which is
an initial estimate of the average particle diameter in the image.
By implementing the method on our E-TEM images using
various values of dj, we note that the quality of the
segmentation results is highly sensitive to the selection of d.
Specifically, selecting a value for d; that is too large leads to a
high number of false negatives (i.e., mistaking true particles for
background noise). In contrast, a value for d, that is too small
leads to a high number of false positives (ie., over detection),
as well as an increased likelihood of mistaking large-sized
particles for an agglomerate of small overlapping particles (see
Figure 2a—c). We postulate that this is an artifact of the
temporal evolution of the nanoparticle size distribution (Figure
2d—f), which is continuously changing due to two factors: the
formation of new, small-sized nanoparticles (driving down the
true value of d;) and the possible growth of existing
nanoparticles (driving up the true value of d;). In light of
this temporally evolving nanoparticle size distribution,
attempting to find a universal value for d, that works best
for all E-TEM images is not a suitable approach. Instead, we
seek an image-specific value for d, (hence, will be denoted as
dy(j), ¥V j =1, .., ], where j is an image index, and ] is the total
number of images). We started by selecting a suitable value for
dy(j = 1); then, for j + 1, j = 1, ..., 22, we sampled a set of
candidate values, which is compactly centered around dy(j),
obtained the detection results for each candidate, and then
selected the value that yields the best detection results, judged
visually. As described below, the values of d,(j) selected for
processing all images (Figure S3) were validated against a
manual count (Figure 2g).

2.3. Data Analytics. The extracted information from
image segmentation is used as direct input to the point process
methods in this paper, which we categorize into methods for
modeling and methods for simulation. The former entails
training the point process models using the segmented data (as
detailed in Sections 3.2—3.4), while in the latter, the trained
models are used to probabilistically generate simulations at any

arbitrary time point or spatial window (as detailed in Section
3.5). For both sets of methods, we used several functionalities
in the R package spatstat.*® The simulations are generated
using the Metropolis—Hastings algorithm, which is a Markov
Chain Monte Carlo (MCMC) method, wherein the trained
point process model is set as the Markov chain’s equilibrium
distribution.””

The interaction potentials obtained from the trained point
process models are extrapolated to time steps where
experimental data was not available. This is realized by training
a spatiotemporal Gaussian process (GP) model, which is a
nonparametric regression model that is widely used for
modeling complex nonlinear response surfaces (interaction
potentials in this paper)."**” The underlying assumption in
GPs is that the joint distribution of the model output (in our
case, the interaction potential) at any finite set of inputs (e.g.,
interparticle distance and time) follows a multivariate normal
distribution. This, along with their well-established predictive
power, makes them mathematically tractable and suitable for
many physics-driven applications.” In this paper, the GP
model is fit by numerically maximizing the closed-form
expression of the GP log-likelihood, using the command
nlm in R. The point process model parameters are then
estimated from the GP-learned interaction potentials using a
nonlinear least-squares formulation, solved via the NL2SOL
algorithm.>" Those learned parameters will be used as inputs to
our simulation tool, as detailed in Section 3.5.

3. RESULTS AND DISCUSSION

We present the image segmentation results in Section 3.1 and
then proceed with the statistical modeling for one E-TEM
image (image #22 at 9 s) in Sections 3.2 and 3.3. To gain
insights into process dynamics, we extend this analysis to all E-
TEM images in Section 3.4. Finally, we build on those
machine-learned models to create spatiotemporal simulations
in Section 3.5, overcoming experimentally imposed limitations
on spatial window and time resolution.

3.1. Time Evolution of Segmented Images. The top
row of panels in Figure 3a—e shows the evolution of raw E-
TEM images during the popping of nanoparticles by
dewetting, while the bottom row (Figure 3f—j) shows the

https://dx.doi.org/10.1021/acs.jpcc.0c07765
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Figure 4. Nanoparticle areal density and sizes for E-TEM image #22 recorded at t = 9.00 s with 233 detected nanoparticles. (a) Heat map of Kernel
smooth for first-order intensity (i.e., areal density of nanoparticles) overlaid on top of the observed point pattern. (b) Voronoi tessellation of
nanoparticle locations with a heat map of areal density of cells (reciprocal of cell area). (d) Heat map of Kernel smooth for nanoparticle size
distribution (based on the diameter of detected nanoparticles) overlaid on top of the observed point pattern x. Note how nanoparticle density is
minimal in the neighborhood of large-sized nanoparticles (e.g., the central part of the image), while density peaks in the vicinity of small-sized
nanoparticles (e.g., the top left and bottom right regions of the image). (d) Box plot showing the inverse relation between the smoothed areal
density of nanoparticles and their diameters, along with inverse-cubic fit of the form. 001384 +.442524d7.

segmentation results for the same images. The outcome of the
segmentation procedure is a sequence of n(j) X 3 data sets,
where j = 1, ..., 22 images. The first two columns of the jth data
set correspond to the spatial locations of the nanoparticles
(identified as horizontal and vertical axis coordinates), i.e.,
X(j) = {x,(j) € R*}"Y), where R is the two-dimensional real
coordinate space. The third column represents the estimated
area of each nanoparticle, ie., A(j) = {a,(j) € [R+}?2,
R* is the set of positive real numbers. From these values of
area, an estimated diameter for each nanoparticle is calculated,
assuming circular geometry. This is denoted by d,(j) € R. For

where

all of the above, j = 1, ..., 22 is the image index, and i = 1, ..,
n(j) is the detected nanoparticle index within the jth image.
Image segmentation results for all 22 images can be found in
Figure S4.

