
Proceedings of Machine Learning Research vol 145:1–40, 2021 2nd Annual Conference on Mathematical and Scientific Machine Learning

Solving Bayesian Inverse Problems via Variational Autoencoders

Hwan Goh HWAN.GOH@GMAIL.COM

Sheroze Sheriffdeen SHEROZE@ODEN.UTEXAS.EDU

Jonathan Wittmer JONATHAN.WITTMER@UTEXAS.EDU

Tan Bui-Thanh TANBUI@ODEN.UTEXAS.EDU

Oden Institute for Computational Engineering and Sciences

The University of Texas at Austin

Austin, TX 78712

Editors: Joan Bruna, Jan S Hesthaven, Lenka Zdeborova

Abstract
In recent years, the field of machine learning has made phenomenal progress in the pursuit of simu-
lating real-world data generation processes. One notable example of such success is the variational
autoencoder (VAE). In this work, with a small shift in perspective, we leverage and adapt VAEs
for a different purpose: uncertainty quantification in scientific inverse problems. We introduce
UQ-VAE: a flexible, adaptive, hybrid data/model-constrained framework for training neural net-
works capable of rapid modelling of the posterior distribution representing the unknown parameter
of interest. Specifically, from divergence-based variational inference, our framework is derived
such that most of the information usually present in scientific inverse problems is fully utilized in
the training procedure. Additionally, this framework includes an adjustable hyperparameter that
allows selection of the notion of distance between the posterior model and the target distribution.
This introduces more flexibility in controlling how optimization directs the learning of the posterior
model. Further, this framework possesses an inherent adaptive optimization property that emerges
through the learning of the posterior uncertainty. Numerical results for an elliptic PDE-constrained
Bayesian inverse problem are provided to verify the proposed framework.
Keywords: Machine Learning, Uncertainty Quantification, Bayesian Inverse Problems, Variational
Autoencoders

1. Introduction

The challenge of generative modelling is often approached through optimization of a parameter-
ized likelihood function p✓(x) to learn the optimal parameters ✓. Latent variable models augment
this likelihood function using an unobservable latent variable in hopes that one can also learn use-
ful latent representations that facilitate reconstruction and generation of high-dimensional distribu-
tions. Variational autoencoders (VAE) were introduced in Kingma and Welling (2013) to train a
generating function that maps from the latent space to the target data distribution. The approach
in Kingma and Welling (2013) assumes the latent distribution to simply be an isotropic Gaussian
p (z) = N (z|0, I); thereby shifting all the burden of generative modelling to the learning of the
generating function. To address the infeasibly large number of draws from the isotropic Gaussian
required to ensure significant contribution to the likelihood function, Kingma and Welling (2013)
proposes to instead draw from the posterior distribution p✓(z|x). This introduces the subtask of

© 2021 H. Goh, S. Sheriffdeen, J. Wittmer & T. Bui-Thanh.

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

variational inference; the modelling of the posterior with a distribution q�(z|x) parameterized by
an additional set of learnable parameters �. The learning of the parameters � can be achieved
through the minimization of the Evidence Lower Bound (ELBO) Blei et al. (2017); a quantity ob-
tainable through the Kullback-Leibler divergence (KLD) between the model posterior and the target
posterior.

Although the goal of generative modelling fundamentally differs from that of scientific inverse
problems, we claim that VAEs are also well suited for the latter challenge. In the setting of physical
systems, scientific inverse problems task us with determining parameters-of-interest (PoI) given
observations of a state variable. Often, these parameters are coefficients in a partial differential
equation (PDE) governing the system and the observations are discrete measurements of the state
variables of the PDE. Assuming that our observations are corrupted by additive noise, then the
equation

yobs = F(u) + e (1)

represents the connection between the PoI and observational data. Here, u denotes a discretized
representation of the PoI, F denotes the parameter-to-observable (PtO) map and yobs denotes our
observational data.

To bridge the two contexts, we consider the latent space and generating function in latent vari-
able models to be the PoI space and the PtO map in inverse problems. Therefore, while the former
uses inference to facilitate generative modelling, the latter uses generative modelling to facilitate
inference. We contrast the two settings under this viewpoint in order to expose the utility of VAEs
for scientific inverse problems:

1. For generative modelling, the focus of training VAEs is to learn the generating function. In
contrast, for scientific inverse problems, the PtO map need not be learnt as it can often be
modelled using physics-based numerical methods.

2. For generative modelling, the latent space of VAEs is an unspecified quantity with properties
emerging almost entirely though the process of learning the generating function. In contrast,
for scientific inverse problems, by considering the latent space to be the PoI space, the latent
space therefore possesses structure that represents the physical properties of the PoI.

Therefore, the context of scientific inverse problems provides more information that can be ex-
ploited to improve the training procedure of a VAE. Indeed, in reference to the first point, one can
surrogate the generating function with a physics-based numerical model of the PtO map. In doing
so, the focus of the training is shifted completely towards inference. In reference to the second point,
knowledge of the physical properties of the PoI can be encoded in the prior model which, therefore,
allows for a more informative latent distribution than the isotropic Gaussian used in Kingma and
Welling (2013). Further, through scientific experimentation or simulation, one may have on hand

a dataset of PoI and observation pairs
n⇣

u(m)
, y(m)

obs

⌘oM

m=1
. To draw an analogy within the con-

text of generative modelling, the datapoints u(m) are analogous to latent data that is usually not
available. This advantage provides the main motivation for our proposed UQ-VAE framework: a
mathematically justified training procedure for a VAE that can utilize the latent data we possess.

2

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

2. Preliminaries and Motivation

In scientific inverse problems, the solution process for obtaining estimates of the PoI often involves
the optimization of a functional of the form

min
u

kyobs � F(u)k22 . (2)

Whilst the observations are finite-dimensional entities, the PoI often exists in an infinite-dimensional
function space. Thus, our task is complicated by the inherent ill-posed nature of inverse problems;
there are many possible estimates of the PoI that are consistent with the observations. To alleviate
this issue, regularization can be introduced to essentially reduce the size of the solution space. With
the introduction of a regularization term, the optimization problem (2) becomes

min
u

kyobs � F(u)k22 +R(u). (3)

The optimization of (3) is often a time-consuming process; for example when using derivative-based
iterative optimization algorithms. This motivates the need for an inverse problems solver that can
rapidly output PoI estimates from given observational data.

2.1. Learning a Solver for Deterministic Inverse Problems

We briefly discuss data-driven deterministic inverse problem solvers to motivate both the concept
of uncertainty quantification as well as our proposed training procedure.

Suppose that we are tasked with learning an inverse problem solver using a training dataset of

M PoI and observation pairs
n⇣

u(m)
, y(m)

obs

⌘oM

m=1
. If we elect to use a neural network , then our

solver is parameterized by the weights W of the network. Analogous to (3), the training of this
solver requires the optimization of the following functional:

min
W

1

M

MX

m=1

���u(m) �
⇣

y(m)
obs ,W

⌘���
2

2
+R(W). (4)

Following the offline training stage of the neural network, we obtain a rapid online inverse problem
solver that can output an estimate of our PoI given observation data. However, the ill-posed nature
of inverse problems is inherited by this task; there are many possible weights that can be used
to parameterize a solver that outputs PoI estimates consistent with the input observational data.
Further, while the regularization term in (3) can be designed based on some prior knowledge of the
physical properties of the PoI, the physical interpretation of the neural network weights is not so
clear. Therefore, there is no natural choice for the regularization of the optimization problem (4).

