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ABSTRACT

Normalizing flow models have risen as a popular solution to the

problem of density estimation, enabling high-quality synthetic data

generation as well as exact probability density evaluation. How-

ever, in contexts where individuals are directly associated with the

training data, releasing such a model raises privacy concerns. In

this work, we propose the use of normalizing flow models that pro-

vide explicit differential privacy guarantees as a novel approach to

the problem of privacy-preserving density estimation. We evaluate

the efficacy of our approach empirically using benchmark datasets,

and we demonstrate that our method substantially outperforms

previous state-of-the-art approaches. We additionally show how

our algorithm can be applied to the task of differentially private

anomaly detection.
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1 INTRODUCTION

The task of density estimation requires constructing an estimate

of an unknown probability density function, given observed data.

This density estimate can then be used to perform a variety of

relevant analysis tasks, including log likelihood evaluation and

synthetic data generation. In settings involving sensitive data, the

construction and subsequent release of such an estimate could
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potentially leak private information. Without a rigorous privacy

guarantee, nothing prevents a model from memorizing a row in

the training set, assigning disproportionate density to a point, or

any other vulnerability due to arbitrary analysis of the learned

parameters. Since density estimation remains a task of interest to

themodeling community, continued attention is required to develop

privacy-preserving methods for density estimation.

Differential privacy [16] has emerged as the predominant pri-

vacy notion in the context of statistical data analysis. At a high level,

differentially private analyses limit the extent to which the distribu-

tion of outputs can change due to the inclusion or exclusion of any

one individual from the analysis. Algorithms which adhere to this

notion exhibit a number of desirable properties, including privacy

guarantees which hold regardless of the auxiliary information an

adversary may have and composition of privacy guarantees across

multiple analyses. Hence differential privacy acts as a compelling

gold standard in the design of privacy-preserving analyses.

Tools for density estimation have held longstanding interest

due to their versatility. Their ability to address a wide range of

distributional learning tasks is precisely why the existence of an

accurate and privacy-preserving density estimation is surprising.

For example, privately constructing such a model implicitly yields

a differentially private approach to anomaly detectionÐa task of

substantial investigation [3, 21, 41]Ðas an immediate application

of likelihood inference. In addition, given that density estimators

often enable efficient sampling, such a model would yield a method

for privacy-preserving synthetic data generation. This task in par-

ticular has been of longstanding interest to the privacy community

[47] as it addresses many of the limitations imposed by the query-

release model [14] by allowing large numbers of arbitrary analyses.

Privately generating a synthetic dataset only incurs a fixed pri-

vacy cost during the training process; all subsequent queries on

the synthetic data are automatically differentially private due to

the privacy notion’s post-processing guarantee, so the privacy cost

does not scale with the number of downstream analyses performed.

Normalizing flow models are an attractive approach to the task

of density estimation due to their empirical ability to approximate

arbitrary, high-dimensional distributions. These models approach

the task of density estimation via a transformation on a chosen

base density by a sequence of invertible, non-linear transforma-

tions, enabling density querying on the resulting distribution via

an application of the change-of-variables formula. Approaches to

density estimation in this manner include: Non-linear Indepen-

dent Components Estimation (NICE) [9], Real NVP [10], Glow [33],

and Masked Autoregressive Flows (MAF) [44]. Until this work, it

was an open question whether normalizing flow models could be

constructed in a differentially private manner to handle the task

of privacy-preserving density estimation, combining the rigorous



guarantees of differential privacy with the strong empirical perfor-

mance exhibited by normalizing flows.

In this work we propose the use of normalizing flow models

trained in a differentially private manner as a novel approach to the

task of privacy-preserving density estimation. We provide an algo-

rithm (DP-NF, Algorithm 1 in Section 3) that privately optimizes the

model parameters via gradient descent using DP-SGD [1], which

adds Gaussian noise to clipped gradient updates ensure differential

privacy. Additionally, we achieve tighter privacy guarantees than

established in previous work [1] via composition with the recently

introduced notion of Gaussian differential privacy [11]. We apply

this optimization to the parameters of a Masked Autoregressive

Flow [44], our primary architecture of consideration, and achieve

empirical results (Section 4) which convincingly outperform previ-

ous approaches. Further, we show that our algorithm can be applied

to solve the problem of differentially private anomaly detection

(Section 5), and show that it leads to better true/false positive rates

than existing private methods.

