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This paper presentsmethods for placing length sensors on a soft continuum robot joint as

well as a novel configuration estimation method that drastically minimizes configuration

estimation error. The methods utilized for placing sensors along the length of the joint

include a single joint length sensor, sensors lined end-to-end, sensors that overlap

according to a heuristic, and sensors that are placed by an optimization that we describe

in this paper. The methods of configuration estimation include directly relating sensor

length to a segment of the joint’s angle, using an equal weighting of overlapping sensors

that cover a joint segment, and using a weighted linear combination of all sensors on the

continuum joint. The weights for the linear combination method are determined using

robust linear regression. Using a kinematic simulation we show that placing three or

more overlapping sensors and estimating the configuration with a linear combination of

sensors resulted in a median error of 0.026% of the max range of motion or less. This is

over a 500 times improvement as compared to using a single sensor to estimate the joint

configuration. This error was computed across 80 simulated robots of different lengths

and ranges of motion. We also found that the fully optimized sensor placement performed

only marginally better than the placement of sensors according to the heuristic. This

suggests that the use of a linear combination of sensors, with weights found using

linear regression is more important than the placement of the overlapping sensors.

Further, using the heuristic significantly simplifies the application of these techniques

when designing for hardware.

Keywords: estimation, optimization, continuum joints, soft robotics, proprioception

1. INTRODUCTION

Continuum joints are becoming a common style of robotic joint, especially in the world of soft
robotics. These joints bend continuously along their length and offer the ability to form complicated
shapes, operate in cluttered environments, and can be compliant which increases the inherent safety
of the robot.
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While being able to form complicated shapes and easily
deform is one of continuum joints biggest strengths, it is
also one of the attributes that make them the hardest to use
in practice. Current approaches for sensing the configuration
of continuum robots include many different methods such
as motion capture, optical sensors, and length sensors (see
section 1.1 for a review of many of the methods used
for sensing continuum joint’s state). Many of these state-of-
the-art methods operate under assumptions that limit their
ability to estimate the full kinematic position of a continuum
joint in non-laboratory settings, (e.g., settings where the
joint undergoes actual loads during a useful task that cause
unanticipated bending). In this work we focus on methods
that use measurements of the length of a continuum joint to
estimate the configuration of the joint. Many of the previous
methods in the literature assume that the bending of the joint
is constant curvature. This assumption readily breaks down as
soon as any actual loads are applied to the joint. Of particular
note, is when the robot is in the s-shape bending as shown in
Figure 1 (see proximal joint). For any method using a single
length measurement and a constant curvature assumption, the
measurement in this scenario will result in an estimate of
zero deflection.

The most accurate way to sense the full configuration of a
continuum joint using length sensors, would be to divide the joint
into infinitesimal segments and have each of those segments be
monitored by length sensors. For every sensor that is added to
the joint, the constant curvature assumption can be applied to
that smaller segment. By having every segment covered by its own
sensor the full configuration could be reconstructed by treating
those segments as pieces of a kinematic chain.

This method is not feasible for a real system due to
mechanical, electrical, and computational limits. However, it
does suggest that it may be possible to increase the number of
sensors to get more accurate pose estimation of a continuum
joint while still remaining within the mechanical, electrical, and
computational constraints of a real system.

However, if sensors are simply placed end to end along the
joint, estimation will still be limited to the maximum number
of sensors that will be allowed by the physical constraints of
the system. Our hypothesis was that by using measurements
from sensors that have overlapping coverage of the same discrete
joint segments, whether literal discrete segments like the robot
shown in Figure 1, or representative segments of a soft robot, a
more accurate estimate can be accomplished. In this paper, we
show that by overlapping sensors on the joint, more information
can be gained without the cost of adding a sensor for every
representative segment.

We propose and demonstrate two new methods of estimating
the configuration of a continuum joint using measurements
from overlapping length sensors. The first method averages the
per segment length of the sensors for each sensor monitoring
a segment, we call this the Equally-Weighted Averaging
Method (E-WAM). The second method estimates the segment
configuration by using a linear combination of the per segment
lengths of all the sensors on the continuum joint, we call this the
Weighted AveragingMethod (WAM). The weights for theWAM

method are found by performing a linear regression as discussed
in section 2.5.

To determine the placement of the overlapping sensors,
we developed a heuristic placement method as well as an
Evolutionary Algorithm (EA) that determines optimal sensor
placement for a joint. We compare the results of these two
placement methods in this paper.

The primary contributions of this paper are:

1. The novel concept of overlapping length sensors to
improve the estimation of a continuum joint’s state.

2. WAM: A method for using overlapping sensors to
significantly improve continuum joint estimation
resulting in an estimate that reduces error by a factor
of eleven when using two sensors on a joint rather
than using a single sensor.

3. Two methods for determining the placement of
overlapping length sensors on a continuum joint, and
an objective comparison of their performance.

All of the methods and theory that we develop in this paper
are based purely on kinematics and static loading conditions.
We confirm and demonstrate our contributions using a Piece-
Wise Constant Curvature continuum joint kinematic simulation.
Future work would include implementing this on actual
hardware and in dynamic environments.

The remainder of this paper is organized as follows, section
1.1 discusses related literature on sensor design and estimation
for continuum actuators, as well as methods for determining
optimal sensor placement. Section 2 discusses the assumptions
we used and develops the models, theory, and algorithms for
our estimation methods. Section 3 presents the results of the
estimations methods and section 4 discusses the results and
possible applications for future work.

