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ABSTRACT

Normalizing flow models have risen as a popular solution to the
problem of density estimation, enabling high-quality synthetic data
generation as well as exact probability density evaluation. How-
ever, in contexts where individuals are directly associated with the
training data, releasing such a model raises privacy concerns. In
this work, we propose the use of normalizing flow models that pro-
vide explicit differential privacy guarantees as a novel approach to
the problem of privacy-preserving density estimation. We evaluate
the efficacy of our approach empirically using benchmark datasets,
and we demonstrate that our method substantially outperforms
previous state-of-the-art approaches. We additionally show how
our algorithm can be applied to the task of differentially private
anomaly detection.
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1 INTRODUCTION

The task of density estimation requires constructing an estimate
of an unknown probability density function, given observed data.
This density estimate can then be used to perform a variety of
relevant analysis tasks, including log likelihood evaluation and
synthetic data generation. In settings involving sensitive data, the
construction and subsequent release of such an estimate could
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potentially leak private information. Without a rigorous privacy
guarantee, nothing prevents a model from memorizing a row in
the training set, assigning disproportionate density to a point, or
any other vulnerability due to arbitrary analysis of the learned
parameters. Since density estimation remains a task of interest to
the modeling community, continued attention is required to develop
privacy-preserving methods for density estimation.

Differential privacy [16] has emerged as the predominant pri-
vacy notion in the context of statistical data analysis. At a high level,
differentially private analyses limit the extent to which the distribu-
tion of outputs can change due to the inclusion or exclusion of any
one individual from the analysis. Algorithms which adhere to this
notion exhibit a number of desirable properties, including privacy
guarantees which hold regardless of the auxiliary information an
adversary may have and composition of privacy guarantees across
multiple analyses. Hence differential privacy acts as a compelling
gold standard in the design of privacy-preserving analyses.

Tools for density estimation have held longstanding interest
due to their versatility. Their ability to address a wide range of
distributional learning tasks is precisely why the existence of an
accurate and privacy-preserving density estimation is surprising.
For example, privately constructing such a model implicitly yields
a differentially private approach to anomaly detection—a task of
substantial investigation [3, 21, 41]—as an immediate application
of likelihood inference. In addition, given that density estimators
often enable efficient sampling, such a model would yield a method
for privacy-preserving synthetic data generation. This task in par-
ticular has been of longstanding interest to the privacy community
[47] as it addresses many of the limitations imposed by the query-
release model [14] by allowing large numbers of arbitrary analyses.
Privately generating a synthetic dataset only incurs a fixed pri-
vacy cost during the training process; all subsequent queries on
the synthetic data are automatically differentially private due to
the privacy notion’s post-processing guarantee, so the privacy cost
does not scale with the number of downstream analyses performed.

Normalizing flow models are an attractive approach to the task
of density estimation due to their empirical ability to approximate
arbitrary, high-dimensional distributions. These models approach
the task of density estimation via a transformation on a chosen
base density by a sequence of invertible, non-linear transforma-
tions, enabling density querying on the resulting distribution via
an application of the change-of-variables formula. Approaches to
density estimation in this manner include: Non-linear Indepen-
dent Components Estimation (NICE) [9], Real NVP [10], Glow [33],
and Masked Autoregressive Flows (MAF) [44]. Until this work, it
was an open question whether normalizing flow models could be
constructed in a differentially private manner to handle the task
of privacy-preserving density estimation, combining the rigorous



guarantees of differential privacy with the strong empirical perfor-
mance exhibited by normalizing flows.

In this work we propose the use of normalizing flow models
trained in a differentially private manner as a novel approach to the
task of privacy-preserving density estimation. We provide an algo-
rithm (DP-NF, Algorithm 1 in Section 3) that privately optimizes the
model parameters via gradient descent using DP-SGD (1], which
adds Gaussian noise to clipped gradient updates ensure differential
privacy. Additionally, we achieve tighter privacy guarantees than
established in previous work [1] via composition with the recently
introduced notion of Gaussian differential privacy [11]. We apply
this optimization to the parameters of a Masked Autoregressive
Flow [44], our primary architecture of consideration, and achieve
empirical results (Section 4) which convincingly outperform previ-
ous approaches. Further, we show that our algorithm can be applied
to solve the problem of differentially private anomaly detection
(Section 5), and show that it leads to better true/false positive rates
than existing private methods.

1.1 Related Work

Gaussian mixture models (GMMs) are known to be a particularly
strong density estimation tool [43] since they are a universal approx-
imator of densities — that is, they are able to approximate any density
function arbitrarily well given a sufficient number of components
[36]. They approach the task of density estimation by modeling the
data distribution as a weighted sum of Gaussian distributions. The
first differentially private algorithm for learning the parameters
of a Gaussian mixture model comes from the work of [40], which
uses their sample-and-aggregate framework to convert non-private
algorithms into private algorithms, applied to the task of learning
mixtures of Gaussians. However, their approach exhibits strong
assumptions on the range of the parameter space and assumes a
uniform mixture of spherical Gaussians. Follow-up work of [31]
proposes a modernized approach which improves upon the sample
complexity of the aforementioned work and removes the strong
a priori bounds on the parameters of the mixture components, al-
though it makes the assumption that the components of the mixture
are well-separated.