Histograms of nanoparticle diameters for image #1S5 (at t =
6.00 s) are plotted in Figure 2d—f for the segmentation results
shown in Figure 2a—c. It is noteworthy that the appropriate
selection of d, is important not only for getting the correct
count and locations of nanoparticles but also for extracting
useful size information. Size distribution results for all images

27483

are plotted in Figure S5. These results suggest that there are no
significant changes to nanoparticle sizes after they abruptly
appear in the field of view. Hence, coarsening of already-
formed nanoparticles by Ostwald ripening®>™>* does not
dominate the size evolution over the 9 s studied here.
Nevertheless, for longer time scales (over 30 min) at the high-
temperature conditions of CNT growth by CVD, coarsening
was observed.”” Indeed, owing to the high temperatures of our
experiments, the diffusion length of iron on the alumina surface
is typically larger than the interparticle spacing.’*%
However, the rapid kinetics we observe here indicates that
nanoparticle formation is dominated by fast diffusive transport
and cluster coalescence.””**

To validate our segmentation results for all images (Figures
3 and S4), we compare the resulting detected nanoparticle
count over time with that obtained from a manual count
conducted in our earlier work on the same images (Figure
2g),” which showed a strong agreement. The nanoparticle
popping dynamics is well described by a sigmoidal model
(logistic function), as expressed in eq 1

https://dx.doi.org/10.1021/acs.jpcc.0c07765
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a

1 + exp(—k(t — 7)) (1)

n(t) =

where n(t) is the nanoparticle count at time t, @ denotes the
count at the end of the formation, 7 is the time of the midpoint
of the logistic curve, and k reflects the steepness of the curve. A
nonlinear least-squares estimation yields the following values
for the parameter estimates & ~ 229, k =97, and % = 3.18. The
constructed fit is shown as a solid line in Figure 2g, and it
appears to fit the data well, with a normalized root-mean-
squared deviation (NRMSD) of about 1.49%. Note that
selecting a constant d, that has a small value (8.11 nm) not
only resulted in a consistent and significant overcount for the
number of nanoparticles but also distorted the S-shaped
population behavior. On the other hand, selecting a constant
d, that has a large value (13.51 nm) resulted in an undercount
that became more significant with time.

We focus the rest of this paper on using the spatial locations
of nanoparticle centroids to model spatial dependencies. While
we use size data to derive useful insights to complement spatial
point process models, nanoparticle size distributions are not
explicitly included in the models.

3.2. Statistical Point Process Modeling and Analysis.
We first present our analysis based on one E-TEM image and
then later extend the statistical methods to the remaining set of
images. We choose to analyze the final image (j = 22, t = 9.00
s), shown in Figure 3e,3j, as it has the highest particle count,
thus providing us with a rich data scenario. For now, we drop
the image index j for notation simplicity.

We begin by formally defining the spatial point pattern
resulting from the segmentation results of image #22.
Specifically, let x = {x;, .., x,} be a spatial point pattern,
where x, € R® is a two-dimensional point in space denoting
the location of the ith detected particle in image #22. In point
process theory, a spatial point pattern is generally defined as an
unordered arrangement of points observed in a spatial window

denoted by ‘W C R?, which is defined here by the boundaries
of the E-TEM image (~277 X 277 nm”). Figure 4a shows the
spatial point pattern x constructed using the outcome of
segmenting image #22, where the black dots correspond to the
detected nanoparticle centroids, while the background heat
map denotes the areal density estimate of the nanoparticle
count distribution. The total number of detected nanoparticles
is n = 233 particles.

In point process modeling, both the number and the
locations of the points are treated as random variables. Thus,
we denote the underlying stochastic process governing the

locations of the particles as {X(8B): B ¢ ‘W C R*}, or for
brevity X, where 8 is a compact Lebesgue measurable subset
of the spatial domain. We denote by N($) the random
variable describing the particle count in a spatial region 8. As
such, we can think of the observed point pattern x as a random
realization of the underlying stochastic process X.

Our goal is to make use of point process models to learn
about the spatial variations and dependencies in X from its
observed realization x. Leveraging point process theory to
answer the motivating scientific questions (Q1—Q3) entails
the following:

(1) Testing for spatial uniformity: To formulate a statistical
test for whether nanoparticles pop uniformly over space.

(2) Testing for spatial dependence: To formulate a statistical
test for whether nanoparticles exhibit spatial dependencies (or
proximity effects) among themselves.

(3) Modeling and simulation: To formulate a set of point
process models that characterize spatial variations and
dependencies (if any) to accurately describe, simulate, and
predict nanoparticle formation during film dewetting.

3.2.1. Testing for Spatial Uniformity. A starting point to
test the hypothesis of spatial uniformity is to investigate the so-
called “first-order intensity function” denoted by A(s), where

s € R? refers to any arbitrary spatial location (whereas x; refers
to a location associated with an observed nanoparticle). The
intensity function describes the areal density of nanoparticles
and is used to estimate the expected particle count in a spatial
subset of the domain, as expressed in eqs 2 and 3

A(s) = lim {M}

lds| =0 |dsl

)

E[N(B)] = /3 As)ds, BCW o

where Idsl is the area of a small subset of W . Figure 4a shows a
kernel density smooth of A(s) using a Gaussian kernel with a
0.25 nanoparticles/nm2 bandwidth, on top of its generating
spatial point pattern. This plot illustrates that the areal density
(or intensity) of nanoparticles exhibits considerable spatial
variations, thus supporting the rejection of the uniform
popping hypothesis in QI. The same observation is noted in
Figure 4b, which shows the Voronoi tessellation of the same
point pattern, overlaid on the Voronoi-based intensity estimate
(reciprocal of cell area). Still, a methodical statistical test is
needed to assert that finding.

The essence of the statistical test for spatial uniformity is to
investigate whether A(s) exhibits considerable variations over
space, or in specific statistical terms, to test whether X has a
“uniform” or “homogeneous” intensity. The formulation of this
statistical test hinges on first proposing a statistical model for
estimating A(s). Perhaps, the most basic statistical model for
A(s) is the homogeneous Poisson point process (HPP) model.
A HPP model implies the so-called complete spatial random-
ness (CSR) property, which enforces the following assump-
tions about the underlying stochastic point process.
Assumption 1 (Al): N(B) ~ Poisson(AIBl), where 4 is a
constant intensity, and |8l is the size of the compact subset 8
of the spatial domain; Assumption 2 (A2): for any pair of
disjoint compact spatial regions B, and B,, N(B,) and N(B,)
are independent random variables. HPP models are often used
as benchmarks since, in reality, point pattern data rarely follow
the CSR assumption, either due to a nonuniform intensity
(violation of condition Al above) or due to the dependencies
between points (violation of condition A2 above), or both. If
only condition Al is violated, an alternative model to HPP is
the inhomogeneous Poisson process (inh-PP), which is a
generalization of the HPP model, where A(s) is assumed to
change over space. As such, N(8B) would still follow a Poisson
distribution but with a varying intensity, i.e.,

N(8B) ~ Poisson(fBl(s) ds), BCW.