Instead of regularizing the weights of the network directly, one possible approach is to regularize
the output of the network. For example, we could make use of the PtO map so that (4) becomes

min
W

1

M

MX

m=1

���u(m) �
⇣

y(m)
obs ,W

⌘���
2

2
+
���y(m)

obs � F
⇣

⇣

y(m)
obs ,W

⌘⌘���
2

2
. (5)

In doing so, the PtO map indirectly informs the weights of the neural network of the inversion task.
An additional benefit with the inclusion of the PtO map is that we are also able to include noise

3

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

regularization. That is, if we possess some knowledge about the properties of the noise e afflicting
our observational data, we may quantify it and include it in the second term to yield

min
W

1

M

MX

m=1

���u(m) �
⇣

y(m)
obs ,W

⌘���
2

2
+
���M

⇣
y(m)
obs � F

⇣

⇣

y(m)
obs ,W

⌘⌘⌘���
2

2
(6)

where M represents some noise regularization mapping. Furthermore, if we possess some prior
knowledge about the physical properties of the parameter of interest, we may also include it as
follows:

min
W

1

M

MX

m=1

���u(m) �
⇣

y(m)
obs ,W

⌘���
2

2
+
���M

⇣
y(m)
obs � F

⇣

⇣

y(m)
obs ,W

⌘⌘⌘���
2

2
(7a)

+
���P
⇣

⇣

y(m)
obs ,W

⌘
� µpr

⌘���
2

2
(7b)

where P is some prior regularization mapping and µpr is the prior reference value of parameters.
Training a neural network through the optimization problem (7) yields a learned inverse prob-

lems solver that outputs a point estimate of our PoI. As it is, this deterministic solver is unable to
provide information about the accuracy/uncertainty of the estimate. It would be more ideal to have
a probabilistic interpretation of our learned solver that facilitates uncertainty quantification (UQ).
With this in mind, we are motivated to view inverse problems under the framework of Bayesian
statisics. In this setting, we instead work towards a UQ-VAE solver for Bayesian inverse prob-

lems which, in turn, allows us to formally establish the regularization terms in (7). Conversely, by

ignoring the uncertainty estimate, the UQ-VAE solver recovers the deterministic setting (7).

2.2. Learning a Solver for Bayesian Inverse Problems

Under the statistical framework, the PoI of an inverse problem is considered to be a random variable
instead of an unknown value. Consequently, the solution of the statistical inverse problem is a prob-
ability distribution instead of a single estimated value. By adopting a statistical framework instead
of a deterministic one, the question asked by the inverse problem essentially changes from “what
is the value of our parameter?” to “how accurate is the estimate of our parameter?”. Furthermore,
the statistical framework attempts to remove the ill-posedness of inverse problems by restating the
inverse problem as a well-posed extension in a larger space of probability distributions Kaipio and
Somersalo (2006); Dashti and Stuart (2013).

With the additive noise assumption we consider the following observational model

Y = F (U) + E (8)

where F is the PtO map and Y , U and E are the random variables representing the observational
data, PoI and noise model respectively. Since U is unknown to us, we represent its uncertainty with
a probability distribution constructed from prior knowledge. However, we do not use equation (8)
directly when working under a statistical framework. Instead, we primarily consider the relations be-
tween the probability distributions of the random variables involved to answer the question: “given
the observational data yobs, what is the distribution of the PoI U responsible for our measurement?”.
Therefore, the conditional density pU |Y (u|Y = yobs) is the solution to the statistical parameter esti-
mation problem under the Bayesian framework. To approximate this conditional density, we utilize

4

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

Bayes’ Theorem to form a model of pU |Y (u|Y = yobs) called the posterior distribution which we
denote as ppost:

ppost (u|yobs) / plkhd (yobs|u) ppr (u) . (9)

where plkhd is the likelihood model and ppr is the prior model.
Formulating the parameter estimation problem under a Bayesian framework requires us to ob-

tain (9). This challenges us with the completion of three tasks:

1. construct the likelihood model plkhd interrelating the data and the unknown,

2. use prior information to construct a prior probability density ppr

3. develop methods to extract meaningful information from the posterior density ppost.

To address these three tasks, two assumptions are often made. The first assumption supposes that
the noise E is mutually independent with respect to the PoI U . Then, using our observation model
(8) and marginalization of the noise E, we obtain the following likelihood model:

plkhd = pE (yobs � F (u)) . (10)

The second assumption supposes that all are random variables are Gaussian with N (µE ,�E) and
N (µpr,�pr). With this, our posterior model becomes

ppost(u|yobs) / pE(yobs � F(u))ppr(u) (11a)

= exp

✓
�1

2

⇣
kyobs � F(u)� µEk

2
��1
E

+
��u � µpr

��2
��1
pr

⌘◆
. (11b)

In order to perform UQ with given observational data yobs, one often seeks an approximation of the
posterior covariance of (11). A commonly used approximation is the Laplace approximation Evans
and Swartz (2000); Press (2009); Stigler (1986); Tierney and Kadane (1986); Wong (2001)

�post =
�
JF (umap)

T��1
E

JF (umap) + ��1
pr

��1 (12)

where umap is the maximum a posteriori (MAP) estimate and JF (umap) is the Jacobian of F at the
MAP estimate. The MAP estimate can be obtained through optimization of the exponentiated func-
tional in (11b); which often requires a potentially expensive derivative-based iterative optimization
procedure. Markov Chain Monte Carlo (MCMC) methods can also be employed but such methods
notably suffer the curse of dimensionality.

This desire for efficient UQ motivates our work. Although the training procedure of a Bayesian
inverse problems solver may be computationally demanding, it represents an offline stage. Once
trained, the online stage of UQ has a computational cost governed only by the forward propagation
of the observational data through the trained neural network; which is often a very computationally
efficient procedure.

Additionally, the PoI data u(m) in the training dataset
n⇣

u(m)
, y(m)

obs

⌘oM

m=1
—encoding informa-

tion of the underlying physics via the PtO map—usually plays no role in VAE methods. Information
about the PoI is often only encoded in the prior model. This motivates the data-driven aspect of our

5

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

approach in that it not only uses prior information but also takes advantage of, and hence constrained
by, the physics encoded in the underlying PtO map.

With this motivation in mind, we now detail a framework for training our solver. When com-
paring with (7) from Section 2.1, the exponentiated functional in (11b) looks like an appealing
candidate for the regularization terms. We formalize the inclusion of these terms as regularizers
through the derivation of our proposed model-constrained VAE framework for UQ.

3. UQ-VAE: Flexible, Adaptive, Data/Model-Constrained Framework for UQ

We begin by detailing the derivation of our UQ-VAE framework before discussing from the more
tractable perspective of optimization. While the former centers the discussion more in the setting
of variational inference, the latter is centered more towards regularization of the training procedure
for our solver. Furthermore, whilst the flexibility of our framework emerges through the viewpoint
of variational inference, the optimization viewpoint uncovers its inherent adaptive properties.

3.1. Derivation of the UQ-VAE Framework

Let p(u|y) denote the target posterior density we wish to estimate and let q�(u|y) denote our model
(approximate) of the target density with statistics parameterized by �. To optimize for the param-
eters �, we require some notion of distance between our model posterior and target posterior. In
this work, instead of using the KLD to obtain the ELBO, we elect to use the following family of
Jensen-Shannon divergences (JSD) Nielsen (2010):

JS↵(q||p) = ↵KL(q||(1� ↵)q + ↵p) + (1� ↵)KL(p||(1� ↵)q + ↵p). (13)

With this, we have the following result.

Lemma 1 Let ↵ 2 (0, 1). Then

1

↵
JS↵(q�(u|y)||p(u|y)) =� Eu⇠q�


log

✓
↵+

(1� ↵)q�(u|y)
p(u|y)

◆�
(14a)

+ log(p(y)) (14b)
� LJS↵(�, y) (14c)

where

LJS↵(�, y) =
1� ↵

↵
Eu⇠p(u|y)


log

✓
↵+

(1� ↵)q�(u|y)
p(u|y)

◆�
+ Eu⇠q�


log

✓
p(y, u)
q�(u|y)

◆�
. (15)

The proof is given in Section A.1 of the Appendix. From an implementation perspective, Lemma 1
does not offer much insight. In particular, we would like to have direct access to the quotients within
the expectations. Therefore, we offer the following corollary which yields useful KLD terms:

6

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

Corollary 2 Let ↵ 2 (0, 1) and consider again (14). Equation (14) is bounded above such that:

1

↵
JS↵(q�(u|y)||p(u|y)) �KL(q�(u|y)||p(u|y)) (16a)

+ log(p(y))� log(1� ↵)� (1� ↵) log(1� ↵)

↵
(16b)

+
1� ↵

↵
KL(p(u|y)||q�(u|y)) (16c)

� Eu⇠q� [log (p(y|u))] + KL (q�(u|y)||p(u)) . (16d)

In particular, we have that

�LJS↵(�, y)  �(1� ↵) log(1� ↵)

↵
+

1� ↵

↵
KL(p(u|y)||q�(u|y)) (17a)

� Eu⇠q� [log (p(y|u))] + KL (q�(u|y)||p(u)) . (17b)

Proof The bounds are obtained simply by dropping the ↵ from within the logarithms in (14a) and

(15). From there, the assertions are readily available.