1.1 Related Work

Gaussian mixture models (GMMs) are known to be a particularly

strong density estimation tool [43] since they are a universal approx-

imator of densitiesÐ that is, they are able to approximate any density

function arbitrarily well given a sufficient number of components

[36]. They approach the task of density estimation by modeling the

data distribution as a weighted sum of Gaussian distributions. The

first differentially private algorithm for learning the parameters

of a Gaussian mixture model comes from the work of [40], which

uses their sample-and-aggregate framework to convert non-private

algorithms into private algorithms, applied to the task of learning

mixtures of Gaussians. However, their approach exhibits strong

assumptions on the range of the parameter space and assumes a

uniform mixture of spherical Gaussians. Follow-up work of [31]

proposes a modernized approach which improves upon the sample

complexity of the aforementioned work and removes the strong

a priori bounds on the parameters of the mixture components, al-

though it makes the assumption that the components of the mixture

are well-separated.

There has also been work in learning the parameters of a Gauss-

ian mixture model through differentially private variants of the

expectation maximization (EM) algorithm. One notable instance of

this is DPGMM [49], which achieves a privacy guarantee at each it-

eration of EM through the application of calibrated Laplace noise to

the estimated model parameters following each maximization step.

These individual privacy guarantees are then combined into an

overall privacy guarantee via sequential composition, i.e., by taking

the sum of privacy parameters in each iteration. The work of [45]

introduces DP-EM, a general framework for privacy-preserving

optimization via expectation maximization. Their approach follows

a conceptually similar idea of applying either calibrated Laplace

or Gaussian noise to the model parameters at the end of each EM

iteration. They apply this method to learning mixtures of Gaus-

sians, henceforth referred to as DP-MoG, and they demonstrate

significantly better privacy guarantees through composition via

the moments accountant and zero-concentrated differential privacy

(zCDP) [6]. Given that their work makes no notable assumptions

about the task and provides an empirical evaluation of their method,

this is the most comparable approach to our own. As such, it is

used as a baseline in our experimental results.

In addition, we take note of more classical approaches to the

task of privacy-preserving density estimation. One of the simplest

yet most widely used methods for density estimation is through

the use of histograms, and previous work [8? ] has investigated

their private estimation. Unfortunately, such an approach scales

poorly with the dimension and complexity of the distribution while

asserting an unrealistic discretization of the space. Kernel density

estimation is another closely related approach, often characterized

as the smooth analog to the classical discrete histogram. The work

of [26] proposes a method for privately querying the density of

such an estimator through the addition of calibrated Gaussian noise.

As a non-parametric approach, it has the drawback that it requires

storage of the entire dataset at test time to enable querying (proving

impractical for large-scale datasets) while still degrading similarly

with dimension.

There have also been a number of deep learning based approaches

to generative modeling which vary in their relevance. Although

work of this nature technically allows for both sampling and like-

lihood evaluation, it does not allow for exact likelihood inference

as is the case for mixtures of Gaussians and normalizing flows.

There is also expansive literature concerning differentially pri-

vate approaches to training Generative Adversarial Networks, yet

these methods are strictly limited to sampling and do not provide a

straightforward approach to likelihood inference.

Finally, we include a brief overview of the extensive literature

concerning density estimation via normalizing flows. One impor-

tant subset are those characterized by coupling layers: transforma-

tions which partition the dimensions of its input and map them in a

way that retains invertibility and a tractable Jacobian. This includes

Non-linear Independent Components Estimation (NICE) [9], as well

as its subsequent generalization Real NVP [10]. Another notable

approach, Glow [33], makes use of such coupling layers while also

proposing the use of an invertible weight matrix decomposition to

generalize the notion of permutation layers. Alternatively, some

make use of autoregressive transformations, which are transforma-

tions that utilize the chain rule of probability to represent a joint

distribution as a product of its conditionals. Such models include

Masked Autoregressive Flow (MAF) [44], a generalization of Real

NVP optimized for density estimation, as well as its closely re-

lated Inverse Autoregressive Flow [34] optimized for variational

inference, among others [20, 28, 42].

