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Abstract—We introduce the DP-auto-GAN framework for
synthetic data generation, which combines the low dimensional
representation of autoencoders with the flexibility of Generative
Adversarial Networks (GANs). This framework can be used
to take in raw sensitive data and privately train a model for
generating synthetic data that will satisfy similar statistical
properties as the original data. This learned model can generate
an arbitrary amount of synthetic data, which can then be
freely shared due to the post-processing guarantee of differential
privacy. Our framework is applicable to unlabeled mixed-type
data, that may include binary, categorical, and real-valued data.
We implement this framework on both binary data (MIMIC-III)
and mixed-type data (ADULT), and compare its performance
with existing private algorithms on metrics in unsupervised
settings. We also introduce a new quantitative metric able to
detect diversity, or lack thereof, of synthetic data.

I. INTRODUCTION

As data storage and analysis are becoming more cost
effective, and data become more complex and unstructured,
there is a growing need for sharing large datasets for research
and learning purposes. This is in stark contrast to the previous
statistical model where a data curator would hold datasets and
answer specific queries from (potentially external) analysts.
Sharing entire datasets allows analysts the freedom to perform
their analyses in-house with their own devices and toolKkits,
without having to pre-specify the analyses they wish to per-
form. However, datasets are often proprietary or sensitive, and
they cannot be shared directly. This motivates the need for
synthetic data generation, where a new dataset is created that
shares the same statistical properties as the original data. These
data may not be of a single type: all binary, all categorial, or
all real-valued; instead they may be of mixed-types, containing
data of multiple types in a single dataset. These data may also
be unlabeled, requiring techniques for unsupervised learning,
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which is typically a more challenging task than supervised
learning when data are labeled.

Privacy challenges naturally arise when sharing highly
sensitive datasets about individuals. Ad hoc anonymization
techniques have repeatedly led to severe privacy violations
when sharing “anonymized” datasets. Notable examples in-
clude the Netflix Challenge [1], AOL Search Logs [2], and
Massachusetts State Health data [3], where linkage attacks to
publicly available auxiliary datasets were used to reidentify
individuals in the dataset. Deep learning models have been
shown to inadvertently memoize sensitive personal informa-
tion such as Social Security Numbers during training [4].

Differential privacy (DP) [5] (formally defined in Section
II) has become the de facto gold standard of privacy in the
computer science literature. Informally, it bounds the extent
to which an algorithm depends on a single datapoint in its
training set. The guarantee ensures that any differentially
privately learned models do not overfit to individuals in the
database, and therefore cannot reveal sensitive information
about individuals. It is an information theoretic notion that
does not rely on any assumptions of an adversary’s compu-
tational power or auxiliary knowledge. Furthermore, it has
been shown empirically that training machine learning models
with differential privacy protects against membership inference
and model inversion attacks [4], [6]. Differentially private
algorithms have been deployed at large scale in practice by
organizations such as Apple, Google, Microsoft, Uber, and
the U.S. Census Bureau.

Much of the prior work on differentially private synthetic
data generation has been either theoretical algorithms for
highly structured classes of queries [7], [8] or based on deep
generative models such as Generative Adversarial Networks
(GANSs) or autoencoders. These architectures have been pri-
marily designed for either all-binary or all-real-valued datasets,
and have focused on the supervised setting.

In this work we introduce the DP-auto-GAN framework,
which combines the low dimensional representation of au-
toencoders with the flexibility of GANs. This framework can
be used to take in raw sensitive data, and privately train
a model for generating synthetic data that satisfies similar
statistical properties as the original data. This learned model



can be used to generate arbitrary amounts of publicly available
synthetic data, which can then be freely shared due to the post-
processing guarantees of differential privacy. We implement
this framework on both unlabeled binary data (for comparison
with previous work) and unlabeled mixed-type data. We also
introduce new metrics for evaluating the quality of synthetic
mixed-type data in unsupervised settings, and empirically
evaluate the performance of our algorithm according to these
metrics on two datasets.

A. Our Contributions

In this work, we provide two main contributions: a new
algorithmic framework for privately generating synthetic data,
and empirical evaluations of our algorithmic framework show-
ing improvements over prior work. Along the way, we also
develop a novel privacy composition method with tighter
guarantees, and we generalize previous metrics for evaluating
the quality of synthetic datasets to the unsupervised mixed-
type data setting. Both of these contributions may be of
independent interest.

