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Abstract—We introduce the DP-auto-GAN framework for
synthetic data generation, which combines the low dimensional
representation of autoencoders with the flexibility of Generative
Adversarial Networks (GANs). This framework can be used
to take in raw sensitive data and privately train a model for
generating synthetic data that will satisfy similar statistical
properties as the original data. This learned model can generate
an arbitrary amount of synthetic data, which can then be
freely shared due to the post-processing guarantee of differential
privacy. Our framework is applicable to unlabeled mixed-type
data, that may include binary, categorical, and real-valued data.
We implement this framework on both binary data (MIMIC-III)
and mixed-type data (ADULT), and compare its performance
with existing private algorithms on metrics in unsupervised
settings. We also introduce a new quantitative metric able to
detect diversity, or lack thereof, of synthetic data.

I. INTRODUCTION

As data storage and analysis are becoming more cost

effective, and data become more complex and unstructured,

there is a growing need for sharing large datasets for research

and learning purposes. This is in stark contrast to the previous

statistical model where a data curator would hold datasets and

answer specific queries from (potentially external) analysts.

Sharing entire datasets allows analysts the freedom to perform

their analyses in-house with their own devices and toolkits,

without having to pre-specify the analyses they wish to per-

form. However, datasets are often proprietary or sensitive, and

they cannot be shared directly. This motivates the need for

synthetic data generation, where a new dataset is created that

shares the same statistical properties as the original data. These

data may not be of a single type: all binary, all categorial, or

all real-valued; instead they may be of mixed-types, containing

data of multiple types in a single dataset. These data may also

be unlabeled, requiring techniques for unsupervised learning,
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which is typically a more challenging task than supervised

learning when data are labeled.

Privacy challenges naturally arise when sharing highly

sensitive datasets about individuals. Ad hoc anonymization

techniques have repeatedly led to severe privacy violations

when sharing “anonymized” datasets. Notable examples in-

clude the Netflix Challenge [1], AOL Search Logs [2], and

Massachusetts State Health data [3], where linkage attacks to

publicly available auxiliary datasets were used to reidentify

individuals in the dataset. Deep learning models have been

shown to inadvertently memoize sensitive personal informa-

tion such as Social Security Numbers during training [4].

Differential privacy (DP) [5] (formally defined in Section

II) has become the de facto gold standard of privacy in the

computer science literature. Informally, it bounds the extent

to which an algorithm depends on a single datapoint in its

training set. The guarantee ensures that any differentially

privately learned models do not overfit to individuals in the

database, and therefore cannot reveal sensitive information

about individuals. It is an information theoretic notion that

does not rely on any assumptions of an adversary’s compu-

tational power or auxiliary knowledge. Furthermore, it has

been shown empirically that training machine learning models

with differential privacy protects against membership inference

and model inversion attacks [4], [6]. Differentially private

algorithms have been deployed at large scale in practice by

organizations such as Apple, Google, Microsoft, Uber, and

the U.S. Census Bureau.

Much of the prior work on differentially private synthetic

data generation has been either theoretical algorithms for

highly structured classes of queries [7], [8] or based on deep

generative models such as Generative Adversarial Networks

(GANs) or autoencoders. These architectures have been pri-

marily designed for either all-binary or all-real-valued datasets,

and have focused on the supervised setting.

In this work we introduce the DP-auto-GAN framework,

which combines the low dimensional representation of au-

toencoders with the flexibility of GANs. This framework can

be used to take in raw sensitive data, and privately train

a model for generating synthetic data that satisfies similar

statistical properties as the original data. This learned model



can be used to generate arbitrary amounts of publicly available

synthetic data, which can then be freely shared due to the post-

processing guarantees of differential privacy. We implement

this framework on both unlabeled binary data (for comparison

with previous work) and unlabeled mixed-type data. We also

introduce new metrics for evaluating the quality of synthetic

mixed-type data in unsupervised settings, and empirically

evaluate the performance of our algorithm according to these

metrics on two datasets.