2 PRELIMINARIES

2.1 Normalizing Flows

Let p (·) be the probability density function characterizing an unob-

servable distribution of interest, and let X = {x (1) , . . . ,x (n) } be n
observed i.i.d. samples from this distribution. The task of density

estimation is to find an approximation of p (·) via some model pθ (·)
given X . In the context of normalizing flows, this model is charac-

terized by a prior distribution q(·), chosen to exhibit a simple and

tractable density (e.g., the spherical multivariate Gaussian distribu-

tion), and a sequence of K bijective functions fθ = f1 ◦ f2 ◦ . . . ◦ fK ,
parameterized fullyby θ . The function fθ acts as a transformation



between the prior distribution q(·) and the approximated distribu-

tion pθ (·).
Given such amodel, it can be used to efficiently samplex ∼ pθ by

first sampling z ∼ q and then transforming the sample as x = fθ (z).

Ifpθ is a good approximation ofp, then this generative process gives

an efficient (approximate) oracle for sampling from the unknown

distribution.

Since fθ is invertible, one can also perform exact likelihood

evaluation on observed points from the data distribution via the

change of variables formula, as follows:

logpθ (x ) = logq( f −1
θ

(x )) + log
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Finding a good approximation pθ is achieved through optimiza-

tion of θ to minimize the negative log likelihood of the observed

dataset:

L (θ ) = − 1
n

n∑

i=1

logpθ (x
(i ) ). (1)

In practice, one will typically find the MLE θ∗ = argminθ L (θ )
using some non-convex optimization method, such as stochastic

gradient descent.

2.2 Differential Privacy

Differential privacy [16] has become the gold standard for ensuring

the privacy of statistical analyses applied to sensitive databases. At

a high level, it ensures that changing a single entry in the database

will have only a small effect on the distribution of analysis results.

Definition 1 ([16]). A randomized algorithm M : D → R
satisfies (ε,δ )-differential privacy (DP) if for any two input database

D,D ′ ∈ D that differ in a single entry and for any subset of outputs

S ⊆ R, it satisfies,
Pr[M (D) ∈ S] ≤ eε Pr[M (D ′) ∈ S] + δ .

One common algorithmic approach for achieving differential pri-

vacy is adding noise that scales with the sensitivity of the function

being evaluated, which is the maximum change in the function’s

value that can result from changing a single data point. Differen-

tially private algorithms are robust to post-processing, meaning that

any data-independent function of a differentially private output

retains the same privacy guarantee, and they enjoy composition,

meaning that the privacy parameters degrade gracefully as addi-

tional analyses are performed on the dataset. The simplest version

of composition is that the privacy parameters ε and δ ładd upž over

multiple analyses, although stronger versions of composition are

also used.

Differentially Private Stochastic Gradient Descent (DP-SGD, pre-

sented formally in Algorithm 3 in Appendix A.4) was introduced

by [1] as a method for private non-convex optimization. At each

step t , DP-SGD subsamples1 a small set of data points and uses

this batch to compute a gradient update. To achieve a differential

privacy guarantee, DP-SGD adds mean-zero Gaussian noise to the

1The original algorithm of [1] does this via Poisson subsampling, but it can also be
done via uniform subsampling while retaining a privacy guarantee [48].

average of the per-example gradients. The standard deviation of

this noise is scaled with the sensitivity of the gradient estimation.

Since this is unbounded, the per-example gradients are first clipped

to ensure that the ℓ2-norm is at most some input parameterC , thus

bounding the sensitivity, and then adds noise which scales with C .