Algorithmic Framework. We propose a new data gen-
eration architecture which combines the versatility of an
autoencoder [9] with the recent success of GANs on complex
data. Our model extends previous autoencoder-based DP data
generation [10], [11] by removing an assumption that the
distribution of the latent space follows a Gaussian mixture
distribution. Instead, we incorporate GANs into the autoen-
coder framework so that the generator must learn the true
latent distribution against the discriminator. We describe the
composition analysis of differential privacy when the training
consists of optimizing both autoencoders and GANs (with
different noise parameters).

Empirical Results. We empirically evaluate the perfor-
mance of our algorithmic framework on the MIMIC-III med-
ical dataset [12] and UCI ADULT Census dataset [13], and
compare against previous approaches in the literature [10],
[14]-[16]. Our experiments show that our algorithms perform
better and obtain substantially improved e values of € ~ 1,
compared to € ~ 200 in prior work [15]. The performance of
our algorithm remains high along a variety of quantitative and
qualitative metrics, even for small values of €, corresponding
to strong privacy guarantees. Our code is publicly available
for future use and research.

B. Related Work on Differentially Private Data Generation

Early work on differentially private synthetic data gen-
eration was focused primarily on theoretical algorithms for
solving the query release problem of privately and accurately
answering a large class of pre-specified queries on a given
database. It was discovered that generating synthetic data on
which the queries could be evaluated allowed for better privacy
composition than simply answering all the queries directly
[71, [8], [17], [18]. Bayesian inference has also been used for
differentially private data generation [19], [20] by estimating
the correlation between features. See [21] for a survey of
techniques used in private synthetic data generation.

More recently, [22] introduced a framework for training
deep learning models with differential privacy, which involved
adding Gaussian noise to a clipped (norm-bounded) gradient in
each training step. [22] also introduced the moment accountant
privacy analysis, which provided a tighter Gaussian-based
privacy composition and allowed for significant improvements
in accuracy. It was later defined in terms of Renyi Differential
Privacy (RDP) [23], which is a slight variant of differential
privacy designed for easy composition. Much of the work that
followed used deep generative models, and can be broadly
categorized into two types: autoencoder-based and GAN-
based. Our algorithmic framework is the first to combine both
DP GANs and autoencoders.

Due to space constraints, we focus here on the three most
relevant recent works on privately generating synthetic mixed-
type data. [10] considers the problem of generating mixed-
type labeled data with k possible labels. Their algorithm, DP-
SYN, partitions the dataset into k sets based on the labels
and trains a DP autoencoder on each partition. Then the DP
expectation maximization (DP-EM) algorithm of [24] is used
to learn the distribution in the latent space of encoded data of
the given label-class. The main workhorse, DM-EM algorithm,
is designed and analyzed for Gaussian mixture models and
more general factor analysis models. [11] works in the same
setting, but replaces the DP autoencoder and DP-EM with a DP
variational autoencoder (DP-VAE). Their algorithm assumes
that the mapping from real data to the Gaussian distribution
can be efficiently learned by the encoder. Finally, [14] uses a
Wasserstein GAN (WGAN) to generate differentially private
mixed-type synthetic data, which uses a Wasserstein-distance-
based loss function in training. Their algorithmic framework
privatizes the WGAN using DP-SGD, similar to previous
approaches for image datasets [15], [25]. The methodology
of [14] for generating mixed-type synthetic data involves two
main ingredients: changing discrete (categorical) data to binary
data using one-hot encoding, and adding an output softmax
layer to the WGAN generator for every discrete variable.

Our framework is distinct from these three approaches. We
use a differentially private autoencoder which, unlike DP-
VAE of [11], does not require mapping data to a Gaussian
distribution. This allows us to reduce the dimension of the
problem handled by the WGAN, hence escaping the issues of
high-dimensionality from the one-hot encoding of [14]. We
also use DP-GAN, replacing DP-EM in [10], to learn more
complex distributions in the latent or encoded space.

II. PRELIMINARIES ON DIFFERENTIAL PRIVACY

In the setting of differential privacy, a dataset X consists
of m individuals’ sensitive information, and two datasets are
neighbors if one can be obtained from the other by the addition
or deletion of one datapoint. Differential privacy requires that
an algorithm produce similar outputs on neighboring datasets,
thus ensuring that the output does not overfit to its input
dataset, and that the algorithm learns from the population but
not from the individuals.