The significance of Corollary 2 is that the minimization of the upper bound

1� ↵

↵
KL(p(u|y)||q�(u|y))� Eu⇠q� [log (p(y|u))] + KL (q�(u|y)||p(u)) (18)

with respect to � could minimize

1

↵
JS↵(q�(u|y)||p(u|y)) + KL(q�(u|y)||p(u|y)) (19)

which would, therefore, perform the task of variational inference. From a VAE perspective, notice
that the second and third term of (18) together form the negative of the ELBO. Relating back to the
exponentiated functional (11b), from a perspective of Bayesian inverse problems, the second term in
(18) is the likelihood model containing the PtO map and the third term contains the prior model p(u)
representing information about the PoI. The first term in (18) represents information regarding the
target posterior. This is the key achievement of utilizing the JSD as the notion of distance between
the model posterior and target posterior as it is this term that allows for the inclusion of paired
PoI-observation datasets, and hence encoding the underlying physics in variational inference.

Through the choice of ↵ 2 (0, 1), the family of JSDs (13) allows for interpolation between the
zero-forcing KL(p||q) as ↵ ! 0 and the zero-avoiding KL(q||p) as ↵ ! 1 Bishop (2006); Murphy
(2012). With this in mind, we make the following observations:

• In (13), it is clear that if ↵ = 1 then we recover the usual zero-avoiding KL(q||p) used in
Kingma and Welling (2013). Indeed, as ↵ ! 1, then the first term in (18) tends to 0 which
recovers the negative of the ELBO.

• In (19), the presence of the KLD term ensures that our model posterior will inherently be zero-
avoiding. However, the 1

↵
scaling factor ensures that as ↵ ! 0, the consequently zero-forcing

JSD dominates the KLD.

7

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

Therefore, our UQ-VAE framework essentially retains the full flexibility of the JSD family. Thus,
with only an adjustment of a single scalar value, our framework allows the selection of the notion of
distance used by the optimization routine to direct the model posterior towards the target posterior.
This, in turn, translates to control of the balance of data-fitting and regularization used in the training
procedure as discussed in the following section.

3.2. Regularized Optimization Problem

We now move our discussion towards implementation by detailing the optimization problem implied
by the UQ-VAE framework. In particular, we employ approximations of (18) from Section 3.1 to
yield an implementable loss functional.

We begin by forming an approximation to the first term in (18). First, we apply the well-known
fact that the minimization of the KLD between the empirical and model distributions is equivalent to
maximization of the likelihood function with respect to �. Next, we form a Monte-Carlo estimation
using our PoI data. However, since every observation datapoint y(m)

obs is associated with only one
PoI datapoint u(m), our approximation is somewhat crude.1 Finally, we adopt a Gaussian model for
our model posterior: q�

⇣
u|y(m)

obs

⌘
= N

⇣
u|µ(m)

post,�
(m)
post

⌘
. These assumptions can be summarized

by the following chain of equations:

Eu⇠p

⇣
u|y(m)

obs

⌘
h
� log

⇣
q�(u|y

(m)
obs)

⌘i
. Eu⇠p(u)

h
� log

⇣
q�(u|y

(m)
obs)

⌘i
⇡ � log

⇣
q�(u(m)|y(m)

obs)
⌘

=
D

2
log(2⇡) +

1

2
log
����(m)

post

���+
1

2

���µ(m)
post � u(m)

���
2

�
(m)�1
post

.

Now we incorporate deep learning into our framework. We consider a neural network that takes in
our observation data y(m)

obs as an input to output the statistics
⇣
µ(m)
post,�

(m)
post

⌘
of our posterior model.

In doing so, we are reparameterizing the statistics of our Gaussian posterior model represented by �
with the weights W of the neural network ; thereby increasing the learning capacity of our model.

As mentioned in Section 2.2, it is common to adopt Gaussian noise and prior models N (µE ,�E)
and N (µpr,�pr). With this and our approximation above, we obtain the following optimization
problem:

min
W

1

M

MX

m=1

1� ↵

↵

✓
log
����(m)

post

���+
���µ(m)

post � u(m)
���
2

�
(m)�1
post

◆
(21a)

+
���y(m)

obs � F
⇣

u(m)
draw(W)

⌘
� µE

���
2

��1
E

(21b)

+ tr
⇣
��1
pr �

(m)
post

⌘
+
���µ(m)

post � µpr

���
2

��1
pr

+ log
|�pr|����(m)
post

���
(21c)

where

✓
µ(m)
post,�

1
2 (m)
post

◆
=

⇣
y(m)
obs ,W

⌘
, (21d)

u(m)
draw(W) = µ(m)

post + �
1
2 (m)
post ✏(m)

, (21e)

✏(m) ⇠ N (0, ID) (21f)

1. Note that more than one prior samples can be used here for more accurate approximation of the expectation.

8

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

Drawing connections with our discussion in Section 2.1, our data-misfit (21a) containing our PoI
data is regularized by the likelihood model (21b) containing the PtO map (and thus the underlying
mathematical model) and the prior model (21c) containing information on our PoI space.

In (21a), the 1�↵

↵
factor allows ↵ to adjust the influence of the PoI data and regularization over

the optimization procedure. However, the onus of balancing data-fitting and regularization is not

completely on the hyperparameter ↵. The presence of the matrix
⇣
�(m)
post

⌘�1
in the weighted norm

of (21a) acts as an adaptive penalty for the data-misfit term. Indeed, during training, this matrix
changes as the network weights W , on which the matrix depends on, are optimized. With this in
mind, we make the following observations about the two terms in (21a):

• Since lim↵!0
1�↵

↵
= 1, then a choice of ↵ ⇡ 0 emphasizes the log

����(m)
post

��� term. This causes
a preference for a small posterior variance which, in turn, creates a large penalization of the
data-misfit term by the inverse of the posterior covariance.

• In contrast, a choice of ↵ ⇡ 0 relieves the requirement of a small posterior variance to promote
the influence of the PoI data on the optimization problem.

We postulate that this counterbalancing dynamic between the two terms of (21a) induced by ↵

prevents the posterior variance from converging to too low or too high values as the optimization
procedure progresses. A schematic of the UQ-VAE framework is displayed in Figure 1.

Figure 1: Schematic of the UQ-VAE framework with the exact PtO map.

During the training procedure, the repeated operation of the PtO map on our dataset
n⇣

u(m)
, y(m)

obs

⌘oM

m=1
may incur a significant computational cost. To alleviate this, we also consider an alternative for the
PtO map in the optimization problem (21) where we simultaneously learn the PtO map along with
the inverse problem solver. To this end, we replace the PtO map F with another neural network d

parameterized by weights W d. With this, the term (21b) becomes
���y(m)

obs � d

⇣
u(m)
draw(W),W d

⌘
� µE

���
2

��1
E

(22)

9

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

and (21) becomes an optimization problem over both sets of weights (W ,W d). Notice that the
resulting optimization problem resembles those typically used to train an autoencoder. It is for
this reason that we elect to use the subscript ‘d’ to indicate the decoder. Since the learned model
 d of the PtO map F is a neural network, the evaluation of this map during the training phase is
computationally inexpensive. However, this efficiency comes at the expense of utilizing knowledge
of the governing physics of the inverse problems. Thus, the modified framework is almost purely
data-driven and resembles more the original utility of VAEs for generative modelling. A schematic
of the UQ-VAE framework with learned PtO map is displayed in Figure 2.

Figure 2: Schematic of the UQ-VAE framework with learned PtO map.

3.3. Theoretial Result

We now present a theoretical justification for the model-constrained UQ-VAE framework for linear
PtO map F . In this case, the target posterior p(u|yobs) is Gaussian provided that the prior and noise
are Gaussians. We show that for linear, one-layer neural networks the model-constrained UQ-VAE
solution is exactly the target posterior. In particular, the UQ-VAE posterior mean and Cholesky
factor of the UQ-VAE posterior covariance are exactly those of the target posterior. The proof is
given in Section A.2 of the Appendix.