[1] also introduced the moments accountant, which provides

tight privacy composition across multiple gradient update steps

in DP-SGD. To describe the moments accountant, given an algo-

rithmM and two neighboring datasets D,D ′, first we denote the
privacy loss of a particular outcome o as L(o) = log(Pr(MD =
o)/Pr(MD′ = o)). The moments accountant calculates a privacy

budget by bounding the moments of the privacy loss random vari-

able L(o) . That is, if we consider the log of the moment generating

function (MGF) of the privacy loss random variable evaluated at

λ, i.e., αM (λ;D,D ′) = logEo∼MD [e
λL (o )

], the worst case over

all neighboring databases maxD,D′ αM (λ;D,D ′) composes lin-

early across multiple mechanisms (Theorem 2.1 [1]) and allows for

conversion to an associated (ε,δ )-differential privacy guarantee

through the relation δ = minλ exp[αM (λ) − λε]. Follow up work

of [5] introduced NoisySGD, which followed the same algorithmic

structure but analyzed privacy composition under Gaussian dif-

ferential privacy [11]. For the purpose of this work it is sufficient

to simply note the associated benefits of analysis under Gaussian

differential privacy: it naturally lends itself to composition under

subsampling, allows for analytically tractable expressions of the

privacy guarantees of NoisySGD, while providing a slightly tighter

overall privacy bound than that achieved by the moments accoun-

tant. Further details are provided in Appendix A.

3 DIFFERENTIALLY PRIVATE NORMALIZING

FLOWS

In this section we introduce our algorithm for differentially private

density estimation via normalizing flows, DP-NF, presented in Al-

gorithm 1. It is based on the DP-SGD algorithm of [1], which is a

differentially private method for performing stochastic gradient

descent. We also briefly discuss performance improvements using

data-dependent initialization of normalization layers and using a

differentially private estimate of the distribution to act as a prior,

both of which are explored further Appendix B. We emphasize that

our primary technical contribution is not in the design of these

algorithms, but rather the novel application of these tools to the

problem of differentially private density estimation in a way that

yields substantial performance over prior work, as demonstrated

by our empirical results in Section 4.

3.1 DP-NF Algorithm

Training a normalizing flow model corresponds to minimizing the

loss function in Equation (1): L (θ ) = − 1
N

∑
N

i=1 logpθ (x
(i ) ). This

loss function is non-convex when applied to the optimization of

a non-linear normalizing flow model, and hence optimization is

typically performed via gradient descent onθ . To make this training

private in Algorithm 1, we update θ using the DP-SGD algorithm

of [1] described in Section 2.2, with some subtle yet important

augmentations to the standard minibatch gradient descent process

to allow for an explicit privacy guarantee, in accordance with DP-

SGD.



Algorithm 1 DP-NF, Differentially private density estimation via

normalizing flows

1: Input: Dataset X = {x (1) , . . . ,x (n) }, initialized parameters θ ,

learning rate η, batch size b, noise scale σ , upper-bound on

ℓ2 norm of per-example gradient C , training privacy budget ε ,

training privacy tolerance δ , privacy accountant P .

2: t ← 1

3: while P (t ,b/n,σ ,C,δ ) < ε do

4: Take a uniformly random subsample It ⊆ {1, . . . ,n} with
batch size b.

5: for i ∈ It do
6: д

(i )
t
← ∇θ − logpθ (x (i ) )

7: д̄
(i )
t
← д

(i )
t
/max{1, | |д(i )

t
| |2/C}

8: end for

9: θ ← θ − η · 1
b
(
∑
i д̄

(i )
t
+N (0,σ 2C2

I ))

10: t ← t + 1

11: end while

12: Output θ

First, batches are sampled via uniform subsampling (Line 4). That

is, each possible batch of size b has equal likelihood of being chosen

(as opposed to repeatedly shuffling the dataset and taking equally

sized partitions of the dataset, which is often preferred in practice).

Second, rather than computing the gradient with respect to the

entire batch, the gradient with respect to each individual data point

is calculated, clipped to have maximum ℓ2 norm C , averaged, then

added with a randomly sampled Gaussian noise vector (Lines 6-9).