There has also been work in learning the parameters of a Gauss-
ian mixture model through differentially private variants of the
expectation maximization (EM) algorithm. One notable instance of
this is DPGMM [49], which achieves a privacy guarantee at each it-
eration of EM through the application of calibrated Laplace noise to
the estimated model parameters following each maximization step.
These individual privacy guarantees are then combined into an
overall privacy guarantee via sequential composition, i.e., by taking
the sum of privacy parameters in each iteration. The work of [45]
introduces DP-EM, a general framework for privacy-preserving
optimization via expectation maximization. Their approach follows
a conceptually similar idea of applying either calibrated Laplace
or Gaussian noise to the model parameters at the end of each EM
iteration. They apply this method to learning mixtures of Gaus-
sians, henceforth referred to as DP-MoG, and they demonstrate
significantly better privacy guarantees through composition via
the moments accountant and zero-concentrated differential privacy
(zCDP) [6]. Given that their work makes no notable assumptions

about the task and provides an empirical evaluation of their method,
this is the most comparable approach to our own. As such, it is
used as a baseline in our experimental results.

In addition, we take note of more classical approaches to the
task of privacy-preserving density estimation. One of the simplest
yet most widely used methods for density estimation is through
the use of histograms, and previous work [8? ] has investigated
their private estimation. Unfortunately, such an approach scales
poorly with the dimension and complexity of the distribution while
asserting an unrealistic discretization of the space. Kernel density
estimation is another closely related approach, often characterized
as the smooth analog to the classical discrete histogram. The work
of [26] proposes a method for privately querying the density of
such an estimator through the addition of calibrated Gaussian noise.
As a non-parametric approach, it has the drawback that it requires
storage of the entire dataset at test time to enable querying (proving
impractical for large-scale datasets) while still degrading similarly
with dimension.

There have also been a number of deep learning based approaches
to generative modeling which vary in their relevance. Although
work of this nature technically allows for both sampling and like-
lihood evaluation, it does not allow for exact likelihood inference
as is the case for mixtures of Gaussians and normalizing flows.
There is also expansive literature concerning differentially pri-
vate approaches to training Generative Adversarial Networks, yet
these methods are strictly limited to sampling and do not provide a
straightforward approach to likelihood inference.

Finally, we include a brief overview of the extensive literature
concerning density estimation via normalizing flows. One impor-
tant subset are those characterized by coupling layers: transforma-
tions which partition the dimensions of its input and map them in a
way that retains invertibility and a tractable Jacobian. This includes
Non-linear Independent Components Estimation (NICE) [9], as well
as its subsequent generalization Real NVP [10]. Another notable
approach, Glow [33], makes use of such coupling layers while also
proposing the use of an invertible weight matrix decomposition to
generalize the notion of permutation layers. Alternatively, some
make use of autoregressive transformations, which are transforma-
tions that utilize the chain rule of probability to represent a joint
distribution as a product of its conditionals. Such models include
Masked Autoregressive Flow (MAF) [44], a generalization of Real
NVP optimized for density estimation, as well as its closely re-
lated Inverse Autoregressive Flow [34] optimized for variational
inference, among others [20, 28, 42].

2 PRELIMINARIES

2.1 Normalizing Flows

Let p(-) be the probability density function characterizing an unob-
servable distribution of interest, and let X = {x(l), ... ,x(")} ben
observed i.i.d. samples from this distribution. The task of density
estimation is to find an approximation of p(-) via some model pg(-)
given X. In the context of normalizing flows, this model is charac-
terized by a prior distribution ¢(-), chosen to exhibit a simple and
tractable density (e.g., the spherical multivariate Gaussian distribu-
tion), and a sequence of K bijective functions fy = fio fao...0 fx,
parameterized fullyby 6. The function fg acts as a transformation



between the prior distribution g(-) and the approximated distribu-
tion pg (+).

Given such a model, it can be used to efficiently sample x ~ pg by
first sampling z ~ g and then transforming the sample as x = fg(2).
If pg is a good approximation of p, then this generative process gives
an efficient (approximate) oracle for sampling from the unknown
distribution.

Since fy is invertible, one can also perform exact likelihood
evaluation on observed points from the data distribution via the
change of variables formula, as follows:

afyt(x)
w20

-1
det(M)
X

log pg(x) = log q(f5 ™ (x)) + log

K
=logq(fy"(x) + ) log 5
i=1

Finding a good approximation pg is achieved through optimiza-
tion of @ to minimize the negative log likelihood of the observed
dataset:

£0) = > logpo(x). <1)
i=1

In practice, one will typically find the MLE 0* = argming £(6)
using some non-convex optimization method, such as stochastic
gradient descent.

2.2 Differential Privacy

Differential privacy [16] has become the gold standard for ensuring
the privacy of statistical analyses applied to sensitive databases. At
a high level, it ensures that changing a single entry in the database
will have only a small effect on the distribution of analysis results.

DEFINITION 1 ([16]). A randomized algorithm M : D — R
satisfies (¢, 8)-differential privacy (DP) if for any two input database
D,D’ € D that differ in a single entry and for any subset of outputs
S C R, it satisfies,

Pr[M(D) € 8] < e Pr[M(D’) € 8] + 6.