We therefore propose a set of functional forms for A(s),
yielding a set of inh-PP models (Table S1). A likelihood ratio
test is then conducted™ to test whether the gain in explanatory
power introduced by capturing more complex spatial variations
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Figure S. Point process modeling for spatial point pattern data extracted from E-TEM image #22 (at t = 9.00 s). (a, b) L-functions and simulation
envelopes for Poisson models (HPP and inh-PP), indicating that intensity variations account for a small portion of CSR deviation—highlighting
the importance of modeling spatial interactions. (c—f) L-functions and simulation envelopes for Gibbs models (Strauss, Strauss-hard, Fiksel, and
Softcore), demonstrating that nanoparticles exhibit regularity (i.e., dispersion behavior), which gradually decays with interparticle distance. The
Softcore model (f) appears to best capture this phenomenon. For all panels, number of simulations is set at 100.

via inh-PP, relative to the HPP model (the null hypothesis), is
statistically significant. If it is, then the null hypothesis of CSR
is rejected. Specifically, we fit 32 inh-PP models, each having a
different parametric form that mainly depends on the spatial
coordinates in s = (s, s,), where s, and s, are the horizontal and
vertical coordinates, respectively. The model selections are as
follows: a log-linear trend in s, s,, or both (3 models), a log-
quadratic trend in s,, Sy Or both (3 models), a log-cubic spline
in s, with the number of knots ranging from 3, .., 15 (13
models), and a log-cubic spline in s, with the number of knots
ranging from 3, .., 15 (13 models). This leads to a total
number of 32 models. The specific functional forms for these
models are expressed in Table S1. We then conduct a
likelihood ratio test to evaluate the explanatory power of the
fitted models relative to the HPP model. The p-values
associated with each model are shown in Table S1. The
smoothing spline model with dependence on s, and 15 knots is
shown to have the best explanatory power among all
alternatives with a p-value of 0.0215, thus rejecting the null
hypothesis of CSR and providing a strong empirical evidence
that nanoparticles do not form uniformly over space under our
experimental conditions.

3.2.2. Size Dependence of Areal Density. We are further
interested in understanding the factors governing these spatial
variations. Our conjecture is that such statistically significant
variations are related to the nanoparticle size information.
Specifically, Figure 4c shows a kernel smoother (Gaussian,
bandwidth = 27 nm) to the associated nanoparticle size with
each point, measured as the diameter (in nm) of the detected
nanoparticles. By comparing Figure 4c to 4a, we easily observe
that the heat map in Figure 4c resembles a reverse of that in
Figure 4a. For example, the large central particle in our E-TEM
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images (Figure 3) appears to be associated with a considerably
lower density of nanoparticles within its immediate neighbor-
hood. This highlights the inverse relationship between areal
density (intensity) and nanoparticle size, suggesting that the
likelihood of a nanoparticle forming in a particular location is
dependent on the size of nanoparticles in its vicinity. This
physical insight will be supported by our analysis of spatial
dependence later.

We further quantify this inverse relation as shown in Figure
4d, which is a box plot for the kernel-smoothed areal density
(shown in Figure 4a) vs the kernel-smoothed diameter (shown
in Figure 4c) for all points in ‘W, i.e., for all points in the
spatial window of the E-TEM image. For each bin of 0.5 nm
width, we also plot the mean (in dark red) and the median (in
dark blue) of the areal density. As seen in Figure 4d, an
inverse-cubic function, specifically of the form. 001384 +.
442524d73, represents a good fit for this data, with an NRMSD
of 3.04%. This can be explained by the conservation of mass
and volume of the metal comparing the flat nature of the initial
film before dewetting with the presence of nanoparticles
instead after dewetting. Accordingly, when a large nanoparticle
forms, it consumes a larger volume of the metal film, which
reduces the likelihood of formation of other nanoparticles
nearby, ie., the areal density is inversely proportional to
nanoparticle volume (or inversely proportional to d°).
Moreover, the heteroscedasticity observed in Figure 4d
highlights the dependence of variability in areal density on
nanoparticle size, with smaller nanoparticles exhibiting a larger
variability perhaps due to their increased dependence on
randomness in surface texture of the as-deposited Fe film, as
well as on defects in the support layer. These findings
demonstrate the power of our statistical point process

https://dx.doi.org/10.1021/acs.jpcc.0c07765
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modeling approach in “learning” physical/chemical phenom-
ena without prior knowledge. Importantly, these findings are in
agreement with the expected size distributions resulting from
particle formation via the coalescence of highly mobile clusters
in a low-density regime. 961 Our results also suggest that there
is planar strain, which was previously shown to widen the size
distribution with an inverse power-law relation between the
broadness of the size distribution and the areal number density
during growth of 1nteract1ng two-dimensional (2D) islands via
diffusive mass transport.®

3.2.3. Testing for Spatial Dependence. So far, our results
revealed that nanoparticles do not pop uniformly over space.
Now, we test whether these spatial variations are accompanied
by spatial dependencies, ie., whether the likelihood of a
nanoparticle forming in a specific spatial location is dependent
on the presence/locations of nanoparticles in its vicinity. Recall
that deviations from the CSR scenario can be explained either
by intensity variations (i.e., violation of Al), spatial depend-
encies (i.e., violation of A2), or both. While our test for spatial
uniformity (above) shows that Al is indeed violated, it does
not give further information on the validity of A2.