Algorithm 1 also requires a privacy accountant to be specified

as input. This privacy accountant will dynamically track the ε pri-

vacy loss incurred by composition over all gradient update steps

as a function of the training parameters, and will halt the algo-

rithm once a pre-specified budget is reached. A privacy accoun-

tant P (t ,b/n,σ ,C,δ ) takes in the round t of training, the sampling

probability b/n of a single point (here a batch of size b is sampled

uniformly from a set of n data points), the noise scale σ that is

added to preserve privacy, the bound C on the ℓ2 norm of each

gradient, and the privacy parameter δ . At every time step, the pri-

vacy accountant maintains the current ε privacy budget that has

been expended until round t given the input parameters. Common

choices for this accountant include the moments accountant (MA)

[1] or composition via Gaussian differential privacy (GDP) [11]. In

our experiments in Section 4, we yield preferable results using a

GDP privacy accountant.

In summary, DP-NF in Algorithm 1 is a modified version of

DP-SGD, instantiated to train a normalizing flow model with the

analyst’s choice of privacy accountant.

The privacy guarantees of DP-NF follow as an immediate corol-

lary from those of DP-SGD [1] when instantiated with the moments

accountant, and from NoisySGD [5] when instantiated with the

Gaussian differential privacy accountant.

Theorem 1. DP-NF is (ε,δ )-differentially private.

3.2 DP-NF Extensions

In practice, one will find that many deep learning models (including

the normalizing flow models used in our experiments) are much

better optimized using adaptive learning rate optimization schemes.

Given this, we found significant benefit in using a direct extension

to DP-SGD which applies noisy gradients to the model according

to the Adam [32] optimizer. Both methods achieve identical privacy

guarantees given that computation of the first and second moments

of the noisy gradients are merely deterministic data-independent

functions of them. Thus they differ only in the post-processing of

the noisy gradients, and the privacy guarantees are unchanged.

Two further extensions of Algorithm 1 are proposed below,

which may provide substantial improvements to empirical per-

formance.

Data-Dependent Initialization ofNormalizationLayers. In-

termediate normalization layers such as activation normalization

[33] have been proposed as a means to improve the stability of

normalizing flow models. Activation normalization is characterized

by a feature-wise offset and scaling of inputs by a learned set of

parameters b andw , i.e., (x (i ) −b)/w . In practice, these parameters

are typically set via data-dependent initialization [46] by setting b

andw as the per-feature means and standard deviations observed

throughout a forward pass of a sampled batch of data. These param-

eters can also be estimated privately, e.g., by applying the Laplace

Mechanism [16] to the clipped mean and standard deviation, thus

allowing for data-dependent initialization of these normalization

layers. For more details, see Appendix B.1.

Differentially Private Data-Dependent Priors. Section 2.1

suggested the analyst choose a data-independent prior q, such as

the multivariate spherical Gaussian. However, recent work suggests

that modest improvements in empirical results can be achieved

through the use of more complex priors, such as a mixture of Gaus-

sians [44], or by fitting a Gaussian mixture model to the data [30].

A natural privacy-preserving approach would be to first use DP-

MoG [45] with privacy budget (ε1,δ1) to estimate a prior, and then

refine the prior using DP-NF with privacy budget (ε2,δ2) to yield

an encompassing normalizing flow model. This process would be

(ε1 + ε2,δ1 + δ2)-differentially private, and may yield preferable

results in settings where the distribution is highly discontinuous,

but also locally non-linear. For more details, see Appendix B.2.

4 EXPERIMENTAL RESULTS

In this section we present experimental results demonstrating the

empirical performance of our approach, evaluating our algorithm

on a variety of real and synthetic datasets on varying tasks. In the

main body we focus our evaluation on a single dataset (the Life

Science dataset [12], described next), although refer to Appendix C

for all additional results on other real and synthetic datasets.