1.1. Related Work
The focus of this paper is estimation for a discrete-segment
continuum joint. Although there are many types of soft robot
joints [including discrete segments (Hannan and Walker, 2003),
compliant continuum joints with discrete rigid components
(Rone and Ben-tzvi, 2013), and fully soft-bodied robots
(Marchese et al., 2014)], we have chosen to develop our
methods for discrete segments because (1) it matches our actual
development hardware, and (2) most soft robot joints could
be represented to varying degrees of fidelity by a discrete-
segment model where the kinematics are approximated with a
series of representative constant curvature segments, regardless
of actual construction.

Related literature can be divided into two main areas: (1) soft
robot configuration estimation; (2) soft robot sensor placement.

1.1.1. Soft Robot Configuration Estimation
Of the two areas covered in this paper, by far the most literature
exists relative to novel sensors for soft robot configuration
estimation. We therefore describe prior work that uses different
methods of construction or physical phenomenon to estimate
soft robot configuration. We also describe methods used to
estimate the actual bend angle or pose.
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FIGURE 1 | A compliant continuum robot exhibiting non-constant curvature bending in its joints (especially in the first joint) when under load while performing a

real-world task.

A significant amount of the research in soft robot
configuration estimation has required using motion capture
systems with infrared cameras and reflective tracking dots
(Marchese et al., 2014; Katzschmann et al., 2019), electro-
magnetic field detectors (Song et al., 2015; Anderson et al., 2017;
Gerboni et al., 2017), or virtual reality tracking hardware (Hyatt
et al., 2019). However, using this type of sensor constrains the
mobility of the soft robot to operate solely within the range of
the motion capture system.

Resistance-based sensing is often used with conductive
material or fabrics that are assembled in a way such that the
resistance of a circuit varies as the bend angle of the robot
changes. Examples use methods ranging from commercial flex
sensors (Ozel et al., 2016), to conductive thread (Cianchetti et al.,
2012; Zhao and Abbas, 2016; Abbas and Zhao, 2017), or yarn
(Wurdemann et al., 2015), to conductive silicone that is cut using
principles from kirigami (Truby et al., 2020). There are multiple
examples of this approach (see Gibbs and Asada, 2005; She et al.,
2015; Elgeneidy et al., 2016, 2018; Yuen et al., 2017; Zhou et al.,
2020).

Many papers have focused on using optical methods that tend
to revolve around novel combinations or topologies for Fiber
Bragg Grating (FBG) sensors (see Wang et al., 2016; Zhuang
et al., 2018; He et al., 2019; Sheng et al., 2019). However, other
related methods focus on the basic idea of using optical fibers
in general (see Yuan et al., 2011; Chen et al., 2019; Godaba
et al., 2020). Using optical frequency domain reflectometry

combined with added optical gratings the authors in Monet et al.
(2020) were able to show that they could improve configuration
estimation when in contact or with non-constant curvature for
medical applications.

Some methods have relied on photo diodes (Dobrzynski
et al., 2011), or combined the strength of traditional camera or
ultrasound images in conjunction with optical fibers (see Denasi
et al., 2018; Wang et al., 2020). Other researchers used camera-
basedmethods directly to detect contact, or estimate deformation
for a deformable link, but with rigid joints (Oliveira et al., 2020).

Other physical phenomenon used include capacitance (Yuen
et al., 2017, 2018; Bilodeau et al., 2018; Case et al., 2018),
inductance (Felt et al., 2016, 2018, 2019), magnetism (Ozel
et al., 2016), impedance (Avery et al., 2019), or a combination
of gyroscope, accelerometer, and magnetometer in an inertial
measurement unit (IMU) package (Hyatt et al., 2019).

Similar to our efforts to include multiple sensors to improve
configuration estimation, there are some researchers who have
used overlapping sensors to improve performance. Specifically, Li
et al. (2020) used a dual array FBG scheme to improve estimation
accuracy. While Felt et al. (2019) used two circuits and measured
change in inductance to improve estimation of lateral motion for
a continuum joint.

As near as we can tell, all of the previous sensors and
estimation methods (minus those that give a global pose such
as motion capture) seem to focus on estimating curvature or
linear motion only, which does not account for deformation that
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we would expect when these platforms are heavily loaded. Some
methods enable detection of contact, but this is used as a way
to relate discrepancies in curvature to a contact event, rather
than using the loading condition to more accurately estimate the
joint configuration with a non-constant curvature assumption.
However, there is some literature where the configuration
of flexible members experiencing a point load is estimated
using accurate Kirchoff or Cosserat rod models and additional
sensor information (such as cameras or force-torque data). In
Rucker and Webster (2011) they use an Extended Kalman Filter
in conjunction with a Cosserat rod model which requires a
measurement of the tip pose and applied forces. While in Borum
et al. (2014) the authors use external cameras to help solve for
the configuration of a flexible member that can have multiple
equilibrium positions (due to bifurcation) by formulating the
problem as a geometric optimal control solution. This solution
includes estimates for the forces and torques applied at the tip
to cause the deformation. In both cases, the deformation was
restricted to being planar and was caused by an external force
at the tip, rather than being included as part of a potentially
self-contained soft robot control scheme.

In Trivedi and Rahn (2009) and Trivedi and Rahn (2014),
the authors solve for the configuration of the OctArm robot
platform with unknown payloads using Cosserat rod models and
three different sensing methods (e.g., force-torque sensors and an
inclinometer at the base, multiple cable encoders, and multiple
inclinometers along the manipulator) to constrain and solve
initial value or ODE problems with given boundary conditions.
The method was effective, but required varying levels of accurate
knowledge about soft robot parameters depending on the sensing
method used and was again restricted to planar applications
(although not due to limits in formulation). In addition, this
formulation would require additional sensors across the arm if
a distributed load were applied (not at the tip or end effector).
Similar work uses Cosserat rod models (Sadati et al., 2020) or
Kirchoff elastic rod models (Takano et al., 2017; Nakagawa and
Mochiyama, 2018) combined with force sensing at the base of the
flexible member in order to estimate soft robot configuration or
interaction forces and stiffnesses.