Poisson models, be it HPP or inh-PP, only model first-order
intensity variations but assume that particle counts in disjoint
spatial regions are independent. Assessing spatial dependence
requires going beyond first-order intensity modeling. A useful
metric to use here is the so-called L-function, which is
expressed by eq 4

L(h) = /K](Th) h> 0 "

where h is an interparticle separating distance, and K(h) is
called the K-function and is defined by eq 5:

(h)
I{ h — extra
in which Nema(h) is the number of extra points within radius h
of an arbitrary point. An empirical estimator of L(k), denoted
by L(h), can be computed using the observed point pattern x
asin eq 6

A _ [|[||Xl~ - x;|| <h]
00 = | Zgn 3 Z ot xS

i i A (Xi)j‘ (Xi') (6)

where ;1() is an estimate of A(-) of eq 2, possibly using the
parametric forms proposed earlier, p(x, x;) is an edge
correction, ||-|| is the Euclidean norm, and [-] is the indicator
function such that I[|| x; — x; || < h] = 1if ||x; — x|| < h, and
0 otherwise.

The expression in eq 6 forms the basis of a statistical test for
spatial dependence. As shown in Figure S, we compute an
estimate of the L-function, denoted by L(h), using the
observed point pattern data x (black solid line), and then
compare it with an “envelope” of simulations randomly drawn
from a Poisson model, be it HPP (Figure Sa) or inh-PP
(Figure Sb) fitted to x. If L(h) significantly deviates from the
envelope formed by the Poisson models, then there is a strong
statistical evidence of spatial dependence.”’ It is worth noting
that, in theory, it can be shown that a HPP model satisfying the
CSR assumption has Kcgp(h) = mh? and thus, substituting in
eq 4, we have Logp(h) = h. A common transformation is to use
L(h) — h instead of L(h) as a test statistic for the spatial
dependence test, as the CSR scenario (represented by the HPP

model) would be represented by a horizontal line at zero. This
establishes an easy-to-visualize benchmark to assess the
deviation of the observed point pattern x from the CSR
scenario. R

Figure Sa,b shows L(h) — h computed using the observed
point pattern x (in black solid line) versus simulations from the
HPP and inh-PP models, respectively, where the gray bands
represent the envelope formed by the simulations randomly
drawn from the fitted Poisson models. The blue horizontal line
at zero is the theoretical Legr(h) — h (where Legr(h) = h),
while the red dashed line is the average of the simulations. The
fundamental difference between Figure 5a,b is the use of the
inh-PP, which captures the first-order intensity variations. In
both, however, there is significant deviation between the
empirical estimates and the simulation envelope, with little
improvement offered by inh-PP over HPP. This suggests that
the intensity variations account for a rather small portion of the
deviation from the CSR scenario, and thus, a substantial
portion of this deviation is yet to be explained by higher-order
spatial dependence between nanoparticles. This motivates us
to consider more advanced point process models, which, in
contrast to HPP or inh-PP, are able to characterize spatial
dependencies.

3.3. Beyond Poisson Models: Gibbs Point Processes.
The envelope tests conducted in Figure 5 convey more
information than just asserting deviation from the CSR
scenario. In particular, the values of L(h) — h tend to
systematically exhibit negative values (i.e., L(h) —h<0)as
seen in Figure 5, which means that the underlying point
process is driven by a “dispersion” behavior since the expected
count of nanoparticles located within a certain radius centered
at an arbitrary nanoparticle is significantly smaller than that
expected in a CSR setting (where independence between
nanoparticles is assumed). This suggests that nanoparticles
appear to exhibit a “territorial” behavior, preventing particles
from forming in their immediate neighborhood, with the
likelihood of a particle forming in close vicinity of other
particles being smaller than farther away. This statistically
learned conclusion asserts our finding in Figure 4d where
nanoparticle formation/growth in a location influences the
formation/growth likelihood of other nanoparticles in a spatial
neighborhood. Interestingly, Figure 5 suggests that the
strength of this dispersion interaction behavior gradually
decays as the interparticle separating distance increases.
Understandably, a Poisson model, be it HPP or inh-PP,
cannot capture such behavior, due to its inherent spatial
independence assumption (A2). Thus, we point our focus to
another family of models called “Gibbs point process models”.

Unlike Poisson models, Gibbs point process models are
specifically designed to capture pairwise spatial dependencies.
In its most general form, the probability density of a Gibbs
point process model can be written as in eq 7

n
f(x) = a[ H ﬂ(xz)l[n o(x; Xz)l

i=1 i<i' (7)
where « is a normalizing constant, (s) is a first-order term to
capture any spatial variations, and c(x, x;) € [0, 1] is a
pairwise interaction term that models spatial dependencies. In
fact, Gibbs models reduce to Poisson models if we set c(x, x;)
= 1. As such, for f(-), we can use one of the parametric forms
discussed previously for A(s) (Table S1) to capture the spatial
variations. Different choices of ¢(+) can lead to well-defined
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symmetric residual distribution for the Softcore model that is tightly centered around 0, further confirming the quality of this fit. (c) Mean absolute
error (MAE) of all six point process models over time ¢t = 2.00, ..., 9.00 s, demonstrating that Softcore model consistently outperforms all other
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statistical representations of Gibbs point process models. For
instance, using a hard-thresholding procedure yields the
Strauss model (Figure Sc)

Lif ||x; — x| > 7
c(xx) =4
yifllx, — x| < p (8)

where y € (0, 1) is an interaction parameter indicating the
strength of dependence such that y = 0 corresponds to no
interaction, and p is a scale parameter denoting the
interparticle distance within which the spatial dependence is
active.

A generalization of the Strauss model is the Strauss-hard
model (Figure Sd), which applies a three-level thresholding
mechanism instead of a bi-level threshold pattern. Within a
radius p;, spatial dependence is maximal and nanoparticles are
not allowed to form. In a distance range bounded between p,
and p,, a spatial dependence with the strength specified by y is
enacted. At distances higher than p,, spatial interaction ceases
to exist. This tri-level mechanism is expressed in eq 9

Lif |lx; — x[| > p,
C(X; Xi’) = y lfpl < ”Xi - Xi’“ S pz

0 if ||Xi - xi’H < Py (9)

In contrast, Fiksel (Figure Se) and Softcore (Figure 5f) models
assume a soft-thresholding mechanism, wherein the spatial
interaction gradually decays with the separating distance. The
Fiksel model is expressed as in eq 10

(10)

where a and b are the range and length-scale parameters,
respectively, a combination of which describes the strength and
rate of decay of the pairwise interaction. The Softcore model,
on the other hand, is expressed as in eq 11

2
o(x, x;) = exp[—L] /K
Ilx; — x|l (11)

where ¢ and k are the length-scale and smoothness parameters
denoting the range and shape of the interaction, respectively.