In all our experiments on the Life Science dataset, we used δ =

1.52 × 10−5. Our baseline method for comparison [45] used δ =

1.00 × 10−4. However, this corresponds to δ = O (1/n) on this

dataset, which is typically deemed unacceptably large in the privacy

community. Instead, our choice of δ = 1.52 × 10−5 = 1/n1.1, which

is sublinear in the size of the database. Smaller values of δ would

not change our qualitative results, nor would they substantially

change our quantitative results.











and both real and fake data were fed into the learned models. These

data are illustrated in the top image of Figure 8. The Exponential

Mechanism was used to perform differentially private aggregation

to yield the final ensemble prediction when applied to held out test

points. The bottom image of Figure 8 presents the probability of

a correct classification between łin-samplež and łout-of-samplež

data as a function of ε under this scheme. Both approaches were

given the threshold that optimized their classification performance.

Notice that using normalizing flows in this setting naturally yields

a performance improvement over the existing method, which is

due in part to the ability of normalizing flows to capture densities

which do not adhere to a Gaussian distribution.

The benefit of this ensembled approach is that each individ-

ual model can be trained non-privately, which may substantially

improve the quality of the learned models. For certain problems,

this might be necessary when differentially private optimization is

known to degrade performance substantially, for example in high

dimensional problems with image data. The associated downside is

that the analyst’s privacy budget would now degrades as a function

of the number of queries, whereas before the privacy budget was

independent of the number of queries. The analyst would have

to determine the application-specific tradeoff between costs and

benefits of this approach, based on practical constraints imposed

by the problem context.

6 CONCLUSION

Privacy is a subject of increasing importance and growing concern.

By our work adhering to the framework of differential privacy,

one is able to make definitive statements regarding the privacy of

participants involved in our analysis. Our results could also be used

to enable differentially private synthetic data generation, which

would allow data curators to provide privatized synthetic versions

of their sensitive or protected datasets, thereby enabling broader

access to these data.

In this work, we have demonstrated the efficacy of differentially

private normalizing flow models as a novel approach to the task of

privacy-preserving density estimation. We have shown the ability

of these models to assign high likelihoods to holdout data and gen-

erate qualitatively realistic synthetic data, improving on existing

state-of-the-art methods. Going forward, there exist several interest-

ing directions for further development. For example, it remains to

be seen how normalization layers such as activation normalization,

whose parameters are likely disproportionally sensitive to pertur-

bation during differentially private optimization, could be better

adapted to such. Further, one might hypothesize that sampling via

partitions of a shuffled dataset may yield improved results given

more regular sampling of each data point, and associating such a

sampling method with rigorous privacy guarantees if possible could

yield empirical improvements. Finally, in this study we only consid-

ered a particular subset of normalizing flows in existence. Although,

many alternative neural density estimators capable of expressing

highly discontinuous distributions are in continuous development,

including FFJORD [24], Neural Spline Flows [13], Neural Autore-

gressive Flows [28], and Transformation Autoregressive Networks

[42].
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Algorithm 4 DP-NF-INIT, data dependent initialization of activa-

tion normalization layers

1: Input: Dataset X = {x (1) , . . . ,x (n) }, transformation f (e.g.

MADE [22]), number of layersK , initialization privacy budget ε ,

initialization privacy tolerance δ , data-independent parameter

initialization method R (e.g. He initialization [27]).

2: {θ1, . . . ,θK } ← R ()

3: for k = 1, . . . ,K do

4: X ← clip ( f
θ (k ) (X ), c̃ )

5: b
(k ) ← µ (X ) + Lap (

2
√
4K ln(1/δ )△µ̂

ε )

6: w
(k ) ← σ (X ) + Lap (

2
√
4K ln(1/δ )△σ̂

ε )

7: X ← (X − b (k ) )/w (k )

8: end for

9: Output concatenation of θ (1) ,b (1) ,w (1) , . . . ,θ (K ) ,b (K ) ,w (K )

A.4 DP-SGD

Algorithm 3 is a formal description of DP-SGD of [1], from which

our approach is based. Specifically, Algorithm 1 is an instantiation

of DP-SGD, substituting negative log likelihood for the generic loss

function in Algorithm 3.

Algorithm 3 DP-SGD, differentially private stochastic gradient

descent [1]

1: Input: Dataset X = {x (1) , . . . ,x (n) }, loss function L (θ ), learn-
ing rate ηt , noise multiplier σ , batch size L, gradient norm

bound C .

