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Abstract—1In this paper we present a novel approach to
accomplishing soft robot configuration estimation and control
using RGB-D cameras and SLAM-based methods. By placing
cameras on the unactuated sections of our large-scale (approx-
imately 2 meters long) pneumatic soft robot, we can map an
environment and then estimate the orientation of the robot
links using landmark-based localization. Using the orientations
of each camera we can solve for the joint configurations between
them. We first show that this method works for a traditional
rigid robot (Baxter) where we can compare against the ground
truth encoder values. For Baxter, the median joint angle error
was on the order of 1-2°. We then show that the SLAM-
based method provides estimates for soft robot configuration
that are within 1° when compared to our past methods of
using a HTC Vive Tracker. While HTC Vive Trackers and
commonly used motion capture systems require externally
mounted sensors placed in the robot’s environment, the SLAM-
based estimation method presented here works in any visually
feature-rich environment. Finally we show that this method of
estimation is effective for closed-loop control of soft robots by
controlling our large-scale soft robot through a series of joint
configurations.

I. INTRODUCTION

Despite the promise of soft robots being able to funda-
mentally change the way that robots interact with the world,
this promise will not be fully realized without soft robots
being able to estimate their configuration in an onboard,
online manner. Without this kind of estimation, effective
closed-loop control outside of laboratory environments is
improbable. This soft robot estimation problem is multi-
faceted and will likely not be solved by a single sensing
technology or approach. However, in this paper we present
a novel method for online configuration estimation by using
cameras in a simultaneous localization and mapping (SLAM)
framework.

Specifically, in this paper we use RGB-D cameras with an
existing SLAM library (ORB-SLAM?2 [1]). We use SLAM
to estimate the orientations of two cameras fixed to the
soft robot links relative to an initial starting configuration.
Using assumptions about the starting configuration, as well
as camera orientations supplied by SLAM, the configuration
of the soft robot joints can be estimated.

The method presented in this paper has strengths in
areas where many other soft robot sensing technologies
are lacking. Specifically, most existing technologies do not
localize relative to the real-world environment, but instead
localize relative to the robot platform or where the sensors
are connected to the soft robot. This may be acceptable if
the robot is isolated from interactions with the environment.

* - equally contributing authors.

978-1-6654-1714-3/21/$31.00 ©2021 IEEE

Howeyver, if the robot is meant to interact with the environ-
ment, or if it experiences any external forces (e.g. gravity
loads which may cause a soft robot to deform or buckle
in unexpected ways), the kinematic assumptions used with
current soft robot sensors may fail.

The two strengths of outward facing cameras are first, if
the cameras are able to localize accurately we will have
accurate estimation that describes the configuration of our
soft robot sections to which the cameras are mounted,
regardless of deformations that may occur in the flexible
joints. Secondly, the localization that is used to determine the
configuration of the soft robot may also be used to localize
relative to the environment in order to enable real-world
tasks which may otherwise be difficult given uncertainty
in the soft robot configuration and position relative to the
environment. In this paper, we demonstrate only the first
strength. However, the second strength is inherent to the
localization methods that we are using for estimation.

In terms of paper organization, we first present related
work in Section II. Then we present information on the robot
sensing technologies that we are using in Section III. Next we
present our method for soft robot configuration estimation in
Section IV. Finally we present the results in Section V and
conclusion in Section VI.

II. RELATED WORK

Methods for soft robot configuration estimation range from
from flex and bend sensors [2][3][4][5][6], to photodiode
sensors [7], to inductance sensors [8][9], fiberoptics [10]
and tactile sensors [11][12]. However, as mentioned in the
introduction, all of these are sensing methods that rely on
measuring the local deformation of the robot to estimate
configuration (as opposed to measuring information about
the environment to determine configuration and location).

Other work more closely related to that presented in
this paper uses IR markers for motion capture [13][14],
electromagnetic field detectors [15], or even IMUs that use
the gravitational and magnetic north vector [16]. Each of
these methods generally use these algorithms to estimate the
orientation of some part of the soft robot. However, each of
these methods (aside from the IMUs) require additional hard-
ware that is external to the robot to estimate configuration.
Unfortunately, orientation and position estimation with IMUs
has the shortcoming that the estimate will drift significantly
over time. To solve these problems, we turn to simultaneous
localization and mapping (or SLAM) [17].