Definition 1 (Differential privacy [5]). For €,0 > 0, an
algorithm M is (e, §)-differentially private if for any pair of
neighboring databases X, X' and any subset S of possible
outputs produced by M,

PrM(X) € 5] < ¢ - PrIM(X") € §] + 4.

A smaller value of € implies stronger privacy guarantees
(as the constraint above binds more tightly), but usually
corresponds with decreased accuracy, relative to non-private
algorithms or the same algorithm run with a larger value of
e. Differential privacy is typically achieved by adding random
noise that scales with the sensitivity of the computation being
performed, which is the maximum change in the output value
that can be caused by changing a single entry. Differential
privacy has strong composition guarantees, meaning that the
privacy parameters degrade gracefully as additional algorithms
are run on the same dataset. It also has a post-processing
guarantee, meaning that any function of a differentially private
output will retain the same privacy guarantees.

A. Differentially Private Stochastic Gradient Descent (DP-
SGD)

The DP-SGD framework of [22] can be used to privately
train deep learning models, and is used in our framework
to train the autoencoder and GAN. The training process
involves minimizing an empirical loss function f(X;0) :=
LS f(2:;0) on a dataset X = {z; € R"}",. Typically
f is nonconvex, and a common method to minimize f is
stochastic gradient descent (SGD). To make SGD private,
[22] proposed clipping the gradient of each sample to bound
the /o-norm, and adding multivariate Gaussian noise to the
gradient. The clipping reduces the scale of noise that must
be added to preserve differential privacy. The noisy-clipped-
gradient estimate is then used in the update step instead of the
true gradient.

B. Renyi Differential Privacy Accountant

A variant notion of differential privacy, known as Renyi
Differential Privacy (RDP) [23], is often used to analyze
privacy for DP-SGD. A randomized mechanism M is («;, €)-
RDP if for all neighboring databases X, X’ that differ in at

most one entry, RDP(a) := D, (M ( JIM(X)) < e, where
Do(P||Q) := L5 logEpnx (ngg is the Renyi divergence

or Renyi entropy of order o between two distributions P and
Q. Renyi divergence is better tailored to tightly capture the
privacy loss from the Gaussian mechanism that is used in DG-
SGD, and is a common analysis tool for DP-SGD literature.
To compute the final (e, d)-differential privacy parameters
from iterative runs of DP-SGD, one must first compute the
subsampled Renyi Divergence, then compose privacy under
RDP, and then convert the RDP guarantee into DP.

III. ALGORITHMIC FRAMEWORK

The overview of our algorithmic framework DP-auto-GAN
is shown in Figure 1, and the full details are given in Algorithm
1. Details of the subroutines are deferred to the full version.

The algorithm takes in m raw data points, and pre-processes
these points into m vectors z1,...,Z, € R"™ to be read by
DP-auto-GAN, where usually n is very large. For example,
categorical data may be pre-processed using one-hot encoding,
or text may be converted into high-dimensional vectors. Simi-
larly, the output of DP-auto-GAN can be post-processed from
R™ back to the data’s original form. We assume that this pre-
and post-processing can done based on public knowledge, such
as possible categories for qualitative features and reasonable
bounds on quantitative features, and therefore do not incur a

privacy cost.
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Fig. 1: The summary of our DP-auto-GAN algorithmic framework.
Pre- and post-processing (in black) are assumed to be public knowl-
edge. Generator (in green) is trained without noise, whereas encoder,
decoder, and discriminator (in yellow) are trained with noise. The
four red arrows indicate how data are forwarded for autoencoder,
generator, and discriminator training. After training, the generator
and decoder are released to the public to generate synthetic data.

Within the DP-auto-GAN, there are two main components:
the autoencoder and the GAN. The autoencoder serves to
reduce the dimension of the data to d < n before it is fed into
the GAN. The GAN consists of a generator that takes in noise
z sampled from a distribution Z and produces G.,(z) € RY,
and a discriminator D,(-) : R® — {0,1}. Because of the
autoencoder, the generator only needs to synthesize data based
on the latent distribution in R%, which is much easier than
synthesizing in R™. Both components of our architecture, as
well as our algorithm’s overall privacy guarantee, are described
in the remainder of this section.