2: Initialize θ0 randomly

3: for t ∈ [T ] do
4: Take a Poisson random subsample Lt with per-example prob-

ability L/N .

5: Compute gradient

6: for each i ∈ Lt , compute дt (xi ) ← ∇θtL (θt ,xi )
7: Clip gradient

8: д̄t (xi ) ← д̄t (xi )/max(1, | |дt (xi ) | |2/C )
9: Add noise

10: д̃t (xi ) ← 1
L
(
∑
i д̄t (xi ) +N (0,σ 2C2

I ))

11: Descend

12: θt+1 ← θt − ηt д̃t (xi )
13: end for

14: Output θT and compute overall (ε,δ ) using a privacy account-

ing method.

B DP-NF EXTENSIONS

B.1 Data-Dependent Initialization of

Normalization Layers

Intermediate normalization layers such as batch normalization [29]

and activation normalization [33] have been shown to improve the

stability of normalizing flow models. In our context, batch normal-

ization is incompatible with our approach since that batch statistics

are shared when computing the forward pass of the layer, preclud-

ing the ability to calculate truly independent per-example gradients

as required by NoisySGD. Activation normalization is more appro-

priate in our setting since no such batch statistics are calculated.

Activation normalization is characterized by an offset and scaling

of its inputs feature-wise by a learned set of parameters b andw ,

i.e. y (i ) ← (x (i ) − b)/w . In practice, typically these parameters are

set via data-dependent initialization [46] by computing a forward

pass on a sampled batch of data and setting b andw to be the per-

feature means and standard deviations of the inputs it had observed

respectively. Since these statistics are calculated directly from the

data, this approach is not privacy-preserving.

One potential approach to making differentially private activa-

tion normalization is to privatize these statistics using the Laplace

Mechanism [16]. This approach is outlined in Algorithm 4, where

clip (X , c̃ ) clips the values of X to be in the range [−c̃/2, c̃/2], µ (X )

computes the feature-wise mean of X , σ (X ) computes the feature-

wise standard deviation of X , and R is some data-independent

parameter initialization method which maps standardized inputs

to standardized outputs in expectation, e.g., He initialization [27].
We note that Algorithm 4 is far from the only approach for dif-

ferentially private activation normalization. If the analyst has some

domain knowledge about appropriate ranges of these parameters,

she could use the differentially private Propose-Test-Release frame-

work [15] to first normalize X and then add noise proportionally

to her proposed (and tested) sensitivity. While this approach seems

practical for the outer layers, it is unlikely that an analyst would

have numerical intuition for appropriate parameter values in all

layers (especially when K is large). Thus even though the noise

addition scheme described in Algorithm 4 may seem naive, it is

likely the most practical approach.

Although the utility of activation normalization layers is quite

evident, the original work [33] proposing such layers provided

little evidence to support the idea that data-dependent initializa-

tion yielded statistically significant improvements over a default

initialization scheme, i.e., b ← 0 and w ← 1. In our experiments,

we observed little distinction in contexts where the input data

was assumed to be standardized and parameters were initialized

to maintain variance between layers. Despite this, we include the

approach for completeness for potential future contexts where data-

dependent initialization of such parameters deems necessary.

B.2 DP-MoG as a Prior

Thus far it has been assumed that we use the spherical multivariate

Gaussian distribution to act as a prior for our model. Although,

naturally any distribution could act as such a prior as long as it

exhibits a tractable density function. For example, simply extending

the single standardized Gaussian to a mixture of Gaussians has

been shown [44] to exhibit modest performance improvements.

This mixture could be fit to the data [30] a priori as well.

Hence, a natural extension to our proposed approach would be

to fit DP-MoG first with privacy budget (ε1,δ1) to act as a prior, and

then to refine this prior by training a sequence of nonlinear bijective

functions with privacy budget (ε2,δ2) to yield an encompassing

normalizing flow model. This yields a worst-case (ε1 + ε2,δ1 + δ2)-

differential private guarantee by sequential composition. Although,

this guarantee is easily improved by composing these privacy guar-

antee under some alternative privacy definition (e.g. RDP or GDP)







Table 5: Average test log likelihood for varying privacy bud-

gets ε . Error bars denote standard deviation over ten inde-

pendent cross-validation splits. DP-MoGx refers to a Gauss-

ian mixture of x components. Omitted entries occur when

model training was early-stopped because it had already

converged at lower ε values.