SLAM-based methods use many different sensors, but
most often use cameras to develop vision-based maps and
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Fig. 1: Example setup of cameras running ORB-SLAM?2 algorithm on the soft robot Kaa. Vive Trackers are circled in
green, cameras in red. The arrows show the views corresponding to each camera. In those views, features are identified
by green rectangles. The red point clouds below represent all identified features as the robot moved from the first to final
configuration. These features are ORB, or Oriented FAST and Rotated BRIEF, features. More information on the SLAM

algorithm and feature identification can be found in [1].

localize the camera within that map. Although not SLAM-
based, similar camera-based estimation schemes have been
used by looking at the inside of a soft link (see [18])
to control vibration, or by looking at the soft robot from
an external perspective, requiring a camera external to the
system to estimate configuration [19][20]. While in [21]
they use a single camera to perform visual servoing in
conjunction with a Fiber Bragg gratings (FBG) sensor rather
than attempting to estimate the robot configuration from
camera-based sensing.

SLAM-based methods have previously been used to es-
timate human motion such as in [22]. However, as far as
we can tell, the efforts to estimate robot arm configuration
using SLAM are limited to [23] and [24]. The first of these,
[23], used a single camera mounted to a rigid manipulator
to estimate joint configuration. This study is the closest to
ours, as the estimation happens in real-time, however their
technique was focused on estimating error between reported
joint encoder values and the orientation reported by the
SLAM algorithm. The second of these papers, [24], used
a camera mounted at the tip of a continuum tendon-actuated
robot to gather data and to predict configuration offline.
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The method presented in this paper builds on these suc-
cesses as we estimate the joint configuration of the robot in
real time in order to enable closed-loop control of a multi-
joint soft-robot, which as far as the authors know, is novel
to the field.

SLAM has become a fairly mature field despite still being
a fairly active area of research. Overview tutorials of the
area can be found in [25][26]. Significant amounts of work
are still being done on different map, landmark, and feature
representations, along with the actual optimizations used to
generate the maps with loop closures. Most importantly for
this paper is that any progress in computational efficiency,
speed, or accuracy should only improve our results.

III. ROBOT AND SENSING HARDWARE
A. Robots

1) Soft Robot Kaa: Kaa is a two meter long, six DoF
inflatable, pneumatically-actuated, fabric, serial link manip-
ulator designed in collaboration with the startup company
Pneubotics (see Figure 1 and [27]). The joints are composed
of antagonistic, pneumatic actuation bladders which are
pressurized to vary joint stiffness and apply joint torque.
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The pressures are controlled using a low-level PID controller
with poppet valves. The links are composed of pressurized
bladders contained within ballistic-grade nylon fabric. The
arm is not composed of any rigid structures.

For the first experiments performed on Kaa in this paper,
we perform pressure control at each joint causing the arm
to move, but not towards a goal configuration. This was
done to validate our method of SLAM-based estimation
independently from our attempt at closed-loop control. The
next set of experiments show Kaa being controlled by a
model-based predictive controller as described in [28], using
our SLAM-based system for configuration estimation.

2) Baxter Robot: Baxter is a rigid robot with seven DoF
for each arm (see Figure 2). We use Baxter to validate the
method of SLAM-based joint estimation given the availabil-
ity of ground truth with joint encoders. For the tests we
perform in this paper we used the native API provided by
Rethink Robotics to command different joint angles and read
the corresponding joint angle measurements from encoders.
For mounting the RGB-D cameras to Baxter, we 3D printed
camera mounts that attached to the arm at specific locations.
Despite our best efforts to design this mounting hardware,
they also required adhesives to secure the cameras during
operation. This is obviously one source of potential error in
our joint angle estimation with Baxter.

B. Sensors and SLAM software

1) HTC Vive Trackers: For comparison with the SLAM-
based estimation we perform on the soft robot Kaa, we
used the HTC Vive virtual reality system. Configuration
estimates from the HTC Vive sensors cannot be thought of
as ground truth because the sensors themselves only report
pose data similar to that obtained using the SLAM-based
method. However, pose estimates given by the HTC Vive
have been shown to be quite accurate when compared to
high-fidelity motion capture systems [16] and the estimation
data is available at a much higher rate than is currently
possible through our SLAM-based method.