These model-based methods hold great promise and could
likely be incorporated with our model-free method. However,
additional benefits of our method are that even without a
complex soft-body model, it performs quite well and is able to
handle loading conditions that are not limited to the tip of the
flexible member. Any additional information derived from an
accurate model within an estimation scheme such as a Kalman
filter would likely improve the results shown in this paper.

Finally, using differentmodalities, many researchers have used
neural networks to map sensor output to joint configuration for
optical sensors (Sklar et al., 2016), FBG sensors plus ultrasound
images (Denasi et al., 2018), pressure readings (You et al., 2017),
tactile arrays (Scimeca et al., 2019), or linear potentiometers
(Melingui et al., 2014; Merzouki et al., 2014; Day, 2018). In Lun
et al. (2019) they develop a flexible sensor using fiber Bragg
gratings that when combined with a learned model can be used
to accurately reconstruct the surface of a soft robot, but this is not
applied specifically to a soft robot.Many of thesemethods learned

a mapping to estimate full pose for the tip of one, or sometimes
multiple joints. However, one of the main limitations is that there
is no relation or intuition between the data and the black box
model that is produced. Also, if the manipulator were to carry
a larger load, additional data with the load in place would likely
need to be collected, especially if the joint deformed in a way that
violated constant curvature assumptions. Information about the
load (e.g., overall mass and distribution of mass) may also have
to be included in the training data to make the approach general.
Because our approach is based on fitting parameters to shapes
that are caused by many different loading conditions, we expect
this approach to potentially generalize more easily.

1.1.2. Sensor Placement
The general problem of sensor placement (number of sensors
and relative positioning) is often approached using a metric of
observability in order to improve estimator design (see Krener
and Ide, 2009; DeVries and Paley, 2013; Qi et al., 2015). However,
observability may not always be the best metric and sensor
placement based on simple models and heuristics is an open
research problem (Clark et al., 2020).

For our specific contributions, we focus on sensor placement
in the context of soft robot configuration estimation. Some
researchers have followed the previously mentioned approach of
relating soft robot sensor placement to observability (Mahoney
et al., 2016). In this case they use a differential representation of
the continuum robot’s kinematic equations. However, the robot is
a concentric tube robot which appears to be unloaded, in contrast
to the work we present. In Tapia et al. (2020), they require
hyperelastic material models and finite element discretizations to
simulate nonlinear behavior of a given soft robot with expected
loading. This is similar to our method with two main differences.
Our loading and deformation models are much simpler and
the proposed optimization in that paper requires the sensors
to be integrated with the actual fabrication of the soft robot,
unlike ours which can be added after the fact and only needs
to measure length. Other relevant work includes Deutschmann
et al. (2019), where the authors optimize the attachment points
for length sensors to estimate the pose of a 6-DoF continuum-
joint robot head. This required a beam finite element model
with a fixed load (the robot head) and the data was fused
with IMU. Finally, in Kim et al. (2014) they use FBG sensors
and an optimization with a similar notion to our weighted
reconstruction, using their own set of basis functions. However,
the type of optimization presented does not necessarily translate
to overlapping sensors (which we have found to be very beneficial
in the results presented in this paper).

2. MATERIALS AND METHODS

In this section we describe the methods used to develop
the simulated continuum robot configuration, estimate the
continuum robot configuration from the attached sensors, and
develop the evolutionary algorithm used to find the optimal
sensor placement along the continuum robot joint.
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FIGURE 2 | The parametrization variables used to describe a constant curvature continuum segment in our work. Developed by Allen et al. (2020).

2.1. Continuum Joint Configuration
For a general continuum joint there are three degrees of freedom,
bending about two orthogonal axes and extension along an axis
orthogonal to the two bending axes. As long as one bending
degree of freedom exists, in which the center of rotation stays
constant for the bending range, the joint can be considered a
continuum joint.

In our work, we focus on continuum joints that have a
fixed length/height and two bending degrees of freedom. The
continuum joint hardware shown in Figure 1, is used as the basis
for models in this paper, is made up of bending segments of a
fixed height. We assume that these segments bend with piece-
wise constant curvature. The theory is that the curvature change
in one segment is small enough that it can be assumed to have
constant curvature. It should be noted that themethods discussed
in this paper can be adapted for joints that are not actually made
of smaller constant curvature segments by splitting the joint into
virtual segments.

Due to our fixed length assumption as the joint bends there
exists a neutral axis or spine at the center of the joint that does not
change lengths. This is represented by the black line in Figure 2.

We use the u, v, and h states developed by Allen
et al. (2020) to describe the configuration space and pose
of a single continuum joint segment under the constant
curvature assumption (displayed graphically in Figure 2).
This parameterization is based on Screw Theory. The full
configuration of the continuum joint is described by the u, v,
and h parameters of the series of smaller segments that make
up the joint. The parameter u describes bending about the local
x-axis and v describes bending about the local y-axis for each
segment. The variable h is the length of the neutral axis which we
keep constant for the purposes of this paper. According to Allen
et al., the arc angle, φ, is equal to the magnitude of the rotation
axis, w = [u, v, 0].

2.2. Sensor Arrangement
As stated previously, for this application we are simulating
sensors that measure the change in length of the joint as it
undergoes bending. By using constant curvature assumptions we
can calculate the pose from the sensors length measurements as
will be described in section 2.3.
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FIGURE 3 | A cross-sectional illustration of the sensor locations at 0◦ and

−90◦ on the circumference of the joint.