A. Our Contributions

In this work, we provide two main contributions: a new

algorithmic framework for privately generating synthetic data,

and empirical evaluations of our algorithmic framework show-

ing improvements over prior work. Along the way, we also

develop a novel privacy composition method with tighter

guarantees, and we generalize previous metrics for evaluating

the quality of synthetic datasets to the unsupervised mixed-

type data setting. Both of these contributions may be of

independent interest.

Algorithmic Framework. We propose a new data gen-

eration architecture which combines the versatility of an

autoencoder [9] with the recent success of GANs on complex

data. Our model extends previous autoencoder-based DP data

generation [10], [11] by removing an assumption that the

distribution of the latent space follows a Gaussian mixture

distribution. Instead, we incorporate GANs into the autoen-

coder framework so that the generator must learn the true

latent distribution against the discriminator. We describe the

composition analysis of differential privacy when the training

consists of optimizing both autoencoders and GANs (with

different noise parameters).

Empirical Results. We empirically evaluate the perfor-

mance of our algorithmic framework on the MIMIC-III med-

ical dataset [12] and UCI ADULT Census dataset [13], and

compare against previous approaches in the literature [10],

[14]–[16]. Our experiments show that our algorithms perform

better and obtain substantially improved ε values of ε ≈ 1,

compared to ε ≈ 200 in prior work [15]. The performance of

our algorithm remains high along a variety of quantitative and

qualitative metrics, even for small values of ε, corresponding

to strong privacy guarantees. Our code is publicly available

for future use and research.

B. Related Work on Differentially Private Data Generation

Early work on differentially private synthetic data gen-

eration was focused primarily on theoretical algorithms for

solving the query release problem of privately and accurately

answering a large class of pre-specified queries on a given

database. It was discovered that generating synthetic data on

which the queries could be evaluated allowed for better privacy

composition than simply answering all the queries directly

[7], [8], [17], [18]. Bayesian inference has also been used for

differentially private data generation [19], [20] by estimating

the correlation between features. See [21] for a survey of

techniques used in private synthetic data generation.

More recently, [22] introduced a framework for training

deep learning models with differential privacy, which involved

adding Gaussian noise to a clipped (norm-bounded) gradient in

each training step. [22] also introduced the moment accountant

privacy analysis, which provided a tighter Gaussian-based

privacy composition and allowed for significant improvements

in accuracy. It was later defined in terms of Renyi Differential

Privacy (RDP) [23], which is a slight variant of differential

privacy designed for easy composition. Much of the work that

followed used deep generative models, and can be broadly

categorized into two types: autoencoder-based and GAN-

based. Our algorithmic framework is the first to combine both

DP GANs and autoencoders.

Due to space constraints, we focus here on the three most

relevant recent works on privately generating synthetic mixed-

type data. [10] considers the problem of generating mixed-

type labeled data with k possible labels. Their algorithm, DP-

SYN, partitions the dataset into k sets based on the labels

and trains a DP autoencoder on each partition. Then the DP

expectation maximization (DP-EM) algorithm of [24] is used

to learn the distribution in the latent space of encoded data of

the given label-class. The main workhorse, DM-EM algorithm,

is designed and analyzed for Gaussian mixture models and

more general factor analysis models. [11] works in the same

setting, but replaces the DP autoencoder and DP-EM with a DP

variational autoencoder (DP-VAE). Their algorithm assumes

that the mapping from real data to the Gaussian distribution

can be efficiently learned by the encoder. Finally, [14] uses a

Wasserstein GAN (WGAN) to generate differentially private

mixed-type synthetic data, which uses a Wasserstein-distance-

based loss function in training. Their algorithmic framework

privatizes the WGAN using DP-SGD, similar to previous

approaches for image datasets [15], [25]. The methodology

of [14] for generating mixed-type synthetic data involves two

main ingredients: changing discrete (categorical) data to binary

data using one-hot encoding, and adding an output softmax

layer to the WGAN generator for every discrete variable.