Theorem 3 Let yobs 2 RO
. Consider a Gaussian prior model N

�
µpr,�pr

�
and Gaussian noise

model N (µE ,�E). Suppose the PtO map is linear, i.e., F(u) = Fu with F 2 RO⇥D
, and

consequently the target posterior p(u|yobs) is a Gaussian N (µtrue,�true) where

�true =
�
FT��1

E
F + ��1

pr

��1 (23a)

µtrue = �true
�
FT��1

E
(yobs � µE) + ��1

pr µpr

�
(23b)

Suppose the model posterior q�(u|yobs) = N
�
µpost,�post

�
is such that

µpost = Wµyobs + bµ (24a)

�
1
2
post = L�L1 + diag (�) (24b)

log (�) = W �yobs + b� (24c)
vec (L) = WLyobs + bL (24d)

10

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

where L1 is a lower triangular matrix of ones with zeros on the diagonal. Let ↵ = 1
2 . Then the

optimization problem

min
Wµ,bµ,W� ,b� ,WL,bL

1� ↵

↵

✓
log |�post|+ tr

�
��1
post�true

�
+
��µpost � µtrue

��2
��1
post

◆
(25a)

+ tr
�
��1
E

F�postF
T
�
+
��yobs � Fµpost � µE

��2
��1
E

(25b)

+ tr
�
��1
pr �post

�
+
��µpost � µpr

��2
��1
pr

+ log
|�pr|
|�post|

(25c)

achieves its minimum if and only if Wµ, bµ,W �, b�,WL, bL are such that µpost = µtrue and

�post = �true.

Although this result provides theoretical guarantees, the requirement of learning a full matrix in
(24d) can be computational infeasible. For this reason, it is often the case that only the diagonal of
the model posterior covariance is learned Kingma and Welling (2013).

4. Related Work

In generative modelling, it is beneficial to learn better representations of the latent space. To this
end, the use of the JSD for VAEs is explored in Deasy et al. (2020); Sutter et al. (2020). These
works consider using the JSD in place of the KLD in the ELBO between the posterior and the prior.
Our work differs from these approaches as the JSD is applied not directly to the ELBO. Rather, the
JSD is applied at the inference level to yield a different bound that includes an expression of the
latent data.

In scientific inverse problems, neural networks have been used to augment the solution process
in Adler and Öktem (2017); Jin et al. (2017); Li et al. (2018); Patel and Oberai (2019); Peng et al.
(2020); Seo et al. (2019). Some of these works use deep learning to assist a more traditional solu-
tion algorithm. In Adler and Öktem (2017), a convolutional neural network is used in a partially
learned gradient descent scheme. In Jin et al. (2017), the component of the iterative solution al-
gorithm requiring convolutional operators is surrogated with convolutional neural networks. Other
approaches use deep learning directly for regularization of an ill-posed inverse problem. In Li et al.
(2018), neural networks are used in place of a Tikhonov regularizer. The work in Patel and Oberai
(2019); Gonzalez et al. (2019), explored prior modelling in Bayesian inverse problems using gen-
erative adversarial networks (GANs) and VAEs respectively. In Seo et al. (2019), VAEs are used
to learn a low dimensional manifold representation of the PoI which introduces regularization for
ill-posed inverse problems. Similarly, in Peng et al. (2020), an autoencoder is used to learn a latent
representation of the unknown of interest which thereby allows the inversion task to be reframed
into solving for the latent representation. In summary, even with improvements through deep learn-
ing, the computational cost of these approaches are still inherited by the cost of the base solution
algorithms that were augmented. In our approach, the solution process is itself propagation through
a trained neural network; a process largely unrivalled in terms of computational efficiency. Addi-
tionally, most of the work mentioned above do not quantify uncertainty.

Broadly speaking, there are three types of approaches for performing uncertainty quantifica-
tion with deep learning. In an analogous manner to above, the first type utilizes deep learning to
augment traditional methods for uncertainty quantification. In Jiang et al. (2019), an autoencoder

11

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

is trained to reduce the dimensionality of the PoI space. MCMC sampling is then conducted on
the low-dimensional representation and estimation in the full PoI space is recovered by propagation
through the trained decoder. Similarly, in Hou et al. (2019), a class of network training methods was
proposed that can be combined with sample-based Bayesian inference algorithms. For the second
type of approach, deep learning models that inherently possess some stochastic property are, them-
selves, used to represent uncertainty. In Caldeira and Nord (2020), an investigation into Bayesian
Neural Networks, Concrete Dropout and Deep Ensembles was provided in the setting of scientific
problems. However, the discussion in the paper does not directly pertain to inverse problems.

Our proposed method to uncertainty quantification falls under the third type of approach. Here,
deep learning is used to directly learn and model the uncertainty. In Gabbard et al. (2019); Tonolini
et al. (2020); Chua and Vallisneri (2020); Adler and Öktem (2018), purely deep learning poste-
rior modelling approaches were proposed. In Gabbard et al. (2019) and Tonolini et al. (2020),
conditional VAEs (CVAE) Sohn et al. (2015) were trained to perform variational inference for
gravitational-wave astronomy problems and computational imaging problems respectively. Unlike
our UQ-VAE approach, CVAEs do not marry the latent space with the PoI space; they require a sepa-
rate latent variable for its derivation. The work in Chua and Vallisneri (2020) trains a neural network
to rapidly produce one or two dimensional projections of Bayesian posteriors for gravitational-wave
astronomy. For more general and higher-dimensional settings, the work in Adler and Öktem (2018)
introduces Deep Posterior Sampling which trains a Wasserstein GAN to sample from the posterior.
However, the training of GANs is notoriously unstable; a limitation also met and acknowledged
by the authors of Adler and Öktem (2018) in their paper. Compared to GANs, VAEs possess a
mathematical rigor that is more directly related to the data distribution it attempts to generate from.
Therefore, with the VAE at the core of our proposed framework, we postulate that there is more
potential for mathematically rigorous extension.

5. Results

For our numerical experiments, we consider the two dimensional steady state heat conduction prob-
lem. The details of this problem setup can be found in Section B of the Appendix. Although the
non-linear forward mapping is quite simple, elliptic inverse problems are severely ill-posed and
serve as an excellent benchmark inference problems Kabanikhin (2008); Kirsch (2011); Beskos
et al. (2017); Cui et al. (2016); Chen et al. (2019). Details of the neural network architectures and
optimization procedure can be found in Section C of the Appendix. The codes implementing the
UQ-VAE framework used to produce these results can be obtained from Goh (2020). For compar-
ison, we use the hIPPYlib library Villa et al. (2019) to compute the Laplace approximation using
gradients and Hessians derived via the adjoint method, inexact Newton-CG, Armijo line search and
randomized eigensolvers.

For our numerical experiments, we consider the following cases:

1. four noise levels ⌘ = 0, 0.01, 0.05, 0.1

2. four sizes of training datasets M = 50, 500, 1000, 5000

3. four choices of the JSD family ↵ = 0.00001, 0.001, 0.1, 0.5

4. exact PtO map and learned PtO map.

12

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

For our numerical simulations, in some cases, selecting ↵ � 0.5 may yield an unstable training
procedure with exploding gradients and so we only display results with ↵ as high as ↵ = 0.5. The
computational cost of training is detailed in Section C.3 of the Appendix. The table of relative errors
and figures are found in Section D of the Appendix with each figure set and subsection representing a
noise level and dataset size. Note that we have elected to only display the cross-sectional predictions
and not the predictions over the full domain since it is harder to visualize the uncertainty in the latter.

Before continuing to a detailed discussion, we address the comment in Section 3.2 regarding
the adoption of a crude Monte-Carlo approximation using our PoI data. The overall feasibility of
our obtained uncertainty estimates indicate that it is sufficient to use only one PoI datapoint. We
postulate that any inaccuracies resulting from such a crude approximation is alleviated by the variety
of information embedded in the training dataset. Indeed, since the weights are used to capture the
statistics of a whole training dataset, the amortized nature of our inference method perhaps reduces
the requirement for accurate Monte-Carlo approximations. Moreover, in the original VAE paper
Kingma and Welling (2013), the authors observed that, providing the number of training data M

was large enough, using only one draw from the model posterior to approximate the expected value
of the likelihood term was sufficient to obtain good results. This finding regarding the approximation
of the likelihood term mirrors ours regarding the posterior data misfit term.