The continuum joint has two sets of sensors that run the
length of the joint and start at the base at 0 and −90◦ on the
circumference of the joint as shown in Figure 3. These locations
allow each set of sensors to independently measure the two
degrees of freedom (u and v) as the mounting points correspond
to the directions of the bending axis. Thus, bending about each
axis will only be measured by a single set of sensors.

Each set of sensors in our simulations contain between one
and six sensors which are aligned such that they are parallel to the
neutral axis of the continuum joint in the unbent configuration.
Additionally we modeled each joint using 12–48 segments of
equal length. The sensors were placed such that they cover a
series of consecutive segments. This series can be a minimum
of one segment or a maximum of the total number of segments
representing the joint. An example of a set of three sensors is
shown in Figure 4.

For a sensor configuration to be considered for our simulated
experiments, each segment must be covered by a minimum of
one sensor. For the joints simulated in this paper, both degrees
of freedom had identical sensor placements although this is not
a requirement for successful configuration estimation of a two
degree of freedom continuum joint.

2.3. Pose Estimation
As mentioned in sections 2.1 and 2.2, the bending section of the
continuum joint is divided into smaller segments that are small
enough that we can assume constant curvature. Additionally each
of these segments is covered by at least one length sensor located
at a fixed distance away from the neutral axis.

The work developed by Allen et al. (2020) also describes how
to estimate the angle of bending for a continuum joint with

constant curvature that ismonitored by a length sensor.We apply
this method to our discrete sections by using Equations (1) and
(2) which convert the length of a tendon, l, located at a fixed
radius from the neutral axis of the joint to a joint angle, u or v,
given the height of the segment, h.

u =
ltendon at 0◦ − h

radius
(1)

v =
−h+ ltendon at −90◦

radius
(2)

As defined in Allen et al. (2020)w is defined as [u, v, 0] and whose
magnitude equals φ. Therefore, φ represents the total magnitude
of the deflection angle as shown in Equation (3)

φ =
√

u2 + v2 (3)

The full homogeneous transformation matrix for the uvh
parametrization is described in Allen et al. (2020). We use this to
compute the position of the end of each link along the kinematic
chain of segments that makes up the complete pose of the
bending section of the continuum joint.

This approach is used for each estimation method described
in section 2.5. Although each sensor covers several constant
curvature segments, these segments may not have the same
curvature. Thus at least some error is introduced. The tendon
length l of a segment is calculated by dividing the full sensor
by the number of segments that it covers. This tendon length is
referred to as a “virtual tendon length.”

Given every segment’s angle of deflection the length of a
simulated sensor is calculated by summing the “virtual tendon
lengths” for each segment that the sensor covers. The “virtual
tendon lengths” are calculated by solving for the respective l
found in Equations (1) and (2).

2.4. Loading Conditions
Since the motivation of this paper is to improve the estimation of
continuum joint poses under real-world loading conditions, we
examine four loading conditions that encapsulate the majority of
situations experienced by a cantilevered continuum joint with a
fixed mounting. The loading conditions are listed as follows:

• End Force Load: This loading condition simulates contact at
the end of the joint (Figure 5A).

• Uniformly Distributed Load: This loading condition
simulates joint deflection due to gravity (Figure 5B).

• End Force Load with a Moment: This loading condition
simulates a load at the end of the joint with a torque created
by the joints actuators resulting in an s shape (Figure 5C).

• Constant Curvature: While not explicitly a loading condition,
this represents the joint being actuated such that all segments
reach their maximum range of motion (ROM).

We treat the continuum joint as a cantilevered beam and apply
each of the given loading conditions. The Finite Element Analysis
(FEA) program ANSYS was used to simulate the resulting
deformation of the modeled beam.
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FIGURE 4 | An illustration of showing three possible bending states of a continuum joint, the segment indexing used in this paper, and a possible sensor configuration.
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FIGURE 5 | (A) End force load, (B) uniformly distributed load, (C) beam with one end fixed and the other end guided. L is the arc length of the full joint, F is an end

load amount, w is a distributed load, and M0 is a moment.
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We use Beam 188 elements which were divided into m ∗ 3
elements, where m is the number of the constant curvature
segments in the joint. For each loading condition the load and/or
moment was incrementally increased until the desired deflection
of the first segment was reached.

It is important to note that we used the FEA solution for all of
the loading except for the constant curvature case as the angles of
deflection for each segment are all the same and thus known.

We then adapt these nonconstant curvature simulations to
our actual Piecewise Constant Curvature (PCC) jointmodel. This
is done by recording the total deflections from the FEA model
at the beginning and end of each segment. Then the difference
between the deflection at the beginning of a segment and the
end of the segment is calculated. This difference is then set as the
bending angle for that Constant Curvature segment as shown in
Equation (4).

φi = θi+1 − θi ∀ i = 1, . . . ,m (4)

Figure 6 demonstrates a continuum joint undergoing a force load
and the deflection angles, θi that can be used to calculate the
relevant joint angles φi

Due to the computational demands of the finite element
analysis (FEA), we found solutions for a specific set of joint
deflections. This was performed for every loading condition
where the first segment was set to the maximum ROM which
was incremented from −8 to +8◦ in increments of 1

8

◦
. For any

modeled deflections that were between the original FEA solutions
a linear interpolation was used. Using this method, a maximum
per segment error bound of 0.0285◦ was calculated for the linear
interpolation. This was calculated using the worst case scenario
(maximum difference between two points used for interpolation)
in terms of error. Specifically, the error bound was found by
summing the difference between joint angle FEA solutions used
for interpolation and then dividing by the number of segments.
We did not need to use the interpolation method for the constant
curvature loading case as each segment’s angle would be the
maximum ROM.