As shown in Figure S, we find that all four Gibbs models
(Strauss, Strauss-Hard, Fiksel, and Softcore) offer smaller
deviations from the empirical L-function derived from the
observed point pattern, relative to the two Poisson models

c(x; x;) = exp(a exp(—bllx; — x;[[))
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(HPP and inh-PP), highlighting the importance of spatial
dependencies during nanoparticle formation. For the Strauss
model, our estimates for interaction parameter y and the scale
parameter p were ¥ =.05 and p = 8.00 nm. The relatively small
value of the scale parameter p, compared to the average
diameter of nanoparticles (Figure 4c,d), indicates that a hard-
thresholding mechanism in the Strauss model is not suitable to
model the gradually decaying spatial dependence in nano-
particles. In fact, it appears that the model was only able to
identify a neighborhood, which is almost equivalent to the
boundaries of the particles as an area of strong spatial
interaction and then cuts off to zero afterward, obviously
overlooking an outer neighborhood in which interactions are
still active. This observation is evident from Figure Sc, where
the Strauss model, albeit offering substantial improvement over
the Poisson models in Figure Sa,b, suffers from a relatively
poor fit, especially at small separating distances. The parameter
estimates for the Strauss-hard model were ¥ =.06, p; = 7.59
nm, and p, = 3.78 nm, corresponding to the interaction
strength, distance within which interaction is active, and
distance within which the nanoparticle formation is prohibited,
respectively. The parameter estimates suggest that the Strauss-
hard model did not offer a substantial improvement over the
Strauss model with a similarly too small interaction distance
that is comparable to nanoparticle diameters.

On the other hand, Gibbs models that describe a gradual
decay of interactions appear to provide significantly better fits
to the data. Specifically, the Softcore model in Figure S5f
outperforms all competing models, including the Fiksel model
(Figure Se). To further validate these conclusions, we
quantitatively compare the models by computing the absolute
deviation between the mean L-function computed by averaging
the L-functions from 100 simulated point patterns generated
from each model fit and that of the empirical L-function
computed using the observed point pattern x. Figure 6a shows
the boxplots of the absolute errors for E-TEM image #22 (t =
9 s), which suggests that the Softcore model achieves the best
overall performance compared to the other five models. Figure
6b confirms this finding by showing that the residuals from the
Softcore model are both symmetric and tightly centered
around 0, suggesting a satisfactory fit, especially when
compared with other benchmarks.

In summary, we conclude that nanoparticles exhibit strong
spatial dependencies among themselves, in particular, a dispersion
behavior, under our experimental conditions, and that these
dependencies gradually decay as a function of the interparticle
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Figure 7. Dynamics of nanoparticle formation during film dewetting from Softcore modeling. (a) Time evolution of average nanoparticle diameter,
average Voronoi distance, and the spatial range, defined as the interparticle distance of the 9Sth percentile of pairwise interaction c. (b) Time
evolution of L-functions, estimated as the average of 100 simulations for modeling each E-TEM image (t = 2—9 s) using the Softcore model, as
shown previously in Figure Sf for E-TEM image #22 (at £ = 9.00 s). (c) Pairwise interaction as a function of interparticle distance at different times
(t=2-9s). A value of 0 signifies maximal pairwise interaction, while a value of 1 denotes null interaction (i.e., independence). The vertical dashed
lines denote Voronoi distances with each color corresponding to the respective time step. (d) Pairwise potential as a function of interparticle
distance at different times (t = 2—9 s). A value higher than 0 signifies a dispersion behavior, with larger values indicating stronger dispersion.

distance. Hence, a Softcore model, a particular class of Gibbs
processes, provides a powerful model to capture the dynamics
of nanoparticle formation by dewetting.

3.4. Capturing Dewetting Dynamics via Gibbs
Models. So far, all of the data analysis and statistical modeling
were conducted on E-TEM image #22 (t = 9 s). We now
extend our machine learning approach to the remaining
sequence of E-TEM images. Hence, we restore the index j = 1,
..., 22 for images taken at different points in time t = 0, .., 9 s.
First, we show that the Softcore model is the most suitable
Gibbs point process model for all E-TEM images over time, as
illustrated in the consistently lower values of mean absolute
error across the entire time span (Figure 6c), especially at early
stages of the dewetting process, where the data deviates most
from the CSR scenario (HPP model). This is important not
only for providing insights into the time evolution of
interactions among popping nanoparticles during dewetting
but also for prescribing a methodical approach to simulate the
spatiotemporal evolution of nanoparticle formation during
dewetting using Gibbs point process models.

Analyzing the first four E-TEM images, i.e., images #1 (t =
0.00 s) through #4 (t = 1.50 s), shows that they had too few
nanoparticles to obtain reliable parameter estimations for
Gibbs model fits, as shown in Figure S6, where the large
simulation envelope bands indicate a data size problem. Hence,
for now, we primarily focus our point process model fitting on
E-TEM images #5—22 (2 < t <9). We will then later prescribe
a method that leverages the model fits obtained over that time
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span (2 < t < 9) to “learn” the parameters of the Softcore
model at any arbitrary point in time either within the 2—9 s
span or outside it. This will be explained in detail below and
will form an indispensable component of our proposed
computational simulation tool.