5.1. Comparison with the Laplace Approximation

We summarize our results beginning with a comparison between uncertainty quantification with
UQ-VAE and with the Laplace approximation. It is important to point out that UQ-VAE provides

a global Gaussian approximation while the Laplace approximation in this case is a local Gaussian

approximation at the MAP point. From the results, we can see that the posterior mean estimated by
the UQ-VAE is closer to the true value than the MAP estimate. However, the Laplace approximation
provides larger uncertainty estimates which ensures they are still feasible despite the underestima-
tion of values by the MAP. In contrast, especially for larger values of ↵, the UQ-VAE uncertainty
estimates are smaller and, in some cases, the true parameter values at the location of the anomaly
lie slightly outside the uncertainty estimates.

Recall that the statistics of the noise are accurately modelled. Therefore, the larger the value
of ⌘, the more diminished the influence of the likelihood model (21b) on the training procedure;
through penalization by the weighting matrix ��1

E
. For the Laplace approximation (12), this trans-

lates to an increase in the approximate posterior variance. The approximate posterior variance
obtained from the UQ-VAE also exhibits this response to the increased noise regularization.

Further, the Laplace approximation uncertainty estimates are clearly responsive to the sensor
locations; providing smaller uncertainty where the sensors are located. Whilst the UQ-VAE un-
certainty estimates do exhibit a similar behaviour, it is less pronounced. The difference is due to
the aforementioned global and local approximation of the UQ-VAE and Laplace approximations,
respectively. Furthermore, we postulate that this is because the UQ-VAE uncertainty estimates rep-
resent two sources of information; the observational data fed into the encoder as well as the PoI and
observational pairs in the training dataset. Whilst the former provides information only at the loca-
tions at the sensors, the latter provides information at all areas of the domain. Indeed, the process of
training under the UQ-VAE framework works to embed information about the training dataset into
the neural network. Uncertainty quantification is then performed with this embedded information as

13

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

well as the input observational data. Despite these differences, we believe that it is still instructive
to compare the two approximations.

Finally, the computational efficiency of inference by propagation through a trained neural net-
work is, on average, more than 2750 times faster than that of the Laplace approximation.

See Section C.3 of the Appendix for more details on the computational cost of inference. An
example of our computational results is displayed in Figure 3 which compares the uncertainty esti-
mates obtained using the Laplace approximation with those obtained with our UQ-VAE framework.

Figure 3: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and point-
wise posterior variance from Laplace approximation. Second row: UQ-VAE uncertainty estimates with ↵ = 0.001. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: exact PtO map. Third and fourth columns: learned PtO map.

5.2. Comparison Within the UQ-VAE Framework

Now, we discuss the results within the UQ-VAE framework by comparing between noise levels,
dataset size, modelling and learning of the PtO map and choices of ↵:

1. Comparing between noise levels, feasible estimates were obtained for all noise levels. How-
ever, for ⌘ = 0.05, feasible estimates were only obtained for M = 50, 500, 1000. With the
exception of ⌘ = 0.05 and M = 5000, the uncertainty estimates are larger for larger values
of ⌘. For the noise level of ⌘ = 0.1, no feasible estimates were obtained for any choice of
dataset size M .

2. Comparing between training dataset sizes, the uncertainty estimates are larger for smaller
dataset sizes. When ⌘ = 0.05, larger dataset sizes appear to be detrimental to the accuracy of
the estimation.

3. Comparing between the case where the PtO is modelled and when the PtO is learned, for the
cases of ⌘ = 0, M = 500, ↵ = 0.5 and ⌘ = 0.01, M = 500, ↵ = 0.1, using the modelled
PtO clearly outperforms using the learned PtO.

4. Comparing between choices of ↵, for smaller values of ↵ the estimated posterior mean under-
estimates the true PoI values and so a larger uncertainty estimate is required to ensure feasible
estimates. The reverse occurs for larger values of ↵.

14

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

We now offer some key interpretations our above observations. For the first observation, the rea-
soning for larger uncertainty estimates observed with larger values of ⌘ was discussed in Section
5.1.

For the second observation, we see that the posterior uncertainty is responsive to the size of
the dataset. With less data, our uncertainty estimates are larger. This behaviour is ideal as more
information intuitively implies less uncertainty. For the case of ⌘ = 0.05, we conjecture that the
use of large datasets of heavily corrupted data yields an unfavourable influence on our optimization
procedure. We believe that the limitation of our framework lies in its potential dependence on an
accurate training dataset. For problem with exact PtO map such as the one in this work, the accurate

training dataset is available and this corresponds to the case with zero noise ⌘ = 0. One of the key
merits of our proposed method is that we have introduced, in a mathematically justified manner, a
data-driven component to the inversion process. This expands the toolkit at one’s disposal when
solving inverse problems. Indeed, in addition to constructing models for the prior and the PtO map,
information on the properties of the PoI as well as the governing physics can be encoded into the
training dataset. However, it would be incomplete to view this added option purely as an advantage.
Although the utilization of datasets alleviates the burden on accurate prior and physics modelling,
poorly constructed or highly corrupted datasets could completely sabotage the inversion process
regardless of any accuracy achieved by the prior and physics models.

For the third observation, it can be reasoned that the similarity of results for the two cases is
due to the success of the decoder in learning the PtO. The elliptic forward problem is quite simple
and so it is not unexpected that the decoder learns it with ease. Thus, simultaneously learning an
accurate PtO may be a reasonable task that aids and does not detract from the main task of learning
the Bayesian inverse problems solver. This supports the strategy of using a learned PtO to reduce the
offline cost of training the neural network. However, the two cases where use of the modelled PtO
outperforms using the learned PtO with the small training dataset size of M = 500 suggests that
including the physics of the problem allows for feasible uncertainty estimates when large amounts
of training data may not be readily available.

For the fourth observation, in alignment with our discussion in Section 3.2, a lower value of ↵
creates a larger penalty on the posterior terms (21a). Since our results suggest that a lower value of
↵ yields a larger posterior variance, then it is implied that the minimization of log

����(m)
post

��� is not a

priority during the training procedure; so long as the posterior data u(m) has enough influence. One
can also reason that since lower values of ↵ correspond to the zero-forcing KLD, one would expect
a larger model variance; for example in the case of approximating a multimodal distribution with a
unimodal model Bishop (2006). The reverse occurs with higher values of ↵ which, due to tendency
towards the zero-avoiding KLD, would result in a smaller model variance.

Finally, we address the instability of the training procedure as ↵ ! 1 which diminishes the influ-
ence of the PoI data on our optimization problem and moves towards recovering the zero-avoiding
KLD. Recall the more traditional method of optimizing the exponentiated functional in (11) where
the target optimization parameter is the physically meaningful u. In contrast, our method optimizes
for the more arbitrary and often more plentiful weights W . Intuitively, we are therefore faced with a
more ill-posed problem. Moreover, from a perspective centered around the traditional posterior (11),
one can instead view the posterior data terms (21a) as regularizers of the traditional loss functional
involving only the likelihood and prior term. This provides the much needed regularization for our

15

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

more ill-posed inverse problem; which therefore necessitates that ↵ ⌧ 1 for this regularization to
take effect. We leave concrete theoretical analysis for future work.

6. Conclusion

In this paper, we propose a framework for training of neural networks capable of rapid uncertainty
quantification. Although the VAE, on which this framework is based, was originally motivated by
methods in generative modelling, we have shown that it is also well suited for scientific inverse
problems. Indeed, it utilizes three sources of information usually available for such problems:

1. the physical laws governing the problem through the modelled PtO map

2. the physical properties of the PoI through the prior model

3. simulation or experimentation procedures through the paired PoI-observation datasets.

Furthermore, this framework is derived from a solid mathematical foundation and possesses a com-
plex, dynamic interplay of factors from variational inference as well as regularization. Despite this
complexity, this framework requires only a few design decisions. Indeed, aside from the usual ad-
justment of hyperparameters associated with neural network architecture, essentially only the tuning
of the hyperparameter ↵ is required. The selection of the PtO map and prior model can be guided
by the underlying physical properties of the problem. Our results also show that feasible estimates
are achievable and, moreover, that these estimates exhibit behaviour similar to that of existing inver-
sion methods. Additionally, our uncertainty estimates show a favourable response to the size of our
training dataset; the uncertainty is inversely proportional to the amount of training data used which
reflects the availability or lack of information. The preliminary investigation offered in this paper
employs only standard optimization techniques and simple deep learning architectures with a very
minimal amount of tuning performed. This decision was made in order to showcase the robustness
as well as the limitations of our framework in its most basic form. Moreover, we utilize somewhat
crude statistical approximations. We believe that the results presented in this paper can be improved
with the employment of more sophisticated optimization procedures, neural network architecture
and statistical machinery.