The HTC Vive system works similarly to a motion capture
system, but requires only two external devices (two Light-
house base stations, instead of a large number of cameras)
along with integrated trackers attached to the robot links
after every two actuated joints. These trackers are shown
in Figure 1 attached to Kaa. The trackers sense infrared
pulses from the Lighthouse units and combine this with data
from their on-board IMUs to localize and estimate pose with
approximately millimeter accuracy. We have previously used
the HTC Vive Trackers to estimate orientations between soft
robot links and then to estimate joint angles as discussed in
[16]. The calculations needed to estimate joint angles given
link orientations are sensor independent, therefore in this
work the methods for joint angle estimation outlined in [16]
are applied using the camera orientations returned from the
SLAM algorithm.

2) RGB-D Cameras and SLAM Software: To make a
map and localize the different soft robot links in their
environment, we use either one or two Asus Xtion Pro-Live
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Fig. 2: Baxter, a compliant, two-armed, robot with 7-DoF
arms used for this work. The red rectangle on the arm
represents where the camera was mounted. Because ground
truth was available from the encoders, no Vive trackers were
used to estimate pose.

RGB-D cameras and the ROS package “openni_camera.” The
software utilized for simultaneous localization and mapping
(SLAM) was an open source project called ORB-SLAM?2
(see [1]).

ORB-SLAM? tracks the location and depth of points in
the environment to create a map of the surroundings. After
making a map, as the cameras move through the environment
subsets of those same points are found again in every frame.
This makes localization of the cameras possible within the
map that is created. Sample images from the SLAM software
that we used can be seen in Figure 1.

ORB-SLAM? returns visual odometry for each camera
after having made an initial map, which is then converted
into orientation and position data. We opted not to use the
position data that ORB-SLAM?2 returns as part of our SLAM-
based estimation scheme. This was due to uncertainty in the
camera’s exact position along each robot link as a result of
the inherent compliance and deformation that occur when
mounting sensors to a fully compliant robot. We expect that
incorporation of this data (by solving the soft bodied sensor
mounting problem) would lead to improved estimates and
could be done during the SLAM initialization phase. For the
purposes of this paper we restricted our methods to using
the orientation data reported by ORB-SLAM?2.

IV. METHODS

In general, our approach flips the idea of motion capture
on its head: instead of cameras looking at the robot with
reflective markers, we use cameras looking outward, map-
ping the world in order to estimate robot configuration with
respect to the environment. This increases the portability
of soft robotics compared to conventional motion capture.
The advantage of this strategy is that despite relatively
large camera localization error (at times on the order of
a centimeter), each sensor is grounded in the same global
frame (the map made by the data from the cameras), and
therefore error does not accumulate along the robot linkage.
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Our method can be used in two ways. First we can get
two relative camera poses that are obtained using localization
from a common map that is made by ORB-SLAM2. Or,
given an initial camera pose before a soft robot segment starts
moving and then a new pose measurement after the robot has
moved, we can also calculate a relative camera pose for up
to three representative kinematic degrees of freedom. If we
expect to represent more than three degrees of freedom for
a given soft robot segment (for a common parameterization
that can be used for continuum joint soft robots, see [29],
or lumped pin-joints, see [30]), then we would need to use
multiple cameras.

Given two relative camera poses (that are obtained using
localization from the map that is made by ORB-SLAM?2),
solving for the joint configurations is straightforward if the
number of degrees of freedom in the kinematic representation
between the two sensors that return pose (position and
orientation) has six degrees-of-freedom or fewer. Building
on our prior work where we showed that with relative
poses (whether from IMUs, motion capture, or virtual reality
technology) for a pair of locations on the soft robot arm, we
could estimate the configuration of the soft robot between
those two sensors (see [16]). In order to use the method
detailed in that paper, we needed to set up a kinematic
model for both Baxter and Kaa. Our algorithm uses the
track-ik library [31] to perform inverse kinematics between
two camera poses to estimate joint position based on the
rotational output provided by ORB-SLAM?2.

To validate our methodology we elected to first experiment
on a rigid robot where we could compare the SLAM-
based results with the ground truth angle measurements that
encoders provide. For this purpose we used the Baxter robot.

A. Test 1: Single Camera SLAM Validation

To test the accuracy of our SLAM-based method when
using only a single camera, we mounted an RGB-D sensor
after Baxter’s 3rd joint. This meant that the map was created
by one camera and we estimated three degrees of freedom
for Baxter based on the initial pose of the camera with the
map initialized in the robots shoulder frame. The robot was
commanded to 100 random configurations. Once the robot
had come to rest at the given position, a set of data was
recorded from Baxter’s encoders and from the camera.