Moreover, we can gain valuable insights into the dynamics of
nanoparticle formation during dewetting, including the early
stage of the process (0 <t < 2 s), from the time evolution of
the Voronoi tessellations of all images (Figures S7 and S8).
Considering that the locations of nanoparticles are the sites for
generating the Voronoi diagram, by definition all of the points
enclosed within each Voronoi cell are closer to the generating
sites (nanoparticle locations) than to other sites. Thus, the
points on the sides of the convex polygon contour making up
each cell represent equidistant loci between nearest neighbors,
i.e., each vertex at which n number of cells meet is equidistant
to the n number of nanoparticle sites generating those adjacent
n cells. As such, we can use the distribution of Voronoi
distances (Figure S9), calculated as the square root of Voronoi
cell areas, as a suitable estimate of interparticle distances. In
fact, Voronoi tessellations in general,63 and Voronoi distances
in particular,” have been previously used to analyze the spatial
distribution of nanoparticles. As seen in Figure 7a, the mean
Voronoi distance decays with time, owing to the progressive
popping of new nanoparticles during dewetting until reaching
an almost constant value slightly smaller than 20 nm toward
the end when all of the nanoparticles form.
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Starting from image #S (f = 2.00 s), the exact same
procedure previously described for using point process
modeling to analyze E-TEM image #22 (t = 9.00 s) was
implemented for the remaining 17 images. The only small
difference being the selected trend for f(x) in eq 7, which
varied slightly from one E-TEM image to another. Superscript
t, hereinafter, denotes a time-varying function or variable.
Among the six fitted models, and across all images, the
Softcore model achieves the best visual and quantitative
performance, with an average percentage improvement in the
mean absolute error of about 51% over the Strauss model and
about 80% over the Inh-PP. This suggests that the Softcore
model is a good modeling choice to explain the spatial
distribution of catalyst nanoparticles, which exhibit strong
dispersion behavior (L(h) — h < 0) throughout the whole
dewetting process, ie., the existence of a nanoparticle at a
certain location reduces the likelihood of other nanoparticles
appearing in its vicinity. This can be explained by their
constant competition on the limited resource, in this case the
thin iron film, from which the instability-driven dewetting
process draws the diffusing atoms making up each new
nanoparticle.”*

We believe that the superiority of the Softcore model stems
from its flexibility to model the gradual decay in interaction,
which best describes the second-order variations in the
underlying process. The time evolution of the L-function
shown in Figure 7b indicates that the interaction both becomes
weaker at later time steps and more local (i.e., the interaction
distances become smaller). We best visualize this by plotting
the pairwise interaction term c¢(-) (Figure 7c), which can be
used to describe the interaction strength or “potential” as a
function of the interparticle distance. Specifically, we have ¢'(x,
x;) = exp(—y/(|lx; — x/]|)), such that y/(-) is the potential
function at time t, plotted in Figure 7d. These statistically
derived mathematical formulations provide important physical
insights into the complex dynamics of nanoparticle formation
by thin film dewetting during chemical reduction and acetylene
dissociation on the metal surface. Importantly, this exper-
imentally learned model solves the long-standing issue of
inability to use mean-field theory to derive a closed-form
solution for the spatial interaction function between islands/
nanoparticles in either 2D or three-dimensional (3D),
although a simple exponential function adequately describes
the case of one-dimensional (1D).*>%¢

Figure 7d demonstrates that the collective behavior of
nanoparticle popping exhibits a more abrupt decay of
interaction potential y as the dewetting process progresses
until it approaches zero in all cases at a different interparticle
distance. A measure of such spatial range of interactions is
calculated as the interparticle distance at which the pairwise
interaction ¢ reaches 0.95 (see Figure 7c). It is noteworthy
that the values of this interparticle distance at the 95th
percentile of pairwise interaction ¢’ are comparable to the
average Voronoi distance and significantly larger than the
average nanoparticle diameter, as shown in Figure 7a. This plot
also illustrates that both the spatial range of pairwise
interactions and the collective interparticle distances (esti-
mated from Voronoi distance) decay during nanoparticle
popping over time, while the average nanoparticle diameter
only slightly changes. Importantly, these physically relevant
quantities and mathematical formulas were learned through
statistical modeling based on the experimental data used for
training the models. Now that we have good model fits, we can

leverage the Softcore models for running predictive simulations
with unprecedented capability of capturing the dynamics of
chemically induced thin film dewetting, beyond the spatial and
temporal limits imposed by E-TEM experiments.

3.5. Discrete Time Simulations via Gibbs Models. A
major advantage of our machine learning approach based on
point process models is that it enables running simulations
with predictive power for either design or analysis purposes.
Given the probabilistic nature of the Softcore model fits to the
experimental data, one can simulate a set of realizations for
point patterns that follow the same interaction functions as
those in Figure 7c.

While useful, using only the model fits for the 18 E-TEM
images analyzed earlier would restrict our predictive capability
to the limited time points where experimental data are
available, i.e., images #5—22 (2 < t < 9), because we do not
have the interaction potentials or the fitted Softcore
parameters at any arbitrary time. In practice, simulations
become more impactful as a way to predict experimental
outcomes, when the latter are not available, too costly, or
infeasible to conduct. For instance, in our setting, we are
exceedingly interested in simulating the earlier part of the
dewetting process (0—2 s), or even beyond the 9 s end point,
for which we do not have reliable model fits. Further, we are
interested in creating discrete time simulations with finer
sampling rates than the temporal resolution of imaging (e.g.,
fractions of a second). To build this computational simulation
tool, which can predict the experimental outcome at any point
in time, we therefore need a statistical “vehicle” that can
predict the interaction potential at any arbitrary time step. We
will denote this statistical model as the Spatiotemporal
Interaction Model or STIM in short.

Spatiotemporal Interaction Model (STIM). STIM is a
spatiotemporal statistical regression model, which models the
pairwise interaction ¢, plotted in Figure 7c, as a function of two
inputs: time ¢ and interparticle distance h. Specifically, we use a
spatiotemporal Gaussian process (GP) model* to construct
this functional mapping for two reasons: (1) in machine
learning, GPs are specifically tailored to model “correlations” in
the input space,***”® i.e., observations that are closer in the
input space (time and interparticle distance) tend to have
similar output values for the pairwise potential. This is
particularly relevant for temporal processes like nanoparticle
popping in thin film dewetting and (2) in the computer
simulation literature, GPs are often used as efficient “surrogate
models” for complex physics-driven phenomena due to their
powerful predictive properties.’”®

We trained STIM on a subset of the ¢’ functions obtained in
7 time steps, with 100 data points discretely sampled over the
range of h (0—100 nm) at each ¢, thus yielding a total of 7 time
steps X 100 data points = 700 training points. This training
subset was sufficient to yield high predictive accuracy, as
evidenced by a low value of NRMSE at 2.30%, calculated using
the GP-based STIM predictions at the remaining time steps
that were not used for model training. This high-quality
predictive performance bolsters the accuracy of the simulations
below.