2.5. Estimation Methods
In this section we describe the estimation methods used in the
simulated experiments. We experimented with simulating four
different sensor configurations for gathering state data and used
two different methods for state estimation.

2.5.1. Sensor Configurations
When describing the configuration of sensors along the length of
a continuum joint, we use a pair of two numbers inside square
brackets to represent the sensor’s starting segment and ending
segment as such [starting segment–ending segment]. Figure 4
shows the indexing of the joint segments on this 12 segment
continuum joint. The segment numbering is started at the most
proximal segment which is labeled segment 0 and the rest of the
segments are incrementally labeled until the last segment. Using
our method of describing a sensor configuration on a joint, the
red sensor is [0–11], the blue sensor is [1–3], and the green sensor
is [6–8].

2.5.1.1. Single Sensor
The Single Sensor configuration, henceforth abbreviated as SS,
involves using a single sensor that spans the entire length of a
joint, to measure the overall joint angle of a continuum joint.
This method relies on the assumption of constant curvature
along the entire length of the joint for state estimation. This
method represents the bare minimum amount of sensing
that a continuum joint can have for state estimation with
length sensors.

2.5.1.2. End-to-End
The End-to-End Sensor configuration, henceforth abbreviated as
EE, involves multiple sensors that are placed along the length of
the joint with every segment covered and no overlap. Themethod
for algorithmically determining the sensor placement involves
dividing the number of segments by the number of sensors and
rounding down. That is the default number of segments each
sensor will cover. If there is a remainder from dividing the
number of segments by the number of sensors, that remainder
is evenly distributed among the sensors closest to the distal end
of the joint. For example, a 12 segment joint with five sensors
would have sensors that cover the following segments [0–1],
[2–3], [4–5], [6–8], and [9–11].

2.5.1.3. Heuristic Overlap
The Heuristic Overlap configuration, henceforth abbreviated as
HO, involves multiple sensors aligned in a regular pattern along
the joint, with each sensor overlapping with its neighboring
sensors for two segments. The sensor placement is determined
by first finding the EE sensor configuration and expanding each
sensor’s starting and ending index by one segment. Note, sensors
that cover the first or last segment on the joint are not expanded
past the ends of the joint. For example, a 12 segment joint with
five sensors would have sensors that cover the following segments
[0–2], [1–4], [3–6], [5–9], and [8–11].

2.5.1.4. Optimized Overlap
The Optimized Overlap configuration, henceforth abbreviated
as OO, is a sensor configuration that is determined by
an evolutionary algorithm we developed. The evolutionary
algorithm is described in section 2.6. This configuration
represents the best possible sensor configuration for a given
number of sensors.

2.5.2. State Estimation Methods
For each estimation method, we estimate the angle of deflection
for each individual segment of the continuum joint which
then allows for the estimation of the full configuration of the
joint. This is accomplished by estimating the length that a
single sensor would be if it was monitoring just that individual
segment, henceforth known as the“virtual sensor length.” We
have developed three methods for performing this estimation.

2.5.2.1. DEM (Direct Estimation Method)
For sensor configurations that have no overlap, we estimate the
virtual sensor length of a segment by simply dividing the length
of the sensor covering it by the number of segments that sensor
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FIGURE 6 | Illustration of the method used for adapting a continuous bending model to a Piece-wise Constant Curvature model.

covers. This method assumes that all of the segments covered by
a sensor have the same angle of deflection.

2.5.2.2. E-WAM (Equally-Weighted Averaging Method)
For sensor configurations that have overlap, we have two
methods of estimating the virtual sensor length of a joint
segment, the first of which we call E-WAM. The E-WAMmethod
takes the per segment lengths of all the sensors covering a
segment and averages them to estimate the length of the virtual
sensor for that segment.

2.5.2.3. WAM (Weighted Averaging Method)
The second method for estimating the virtual sensor length, lest ,
of a joint segment on a robot that has overlapping sensors is
WAM. This method uses a weighted linear combination of all of
the sensors on the robot to find the virtual sensor length for each
segment, the hypothesis being that the sensors that do not cover
the segment still provide additional information about its state.
Each segment has a separate weight for each sensor on the joint
as shown in Equation (5).

lest,i =

n
∑

j=0

wi,j ∗
lj

pj
(5)

where i is the ith segment, n is the number of sensors on a joint,
wi,j is the weighting on the ith segment for the jth sensor, lj is the
full length of the jth sensor, and pj is the number of segments the
jth sensor spans.

We find these weights by applying the robust linear regression
algorithm from Scipy (Virtanen et al., 2020) to deflection angle
data we simulated from the continuum joint under 30 different
loading samples (s) for each of the 4 loading conditions (c) for
a total of 120 data points per joint segment. The 30 different
loading samples are calculated by varying the ROM used in the
loading conditions as describe in the following equation.

ROMloading,i = −ROMmax + i
2ROMmax

s
∀ i = 1, . . . , s (6)

We use the scipy least_squares function with the loss condition
set to “soft_l1” and the “f_scale” condition set to 0.1. Our residuals
function can be seen in Equation (7) where S is the matrix of
collected sensor data, wi is a vector of the weights for which
we are solving, and li is the length of a virtual sensor covering
that segment.

residual = Sw− li (7)

Matrix S takes the form shown in Equation (8). Each row is made
up of the sensor values from one of the simulated loading cases.
The sensor data in the matrix is normalized and denoted as s̄,

where s̄j =
lj
pj
.

S =











s̄1,case 1 s̄2,case 1 . . . s̄n,case 1
s̄1,case 2 s̄2,case 2 . . . s̄n,case 2

...
...