Acknowledgments

This research was partially funded by the National Science Foundation awards NSF-1808576 and
NSF-CAREER-1845799; by the Defense Thread Reduction Agency award DTRA-M1802962; by
the Department of Energy award DE-SC0018147; by KAUST; by 2018 ConTex award; and by
2018 UT-Portugal CoLab award. The authors acknowledge the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for providing HPC resources that have contributed to
the research results reported within this paper. URL: http://www.tacc.utexas.edu. The
authors would like to thank Jari Kaipio, Ruanui Nicholson and Rory Wittmer for the insightful
discussions.

References

Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative deep neural net-
works. Inverse Problems, 33(12):124007, 2017.

16

http://www.tacc.utexas.edu

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

Jonas Adler and Ozan Öktem. Deep bayesian inversion. arXiv preprint arXiv:1811.05910, 2018.

Alexandros Beskos, Mark Girolami, Shiwei Lan, Patrick E Farrell, and Andrew M Stuart. Geo-
metric mcmc for infinite-dimensional inverse problems. Journal of Computational Physics, 335:
327–351, 2017.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

Tan Bui-Thanh, Omar Ghattas, James Martin, and Georg Stadler. A computational framework for
infinite-dimensional bayesian inverse problems part i: The linearized case, with application to
global seismic inversion. SIAM Journal on Scientific Computing, 35(6):A2494–A2523, 2013.

João Caldeira and Brian Nord. Deeply uncertain: comparing methods of uncertainty quantification
in deep learning algorithms. Machine Learning: Science and Technology, 2(1):015002, dec
2020. doi: 10.1088/2632-2153/aba6f3. URL https://doi.org/10.1088/2632-2153/
aba6f3.

Peng Chen, Keyi Wu, Joshua Chen, Tom O’Leary-Roseberry, and Omar Ghattas. Projected stein
variational newton: A fast and scalable bayesian inference method in high dimensions. In Ad-

vances in Neural Information Processing Systems, pages 15130–15139, 2019.

Alvin JK Chua and Michele Vallisneri. Learning bayesian posteriors with neural networks for
gravitational-wave inference. Physical Review Letters, 124(4):041102, 2020.

Tiangang Cui, Kody JH Law, and Youssef M Marzouk. Dimension-independent likelihood-
informed mcmc. Journal of Computational Physics, 304:109–137, 2016.

Yair Daon and Georg Stadler. Mitigating the influence of the boundary on pde-based covariance
operators. arXiv preprint arXiv:1610.05280, 2016.

Masoumeh Dashti and Andrew M Stuart. The bayesian approach to inverse problems. arXiv preprint

arXiv:1302.6989, 2013.

Jacob Deasy, Nikola Simidjievski, and Pietro Liò. Constraining variational inference with geometric
jensen-shannon divergence. arXiv preprint arXiv:2006.10599, 2020.

Phoebus J Dhrymes. Mathematics for econometrics. Technical report, Springer, 1978.

Michael Evans and Timothy Swartz. Approximating integrals via Monte Carlo and deterministic

methods, volume 20. OUP Oxford, 2000.

Hunter Gabbard, Chris Messenger, Ik Siong Heng, Francesco Tonolini, and Roderick Murray-
Smith. Bayesian parameter estimation using conditional variational autoencoders for
gravitational-wave astronomy. arXiv preprint arXiv:1909.06296, 2019.

Hwan Goh. uq-vae, 2020. https://github.com/hwangoh/uq-vae.

17

https://doi.org/10.1088/2632-2153/aba6f3
https://doi.org/10.1088/2632-2153/aba6f3
https://github.com/hwangoh/uq-vae

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

Mario Gonzalez, Andrés Almansa, Mauricio Delbracio, Pablo Musé, and Pauline Tan. Solv-
ing inverse problems by joint posterior maximization with a vae prior. arXiv preprint

arXiv:1911.06379, 2019.

Thomas Y Hou, Ka Chun Lam, Pengchuan Zhang, and Shumao Zhang. Solving bayesian inverse
problems from the perspective of deep generative networks. Computational Mechanics, 64(2):
395–408, 2019.

Zhenjiao Jiang, Siyu Zhang, Chris Turnadge, and Tianfu Xu. Combining autoencoder neural net-
work and bayesian inversion algorithms to estimate heterogeneous fracture permeability in en-
hanced geothermal reservoirs. essoar, 2019.

Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional
neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26(9):
4509–4522, 2017.

Sergei Igorevich Kabanikhin. Definitions and examples of inverse and ill-posed problems. Journal

of Inverse and Ill-Posed Problems, 16(4):317–357, 2008.

Jari Kaipio and Erkki Somersalo. Statistical and computational inverse problems, volume 160.
Springer Science & Business Media, 2006.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

Andreas Kirsch. An introduction to the mathematical theory of inverse problems, volume 120.
Springer Science & Business Media, 2011.

Housen Li, Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. Nett: Solving inverse
problems with deep neural networks. arXiv preprint arXiv:1803.00092, 2018.

Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations

by the finite element method: The FEniCS book, volume 84. Springer Science & Business Media,
2012.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Frank Nielsen. A family of statistical symmetric divergences based on jensen’s inequality. arXiv

preprint arXiv:1009.4004, 2010.

Dhruv Patel and Assad A Oberai. Bayesian inference with generative adversarial network priors.
arXiv preprint arXiv:1907.09987, 2019.

Pei Peng, Shirin Jalali, and Xin Yuan. Solving inverse problems via auto-encoders. IEEE Journal

on Selected Areas in Information Theory, 1(1):312–323, 2020.

S James Press. Subjective and objective Bayesian statistics: Principles, models, and applications,
volume 590. John Wiley & Sons, 2009.

18

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

Lassi Roininen, Janne MJ Huttunen, and Sari Lasanen. Whittle-matérn priors for bayesian statistical
inversion with applications in electrical impedance tomography. Inverse Problems & Imaging, 8
(2):561, 2014.

Jin Keun Seo, Kang Cheol Kim, Ariungerel Jargal, Kyounghun Lee, and Bastian Harrach. A
learning-based method for solving ill-posed nonlinear inverse problems: A simulation study of
lung eit. SIAM journal on Imaging Sciences, 12(3):1275–1295, 2019.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In Advances in neural information processing systems, pages
3483–3491, 2015.

Stephen M Stigler. Laplace’s 1774 memoir on inverse probability. Statistical Science, pages 359–
363, 1986.

Andrew M Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451, 2010.

Thomas M Sutter, Imant Daunhawer, and Julia E Vogt. Multimodal generative learning utilizing
jensen-shannon-divergence. arXiv preprint arXiv:2006.08242, 2020.

Luke Tierney and Joseph B Kadane. Accurate approximations for posterior moments and marginal
densities. Journal of the american statistical association, 81(393):82–86, 1986.

Francesco Tonolini, Jack Radford, Alex Turpin, Daniele Faccio, and Roderick Murray-Smith. Vari-
ational inference for computational imaging inverse problems. Journal of Machine Learning

Research, 21(179):1–46, 2020.

Umberto Villa, Noemi Petra, and Omar Ghattas. hIPPYlib: An Extensible Software Framework for
Large-Scale Inverse Problems Governed by PDEs; Part I: Deterministic Inversion and Linearized
Bayesian Inference. arXiv e-prints, 2019.

Roderick Wong. Asymptotic approximations of integrals. SIAM, 2001.