Our framework is distinct from these three approaches. We

use a differentially private autoencoder which, unlike DP-

VAE of [11], does not require mapping data to a Gaussian

distribution. This allows us to reduce the dimension of the

problem handled by the WGAN, hence escaping the issues of

high-dimensionality from the one-hot encoding of [14]. We

also use DP-GAN, replacing DP-EM in [10], to learn more

complex distributions in the latent or encoded space.

II. PRELIMINARIES ON DIFFERENTIAL PRIVACY

In the setting of differential privacy, a dataset X consists

of m individuals’ sensitive information, and two datasets are

neighbors if one can be obtained from the other by the addition

or deletion of one datapoint. Differential privacy requires that

an algorithm produce similar outputs on neighboring datasets,

thus ensuring that the output does not overfit to its input

dataset, and that the algorithm learns from the population but

not from the individuals.



Definition 1 (Differential privacy [5]). For ε, δ > 0, an

algorithm M is (ε, δ)-differentially private if for any pair of

neighboring databases X,X ′ and any subset S of possible

outputs produced by M,

Pr[M(X) ∈ S] ≤ eε · Pr[M(X ′) ∈ S] + δ.

A smaller value of ε implies stronger privacy guarantees

(as the constraint above binds more tightly), but usually

corresponds with decreased accuracy, relative to non-private

algorithms or the same algorithm run with a larger value of

ε. Differential privacy is typically achieved by adding random

noise that scales with the sensitivity of the computation being

performed, which is the maximum change in the output value

that can be caused by changing a single entry. Differential

privacy has strong composition guarantees, meaning that the

privacy parameters degrade gracefully as additional algorithms

are run on the same dataset. It also has a post-processing

guarantee, meaning that any function of a differentially private

output will retain the same privacy guarantees.

A. Differentially Private Stochastic Gradient Descent (DP-

SGD)

The DP-SGD framework of [22] can be used to privately

train deep learning models, and is used in our framework

to train the autoencoder and GAN. The training process

involves minimizing an empirical loss function f(X; θ) :=
1
m

∑m

i=1 f(xi; θ) on a dataset X = {xi ∈ R
n}mi=1. Typically

f is nonconvex, and a common method to minimize f is

stochastic gradient descent (SGD). To make SGD private,

[22] proposed clipping the gradient of each sample to bound

the `2-norm, and adding multivariate Gaussian noise to the

gradient. The clipping reduces the scale of noise that must

be added to preserve differential privacy. The noisy-clipped-

gradient estimate is then used in the update step instead of the

true gradient.

B. Renyi Differential Privacy Accountant

A variant notion of differential privacy, known as Renyi

Differential Privacy (RDP) [23], is often used to analyze

privacy for DP-SGD. A randomized mechanism M is (α, ε)-
RDP if for all neighboring databases X,X ′ that differ in at

most one entry, RDP (α) := Dα(M(X)||M(X ′)) ≤ ε, where

Dα(P ||Q) := 1
α−1 logEx∼X

(

P (x)
Q(x)

)α

is the Renyi divergence

or Renyi entropy of order α between two distributions P and

Q. Renyi divergence is better tailored to tightly capture the

privacy loss from the Gaussian mechanism that is used in DG-

SGD, and is a common analysis tool for DP-SGD literature.

To compute the final (ε, δ)-differential privacy parameters

from iterative runs of DP-SGD, one must first compute the

subsampled Renyi Divergence, then compose privacy under

RDP, and then convert the RDP guarantee into DP.