B. Test 2: Soft Robot Joint Estimation

Our next test included attaching an HTC Vive tracker
and an RGB-D camera to the end of the large-scale,
pneumatically-actuated, soft robot Kaa. Because there are
not encoders or other straightforward ways to measure the
actual configuration of Kaa for ground truth comparisons, we
relied on previous technology that we had used for soft robot
configuration estimation (see [16]). This means that all we
can claim in terms of accuracy is how well the two methods
agree. We do know however, that the Vive system performs
comparably to high fidelity motion capture systems. So in
a sense our comparison is between outward facing cameras,
and traditional motion capture technology.
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Fig. 3: Simplified diagram describing robot setup. The black
box at the top of the robot is its base, and the joints are
labeled 1-6 proximal to distal. Grey rectangles represent the
robot’s links.

We commanded the first four joints to a high pressure
that would keep the first four joints pointed approximately
downwards. Then, we initialized both the camera initial
frame and the HTC Vive tracker frame with the last two joints
facing down. Finally, we sent a randomized set of pressures
to the last two joints to cause the system to move around
while also recording the estimated orientations from both the
Vive and the ORB-SLAM?2 algorithm. A video of this trial
canbe seen at https://youtu.be/vi3F4VxFhLo. Itis
clear from the video that although the first few joints were
commanded at constant pressures, some deformation does
occur as the most distal two joints are actuated to different
pressures.

C. Test 3: 4 Joint Soft Robot Control using Multi-Camera
estimation

For this test we attached a camera to the first and second
link of the soft robot Kaa, (see Figure 3 for a simplified
description of the experimental setup ). Then, after creating
a map of the environment and initializing the orientation
of the robot (taking great care during the map initialization
that the 2 cameras aligned with the base frame of the robot
and each other) we commanded the robot to move with an
oscillating square wave with a period of 80s. We chose to use
this length of time to show that the while the controller was
not perfectly tuned, the error in the joint angles approached
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Fig. 4: Histograms showing the error between the camera estimated orientation and the ground truth orientation from the
encoders on the Baxter Robot. The error shown rarely exceeds 10 degrees.

0. We also attached and recorded data from Vive trackers
to compare the results between the SLAM estimation and
Vive estimation (but the data from the Vive estimation was
not used for control). The controller used for this test is
described in [28].

V. RESULTS

A. Test 1: Single Camera SLAM Validation on Baxter Robot

For this test, the median estimation error (using the
encoders as ground truth) was 1.2°, 1.3°, and 0.64° for joints
1, 2, and 3 respectively. The maximum error for joint 1, 2,
and 3 was 11.5°, 3.7°, and 13.3°. Histograms of the error
for the 100 different configurations are included in Figure 4.
It is clear to see that the outlier errors in joint 3 are opposite
the outliers for joint 1 and close to equal in magnitude. All
of these errors occurred when joint 2 was close to its limit,
which aligned the axis of rotation for joints 1 and 3. This
may indicate that the problem is not with our sensor, but
with the way we are solving the inverse kinematics problem
when the axis of rotation for joint 1 and 3 are close to being
parallel.

These results showed that the overall approach was viable,
and could be improved by fixing some of the following
sources of error. First and foremost is the initial alignment
of the camera to Baxter’s base frame, and to each other. Any
error between the camera frame and Baxter’s base frame led
to poor comparison with ground truth data, and misalignment
between additional cameras leads to even larger errors. This
dilemma of accurately calibrating and mounting cameras is
even more difficult for soft robots, and is not addressed in
this paper.

Second, for this trial the camera was attached to Baxter
with a prototype fixture, which made the connection between
Baxter and the camera flexible. That means in some config-
urations the camera would be in a slightly different position
or orientation on Baxter based on the direction gravity is
acting on the camera in relation to Baxter or other changes
in orientation due to previous movement.
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Lastly, ORB-SLAM?2 would lose visual features in the
environment because it would get too close to the main body
of the robot or otherwise have the camera view obscured, but
it would recover after the obstruction passed because it could
re-localize within the map it created of its environment. This
last issue is one that will persist for any implementation
of camera-based estimation. However, it may be mitigated
with further sensor fusion such as including data from IMU
sensors in an estimation scheme.

B. Test 2: Soft Robot Joint Estimation

For the second test on the soft robot Kaa, we can only
report on the discrepancy between the joint angle esti-
mation using the RGB-D camera with ORB-SLAM?2 and
the estimation using the Vive tracker (since there is no
straightforward method to measure ground truth). A plot of
the joint estimates from both sensors is shown in Figure 5.