One common algorithmic approach for achieving differential pri-
vacy is adding noise that scales with the sensitivity of the function
being evaluated, which is the maximum change in the function’s
value that can result from changing a single data point. Differen-
tially private algorithms are robust to post-processing, meaning that
any data-independent function of a differentially private output
retains the same privacy guarantee, and they enjoy composition,
meaning that the privacy parameters degrade gracefully as addi-
tional analyses are performed on the dataset. The simplest version
of composition is that the privacy parameters ¢ and § “add up” over
multiple analyses, although stronger versions of composition are
also used.

Differentially Private Stochastic Gradient Descent (DP-SGD, pre-
sented formally in Algorithm 3 in Appendix A.4) was introduced
by [1] as a method for private non-convex optimization. At each
step t, DP-SGD subsamples! a small set of data points and uses
this batch to compute a gradient update. To achieve a differential
privacy guarantee, DP-SGD adds mean-zero Gaussian noise to the

! The original algorithm of [1] does this via Poisson subsampling, but it can also be
done via uniform subsampling while retaining a privacy guarantee [48].

average of the per-example gradients. The standard deviation of
this noise is scaled with the sensitivity of the gradient estimation.
Since this is unbounded, the per-example gradients are first clipped
to ensure that the {3-norm is at most some input parameter C, thus
bounding the sensitivity, and then adds noise which scales with C.

[1] also introduced the moments accountant, which provides
tight privacy composition across multiple gradient update steps
in DP-SGD. To describe the moments accountant, given an algo-
rithm M and two neighboring datasets D, D’, first we denote the
privacy loss of a particular outcome o as L(®) = log(Pr(Mgp =
0)/ Pr(Mgy = 0)). The moments accountant calculates a privacy
budget by bounding the moments of the privacy loss random vari-
able L(9). That is, if we consider the log of the moment generating
function (MGF) of the privacy loss random variable evaluated at
Ade, ap(4D, D7) = log]EONMD[eMW], the worst case over
all neighboring databases maxp_q ap((4; D, D’) composes lin-
early across multiple mechanisms (Theorem 2.1 [1]) and allows for
conversion to an associated (¢, §)-differential privacy guarantee
through the relation § = minj exp[a (1) — A¢]. Follow up work
of [5] introduced NoisySGD, which followed the same algorithmic
structure but analyzed privacy composition under Gaussian dif-
ferential privacy [11]. For the purpose of this work it is sufficient
to simply note the associated benefits of analysis under Gaussian
differential privacy: it naturally lends itself to composition under
subsampling, allows for analytically tractable expressions of the
privacy guarantees of NoisySGD, while providing a slightly tighter
overall privacy bound than that achieved by the moments accoun-
tant. Further details are provided in Appendix A.

3 DIFFERENTIALLY PRIVATE NORMALIZING
FLOWS

In this section we introduce our algorithm for differentially private
density estimation via normalizing flows, DP-NF, presented in Al-
gorithm 1. It is based on the DP-SGD algorithm of [1], which is a
differentially private method for performing stochastic gradient
descent. We also briefly discuss performance improvements using
data-dependent initialization of normalization layers and using a
differentially private estimate of the distribution to act as a prior,
both of which are explored further Appendix B. We emphasize that
our primary technical contribution is not in the design of these
algorithms, but rather the novel application of these tools to the
problem of differentially private density estimation in a way that
yields substantial performance over prior work, as demonstrated
by our empirical results in Section 4.

3.1 DP-NF Algorithm

Training a normalizing flow model corresponds to minimizing the
loss function in Equation (1): £(0) = —% Zf\il log pg (x(i)). This
loss function is non-convex when applied to the optimization of
a non-linear normalizing flow model, and hence optimization is
typically performed via gradient descent on 6. To make this training
private in Algorithm 1, we update € using the DP-SGD algorithm
of [1] described in Section 2.2, with some subtle yet important
augmentations to the standard minibatch gradient descent process
to allow for an explicit privacy guarantee, in accordance with DP-
SGD.



Algorithm 1 DP-NF, Differentially private density estimation via
normalizing flows

1: Input: Dataset X = {x(l), L. ,x(") }, initialized parameters 6,
learning rate 5, batch size b, noise scale o, upper-bound on
¢ norm of per-example gradient C, training privacy budget e,
training privacy tolerance §, privacy accountant P.

2 te1

3. while P(¢t,b/n,0,C,5) < ¢ do

4. Take a uniformly random subsample I; C {1,...,n} with

batch size b.
5. forie€l; do
o« g < Vy-logpg(x))

7 g g rmax(1, 1911/}

8:  end for )

9% 0—0-n L3+ N(0,5%C2D)
10: te—t+1

11: end while

12: Output 0

First, batches are sampled via uniform subsampling (Line 4). That
is, each possible batch of size b has equal likelihood of being chosen
(as opposed to repeatedly shuffling the dataset and taking equally
sized partitions of the dataset, which is often preferred in practice).
Second, rather than computing the gradient with respect to the
entire batch, the gradient with respect to each individual data point
is calculated, clipped to have maximum {2 norm C, averaged, then
added with a randomly sampled Gaussian noise vector (Lines 6-9).