Using STIM, we obtain predictions of the pairwise
interaction functions at fine time increments. Figure 8a
shows few predicted interaction functions outside the limited
2—9 srange, ie, att = 0.5, 1, 1.5, and 9.5 s. We further predict
the pairwise interaction functions at 0.2 s time intervals, which
we use to derive the spatial range of interactions, as shown in
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Figure 8. Spatiotemporal interaction modeling (STIM) results
showing the comparison between machine-learned predictions from
STIM and estimated values from Softcore fit of E-TEM images for (a)
pairwise interactions and (b) spatial range. The inset in (a) is a close-
up for a 0—50 nm range of h.

Figure 8b. Using these predicted interaction functions, we
estimate the Softcore parameters (¢’ and &) from eq 11 via
nonlinear least squares, yielding estimated parameters for each
time t. The time evolution of the predicted Softcore
parameters & and k' using STIM is plotted in Figure S10.
Figure 8b illustrates the strong agreement between STIM
predictions and those obtained from the Softcore fits of
experimental E-TEM data by plotting the values for spatial
range (interparticle distance at the 9Sth percentile of ¢') for
each time step.

Simulation Results. Our computational simulation tool
takes three inputs at any time point: (1) values for the Softcore
parameters, predicted using STIM, (2) a nanoparticle count,
predicted using our statistical particle count model (shown in
Figure 2g), which models the S-shaped popping dynamics
using a logistic function, and (3) a selection of the trend
function for #'(x) of eq 7. The detailed steps of our simulation
algorithm are presented in Table S2.

We present two sets of simulation results, corresponding to
two case studies. In the first case study, we limit the spatial
window to that imposed by the experiment (~277 X 277 nm?)
but use STIM to extend the temporal resolution and range
beyond those of the experiments. We call this case study
Temporally Extended Simulation. In the second case study,
referred to as Spatially Extended Simulations, we extend the
spatial window, as well as temporal resolution and range.

Temporally Extended Simulations. Figure 9a—h and Video
S1 show the time evolution of simulated nanoparticle locations
and areal density heat maps from our computational simulation
tool of nanoparticle formation by dewetting. More results for
the Voronoi tessellations (with heat map of the reciprocal of
cell area) are plotted in Figure S11. Figure 9i shows the
evolution of the average L-functions of 25 simulations, which
agree with those obtained from experimental data (Figure 7b).
Importantly, our simulations are now not limited by the time
resolution of our experimental E-TEM data, which was
constrained to either 2 or 3 images per second. Instead, we
ran our simulation with a smaller time step of 0.2 s. If desired,
our simulation tool allows for even finer time resolution than
0.2 s. Moreover, using TIM, we are now able to predict the
dynamics of the entire process even outside the time range for
which we have experimental data.

From the 25 realizations, we extracted a statistic that we call
the “strongest interaction”, which is calculated as the minimum
L'(h) — h value at each time point. Figure 9j shows the average
value of this statistic over time (solid red line), while the lighter
red lines denote the values of this statistic for the 25
realizations. We extracted the values of the same statistic from
the experimental L-functions obtained from the observed point
patterns at each time point of the 18 E-TEM images (at t = 2—
9 s) and plotted them on the same figure as black cross marks.
The strong agreement between the simulated and experimental
values validates the accuracy of our computational simulation
tool and confirms its ability to capture the actual formation
dynamics of nanoparticles during dewetting. Another statistic
of interest is the average nearest-neighbor distance (NND) at
time ¢, calculated as in eq 12

n(t)

Z min [}x; = x|

=1 (12)

NND(¢) =

where x; and x; are two distinct nanoparticles. The time
evolution of NND(¢) is shown in Figure 9k. This, along with
the time evolution of Voronoi distance results shown in Figure
S12, further illustrates our simulations’ ability to accurately
represent the spatiotemporal distribution of nanoparticles
observed experimentally from E-TEM.

It is worth noting here that for our simulation results in
Figure 9, a single mathematical formulation for #'(x) in eq 7
was selected for simulating all time steps. Thus, the strong
agreement between simulations and experiments highlights the
robustness of our approach, i.e., simulations are not particularly
dependent on the specific trend function as much as they are
dependent on the Softcore parameters and nanoparticle count.
This confirms our earlier finding (when discussing the
statistical point process modeling) that the spatial depend-
encies are the major determinants of deviation from CSR
assumptions.

Spatially Extended Simulations. We further conduct
another set of simulations, where we use our computational
simulation tool to mimic the behavior of nanoparticles for
larger spatial areas. Since E-TEM images can be considered
spatial samples or windows of a larger spatial area, an
experimenter may be interested in predicting, or specifically
extrapolating, the dynamics of nanoparticle formation in those
unobserved experimental regions. Note here that the spatial
window of ~277 X 277 nm? of our E-TEM images is a result of
carefully adjusting the magnification during imaging. Consid-
ering that higher-magnification imaging conditions would
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Figure 9. Simulation results for nanoparticle formation by dewetting: (a—f) spatial distribution of nanoparticles showing their locations and
intensity (areal density) heat map_ for 0.2, 2.2, 3.2, 42, 5.2, and 9.5 s, respectively. (g) Time evolution of the value of the strongest interaction
defined as the minimum value of L(h). (h) Time evolution of the estimated nearest-neighbor distance. Notice the strong agreement between the
estimates in (g, h) from the Softcore model that are derived from experiments and those derived from simulations, for the time steps that were
included in the 2—9 s range for which the Softcore model fits of experiments exist (shaded in blue), as well as for the time steps that are outside that

time range (shaded in red).

provide a smaller number of point pattern data per image (i.e.,
unsuitable for obtained reliable fits for point process models),
while lower-magnification conditions would make it more
difficult to distinguish small nanoparticles from background
noise (i.e., unsuitable for accurate detection of small
nanoparticles), simulations that overcome this tradeoff limiting
the possible spatial domain of experimental E-TEM data are
desired.