Half-Moons

δ = 3.70 × 10−5 ε = 1.50 ε = 2.25 ε = 3.00

DP-NF (GDP) −2.23 ± 0.06 - -

DP-NF (MA) −2.57 ± 0.04 −2.43 ± 0.06 −2.22 ± 0.06
DP-MoG3 (MA) −2.59 ± 0.01 −2.58 ± 0.01 −2.58 ± 0.01
DP-MoG3 (zCDP) −2.73 ± 0.01 −2.60 ± 0.01 −2.60 ± 0.01
Gaussians

δ = 3.70 × 10−5 ε = 1.50 ε = 2.25 ε = 3.00

DP-NF (GDP) −2.45 ± 0.11 - -

DP-NF (MA) −2.73 ± 0.02 −2.61 ± 0.08 −2.45 ± 0.11
DP-MoG8 (MA) −2.44 ± 0.01 −2.45 ± 0.01 −2.45 ± 0.01
DP-MoG8 (zCDP) −2.42 ± 0.01 −2.41 ± 0.01 −2.43 ± 0.01

being applied to updates with larger C , we found this to merely

prolong training without a significant degradation in resulting

model quality.

With respect to regularization, [44] suggested a modest amount

of ℓ2 regularization (i.e., a coefficient of 10−6) in the context of non-

private normalizing flows. We found this regularization approach

to substantially degrade the quality of the resulting models and was

generally omitted in our training. This makes intuitive sense, as the

suggested regularization of [44] serves to decrease model weights

over the course of training, and differentially private optimization

applies Gaussian noise vectors of constant variance to gradients

throughout training. As model weights tend toward zero, one would

expect that the noise injection from privacy eventually dominates

the learned criteria of the model.

For privacy accountants, we found that composition under Gauss-

ian differential privacy (GDP) [11] consistently yielded the tight-

est privacy bounds throughout our experiments. See Figure 9 in

Appendix A.3 for an illustration of the improvements in privacy

composition that can be achieved by GDP, over the moments ac-

countant of [1]. Since our baseline method DP-MoG yielded the best

performance under the moments accountant in [45], we included

both GDP composition and moments accountant for fair compar-

ison. We found that DP-NF consistently outperformed DP-MoG

even when both methods used the moments accountant, and that

further performance improvements could be achieved by DP-NF

using GDP composition as a privacy accountant method.

D LIMITATIONS OF PROPOSED APPROACH

Normalizing flow models are trained in a manner which minimizes

the average negative log likelihood of the observed data. As such,

it is not uncommon when training such models that a given point

is assigned near-zero density, provoking a loss approaching in-

finity. We observed this issue was somewhat exacerbated due to
differentially private optimization, in part due to noise injection,

but primarily as a result of subsampling. In the case of uniform

subsampling, as required in our privacy analysis, there is no strict

guarantee that any individual point is regularly sampled. This acts

in contrast to typical sampling methodology in which the dataset

is repeatedly shuffled and partitioned into equal sized batches over

the course of an epoch. Rigorous privacy guarantees associated

with equally sized and disjoint sampling is, to the best of our knowl-

edge, a currently unsettled issue [37] and a potential avenue for

improvement given its theoretical convergence guarantees. We did

not find this limitation to be ultimately confounding in any way.

Additionally, given that DP-NF is ultimately a deep learning

based approach to density estimation, it naturally involves the

optimization of a large number of parameters and a high resource

expenditure in terms of time and space complexity. This is especially

highlighted in comparison to DP-MoG as a baseline, which takes

on the order of seconds to run on CPU as compared to our method

which can take on the order of an hour on GPU. Although, we find

this tradeoff between resource expenditure and distribution quality

to be justified, particularly in the context of differentially private

data analysis and social science applications which rarely demand

strict resource constraints within reason.
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