Algorithm 1 also requires a privacy accountant to be specified
as input. This privacy accountant will dynamically track the ¢ pri-
vacy loss incurred by composition over all gradient update steps
as a function of the training parameters, and will halt the algo-
rithm once a pre-specified budget is reached. A privacy accoun-
tant P(t,b/n, o, C, §) takes in the round ¢ of training, the sampling
probability b/n of a single point (here a batch of size b is sampled
uniformly from a set of n data points), the noise scale o that is
added to preserve privacy, the bound C on the {2 norm of each
gradient, and the privacy parameter §. At every time step, the pri-
vacy accountant maintains the current ¢ privacy budget that has
been expended until round ¢ given the input parameters. Common
choices for this accountant include the moments accountant (MA)
[1] or composition via Gaussian differential privacy (GDP) [11]. In
our experiments in Section 4, we yield preferable results using a
GDP privacy accountant.

In summary, DP-NF in Algorithm 1 is a modified version of
DP-SGD, instantiated to train a normalizing flow model with the
analyst’s choice of privacy accountant.

The privacy guarantees of DP-NF follow as an immediate corol-
lary from those of DP-SGD [1] when instantiated with the moments
accountant, and from NoisySGD [5] when instantiated with the
Gaussian differential privacy accountant.

THEOREM 1. DP-NF is (¢, §)-differentially private.

3.2 DP-NF Extensions

In practice, one will find that many deep learning models (including
the normalizing flow models used in our experiments) are much
better optimized using adaptive learning rate optimization schemes.
Given this, we found significant benefit in using a direct extension
to DP-SGD which applies noisy gradients to the model according
to the Adam [32] optimizer. Both methods achieve identical privacy
guarantees given that computation of the first and second moments
of the noisy gradients are merely deterministic data-independent
functions of them. Thus they differ only in the post-processing of
the noisy gradients, and the privacy guarantees are unchanged.

Two further extensions of Algorithm 1 are proposed below,
which may provide substantial improvements to empirical per-
formance.

Data-Dependent Initialization of Normalization Layers. In-
termediate normalization layers such as activation normalization
[33] have been proposed as a means to improve the stability of
normalizing flow models. Activation normalization is characterized
by a feature-wise offset and scaling of inputs by a learned set of
parameters b and w, i.e., (x(i) —b)/w. In practice, these parameters
are typically set via data-dependent initialization [46] by setting b
and w as the per-feature means and standard deviations observed
throughout a forward pass of a sampled batch of data. These param-
eters can also be estimated privately, e.g., by applying the Laplace
Mechanism [16] to the clipped mean and standard deviation, thus
allowing for data-dependent initialization of these normalization
layers. For more details, see Appendix B.1.

Differentially Private Data-Dependent Priors. Section 2.1
suggested the analyst choose a data-independent prior g, such as
the multivariate spherical Gaussian. However, recent work suggests
that modest improvements in empirical results can be achieved
through the use of more complex priors, such as a mixture of Gaus-
sians [44], or by fitting a Gaussian mixture model to the data [30].
A natural privacy-preserving approach would be to first use DP-
MoG [45] with privacy budget (1, d1) to estimate a prior, and then
refine the prior using DP-NF with privacy budget (&2, §2) to yield
an encompassing normalizing flow model. This process would be
(e1 + &2, 81 + &2)-differentially private, and may yield preferable
results in settings where the distribution is highly discontinuous,
but also locally non-linear. For more details, see Appendix B.2.

4 EXPERIMENTAL RESULTS

In this section we present experimental results demonstrating the
empirical performance of our approach, evaluating our algorithm
on a variety of real and synthetic datasets on varying tasks. In the
main body we focus our evaluation on a single dataset (the Life
Science dataset [12], described next), although refer to Appendix C
for all additional results on other real and synthetic datasets.

In all our experiments on the Life Science dataset, we used § =
1.52 X 107>, Our baseline method for comparison [45] used § =
1.00 x 10~%. However, this corresponds to § = O(1/n) on this
dataset, which is typically deemed unacceptably large in the privacy
community. Instead, our choice of § = 1.52 X 107 = 1/n!!, which
is sublinear in the size of the database. Smaller values of § would
not change our qualitative results, nor would they substantially
change our quantitative results.



Table 1: Average test log likelihood for varying privacy budgets ¢. Error bars denote standard deviation over ten independent
cross-validation splits. Bolded results denote best performing model for a given ¢.

Life Science

§=1.52x107> e=0.50 e =1.00 e =2.00 £ =4.00
DP-NF (GDP) 8.90 + 0.18 9.41+0.12 10.20 £0.09 10.77 £0.24
DP-NF (MA) 7.37 £0.17 8.67 £0.12 9.32+£0.09 10.09+£0.18
DP-MoG (MA) 2.30 £0.27 5.09 £0.20 8.87 £ 0.06 9.10 £ 0.06
DP-MoG (zCDP) —8.93+0.49 —0.16 +0.37 2.95+£0.28 5.48 +£0.18
4.1 Datasets, Implementation, & Setup
The Life Science dataset is a standard density estimation benchmark g 10.0 1
dataset from the UCI machine learning repository [12] containing £ 754
26,733 real-valued records of dimension 10. This dataset was used 3 '
in the original evaluation of our baseline model [45]. Results using E 5.0 1
additional datasets are presented in Appendix C. v
Experiments were run on a machine with 2 CPUs, 13 GB RAM, 3 2.51 | i
and a single NVIDIA Tesla K80 GPU, and took on the order of § 0.0 - B §
half an hour to five hours to run in wall-time, depending on the v i ,l P S A DP-NF (GDP)
number of iterations and the dimensionality of the dataset. Models 8 —2.5 fi—~ " —= DENF (MA)
were implemented in the Jax [4] deep learning framework, and used g ‘P ,-" . e B:::ng EEASD)P)
privacy accounting implementations from TensorFlow Privacy [23]. <50y . . .
Hyperparameter Search and Model Selection. Reported pri- 0 1 2 3 4

vacy budgets in our results correspond only to the training of each
model, and does not include privacy loss from hyperparameter
search and model selection. We chose not to select hyperparame-
ters in a privacy-preserving manner because this was not the focus
of our contribution and because it was not done in our baseline
method.? It was generally observed that choices in network struc-
ture itself had relatively negligible impacts on results. We found that
training parameters such as the gradient clipping bound and batch
size had a much more substantial impact on model performance,
which is consistent with observations made in [1].