III. ALGORITHMIC FRAMEWORK

The overview of our algorithmic framework DP-auto-GAN

is shown in Figure 1, and the full details are given in Algorithm

1. Details of the subroutines are deferred to the full version.

The algorithm takes in m raw data points, and pre-processes

these points into m vectors x1, . . . , xm ∈ R
n to be read by

DP-auto-GAN, where usually n is very large. For example,

categorical data may be pre-processed using one-hot encoding,

or text may be converted into high-dimensional vectors. Simi-

larly, the output of DP-auto-GAN can be post-processed from

R
n back to the data’s original form. We assume that this pre-

and post-processing can done based on public knowledge, such

as possible categories for qualitative features and reasonable

bounds on quantitative features, and therefore do not incur a

privacy cost.

Fig. 1: The summary of our DP-auto-GAN algorithmic framework.
Pre- and post-processing (in black) are assumed to be public knowl-
edge. Generator (in green) is trained without noise, whereas encoder,
decoder, and discriminator (in yellow) are trained with noise. The
four red arrows indicate how data are forwarded for autoencoder,
generator, and discriminator training. After training, the generator
and decoder are released to the public to generate synthetic data.

Within the DP-auto-GAN, there are two main components:

the autoencoder and the GAN. The autoencoder serves to

reduce the dimension of the data to d� n before it is fed into

the GAN. The GAN consists of a generator that takes in noise

z sampled from a distribution Z and produces Gw(z) ∈ R
d,

and a discriminator Dy(·) : R
n → {0, 1}. Because of the

autoencoder, the generator only needs to synthesize data based

on the latent distribution in R
d, which is much easier than

synthesizing in R
n. Both components of our architecture, as

well as our algorithm’s overall privacy guarantee, are described

in the remainder of this section.

A. Autoencoder Framework and Training

An autoencoder consists of an encoder Enφ(·) : R
n → R

d

and a decoder Deθ(·) : Rd → R
n parametrized by weights

φ, θ respectively. The architecture of the autoencoder assumes

that high-dimensional data xi ∈ R
n can be represented

compactly in a low-dimensional latent space R
d. The encoder

Enφ is trained to find such low-dimensional representations,

and the decoder Deθ maps Enφ(xi) in the latent space back

to xi. A natural measure of the information preserved in this

process is the error between the decoder’s image and the

original xi. A good autoencoder should minimize the distance

dist(Deθ(Enφ(xi)), xi) for each point xi for an appropriate



Algorithm 1 DPAUTOGAN (full procedure)

1: architecture input: Sensitive dataset D ∈ Xm where X
is the (raw) data universe, preprocessed data dimension

n, latent space dimension d, preprocessing function Pre :
X → R

n, post-processing function Post : R
n → X ,

encoder architecture Enφ : Rn → R
d parameterized by

φ, decoder architecture Deθ : Rd → R
n parameterized by

θ, generator’s noise distribution Z on sample space Ω(Z),
generator architecture Gw : Ω(Z) → R

d parameterized

by w, discriminator architecture Dy : R
n → {0, 1}

parameterized by y.

2: autoencoder training parameters: Learning rate η1,

number of iteration rounds (or optimization steps) T1,

loss function Lauto, optimization method OPTIMauto batch

sampling rate q1 (for batch expectation size b1 = q1m),

clipping norm C1, noise multiplier ψ1, microbatch size r1
3: generator training parameters: Learning rate η2, batch

size b2, loss function LG, optimization method OPTIMG,

number of generator iteration rounds (or optimization

steps) T2
4: discriminator training parameters: Learning rate η3,

number of discriminator iterations per generator step tD,

loss function LD, optimization method OPTIMD, batch

sampling rate q3 (for batch expectation size b3 = q3m),

clipping norm C3, noise multiplier ψ3, microbatch size r3
5: privacy parameter δ > 0
6: procedure DPautoGAN

7: X ← Pre(D)
8: Initialize φ, θ, w, y for Enφ, Deθ, Gw, Dy

9: . Phase 1: autoencoder training

10: for t = 1 . . . T1 do

11: DPTRAINAUTO(X , En, De, autoencoder training pa-

rameters)

. Phase 2: GAN training

12: for t = 1 . . . T2 do

13: for j = 1 . . . tD do

. (privately) train Dy for tD iterations

14: DPTRAINDISCRIMINATOR( X,Z,G,De,D, discrimi-

nator training parameters)