A. Autoencoder Framework and Training

An autoencoder consists of an encoder Eng(-) : R — R?
and a decoder Degy(-) : RY — R™ parametrized by weights
¢, 0 respectively. The architecture of the autoencoder assumes
that high-dimensional data z; € R"™ can be represented
compactly in a low-dimensional latent space R?®. The encoder
Eng is trained to find such low-dimensional representations,
and the decoder Dey maps Eng(z;) in the latent space back
to x;. A natural measure of the information preserved in this
process is the error between the decoder’s image and the
original ;. A good autoencoder should minimize the distance
dist(Deg(Eng(z;)), z;) for each point z; for an appropriate



Algorithm 1 DPAUTOGAN (full procedure)

1: architecture input: Sensitive dataset D € X™ where X
is the (raw) data universe, preprocessed data dimension
n, latent space dimension d, preprocessing function Pre :
X — R"”, post-processing function Post : R” — X,
encoder architecture Eng : R® — R? parameterized by
¢, decoder architecture Dey : R? — R™ parameterized by
6, generator’s noise distribution Z on sample space 2(Z),
generator architecture G, : Q(Z) — R? parameterized
by w, discriminator architecture D, : R™ — {0,1}
parameterized by y.

2: autoencoder training parameters: Learning rate 7,
number of iteration rounds (or optimization steps) 77,
loss function L, optimization method OPTIM,, batch
sampling rate ¢; (for batch expectation size by = q1m),
clipping norm C', noise multiplier )1, microbatch size rq

3: generator training parameters: Learning rate 7y, batch
size by, loss function L, optimization method OPTIM¢,
number of generator iteration rounds (or optimization
steps) 15

4: discriminator training parameters: Learning rate 73,
number of discriminator iterations per generator step tp,
loss function Lp, optimization method OPTIMp, batch
sampling rate g3 (for batch expectation size bs = gzm),
clipping norm Cj, noise multiplier )3, microbatch size 73

5: privacy parameter § > 0

6: procedure DPautoGAN

7. X < Pre(D)

3

9

Initialize ¢, 0, w,y for Eng, Deg, Gy, Dy
: > Phase 1: autoencoder training
10: fort =1...7; do
11: DPTRAINyro(X, En, De, autoencoder training pa-
rameters)
> Phase 2: GAN training
12: fort =1...75 do
13: for j=1...tp do
> (privately) train D, for tp iterations
14: DPTRAINDscrivinator( X, Z, G, De, D, discrimi-
nator training parameters)
15: TRAINGeneraTor(Z, G, De, D, generator training pa-

rameters)
> Privacy accounting

16: RDP,y0(-) + RDP-AcCcOUNT(TY, g1, %1, 71)
17: RDPp(-) + RDP-ACCOUNT(T: - tp, g3, 13, 3)
18: € <~ GET-EPS(RDP () + RDPp(+))

19: return model (G, Dey), privacy (e,0)

distance function dist. Our autoencoder uses binary cross
entropy loss: dist(z,y) = — >_7_; y(j) log(z(;)) — 27—, (1 —
Y(j)) log(1—x(;), where x;) is the jth coordinate of the data
x € [0,1]™ after our preprocessing.

This motivates a definition of a (true) loss function
E;~zy [dist(Deg(Eng(z)), )] when data are drawn indepen-
dently from an underlying distribution Zx . The corresponding

empirical loss function when we have an access to sample
{z: b2y is
Lauto(¢7 0) = 221 dlSt(Deﬁ(En¢(ll))a xz) (1)

Finding a good autoencoder requires optimizing ¢ and 6 to
yield small empirical loss in Equation 1.

We minimize Equation 1 privately using DP-SGD (Section
II-A). Our approach follows previous work on private training
of autoencoders [10], [11], [16] by adding noise to both the
encoder and decoder. In our DP-auto-GAN framework, the
autoencoder is trained first until completion, and is then fixed
while training the GAN.

B. GAN Framework and Training

A GAN consists of a generator GG, and a discriminator
D, : R" — {0,1}, parameterized respectively by weights w
and y. The aim of the generator G, is to synthesize (fake)
data similar to the real dataset, while the discriminator aims
to determine whether an input z; is from the generator’s
synthesized data (and assign label D, (x;) = 0) or is real data
(and assign label D, (x;) = 1). The generator is seeded with
a random noise z ~ Z that is independent of the data, such as
a multivariate Gaussian vector, and aims to generate a distri-
bution G, (2) that is hard for D, to distinguish from the real
data. Hence, the generator wants to minimize the probability
that D, makes a correct guess, E,.z[1 — D,(Gy(%))]. The
discriminator wants to maximize its probability of a correct
guess, which is E,.z[1 — Dy(G,(z))] when the datum is
fake and E,z, [Dy(z)] when it is real.