Model Architecture. The architecture of the model used in
our experiments was a variant of a Masked Autoregressive Flow
(MAF) [44] composed of a repeated sequence of five blocks, each
containing a MADE [22] layer, a reversal layer, and an optional
activation normalization layer. Models were optimized via Adam,
with default parameters of f; = 0.9 and Sz = 0.999. Further details
of training parameters and procedures are given in Appendix C.3.

4.2 Empirical Performance of DP-NF

We implemented our algorithm for differentially private normaliz-
ing flows on the Life Science dataset (and other datasets as described
in Appendix C), and evaluated our performance against the baseline
of DP-MoG [45] for a variety of quantitative and qualitative metrics
related to density estimation tasks.

4.2.1 Quantitative Evaluation: Expected Log Likelihood. Arguably
the most foundational metric for density estimators is the expected

2These can be done privately. For example, [25] provides discrete optimization methods
that can be used for private hyperparameter search over discrete model architectures.
[2] uses ReportNoisyMax [19] for private model selection. Some work has also been
done to account for high-performance models without having to spend a significant
privacy budget [7, 35].

Cumulative Privacy Loss € (6 =1.52 x 107°)

Figure 1: Average log likelihood (higher is better) across ten
independent cross-validation splits as a function of the cu-
mulative privacy loss ¢. DP-MoG was configured to use the
Gaussian mechanism with 3 components, as per the origi-
nal work. DP-NF composed with GDP (as well as MA for fair
comparison).

log likelihood they assign to held out test points. Figure 1 presents
average log likelihood assigned to a held out test set under DP-
NF and the baseline method DP-MoG [45] as a function of ¢. We
divided the dataset into 10 pairs of training (90%) and test sets (10%),
and reported the average test log likelihood per data point across
the 10 independent trials. Better methods should assign higher log
likelihood for points in the held out test set since these points were
indeed sampled from the underlying distribution of interest. We
found that DP-NF reliably assigned much higher likelihoods to
holdout data than that of DP-MoG for identical privacy budgets,
across a variety of privacy accountant methods.

The privacy guarantees of DP-NF proved quite practical, provid-
ing substantial privacy improvements over DP-MoG for the same
model performance. For example, DP-NF matched the peak perfor-
mance of DP-MoG (achieved around ¢ ~ 4) for only an expenditure
of € ~ 0.5. These results are also listed in Table 1 with error bars
showing standard deviation across 10 independent runs.

[45] showed performance of DP-MoG under several different
privacy accountant methods, with the moments accountant of [1]
providing the best performance. We compared DP-NF using the mo-
ments accountant for fair comparison, and using the novel Gaussian



differential privacy (GDP) accountant of [5]. Figure 1 and Table 1
show that DP-NF outperforms DP-MoG for all privacy accountant
methods considered for either model, emphasizing that while the
GDP accountant does provide some benefit, the vast majority of the
performance improvements come from the DP-NF method itself.
The benefits of using the GDP accountant are further explored in
the appendix.

4.2.2  Quantitative Evaluation: Downstream Machine Learning Tasks.
Next we further evaluate the quality of our model by measuring
the performance of downstream machine learning models trained
on its generated synthetic data. A proper method for evaluating the
strength of density estimation approaches is through the quality of
their synthetic data, as measured by the ability to train a machine
learning model that performs well on future, real data.

To perform this evaluation, we trained DP-NF and DP-MoG
(along with their non-private variants for reference) to learn the
distribution of the training data, and then used these models to
generate a synthetic dataset. We then trained a simple regressor—
k-nearest neighbors with default library settings (k = 3)—on each
synthetically generated dataset and evaluated their in predicting
a target value on real, held out Life Science data. The Life Science
dataset does not have an immediately associated prediction task,
as it is primarily used as solely a density estimation benchmark. To
artificially construct a prediction task, we simply chose to isolate
the last column to act as a label and treated the remaining nine
columns as features.
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0.000 T T
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Cumulative Privacy Loss € (6 = 1.52e-05)

Figure 2: Mean squared error of regressor (k-nearest neigh-
bors with k = 3) on real, held out test data when trained
on synthetically generated data by various approaches. Base-
line refers to training the regressor on the real data.

Figure 2 shows the mean squared error attained by each regressor
as a function of the privacy expenditure of the data generation
approach. Horizontal lines denote that the approach is ¢ = oo,
i.e., non-private. “Baseline” refers to training the regressor directly
on the training dataset provided to the density estimator. Upon
inspection, we find that DP-NF generates data of convincingly
higher quality than that of our comparison method DP-MoG for

all values of ¢. In addition, for higher values of ¢, DP-NF converges
to the quality achievable by a non-private MoG, whereas DP-MoG
hits an apparent plateau well before this point.