15: TRAINGENERATOR(Z,G,De,D, generator training pa-

rameters)
. Privacy accounting

16: RDPauto(·)← RDP-ACCOUNT(T1, q1, ψ1, r1)

17: RDPD(·)← RDP-ACCOUNT(T2 · tD, q3, ψ3, r3)

18: ε←GET-EPS(RDPauto(·) + RDPD(·))
19: return model (Gw, Deθ), privacy (ε, δ)

distance function dist. Our autoencoder uses binary cross

entropy loss: dist(x, y) = −
∑n

j=1 y(j) log(x(j))−
∑n

j=1(1−
y(j)) log(1−x(j)), where x(j) is the jth coordinate of the data

x ∈ [0, 1]n after our preprocessing.

This motivates a definition of a (true) loss function

Ex∼ZX
[dist(Deθ(Enφ(x)), x)] when data are drawn indepen-

dently from an underlying distribution ZX . The corresponding

empirical loss function when we have an access to sample

{xi}
m
i=1 is

Lauto(φ, θ) :=
∑m

i=1 dist(Deθ(Enφ(xi)), xi). (1)

Finding a good autoencoder requires optimizing φ and θ to

yield small empirical loss in Equation 1.

We minimize Equation 1 privately using DP-SGD (Section

II-A). Our approach follows previous work on private training

of autoencoders [10], [11], [16] by adding noise to both the

encoder and decoder. In our DP-auto-GAN framework, the

autoencoder is trained first until completion, and is then fixed

while training the GAN.

B. GAN Framework and Training

A GAN consists of a generator Gw and a discriminator

Dy : Rn → {0, 1}, parameterized respectively by weights w

and y. The aim of the generator Gw is to synthesize (fake)

data similar to the real dataset, while the discriminator aims

to determine whether an input xi is from the generator’s

synthesized data (and assign label Dy(xi) = 0) or is real data

(and assign label Dy(xi) = 1). The generator is seeded with

a random noise z ∼ Z that is independent of the data, such as

a multivariate Gaussian vector, and aims to generate a distri-

bution Gw(z) that is hard for Dy to distinguish from the real

data. Hence, the generator wants to minimize the probability

that Dy makes a correct guess, Ez∼Z [1 − Dy(Gw(z))]. The

discriminator wants to maximize its probability of a correct

guess, which is Ez∼Z [1 − Dy(Gw(z))] when the datum is

fake and Ex∼ZX
[Dy(x)] when it is real.

We extend the binary output of Dy to a continuous range

[0, 1], with the value indicating the confidence that a sample is

real. We use the zero-sum objective for the discriminator and

generator [26], which is motivated by the Wasserstein distance

of two distributions. Although the proposed Wasserstein ob-

jective cannot be computed exactly, it can be approximated by

optimizing:

miny maxw O(y, w) := Ex∼ZX
[Dy(x)]−Ez∼Z [Dy(Gw(z))].

(2)

We optimize Equation 2 privately using the DP-SGD frame-

work described in Section II-A. We differ from prior work

on DP-GANs in that our generator Gw(·) outputs data Gw(z)
in the latent space R

d, which needs to be decoded by the

fixed (pre-trained) Deθ to Deθ(Gw(z)) before being fed into

the discriminator Dy(z). The gradient ∇wGw is obtained by

backpropagation through this additional component Deθ(·).
After this two-phase training (of the autoencoder and GAN),

the noise distribution Z, trained generator Gw(·), and trained

decoder Deθ(·) are released to the public. The public can

sample z ∼ Z to obtain a synthesized datapoint Deθ(Gy(z))
repeatedly to obtain a synthetic dataset of any desired size.

C. Privacy Accounting

We use Renyi Differential Privacy (RDP) of [23], to account

for privacy in each phase of training as in prior works.

Our autoencoder and GAN are trained privately by clipping
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