We extend the binary output of D, to a continuous range
[0, 1], with the value indicating the confidence that a sample is
real. We use the zero-sum objective for the discriminator and
generator [26], which is motivated by the Wasserstein distance
of two distributions. Although the proposed Wasserstein ob-
jective cannot be computed exactly, it can be approximated by
optimizing:

min, max,, O(y, w) = Egwz, [Dy(x)] —E.nz[Dy(Guw(2))].
2
We optimize Equation 2 privately using the DP-SGD frame-
work described in Section II-A. We differ from prior work
on DP-GANS in that our generator G, (+) outputs data G, (z)
in the latent space R?, which needs to be decoded by the
fixed (pre-trained) Dey to Dey(G,,(2)) before being fed into
the discriminator D, (z). The gradient V,,G,, is obtained by
backpropagation through this additional component Degy(+).
After this two-phase training (of the autoencoder and GAN),
the noise distribution Z, trained generator G,,(+), and trained
decoder Dey(-) are released to the public. The public can
sample z ~ Z to obtain a synthesized datapoint Deg(G (%))
repeatedly to obtain a synthetic dataset of any desired size.

C. Privacy Accounting

We use Renyi Differential Privacy (RDP) of [23], to account
for privacy in each phase of training as in prior works.
Our autoencoder and GAN are trained privately by clipping



gradients and adding noise to the encoder, decoder, and
discriminator. Since the generator only accesses data through
the discriminator’s (privatized) output and Deg is first trained
privately and then fixed during GAN training, the trained
parameters of generator are also private by post-processing
guarantees of differential privacy. Privacy accounting is there-
fore required for only two parts that access real data X:
training of the autoencoder and of the discriminator. In each
training procedure, we apply the RDP accountant described in
Section II-B, to analyze privacy of the DP-SGD training.

The RDP accountant is a function r : [1,00) — R,
and guarantees (€,d)-DP for any given § > 0 with ¢ =
mings1 r(a)+ 105’_1{6 ( [23]; also used in Tensorflow Privacy
[27]). Hence, at the end of two-phase training, we have two
RDP accountants 71, 72. We compose two RDP accountants
before converting the combined accountant into (e,d)-DP.
Note that another method used in DP-SYN [10] first converts
r; to (€;,0;)-DP and then combines them into (e1+€3,d1+d2)-
DP by basic composition [5]. For completeness, we show that
composing RDP accountants first always results in a better
privacy analysis.

Lemma 2. Let My, My be any mechanisms and 11,79 :
[1,00) = Ry U {oo} be functions such that My, My are
(a,r1())- and (a,m2(a))-RDP, respectively. Let § € (0,1]

and let

log(2/9)
a—1

. log (2/9)
- e = apnle) =T

. log(1/4)
and e—]gl>1111r1(a)—|—r2(a)+ a1

€1 = minr (a) +

Then M, is (€1,0/2)-DP, My is (€2,3/2)-DP, and the com-
position M = (My, My) is (¢,0)-DP. If €1 and e are finite,
then € < €1 + €o.

In practice, we observe that composing at the RDP level
first in Lemma 2 reduces privacy cost by ~ 30%.

IV. EXPERIMENTS

In this section, we empirically evaluate the performance
of our DP-auto-GAN framework on the MIMIC-III [12] and
ADULT [13] datasets, which have been used in prior works
on differentially private synthetic data generation. We compare
against these prior approaches using a variety of qualitative
and quantitative evaluation metrics, including some from prior
work and some novel metrics we introduce. We target 6 =
10~° in all settings. All experimental details and our code is
available at https://github.com/DPautoGAN/DPautoGAN.

A. Binary Data

MIMIC-III [12] is a binary dataset consisting of medical
records of 46K intensive care unit (ICU) patients over 11 years
old with 1071 features. Even though DP-auto-GAN can handle
mixed-type data, we evaluate it first on MIMIC-III since this
dataset has been used in similar non-private [28] and private
[15] GAN frameworks. We apply the same evaluation metrics
used in these papers, namely dimension-wise probability and

dimension-wise prediction. Prediction is defined by AUROC
score of a logistic regression classifier.