. . .
...

s̄1,case m s̄2,case m . . . s̄n,case m











(8)

Vector wi takes the form shown in Equation (9).

wi =











wi,sensor 1

wi,sensor 2

...
wi,sensor n











(9)

Vector li takes the form seen in Equation (10).

li =











li,case 1
li,case 2

...
li,case m











(10)

2.6. Evolutionary Algorithm
To find the optimal sensor placement on a continuum joint, we
implemented an Evolutionary Algorithm (EA) from the DEAP
(Distributed Evolutionary Algorithms in Python) Library (Fortin
et al., 2012).
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The goal of our algorithm is to find the optimized sensor
placement for a given continuum joint with a fixed number of
sensors. Prior to running the EA, we define the continuum joint
on which we will be optimizing the sensor placement by setting
the total length of the joint, the number of segments, and the total
range of motion of the continuum joint.

The EA itself is the eaSimple function from the DEAP library,
which handles iterating over the specified number of generations,
selection,mating andmutationwith built-in options or the ability
to define your own functions. We chose to do 10 generations
and discuss our choices for selection, mating, and mutation in
section 2.6.4.

2.6.1. Defining an Individual
To represent an individual we used a list of integers with a length
of two times the number of sensors. For example, a continuum
joint with 12 segments and two sensors could be represented as
[0, 7, 4, 11]. In this list, each sensor is represented by a pair of
numbers. The first two numbers represent the starting segment
index of the first sensor and the ending segment index of the
first sensor. The second two numbers represent the starting and
ending index of the second sensor. For a given sensor number i,
the starting index is 2i and the ending index is 2i+1. If the ending
index is lower than the starting index, they are automatically
swapped to be in the correct order by our algorithm. The sensors
cover the full segments of both the starting and ending segment.
In other words the sensor starts on the bottom of the starting
segment and ends at the top of the end segment.

2.6.2. Creating the Population
To create the population, we create 500 individuals each with an
attribute list that is two times the number of sensors long with
random integers generated at every index of the attribute list.

We experimented with seeding the population with
individuals that have sensors lined up end to end or start
with a Heuristic overlap but found no noticeable improvement
in the EA’s performance.

2.6.3. Evaluating the Fitness
To evaluate the fitness of an individual we use a cost function
that sums the deflection angle error of all m joint segments, for
all s loading samples of a loading conditions, for all c loading
conditions giving us the cost function seen in Equation (11). Our
goal is to minimize the cost of an individual.

cost =

c
∑

i

s
∑

j

m
∑

k

(|φactual,i,j,k − φestimated,i,j,k|) (11)

Additionally, when evaluating an individual, we first determine
whether or not a sensor configuration is a valid configuration.
For our purposes, valid means that each segment on the joint
is observable i.e., covered by at least one sensor. If this criteria
is not met, the individual’s fitness score is set to the maximum
which is themaximum joint error possible [(2×ROM) multiplied
by c, s, and m]. Intuitively, this means that the estimation was
off by the maximum possible amount for each segment in each
loading simulated.

We also experimented with including the Cartesian position
and orientation of the end effector of the joint in the fitness
score. However, due to its direct correlation with the individual
deflection angles we found that this did not improve overall
performance for the optimization.

2.6.4. Selection, Mating, and Mutation
Selection is performed though a tournament
selection process as provided by the DEAP library,
deap.tools.selTournament(individuals, k, tournsize,
fit_attr=“fitness”), where the method is passed a list of individuals
(individuals) and the size of the tournament (tournsize).

The mating is performed by using a one point
crossover algorithm provided by the DEAP library,
deap.tools.cxOnePoint(ind1, ind2), where “ind1” and “ind2” are
two individuals that are to be mated. The algorithm randomly
chooses a place for crossover to happen. Crossover then occurs
by swapping the elements between the two individuals that are
right of the selected element. This method cannot choose the
last element so there will always be some crossover. We set the
crossover probability to 0.7.

Mutation occurs using the method
deap.tools.mutUniformInt(individual, low, up, indpb) found
in the DEAP library where “individual” is the individual to
be mutated, “low” and “up” are the lower and upper bound,
respectively, that an attribute can be set to, and “indpb” is the
independent probability that each element of the attribute will be
mutated. Therefore, if an individual is selected for mutation each
element of the individual’s attribute (the sensor list) has a chance
to randomly mutate to a value in the closed set [“low”, “up”]
based on a uniform distribution. We set the mutation probability
to 0.5

2.7. Experiments
We had four hypotheses that we tested and analyzed for general
trends.

1. Increasing the number of sensors on a joint for a given
placement method and estimation method will improve the
accuracy of the state estimation.

2. Overlapping the sensors can provide more information about
the configuration of the joint and will therefore improve
configuration estimation for continuum joints.

3. Using a weighted linear combination of the overlapping sensor
data can decrease the state variable estimation as compared
to an equally weighted linear combination. Additionally, the
weights can be found using linear regression.

4. An evolutionary algorithm can be used to determine the
optimal placement of overlapping sensors that will further
improve state estimation for continuum joints.

To prove generality of our solutions and to test the hypotheses
being proposed, we generated 80 different joints by varying the
number of segments and the max ROM per segment. We varied
the two variables as shown in Table 1 to generate the 80 different
joints. From here on in this paper, when we mention ROM, we
are referring to the range of motion of the segment, not of the
whole joint, unless explicitly stated otherwise.
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For each of the hypotheses presented above, we perform
simulated experiments that compare the performance of a sensor
placement or state estimation method on all 80 joints. We
compare the performance of themethods by simulating the joints
in 40 different poses and comparing the aggregate error of the
joint segments angle error (our cost function) normalized for
number of segments m, max ROM, loading conditions c, and
loading samples, s. The 40 different poses come from the 4
different loading cases (c = 4) and ten sample poses (s = 10).
We then multiply by 100 to get the average joint segment angle
error as a percent of ROM for a given joint (see Equation 12).