4.2.3 Qualitative Evaluations. Figure 3 shows that DP-NF provides
a qualitative increase in sample quality under visualization. It
presents dimension-wise histograms of synthetically generated
features for three features of the Life Science dataset, using DP-NF
(left column) and DP-MoG (right column) for comparison. (See
Figure 11 in Appendix C for dimension-wise histograms of all 10
features.) Both methods used ¢ = 0.6 and § = 1.52 x 107>, In every
plot, the synthetic data in orange is superimposed over the real
data in blue. We qualitatively see that for nearly all ten features, the
distribution of data generated by DP-NF closely matches that of the
real data, while DP-MoG was relatively unable to replicate regions
of concentrated density for certain dimensions. This could be due
to the fact that that for a fixed number of components, the DP-MoG
model is constrained to cover the support of the distribution and
must ignore nuanced details. Normalizing flow models, on the other
hand, have heightened expressiveness over traditional statistical
methods like Gaussian mixture models, and we see that they are
able to capture these nuances more readily.

As another qualitative evaluation of sample visualization, Figure
4 shows the density of synthetic data generated by each model
when projected to two dimensional space via PCA, for varying ¢
values. The top row shows DP-NF, the bottom row shows DP-MoG,
and the right figure shows the real data. In all plots, lighter pixels
correspond to regions of higher density, and dark pixels indicate
lower density. We see that DP-NF is better able to capture some of
the observable qualities exhibited in the real data, for example the
gradual compression of density to the left of the distribution.

5 APPLICATION: DIFFERENTIALLY PRIVATE
ANOMALY DETECTION

Our DP-NF algorithm can be used as a tool for differentially private
anomaly detection. Given a density estimator, a straightforward ap-
proach to anomaly detection is through a simple likelihood thresh-
olding mechanism. For a given point, to determine whether it is
in-distribution or out-of-distribution, we can simply return a binary
value which denotes in-distribution if the log likelihood assigned
to the point by the model is above some empirically derived thresh-
old T, and out-of-distribution otherwise. For the purposes of our
experiments, we assume that such a threshold is easily estimated,
i.e, by selecting the value for T which optimizes anomaly detection
performance on a public test set. In the private setting, we can ap-
proach this task in a privacy-preserving manner by training either
DP-NF or DP-MoG on the dataset. By the post-processing property
of differential privacy, we can make arbitrarily many anomaly de-
tection queries to the privately trained model while incurring no
privacy loss beyond what is incurred during training.

In Figure 5, we illustrate the efficacy of our approach in perform-
ing anomaly detection under this likelihood thresholding mech-
anism. We randomly generated points that were uniformly dis-
tributed around the tails of the test dataset, i.e., between the 5th and
30th percentiles and the 70th and 95th percentiles dimension-wise.
The total number of synthetically generated anomalies was equal to
the total number of test points. Figure 5 shows ROC curves of both
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Figure 3: Dimension-wise histograms of synthetically gen-
erated Life Science data, superimposed over real data, for
£ =0.6and § = 1.52 x 107°. Left Column: DP-NF. Right Col-
umn: DP-MoG. Note DP-NF’s ability to capture regions of
concentrated density, whereas DP-MoG struggles in this re-
spect.

Figure 4: Synthetically generated Life Science data for ¢ = 2,
4, and 6, projected to two dimensions via PCA. Top row: DP-
NF. Bottom row: DP-MoG. Right: Real data. Note the com-
pression to the left of the distribution of real data that is
captured by DP-NF as ¢ increases, but not present in the syn-
thetic data generated by DP-MoG.

private and non-private methods for this binary prediction problem.
That is, it shows the tradeoff in the true positive rate and the false
positive rate in predicting in-distribution or out-of-distribution cor-
rectly for varying selections of the likelihood threshold. We observe
that DP-NF outperformed the other private method DP-MoG for the
same privacy guarantee. Our approach performed comparably to

non-private MoG, and is of course upper-bounded by a non-private
normalizing flow.
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Figure 5: ROC curves displaying true positive rate and false
positive rate for private and non-private likelihood thresh-
old models. Privacy expenditure was calculated using the
moments accountant with § = 1.52 X 107>,

There are other possible methods for making anomaly detection
algorithms differentially private, beyond the approach described
above of using DP-NF directly to privately train the model. An
alternative approach is to, rather than learning the parameters of
the model in a differentially private manner, partition the dataset
into k parts and train a non-private density estimator on each
part. Then, given a new point of interest, each model casts a vote
regarding its belief on the point being in-distribution or out-of-
distribution by testing whether their density assigned to the point
exceeds T. We then aggregate these votes privately, to ensure that
the final prediction is differentially private with respect to the
training set. In our algorithm for differentially private anomaly
detection (Algorithm 2), we use the Exponential Mechanism [38]
for this private aggregation. We note that our overall approach is
an instantiation of the sample-and-aggregate framework of [40].
This approach is visualized in Figure 6 and presented formally in
Algorithm 2.

The privacy guarantees of DP-AD follow as an immediate corol-
lary from those of sample-and-aggregate [40] and the Exponential
Mechanism [38].

THEOREM 2. DP-AD is (¢, 0)-differentially private.