Generated Data

(b) € = 2.70

Generated Data

(c) e=1.33 (d) e =0.81

Fig. 2: Dimension-wise probability scatterplots for different val-
ues of e. Each point represents one of the 1071 features in the
MIMIC-III dataset. The x and y coordinates of each point are
the proportion of 1s in real and synthetic datasets of a feature,
respectively. The line y = x, which represents ideal performance, is
shown in each plot. Note that even for small e values, performance is
not degraded much relative to the non-private method. Compare with
Figure 4 in [15], which provides worse performance for € € [96, 231].

a) Dimension-Wise Probability: Figure 2 shows the
dimension-wise probability of DP-auto-GAN for different e.
Each point in the figure corresponds to a feature in the dataset,
and the = and y coordinates respectively show the proportion
of 1s in the real and synthetic datasets. Points closer to the
y = x line correspond to better performance, because this
indicates the distribution is similar in the real and synthetic
datasets. As shown in Figure 2, the proportion of 1’s in the
marginal distribution for is similar on the real and synthetic
datasets in the non-private (¢ = oo) and private settings. The
marginal distributions of the privately generated data from DP-
auto-GAN remain a close approximation of the real dataset,
even for small values of ¢, because nearly all points fall close
to the line y = z. We note that our results are significantly
stronger than the ones obtained in [15] with € € [96.5,231]
because we obtain dramatically better performance with e
values that are two orders of magnitude smaller. For visual
performance comparison, see Figure 4 of [15].

b) Dimension-Wise  Prediction: — Figure 3  shows
dimension-wise prediction using DP-auto-GAN for different
values of €. Each point in the figure corresponds to a feature
in the dataset, and the x and y coordinates respectively show
the AUROC score of a logistic regression classifier trained on
the real and synthetic datasets, and points closer to the y = x
line still correspond to better performance. As shown in the
figure, for ¢ = oo, many points are concentrated along the
lower side of line y = x, which indicates that the AUROC
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(b) € = 2.70

(c) e=1.33 (d) e=0.81

Fig. 3: Dimension-wise prediction scatterplots for different val-
ues of e. Each point represents one of the 1071 features in the
MIMIC-III dataset. The x and y coordinates of each point represent
the AUROC score of a logistic regression classifier trained on real
and synthetic datasets, respectively. The line y = x corresponds to
the ideal performance. Again we note that even for small e values,
performance is not degraded much relative to the non-private method.
Compare with Figure 5 in [15], which provides worse performance
for € € [96, 231].

score of the real dataset is only marginally higher than that
of the synthetic dataset. When privacy is added, there is a
gradual shift downwards relative to the line y = =z, with
larger variance in the plotted points, indicating that AUROC
scores of real and synthetic data show more difference when
privacy is introduced. Surprisingly, there is little degradation
in performance for smaller e values, including ¢ = 0.81.
For sparse features with few 1’s in the data, the generative
model will output all 0’s for that feature, making AUROC
ill-defined. We follow [15] by excluding those features from
dimension-wise prediction plots.

Our results for DP-auto-GAN under this metric are also
significantly stronger than the ones obtained in [15] with much
larger € values of € € [96.5,231]; for visual performance
comparison, see Figure 5 of [15]. Our probability and pre-
diction plots of DP-auto-GAN are either comparable to or
better than [15], with our prediction plots detecting many more
sparse features. The performance of DP-auto-GAN degrades
only slightly as e decreases and is achieved at much smaller
€ values, giving a roughly 100x improvement in privacy
compared to [15].

B. Mixed-Type Data

ADULT dataset [13] is an extract of the U.S. Census of 48K
working adults, consisting of mixed-type data: nine categorical
features (one of which is a binary label) and four continuous.
This dataset has been used to evaluate DP-WGAN [14] and
DP-SYN [10]. We compare DP-auto-GAN against these meth-
ods, as well as DP-VAE [16]. We target ¢ = 1.01,0.51,0.36.

For DP-SYN, we allow € = 1.4,0.8,0.5 because their imple-
mentation uses standard privacy composition, which is looser
than than RDP composition (Lemma 2). These larger € values
provide comparable privacy guarantees to the smaller e values
achieved by RDP composition, and allow for a fair comparison
of architectures without modifying the implementation in [10].

a) Dimension-Wise Prediction: Figure 4 compares the
performance of DP-auto-GAN with these three prior algo-
rithms for the task of dimension-wise prediction. For cate-
gorical features (represented by blue points and a single green
point), we use a random forest classifier for prediction as in
[14], and we measure performance using Fj score, which is
more appropriate than AUROC for multi-class prediction. For
continuous features (represented by red points), we used Lasso
regression and report R? scores. The green point corresponds
to the salary feature of the data, which is real-valued but
treated as binary based on the condition > $50k, which was
similarly used as a binary label in [14]. We use brown points
to indicate the categorical features for which the synthetic data
exhibit no diversity, where all synthetic data points have the
same category. We explore metrics for measuring diversity
later in this section.