Average% Error of ROM =
cost

c · s ·m · ROMmax
(12)

With the exception of the base case of a single sensor, we
performed all of our simulated experiments with two, three,
four, five, and six sensors to study how the results change as
more sensors are added. For the first hypothesis, we compare
the average percent error of ROM when using the DEM on the
simulated joints for the SS placement and two to six sensors in

TABLE 1 | The different continuum joint parameters and their values that were

simulated.

Parameters Values

Number of segments 12, 16, 20, 24, 28, 32, 36, 40, 44, 48

Max ROM per segment (degrees) ±1, ±2, ±3, ±4, ±5, ±6, ±7, ±8

the EE placement. For the second hypothesis we study the effects
of overlap by comparing the results of the EE placement method
with the DEM estimation method vs. the HO placement method
with the E-WAM estimation method. The third hypothesis tests

TABLE 2 | Average segment error as a percent of the range of motion, normalized

over all of the deflection modes used for evaluation of performance.

# Sensors 1 2 3 4 5 6

SS, DEM

Median 16.71 – – – – –

3rd Quart. 16.92 – – – – –

1st Quart. 16.16 – – – – –

EE, DEM

Median – 8.309 5.423 4.033 3.178 2.634

3rd Quart. – 8.321 5.465 4.077 3.212 2.672

1st Quart. – 8.281 5.305 3.931 3.105 2.592

HO, E-WAM

Median – 7.561 4.504 3.090 2.342 1.914

3rd Quart. – 7.735 4.720 3.230 2.538 1.993

1st Quart. – 7.277 4.280 2.878 2.257 1.784

HO, WAM

Median – 1.552 0.262 0.0915 0.0434 0.0366

3rd Quart. – 2.086 0.364 0.112 0.0538 0.0475

1st Quart. – 1.403 0.181 0.0653 0.0289 0.0228

OO, WAM

Median – 1.542 0.238 0.0836 0.0368 0.0315

3rd Quart. – 2.063 0.362 0.106 0.0506 0.0437

1st Quart. – 1.389 0.175 0.0427 0.0220 0.0215

SS, single sensor; EE, end to end; HO, heuristic overlapping; OO, optimized overlapping;

DEM, direct estimation method; E-WAM, non-weighted averaging method; WAM,

weighted averaging method.

FIGURE 7 | This bar graph shows the median results for all of the simulated joints’ “Average % Error of ROM” (defined in Equation 12) of all the joint’s segments.

Quartile bars are included to show the spread of the results.
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our WAM method by comparing the WAM method and the E-
WAMmethod on the joints with HO sensor placement. The final
hypothesis tests our evolutionary algorithm by comparing the
HO and OO sensor placement methods while using the WAM
estimation method. Section 3 presents and discusses the results
of the simulated experiments.

3. RESULTS

This section reports the results of the tests described in section
2.7. To make it easier to compare all of our results, we created
a bar graph that summarizes the tested sensor placement and
estimation methods, shown in Figure 7. We also report the
original data used to generate the bar graph in Table 2.

We have also included a case study to help visually show the
effectiveness of the different estimation methods for the different
loading cases. Figure 8 shows how well different estimation
methods are able to reconstruct the actual configuration of the
joint under the three real-world loading scases.

4. DISCUSSION

The results of these simulated experiments strongly support
our first, second, and third hypotheses. The results also loosely
support our fourth hypothesis. For all of the analyses listed in this
discussion, the data behind Figure 7 can be found in Table 2.

Our first hypothesis, that increasing the number of sensors on
a joint for a given placement and estimationmethod will improve
the accuracy of the state estimation, is somewhat intuitive. As we
can see in Figure 7, as the number of sensors increases, the error,
as a percent of the range of motion, generally decreases. This
hypothesis is most strongly supported by the EE with DEM and
HO with E-WAM state estimation methods. For these methods,
the decrease in error resembles an exponential decay. While
six sensors was the maximum number of sensors we used in
our experiments, we expect the decrease in error for a given
continuum joint to plateau when the number of sensors is greater
than or equal to the number of segments. For example, a twelve
segment joint using EE and DEM with 13 sensors would not
be any more accurate than a joint with twelve sensors given
our assumptions. In the real world, with imperfect sensors, this
may not be true because having two sensors monitoring a single
segment may allow filtering or averaging to get more accurate
information out of the two sensors than a single sensor alone.

While the trend of increasing the number of sensors leading
to a decrease in error is consistent across all the simulated
experiments, we also noticed a steep decline in error for HO and
OO using the WAM method when going from two sensors to
three sensors, with an effective plateau in performance from four
to six sensors. We attribute this plateau to the effectiveness of
the WAM method to accurately estimate the state with a smaller
number of sensors. Four or more sensors seems to add redundant
information to the estimation method resulting in only minor
decreases in error.

Our second hypothesis states that by overlapping length
sensors on a continuum joint, we are able to obtain more

information about its configuration and therefore better estimate
said configuration. Referencing Figure 7 again, we can see that
all cases of HO or OO had lower errors than the EE placement
method for a given number of sensors. This confirms that
overlapping sensors does indeed allow us to more accurately
estimate the configuration of the joint.