To demonstrate this unique capability of spatially extending
dewetting simulations, we conducted a case study wherein the
spatial dimension of the window ‘W is 4 times larger than that
of the E-TEM image (ie., the number of nanoparticles and
window area are 16 times those observed in our E-TEM
images), assuming the same Softcore model parameters and
popping dynamics. Simulation results for the time evolution of
simulated nanoparticle locations and areal density heat maps
for one realization of this case study are shown in Figure S13
and Video S2. For comparison, we also ran another realization
with the HPP model instead of Softcore, as shown in Figure
S14. Importantly, the time evolution of the strongest
interaction (i.e., the minimum value of L(h) — h) and the
average nearest-neighbor distance, shown in Figure S15,
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demonstrate that the Softcore model simulations strongly
agree with the experimental behavior as opposed to the HPP
model, which significantly underestimates the strength of the
dispersion interactions among nanoparticles during dewetting.

It is worth noting here that the extended simulations, for
which the results are presented in Figures S13—S15, were
carried out with a simulated initial state at t = 0 (by random
sampling) and did not use the experimentally defined initial
point pattern that was used for simulations in Figure 9.
Moreover, a homogeneous mathematical formulation for f(x)
was adopted for all time steps. Despite these differences, the
time evolution of the values of strongest interaction and
nearest-neighbor distance for the Softcore simulations strongly
matches experimental results, as shown in Figure SI1S. This
finding further showcases the capabilities of our computational
simulation tool. Hence, our machine-learned mathematical
models not only mimic the actual experimental environment
(and hence can be used as its surrogate) but further predict those
dynamics at finer time scales and larger spatial areas, both of
which may be experimentally infeasible or impractical to observe or
capture.
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We conclude this section by emphasizing that our
computational simulation tool fills a significant gap in the
literature, and we expect that it will prove to be of great utility,
as there is currently no other accessible modeling approach
that is capable of capturing both the coupled physical and
chemical factors governing the dynamics of nanoparticle
formation by thin film dewetting, wherein the combination
of gas environment and high temperature results in metal oxide
reduction and other surface chemical reactions (e.g., carbide
formation). In particular, a simulation tool is needed to
complement CNT nucleation and growth studies and
modeling efforts aimed at capturing the mechanical inter-
actions and bundling behavior among self—orﬁanizing
CNTs,'"'* estimating forces ensuing during growth, ”’° and
accurate modeling of the collective mechanical properties of
CNT forest microstructures under compression.”' Moreover,
the ability to understand and simulate the stochastic processes
governing dewetting dynamics is crucial for catalyst design to
achieve control on the size distribution, interparticle spacing,
and areal density, which are sought after for high-performance
electrical and thermal interfaces."”*”* In particular, recent
research on spatial design of physical patterns for templating
film dewetting, which is a capable approach for fabricating
ordered catalyst nanoparticles,”* will greatly benefit from our
machine learning approach for simulating such spatially varying
interactions during templated dewetting.

The machine learning-based methods presented in this
paper represent a robust approach that can be further
expanded to capture more physically/chemically relevant
factors in its formulations. For example, running multiple E-
TEM experiments with different film thicknesses, in different
gas environments, or for different metal compositions can
enable “learning” the effect of each of these physical/chemical
factors explicitly in the model via physics-motivated intensity
function parameterizations. Although one limitation of this
approach is the inability to measure the time-evolving contact
angles of nanoparticles from the bird-eye view E-TEM imaging
described here, we can improve our modeling methodology by
incorporating size evolution of the nanoparticles. Size
information can be more rigorously taken into account
through the so-called “marked point process models”, which
have been recently used for diverse applications ranging from
image processing’” to climatology.”® Constructing such models
for nanomaterials science would open the door for an
unprecedented data-driven ability to model and simulate
complex interactions that are hard to capture by building
model from first principles. This paradigm shift means that our
ability to model a coupled nanoscale phenomenon is no longer
limited by complexity of interactions, i.e., as long as we can
obtain experimental data from E-TEM (or other in situ
techniques), we can use statistical machine learning to model
and simulate it in a physically interpretable manner.

4. CONCLUSIONS

Combining recent advances in in situ E-TEM with high-speed
imaging enables generating high volumes of data over a broad
spatial and temporal space. Hence, data science is set to play an
instrumental role in creating a new comprehensive under-
standing of spatial and temporal evolution of nanoparticles
with mathematical formulations that can capture hard to model
coupled phenomena. In this study, we show that automated
image processing of E-TEM images opens the door for
extracting valuable point pattern data formats that provide
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quantitative insights inaccessible by manual image analysis. We
use point process theory, a branch of machine learning, to
analyze the spatiotemporal behavior of nanoparticle formation
by thin film dewetting. Our physically motivated statistical tests
and models empirically demonstrate that nanoparticles do not
form uniformly over space due to the inverse relation between
areal density and nanoparticle size. More importantly,
nanoparticles are shown to exhibit strong spatial dependence,
particularly a dispersion behavior. Such dependencies appear
to be distance- and time-dependent. The Softcore model,
which is a Gibbs point process model, accurately describes this
dispersion behavior, wherein the presence of a nanoparticle
reduces the likelihood of others forming in its vicinity.

Combined with our proposed spatiotemporal interaction
model (STIM), we have developed a computational simulation
tool that can accurately mimic and further predict the
spatiotemporal formation of nanoparticle ensembles at any
arbitrary time point and any desired spatial domain, providing
crucial insights to experimenters, whenever experiments are
infeasible/impractical to conduct. Our work provides a robust
foundation for future work on designing catalyst nanoparticle
populations and leveraging their spatial interactions for
controlling their collective behavior.
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videos of nanoparticle popping dynamics showing
locations, areal density, and particle count as a function
of time (PDF)

Time evolution of areal density heat maps and number
of nanoparticles for our temporally extended simulations
(first case study) (MP4)

Time evolution of areal density heat maps and number
of nanoparticles for our spatially extended simulations
(second case study) (MP4)
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