Note that in Figure 4, there are not four red points in
each plot (corresponding to the four continuous features of
the dataset). While AUROC for the binary features is always
supported on [0, 1], the R? score for real-valued features can
be negative if the predictive model is poor, and these values
for these missing points fell outside the range of Figure 4.

Each point in Figure 4 corresponds to one feature, and
the = and y coordinates respectively show the accuracy score
on the real data and the synthetic data. Figure 4 shows that
DP-auto-GAN achieves considerable performance for all €
values tested. As expected, its performance degrades as e
decreases, but not substantially. DP-WGAN [14] performs well
at e = 1.01, but its performance degrades rapidly with smaller
€. This is consistent with [14], which uses higher ¢ = 3,7.
DP-auto-GAN outperforms DP-VAE [16] across all € values.
DP-SYN [10] is able to capture relationships between features
well even for small € using this metric.

b) Random Forest Prediction Scores: Following [14], we
also evaluate the quality of synthetic data by the accuracy of
a random forest classifier to predict the label “salary” feature.
In particular, we train a random forest classifier on synthetic
data and test on the holdout original data, and report the F}
accuracy score. The aim is that a classifier trained on synthetic
data should report a similar accuracy score as the one trained
on the original data.

In Table I, we report the accuracy of synthetic datasets
generated by DP-auto-GAN and DP-WGAN [14]. The results
reported in [14] use € = 3,7,00, whereas our algorithms
used parameter values ¢ = 0.36,0.51,1.01, 00, a significant
improvement in privacy. We see that our accuracy guarantees
are higher than those of [14] with smaller € values, and
DP-auto-GAN achieved higher accuracy in the non-private
setting. We note that part of the accuracy discrepancy because
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Fig. 4: Dimension-wise prediction scatterplot of all (applicable) features of ADULT dataset for different e values and algorithms. The
line y = x represents ideal performance. Blue, green, and red points respectively correspond to unlabeled categorical, labeled binary, and
continuous features. Brown points indicate the synthetic data exhibit no diversity (i.e., all data points have the same category). Note that
DP-SYN has several features without diversity. Red points with R? scores close to zero in the original data have unstable (and unmeaningful)
synthetic R scores due to the sparse nature of those features in the original data, and some of these R? scores fall outside of the plotted
range. The implementation of DP-WGAN in [14] did not allow continuous features, and the implementation of DP-SYN in [10] converted

two continuous features to categorical.

TABLE I: Accuracy scores of random forest prediction on salary feature of ADULT dataset by DP-auto-GAN and DP-WGAN in [14] over

different privacy parameter e.

€ value Real dataset 00 7 3 1.01 0.51 0.36
DP-auto-GAN Accuracy (ours) 84.53% 79.18% 79.19% | 78.68% | 74.66%
DP-WGAN Accuracy 77.2% 76.7% 76.0% | 75.3%

DP-auto-GAN can handle mixed-typed features, whereas DP-
WGAN only handles categorical features.

c) 1-Way Marginal and Diversity Divergence: While
DP-SYN has good dimension-wise prediction, this does not
capture diversity, a concern of bias known for DP-SGD (
[29]). For features with a large majority class and many
minority classes, the classifier often predicts the majority class
with probability one. We found that for four features, DP-
SYN generates data from only one class, whereas all other
algorithms do not behave this way for any feature. Lack
of diversity in synthetic data can raise fairness concerns, as
societal decisions based on the private synthetic data will
inevitably ignore minority groups.

We start by turning to 1-way marginal as a method of
evaluation, which is able to detect such issues and give
another perspective of synthetic data. Figure 5 shows his-
tograms of synthetic data from the four algorithms on two
categorical features: marital-status and race. Marital-status

distributes more evenly across categories, and DP-VAE, DP-
SYN and DP-auto-GAN are able to learn this distribution
well. Race, on the other hand, has an 85.5% majority; DP-
SYN only generated data from the majority class, whereas
DP-auto-GAN and DP-VAE were able to detect the existence
of minority classes. DP-WGAN suffered similar issues on the
marital status feature.