We first analyze why there is an improvement from using EE
with DEM to HO with E-WAM. This is performed using the
term “region of estimation,” which refers to groups of segments
on the continuum joint which are estimated to have the same
deflection angle and therefore the same curvature. In a simplified
example, a continuum joint with two sensors with EE placement
only has two distinct regions of estimation, the segments covered
by the first sensor and the segments covered by the second sensor.
A continuum joint with two sensors using the HO placement
has three distinct regions of estimation, the segments covered
exclusively by the first sensor, the segments covered exclusively
by the second sensor and the segments covered by both sensors.
The E-WAM method is essentially the DEM method but it
averages the overlapping sensors that are covering a segment.
This creation of additional estimation regions is what allows the
HO method to have lower error than the EE method, even when
using a simple estimation method such as E-WAM.

Our third hypothesis, which is the main contribution of this
paper, is that a weighted linear combination of overlapping
sensor data can significantly reduce state estimation error when
compared to simpler estimation methods such as E-WAM and
DEM. The reduction in error fromHOwith E-WAM to HOwith
WAM shown in Figures 7, 8 is dramatic. This data is highlighted
in Table 3. We can easily see how overlapping sensors creates
additional regions of estimation with the simple estimation
method E-WAM. The WAM method takes that one step further
by using linear regression to derive unique sensor value weights
for estimating the state of each segment, thus creating a distinct
region of estimation for each segment. This means that each
joint segment can have a unique estimated deflection angle with
minimum of two sensor. To achieve this with E-WAM m − 1
sensors are needed, wherem is the number of constant curvature
segments of the joint. For example, the proximal most segment is
always bent at an angle that is greater than or equal to the bending
angle of the next most proximal segment. This can be expressed
by the WAMmethod when it calculates slightly different weights
for segments zero and one, even though they may be covered by
the same set of sensors.

Furthermore, the WAM method allows for sensors that
are not covering a segment to provide information about the
robot state. By using a linear combination of all the sensor
measurements on the joint, not just the ones covering the
segment, WAM is able to significantly reduce the deflection
angle estimation error as compared to E-WAM. For example,
if the proximal segments have a sensor reading associated
with a negative bending angle and the distal segments have a
sensor reading associated with a positive bending angle, that
information can be captured by the weights of theWAMmethod
to determine that there will be a point of inflection in the
middle of the joint and therefore middle segments will have small
deflection angles in this situation.
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FIGURE 8 | Case study of effectiveness of estimation methods for a single case. Sensors placed using HO. Number of segments = 12, max ROM = 3 deg, and

number of sensors = 3 placed at [0,4,3,8,7,11]. The plots show the following loading conditions: (A) end force load, (B) uniformly distributed load, (C) moment and

end force load. All units in the plots are reported in meters.

TABLE 3 | Table highlighting the difference in median error as a % of ROM between HO with E-WAM and HO with WAM.

Number of sensors 2 3 4 5 6

HO with E-WAM median error as % of ROM 7.561 4.504 3.090 2.342 1.914

HO with WAM median error as % of ROM 1.552 0.261 0.0915 0.0434 0.0366

Decrease in median error as % of ROM 6.009 4.243 2.9985 2.2986 1.8774

The bold values shown in the table highlight the improvements between the two methods being compared.

TABLE 4 | Table highlighting the difference in median error as a % of ROM between HO with WAM and OO with WAM.

Number of sensors 2 3 4 5 6

HO with WAM median error as % of ROM 1.552 0.262 0.0915 0.0434 0.0366

OO with WAM median error as % of ROM 1.542 0.238 0.0836 0.0368 0.0315

Decrease in median error as % of ROM 0.010 0.0240 0.00790 0.0066 0.0051

The bold values shown in the table highlight the improvements between the two methods being compared.

Our final hypothesis was that an evolutionary algorithm could
be used to determine the optimal placement of overlapping
sensors such that state estimation will be further improved than
using WAM with the Heuristic Overlap. This hypothesis is
only loosely supported by the data collected in our simulated
experiments. Since the bars in Figure 7 are so small, the data
comparing HO and OO with WAM are highlighted in Table 4.

There is always a reduction in error when using OO instead of
HO, however that reduction is very small. We mainly attribute
this to the WAM method being able to estimate the shape so
accurately that it is difficult to reduce the error even further using
“optimal” sensor placements. We also believe the HO placement
method already provides a fairly optimal, even coverage of all the
segments on the joint. The largest reduction in error observed
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occurs when using three sensors. We believe the benefits of
OO peak at three sensors because it is when using more than
three sensors with HO there is already excellent coverage of
the segments and when using two sensors there aren’t many
possible configurations so there is only a modest reduction in
error from optimizing.

In conclusion, we have shown that state estimation of a
continuum joint can be significantly improved by using the
WAM estimation method on overlapping sensors which are
placed on the continuum joint according to a simple heuristic.
Using this method with only three sensors yielded a median
joint angle error (as a percentage of the range of motion) of
0.262%. Increasing the number of sensors further reduced the
state estimation error to under 0.1%. We have also shown
that the simple heuristic overlap performs almost as well
as an optimized overlapping arrangement determined by an
evolutionary algorithm with the median error (as a percent range
of motion), being <0.025% for all cases tested.

Some sources of error in this work could come from the shapes
of the joints in the real world not being as ideal as the simulated
ones we used for testing. This would mean that the median
errors determined in this paper would be slightly higher when
implemented on hardware even with ideal sensors. Even with
this introduction of uncertainty, we are confident the reduction
in error seen from using WAM in simulation will translate to
large, real world reductions in error. A simple way to improve the
estimation would be to collect test data from the hardware and

perform linear regression on that data rather than simulated data.
Nonetheless, future work will entail implementing these sensor
placement and configuration estimation methods on hardware
and testing their capabilities for a non-idealized sensor. Given

noise or other possible sources of error introduced by the
hardware, this will be important to prove that the approach is as
effective in the real world as is predicted by these kinematic and
static loading simulations.
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