Although Algorithm 2 is instantiated with the Exponential Mech-
anism [38], one can opt for any differentially private aggregation
method. In contexts requiring answers to a large but bounded num-
ber of queries where the number of anomalies is expected to be
small in comparison to the total number of queries (an appropri-
ate assumption for many applications), an immediate extension of
this approach using the Sparse Vector technique [17, 18] would be
natural.

To evaluate this approach, we applied Algorithm 2 to the Half-
Moons dataset, which is a synthetic dataset with 30,000 data points,
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Figure 6: Ensembled anomaly detection framework. In this
setting, k non-private density estimators are trained on sepa-
rate partitions of the training dataset. At inference time new
examples (purple) are fed to each density estimator, voting
on whether the given example is “in-distribution” or “out-
of-distribution depending on whether it exceeds a known

likelihood threshold. Then, we perform a noisy aggregation
on these votes to preserve privacy.

Algorithm 2 DP-AD, Differentially private anomaly detection via
an ensemble of density estimators

1:

—
IS

11:

R A AR

Input: Dataset X = {x(l), .. ,x(”)}, example x, number of
partitions k, likelihood threshold T, privacy budget ¢.

. X1, ..., Xg < partition(X, k)

bq,... ,Gk — train(Xl,. .. ’Xk)
ce«0

: for i € [k] do

if pg, (x) > T then
ce—c+1
end if

: end for
: Sample response as “in-distribution” with probability

exp(ec/2)
exp(ec/2)+exp(e(k—c)/2)
s exp(e(k—c)/2)
bility exp(ec/2)+exp(e(k—c)/2)
Output response

and “out-of-distribution” with proba-

each with two real-valued features. This dataset is visualized in
Figure 7, and more details about this synthetic dataset are given in
Appendix C.

Figure 7: Half-Moons Dataset. Lighter regions correspond to
higher density of data points.
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Figure 8: Anomaly detection through private aggregation of
votes (either “in-distribution” or “out-of-distribution”) on
synthetically generated data. Training set was partitioned
into 10 pieces, then each piece was fit to a non-private model,
either MoG or NF. Differentially private aggregation was
performed via the exponential mechanism. Top: Training
data with anomalies; Bottom: Anomaly detection perfor-
mance.

Figure 8 illustrates the data used and the results of this evaluation.
The training data (dark purple) was partitioned into 10 pieces and
used to fit a set of independent non-private models (all either MoG
or NF). Then, anomalies (light purple) were added to the dataset,



and both real and fake data were fed into the learned models. These
data are illustrated in the top image of Figure 8. The Exponential
Mechanism was used to perform differentially private aggregation
to yield the final ensemble prediction when applied to held out test
points. The bottom image of Figure 8 presents the probability of
a correct classification between “in-sample” and “out-of-sample”
data as a function of ¢ under this scheme. Both approaches were
given the threshold that optimized their classification performance.
Notice that using normalizing flows in this setting naturally yields
a performance improvement over the existing method, which is
due in part to the ability of normalizing flows to capture densities
which do not adhere to a Gaussian distribution.

The benefit of this ensembled approach is that each individ-
ual model can be trained non-privately, which may substantially
improve the quality of the learned models. For certain problems,
this might be necessary when differentially private optimization is
known to degrade performance substantially, for example in high
dimensional problems with image data. The associated downside is
that the analyst’s privacy budget would now degrades as a function
of the number of queries, whereas before the privacy budget was
independent of the number of queries. The analyst would have
to determine the application-specific tradeoff between costs and
benefits of this approach, based on practical constraints imposed
by the problem context.

6 CONCLUSION

Privacy is a subject of increasing importance and growing concern.
By our work adhering to the framework of differential privacy,
one is able to make definitive statements regarding the privacy of
participants involved in our analysis. Our results could also be used
to enable differentially private synthetic data generation, which
would allow data curators to provide privatized synthetic versions
of their sensitive or protected datasets, thereby enabling broader
access to these data.

In this work, we have demonstrated the efficacy of differentially
private normalizing flow models as a novel approach to the task of
privacy-preserving density estimation. We have shown the ability
of these models to assign high likelihoods to holdout data and gen-
erate qualitatively realistic synthetic data, improving on existing
state-of-the-art methods. Going forward, there exist several interest-
ing directions for further development. For example, it remains to
be seen how normalization layers such as activation normalization,
whose parameters are likely disproportionally sensitive to pertur-
bation during differentially private optimization, could be better
adapted to such. Further, one might hypothesize that sampling via
partitions of a shuffled dataset may yield improved results given
more regular sampling of each data point, and associating such a
sampling method with rigorous privacy guarantees if possible could
yield empirical improvements. Finally, in this study we only consid-
ered a particular subset of normalizing flows in existence. Although,
many alternative neural density estimators capable of expressing
highly discontinuous distributions are in continuous development,
including FFJORD [24], Neural Spline Flows [13], Neural Autore-
gressive Flows [28], and Transformation Autoregressive Networks
[42].
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A ADDITIONAL PRIVACY PRELIMINARIES

A.1 Differential Privacy

We achieve differential privacy in Algorithm 1 through the Gaussian
Mechanism, which adds mean-zero Gaussian noise to the value of
a function f evaluated on the data. The scale of the noise depends
on the sensitivity of the function. The £;-sensitivity of a function
f is denoted Az f, and is the maximum change in the {2 norm of
f if one entry in the database were to be changed. Formally, for
[ NI®T = RE Ay f = maxp, p neighbors [1£(D) = f(D')llz. In
our case, this function is the computation of the gradient given a
sampled batch of data.