A standard measure for diversity between the original
distribution P and synthetic distribution () includes Kullback-
Leibler (KL) divergence D (P||Q). Under differential pri-
vacy the support of P is a private information, so the private
synthetic data inherently cannot ensure its support to align with
the original data. This makes Dy (P||Q) and Dk (Q||P)
(and related metrics such as Inception score [30]) undefined.
One alternative is Jensen—Shannon divergence (JSD) [31],
[32]: ISD(P||Q) := §Dk1(PIQ) + § D1 (QI|P) which is
always defined and nonnegative. We use this metric to evaluate
the diversity of the synthetic data.



TABLE II: Diversity measures JSD and D%, on different features of ADULT data and the sum of divergences across all eight applicable
categorical features (All). Recall that p; is the maximum probability across all categories of that feature in the original data. Smaller values
for the diversity measures imply more diverse synthetic data. For each row (feature), the smallest value for each setting of € is highlighted

in bold.
DP-auto-GAN DP-WGAN DP-VAE DP-SYN
e values | 0.36 051 1.01 | 036 051 101 | 036 051 1.01 | 0.50 080 1.40
JSD Diversity Measure
Marital 025 .043  .014 | .119 624 136 | .139 .043 .021 | .017 .013 .017
Race 021 014 016 | .081 .053 .040 | .095 .031 .011 | .053 .053 .053
All 033 023 019 | 1.29 241 073 | 080 044 023 | 025 027 0.28
—_ 1
D“KL Diversity Measure, with = e 1-P1
Marital 019  .053 .005 | .165 1.16 290 | .207 .044 017 | .017 .011 .012
Race A25 0 064 089 | 262 465 277 | 315 102 038 | 465 465 465
All 081 048 053 | 526 639 153 ] 252 1.17 058 [ 099 1.00 1.02
(1,0,...,0) supports only one single category. Then, we
E
— e have D%L(PHQ) = Yicapi + m)log(pi + ) — (o1 +
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Fig. 5: Histograms of synthetic data generated by different algo-
rithms.

In addition, we propose another diversity measure, p-
smoothed Kullback-Leibler (KL) divergence between the orig-
inal distribution P and synthetic distribution Q:

Dl;(L(PHQ) = ZwEsupp(P)(P( )+ 'u) log(QEx;+N)

for small g > 0. D%, maintains the desirable property that
DY, > 0 and is zero if and only if P = Q. Smaller p
implies stronger penalties for missing minority categories in
the synthetic data, and the penalty approaches oo as u — 0.
This allows p as a knob to adjust the penalty necessary in
private setting. In our settings, we are concerned with one
category dominating in the original distribution P (e.g., as in
Figure 5), say P = (p1,...,pr) with high py = max; p;,
and when the synthetic distribution Q (@1, q1) =

dominates log(p; + p) and log(p“”‘) so the dominating term
is (Zizz (pi + u)) logpu ~
w= eiﬁ so that this term is a constant, thus normalizing
scores across features.

Table II reports the diversity divergences of all four al-
gorithms for marital-status, race, and the sum across eight
categorical features. One of the nine categorical features are
not used due to a difference in preprocessing of DP-SYN. Both
measures are able to detect the lost of diversity in DP-SYN in
race, and identify DP-auto-GAN as generating more diverse
data than the prior methods for most features and e values.

We note that predictive scores may also not be appropriate
for continuous features when no good classifier exists to
predict the feature, even in the original dataset. In our setting,
we found three continuous features with R? scores close to
zero even with more complex regression models, and with
negative R? scores on synthetic data, which is not meaningful.
For those features, 1-way marginals (histograms, explored
next) are preferred to prediction scores.

In general, we suggest that an evaluation of synthetic data
should be based on probability measures (distributions of data)
and not predictive scores of models. Models may be a source
of not only unpredictability and instability, but also of bias
and unfairness.

(1 — p1)log p. Hence, we use

V. CONCLUSION

We propose DP-auto-GAN—a combination of DP-
autoencoder and DP-GAN—for differentially private data gen-
eration of mixed-type data. The inclusion of the autoen-
coder improves the efficacy of GANSs, especially for high-
dimensional data. Our method enjoys a 5x privacy improve-
ment compared to [14] on the ADULT dataset in 14 dimen-
sions and greater 100x improvement compared to [15] on a
higher 1071-dimensional dataset, and achieves a meaningful
privacy € < 1 for practical use. This approach is more complex
than assuming a standard Gaussian distribution as in DP-VAE
[16], and is better able to learn relationships among features.
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