The data for the Vive is available at 1 KHz, while the data
for this specific implementation of SLAM, with this camera,
and the computer we used is only updated at 10 Hz. We
therefore sub-sampled the data from the Vive to line up in
time with our camera-based estimates. After doing this, we
could estimate the absolute value of the discrepancy between
the sensors. It is important to note at this point that although
we have quantified to some extent the error from the Vive
estimation in the past [16], this was based on end effector
position, and not on actual joint angle error. So in this case,
we can not consider the Vive as ground truth, only as a
benchmark with which we can compare our new estimation
method.

For the second test, the median absolute discrepancy
between the two methods for the first and second joints was
0.70° and 0.90°. Histograms of the difference for the 2,731
different measurements are included in Figure 6.

C. Test 3: Soft Robot Control

In this final test we again are comparing SLAM-based
estimation to Vive-based estimation on Kaa, but this time
instead of simply commanding pressures, we implemented a
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Fig. 5: Camera based versus Vive tracker estimation for the last two joints of Kaa (which we call joint 1 and joint 2 for
this test). The camera based estimation follows the movement estimated using the HTC Vive trackers.

closed loop joint angle control scheme (see [28]). A plot of
the control performance can be seen in Figure 7.

The data clearly show that using our SLAM based esti-
mation method, control of a multi-degree of freedom soft
robot is feasible. The SLAM estimated angle tracks almost
exactly the Vive estimated angle on 3 of the 4 joints. The
3rd joint shows a discrepancy, however this was due in large
part to the method that was used to fix the camera to Kaa.
We used 3D printed fixtures that could be slipped over the
robot when it was not inflated, and when the robot was
inflated the cameras should be fixed in place because of the
interference between the soft robot links and the rigid 3d
print. In practice, the fixtures still allowed some motion of the
cameras. In particular the fixture holding the second camera
was especially susceptible in one degree of freedom because
of physical constraints in mounting the camera relative to the
soft robot geometry. The other issue came from our mounting
point for the second Vive tracker. Because the camera was
occupying the space we normally used for the Vive trackers,
we connected it a little lower on the robot, which placed it
on Kaa’s fifth joint. This meant that due to gravity the Vive
tracker would rotate at the edges of the joint trajectory, this
unanticipated rotation led to the estimation scheme used for
the Vive tracker to report an angle that was less then the
actual angle. This manifests as the offset between the 2 state
estimation techniques.

D. Discussion

The purpose of performing this research was to prove
feasibility of using camera-based SLAM for configuration
estimation of a soft robot. The overall results we saw were
very promising. Some of the error we see is due to the frame
rate of the cameras and implementation for ORB-SLAM?2.
Using this method with more efficient SLAM software and
cameras with a faster frame rate, we believe we could
reduce the error further. Additionally, implementing these
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measurements in conjunction with IMU measurements and
a dynamic model for an estimation scheme would likely
improve dynamic performance of the joint angle estimation.
The most apparent weakness that we saw in our testing is the
difficulty of mounting and calibrating sensors with respect to
a deformable body. Because of this difficulty at the edges of
our tested actuation, we saw discrepencies in our estimation.
We elected to keep this data in in order to demonstrate
this difficulty. Despite these weaknesses our final tests show
that our SLAM-based algorithm can be used to accurately
estimate joint configuration at a rate that can be used for
online control of a soft robot.

One limitation of visual SLAM is that it requires sufficient
visual features to generate accurate orientation measure-
ments. This means that in environments without sufficient
features to track, we would need to either track 3D features,
or to augment the data from SLAM with traditional orienta-
tion sensors that can give data at a higher rate, but tend to
drift or be less accurate (e.g. IMUs, see [16]). However, our
results show that for a normal indoor environment (our lab)
SLAM works well.

VI. CONCLUSION

We have demonstrated that RGB-D cameras can be used
with SLAM-based localization to estimate soft robot con-
figuration. In this paper we have raised many interesting
questions that remain open (e.g. how to mount a rigid sensor
to a soft robot and how to calibrate a sensor relative to the
soft robot body once mounted). Without the initial evidence
of feasibility in this paper, pursuing these questions and
solutions further would have been unreasonable. However,
given our results, we fully expect that continued research
should be pursued that includes integrating cameras into soft
robot fabrication and design as part of a larger effort to
solve the soft robot estimation problem and enable real-world
applications.
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