19

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

Appendix A. Proofs

A.1. Proof of Theorem 1

Proof The clearest path forward is to manipulate

JS↵(q�(u|y)||p(u|y)) =↵KL(q�(u|y)||(1� ↵)q�(u|y) + ↵p(u|y)) (26a)
+ (1� ↵)KL(p(u|y)||(1� ↵)q�(u|y) + ↵p(u|y)) (26b)

term-by-term. Beginning with the first term,

↵KL(q�(u|y)||(1� ↵)q�(u|y) + ↵p(u|y)) (27a)

= ↵Eu⇠q�


log

✓
q�(u|y)

(1� ↵)q�(u|y) + ↵p(u|y)

◆�
(27b)

= �↵Eu⇠q�


log

✓
(1� ↵)q�(u|y) + ↵p(u|y)

q�(u|y)

◆�
(27c)

= �↵Eu⇠q�


log

✓
p(u|y)
q�(u|y)

✓
↵+

(1� ↵)q�(u|y)
p(u|y)

◆◆�
(27d)

= �↵Eu⇠q�


log

✓
p(u|y)
q�(u|y)

◆�
� ↵Eu⇠q�


log

✓
↵+

(1� ↵)q�(u|y)
p(u|y)

◆�
(27e)

= �↵Eu⇠q�


log

✓
p(y, u)

p(y)q�(u|y)

◆�
� ↵Eu⇠q�


log

✓
↵+

(1� ↵)q�(u|y)
p(u|y)

◆�
(27f)

= ↵ log (p(y))� ↵Eu⇠q�


log

✓
p(y, u)
q�(u|y)

◆�
� ↵Eu⇠q�


log

✓
↵+

(1� ↵)q�(u|y)
p(u|y)

◆�
. (27g)

Similarly, the second term can be decomposed as

(1� ↵)KL(p(u|y)||(1� ↵)q�(u|y) + ↵p(u|y)) (28a)

= (1� ↵)Eu⇠p(u|y)


log

✓
p(u|y)

(1� ↵)q�(u|y) + ↵p(u|y)

◆�
(28b)

= �(1� ↵)Eu⇠p(u|y)


log

✓
(1� ↵)q�(u|y) + ↵p(u|y)

p(u|y)

◆�
(28c)

= �(1� ↵)Eu⇠p(u|y)


log

✓
↵+

(1� ↵)q�(u|y)
p(u|y)

◆�
. (28d)

Combining equations (27) and (28), we arrive at

JS↵(q�(u|y)||p(u|y)) =↵ log (p(y)) (29a)

� ↵Eu⇠q�


log

✓
p(y, u)
q�(u|y)

◆�
(29b)

� ↵Eu⇠q�


log

✓
↵+

(1� ↵)q�(u|y)
p(u|y)

◆�
(29c)

� (1� ↵)Eu⇠p(u|y)


log

✓
↵+

(1� ↵)q�(u|y)
p(u|y)

◆�
. (29d)

Finally, the expressions in Theorem 1 follow through division by ↵ and rearrangement.

20

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

A.2. Proof of Theorem 3

Proof Set ↵ = 1
2 . Forcing the variations with respect to weights Wµ and biases bµ to vanish gives

��1
post

�
µpost � µtrue

�
(30a)

� FT��1
E

�
yobs � Fµpost � µE

�
+ ��1

pr

�
µpost � µpr

�
(30b)

= 0 (30c)

which is true if and only if µpost = µtrue. Forcing the variations with respect to WL and biases bL
to vanish gives

�
✓
�
� 1

2
post�true ⌦ �

� 1
2T

post + �
� 1

2
post

�
µpost � µtrue

� �
µpost � µtrue

�T ⌦ �
� 1

2T
post

◆
vec

✓
�
� 1

2
post

◆

(31a)

+
�
ID ⌦ FT��1

E
F
�
vec

✓
�

1
2
post

◆
+
�
ID ⌦ ��1

pr

�
vec

✓
�

1
2
post

◆
(31b)

= 0 (31c)

where ⌦ denotes the Kronecker product. Using the two identities Dhrymes (1978)

vec (ABCD) =
�
DTCT ⌦A

�
vec (B) (32a)

vec (AB) = (I ⌦A) vec (B) (32b)

along with some basic manipulation gives

� ��1
post

⇣
�true +

�
µpost � µtrue

� �
µpost � µtrue

�T⌘
+
�
FT��1

E
F + ��1

pr

�
�post = 0. (33)

Forcing the variations with respect to W � and biases b� to vanish gives

� ��1
post �

⇣
�true +

�
µpost � µtrue

� �
µpost � µtrue

�T⌘
�
� 1

2T
post (34a)

+

✓
FT��1

E
F � �

1
2
post

◆
+

✓
��1
pr � �

1
2
post

◆
(34b)

= 0 (34c)

where � denotes the entrywise product. Here, (33) and (34) with µpost = µtrue are true if and only
if �post = �true as required.

Appendix B. Two Dimensional Steady State Heat Conduction Problem

We considered the heat equation with heat conductivity as the PoI and temperature as the state. The
governing PDE and associated boundary conditions are displayed below

�r · ury = 0 in ⌦ (35a)
�u(ry · n̂) = Bi y on ⌦ext \ ⌦root (35b)
�u(ry · n̂) = �1 on ⌦root (35c)

21

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

where u denotes the thermal heat conductivity, Bi is the Biot number set to Bi = 0.5, ⌦ is the
physical domain, ⌦root is the bottom edge of the domain and ⌦ext is the remaining edges of the
domain.

The prior model has mean µpr = 2 and covariance �pr that is a discretization of the infinite
dimensional covariance operator Cpr = A�2 where A is a differential operator such that

Au =

(
���u+ �u in ⌦
ru · n̂ + �u on @⌦.

(36)

Here, �, � > 0 controls the correlation length and variance of the prior operator. We set � = 0.1,
� = 0.5 and � is chosen as in Daon and Stadler (2016); Roininen et al. (2014) to reduce boundary
artifacts. Priors of this type ensure that Cpr is a trace-class operator which guarantees bounded
pointwise variance and a well-posed infinite-dimensional Bayesian inverse problem Stuart (2010);
Bui-Thanh et al. (2013).

The testing dataset of PoI values is drawn from a Gaussian autocorrelation smoothness prior
Kaipio and Somersalo (2006) with mean µ = 2 and covariance

�ij = �
2 exp

�
kxi � xjk22

2⇢2

!
(37)

with �
2 = 2, ⇢ = 0.5. The training set for the UQ-VAE network is a set of separate draws from the

same distribution. From this, the corresponding state observations are computed using the solvers
from the FEniCS library Logg et al. (2012) on the PoI dataset. The same solver is used as our
numerical model of the PtO map during the training procedure.

We consider a computational domain consisting of D = 2601 degrees of freedom. The ob-
servation data corresponds to sensor measurements from 10 randomly selected locations and is
afflicted with Gaussian distributed additive noise on all sensors with zero mean and standard devi-
ation � = ⌘max |yobs|. For our noise model, we set (µE ,�E) =

�
0,�2IO

�
which corresponds to

the scenario where the statistics of the noise are accurately modelled. Finally, we assume a diagonal
matrix for our posterior model covariance.

Appendix C. Neural Network Architecture and Training Properties

C.1. Architecture

The architecture of our neural network consists of 5 hidden layers of 500 nodes with the ReLU
activation function. No activation function was used at the output layer. The input layer has O

number of nodes to match the dimension of the observational data which comprises of O number of
measurement points. The output layer has 2D nodes, with D the dimension of the PoI, to represent
the estimated posterior mean µpost and diagonal of the posterior covariance �post.

When the parameter-to-observable map is learnt, the corresponding decoder network d has 2
hidden layers also with 500 nodes and the ReLU activation function. Again, no activation function
was used at the output layer. The input layer has D number of nodes to represent a draw from
the learned posterior and the output layer has O number of nodes to match the dimension of the
observational data.

22

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

C.2. Training

For optimization, we use a batch size of 100. Therefore, the loss in (21) is averaged over the number
of PoI and observation pairs and the gradient is calculated for each batch. Optimization is conducted
using the Adam optimizer which performs mini-batch momentum-based stochastic gradient descent
Kingma and Ba (2014). This training procedure was repeated for 400 epochs.

The metric used to measure accuracy is the averaged relative error 1
L

P
L

l=1

���u(l)�µpost

⇣
y(l)obs

⌘���
2

2

ku(l)k2

2

where
n⇣

u(l)
, y(l)obs

⌘oL

l=1
is a dataset unseen by the training procedure and µpost

⇣
y(l)obs

⌘
is the esti-

mated posterior mean from the neural network taking a datapoint y(l)obs as an input. An estimate
is said to be feasible if and only if true value lies within the estimated uncertainty bounds. The
uncertainty bounds displayed represent three standard deviations. Similarly, when the PtO map

is learned by d, we use the relative error 1
L

P
L

l=1

���y(l)obs� d

⇣
u
⇣

y(l)obs

⌘⌘���
2

2���y(l)obs

���
2

2

where u
⇣

y(l)obs
⌘

is a draw

model posterior output by the trained encoder with a datapoint y(l)obs as an input.

C.3. Computational Cost

When training a neural network with the (21b) term in the loss functional (21) using the PtO map
F , the solving of a linear system is required. Because of this, training on CPUs is more efficient.
In contrast, when the (21b) term uses the learned PtO map d instead, no linear system solves are
required and so the training procedure is most efficient on GPUs. We monitor the cost of training
each batch as wall-clock time for the whole optimization procedure. The offline cost for training
the networks using F is, on average, 4.5 seconds per batch on a dual-socket node with two Intel
Xeon E5-2690 CPUs for a total of 24 cores. The offline cost for training the networks using d is,
on average, 0.35 seconds per batch on a NVIDIA 1080-TI GPU.

We compare the computational efficiency of inference between the Laplace approximation and
propagation through the neural network trained under the UQ-VAE framework on a Intel Core i7-
8550U CPU using an average wall-clock time over 20 evaluations. The time taken to form the MAP
estimate with hIPPYlib is, on average, 40 seconds with a maximum number of descent iterations of
25. The time taken to form the low-rank Gaussian approximation of the posterior covariance with
50 requested eigenvectors is, on average, 70 seconds. Therefore, in total, it takes on average 110
seconds to form the Laplace approximation. In contrast, forming the model posterior by propagation
through a trained neural network takes, on average, 0.04 seconds; more than 2750 times faster.

23

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

Appendix D. Results: Two Dimensional Steady State Heat Conduction Problem

D.1. ⌘ = 0, M = 50

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 28.88% 30.86% 24.61%
0.001 30.46% 30.76% 22.80%

0.1 30.70% 28.95% 49.38%
0.5 29.75% 32.73% 45.34%

Table 1: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 15.15%.

Figure 4: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

24

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.2. ⌘ = 0, M = 500

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 21.72% 21.70% 22.49%
0.001 21.33% 22.13% 20.75%

0.1 21.84% 21.91% 24.08%
0.5 26.75% 29.47% 35.26%

Table 2: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 15.15%.

Figure 5: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

25

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.3. ⌘ = 0, M = 1000

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 20.65% 18.15% 18.55%
0.001 18.54% 19.04% 15.02%

0.1 18.74% 19.28% 22.72%
0.5 21.84% 22.74% 21.74%

Table 3: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 15.15%.

Figure 6: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

26

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.4. ⌘ = 0, M = 5000

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 14.49% 15.07% 3.21%
0.001 14.28% 14.07% 3.13%

0.1 14.72% 14.48% 3.19%
0.5 14.89% 15.47% 4.72%

Table 4: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 15.15%.

Figure 7: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

27

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.5. ⌘ = 0.01, M = 50

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 29.19% 30.67% 24.59%
0.001 39.52% 29.25% 31.88%

0.1 28.99% 28.95% 34.97%
0.5 32.92% 30.05% 41.18%

Table 5: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 25.11%.

Figure 8: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

28

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.6. ⌘ = 0.01, M = 500

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 24.17% 23.42% 22.02%
0.001 22.79% 23.23% 17.41%

0.1 25.51% 29.52% 28.16%
0.5 29.93% 29.82% 32.68%

Table 6: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 25.11%.

Figure 9: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

29

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.7. ⌘ = 0.01, M = 1000

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 21.99% 23.64% 19.98%
0.001 22.24% 21.78% 14.42%

0.1 22.84% 22.73% 20.28%
0.5 24.16% 24.04% 22.78%

Table 7: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 25.11%.

Figure 10: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

30

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.8. ⌘ = 0.01, M = 5000

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 21.28% 21.14% 4.29%
0.001 21.34% 20.92% 3.79%

0.1 21.37% 21.47% 5.27%
0.5 21.72% 21.19% 3.57%

Table 8: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 25.11%.

Figure 11: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

31

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.9. ⌘ = 0.05, M = 50

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 31.76% 33.37% 22.32%
0.001 34.78% 34.52% 22.24%

0.1 33.45% 31.00% 39.73%
0.5 32.87% 33.00% 38.23%

Table 9: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 43.19%.

Figure 12: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

32

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.10. ⌘ = 0.05, M = 500

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 31.72% 30.05% 21.22%
0.001 29.79% 30.69% 25.16%

0.1 30.31% 30.61% 26.02%
0.5 31.56% 31.33% 38.14%

Table 10: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 43.19%.

Figure 13: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

33

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.11. ⌘ = 0.05, M = 1000

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 31.96% 32.59% 18.36%
0.001 32.14% 31.85% 20.17%

0.1 31.69% 30.87% 25.05%
0.5 33.31% 33.09% 28.05%

Table 11: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 43.19%.

Figure 14: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

34

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.12. ⌘ = 0.05, M = 5000

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 36.78% 35.41% 8.11%
0.001 36.90% 35.82% 8.10%

0.1 37.84% 36.48% 7.94%
0.5 36.88% 36.89% 9.41%

Table 12: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 43.19%.

Figure 15: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

35

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.13. ⌘ = 0.1, M = 50

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 34.95% 36.13% 30.69%
0.001 37.49% 36.15% 27.56%

0.1 35.13% 34.02% 40.31%
0.5 38.44% 34.44% 38.70%

Table 13: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 45.48%.

Figure 16: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

36

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.14. ⌘ = 0.1, M = 500

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 36.61% 38.59% 23.15%
0.001 37.61% 37.82% 23.02%

0.1 35.77% 36.01% 30.22%
0.5 33.78% 35.37% 34.93%

Table 14: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 45.48%.

Figure 17: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

37

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.15. ⌘ = 0.1, M = 1000

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 39.96% 32.59% 19.83%
0.001 38.11% 31.85% 20.87%

0.1 37.77% 30.87% 26.37%
0.5 35.51% 33.09% 26.62%

Table 15: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 45.48%.

Figure 18: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

38

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

D.16. ⌘ = 0.1, M = 5000

Relative Error: u Relative Error: yobs
↵ Modelled PtO Learned PtO Learned PtO

0.00001 40.45% 35.41% 15.64%
0.001 40.78% 35.82% 15.18%

0.1 41.26% 36.48% 15.39%
0.5 40.85% 36.89% 15.35%

Table 16: Table displaying the relative errors for UQ-VAE. Relative error of MAP estimate: 45.48%.

Figure 19: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional uncertainty estimate and
pointwise posterior variance from Laplace approximation. Second to fourth rows: ↵ = 0.00001, 0.001, 0.1, 0.5. First
and third columns: cross-sectional uncertainty estimates. Second and fourth columns: approximate pointwise posterior
variance. First and second columns: modelled PtO map. Third and fourth columns: learned PtO map.

39

SOLVING BAYESIAN INVERSE PROBLEMS VIA VARIATIONAL AUTOENCODERS

40

	Introduction
	Preliminaries and Motivation
	Learning a Solver for Deterministic Inverse Problems
	Learning a Solver for Bayesian Inverse Problems

	UQ-VAE: Flexible, Adaptive, Data/Model-Constrained Framework for UQ
	Derivation of the UQ-VAE Framework
	Regularized Optimization Problem
	Theoretial Result

	Related Work
	Results
	Comparison with the Laplace Approximation
	Comparison Within the UQ-VAE Framework

	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 3

	Two Dimensional Steady State Heat Conduction Problem
	Neural Network Architecture and Training Properties
	Architecture
	Training
	Computational Cost

	Results: Two Dimensional Steady State Heat Conduction Problem
	=0, M=50
	=0, M=500
	=0, M=1000
	=0, M=5000
	=0.01, M=50
	=0.01, M=500
	=0.01, M=1000
	=0.01, M=5000
	=0.05, M=50
	=0.05, M=500
	=0.05, M=1000
	=0.05, M=5000
	=0.1, M=50
	=0.1, M=500
	=0.1, M=1000
	=0.1, M=5000