THEOREM 3 (GAUSSIAN MECHANISM [19]). Let f : NIXI Rk
and let M(x, f,€) = f(x) + (Z1,...,Z;) where Z; are i.i.d. random

variables drawn from N (0,02) and o > /21n(1.25/8) Az f /. Then
M is (¢, 8)-differentially private.

Differential privacy composes, meaning that the privacy guaran-
tees degrade smoothly as more analyses are performed on the same
dataset. The simplest version of privacy composition is that the s
and Js “add up” across analyses. Tighter composition bounds are
possible, including the approaches outlined in the following two
subsections.

A.2 Moments Accountant

The moments accountant [1] was proposed initially as a means
for tight composition of the privacy gaurantees of DP-SGD. To
characterize this analysis, we note the privacy loss associated with
a given outcome o, given as Lo = log %ﬁ. Further, for two
given datasets we define the MGF of this random variable evaluated
at some value A as ap((4; D, D’) = logE,. p,, [e“(o)]. Finally,
the "worst case" upper bound across all possible pairs of datasets is
given as ay((1) £ maxp gy ap (1D, D).

This notation can be used to give composition guarantees for
the privacy parameters across multiple algorithms run on the same
dataset.

THEOREM 4 ([1]). Suppose that an algorithm M consists of a
sequence of adaptive algorithms My, . . ., My where M : H]’;} Rjx
D — R;. Then for any A, ap(A) < Z{;l apm, (4). Forany e > 0, M
is (¢, 8)-differentially private for § = miny exp(ap((A) — Ae).

This analysis was then later characterized under the framework
of Rényi differential privacy [39], a relaxation of (¢, §)-differential
privacy which is defined in a manner closely resembling the mo-
ments accountant privacy analysis.

DEFINITION 2 ((a, €)-RDP [39]). A randomized algorithm f :
D — R is said to have e-Rényi differential privacy of order a, or
(a, €)-RDP for short, if for any adjacent D,D’ € D it holds that

Do (f(D)||If(D")) < &, where Do (P||Q) 2 ﬁ logEx~Q(%)a.

Finally, the privacy analysis performed in [1] regarding DP-SGD
assumes the sampling is performed via Poisson subsampling, i.e.,
each individual example has independent sampling probability g
of being included in the batch at each iteration. In some contexts,
fixed-sized batches can enable a variety of performance improve-
ments by allowing for compilation. Privacy analysis under uniform

subsampling, where each batch is sampled uniformly across all
possible batches of size b, was considered in [48] :

THEOREM 5 (RDP-DP CONVERSION [48]). For all integersa > 2, if
M is (a, e(@))-RDP, then the randomized algorithm applied to a sub-
sampled batch of data without replacement is (a, ¢’ (t))-RDP where
(a) < ﬁ log(1 + y? (;’) min{4(e¢® — 1), e¢® min(2, (e5(*) -
D2 + 2%, 7 ()eU=D¢W) minf2, (¢4 - 1)/}).

A.3 Gaussian Differential Privacy

Gaussian differential privacy (GDP) is a recently proposed relax-
ation of (e, §)-differential privacy established in [11], and further
expanded upon in the context of deep learning in [5]. This defi-
nition exhibits several appealing properties, including simplified
analysis under composition and subsampling, derivation of analyti-
cally tractable expressions for the privacy guarantees of NoisySGD,
while providing a slightly tighter privacy bound than that which is
achieved through analysis via the moments accountant. The frame-
work of pu-Gaussian differential privacy acts as the basis for our
analysis.

We note that the Gaussian mechanism (Definition 3) M(D) =
F(D) + N (0, (cAzf/€)?) is (¢/c)-GDP [11].3

The overall privacy guarantee corresponding to the k-fold adap-
tive composition of k mechanisms each satisfying y;-GDP will be

N ,uf + ,u% +... ,ui—GDP. Finally, u-GDP allows for a conversion to

a corresponding (¢, §)-differential privacy guarantee using the fact
that an algorithm is p-GDP if and only if it is (¢, §(¢))-differentially
private for all ¢ > 0, where 6(¢) = @(—ﬁ + %) - egd)(—% - %) and
®(-) is the cumulative density function of the Normal distribution.
Figure 9 shows that GDP privacy accounting gives substantial
improvements over the moments accountant method when used
as the privacy accountant method in DP-NF. For each number of
iterations, GDP accounting yields a lower ¢ privacy value.

4.0 7
./'
—~ 3.5 7
— . ”’
§ / //’
S 3.0 / Sean
1 / - -7
e / -7
w251 S
2 ; -
S / g
2.0 P -
32017
> 1 Joag
& 151 8
Q
=
5
o
E —=- GDP Poisson
3 GDP Uniform
74 N N N N B R MA Poisson
s —-= MA Uniform
0.0

0 20000 40000 60000 80000 100000 120000 140000
Iterations

Figure 9: Cumulative privacy loss ¢ given Life Science train-
ing parameters (g = b/n = 100/21384 = 4.676x1073,0 = 2.1, =
1.00 X 107*) as a function of training iterations.

3Further detail concerning the privacy guarantees achieved when batches are subsam-
pled is given in Section 2 of [5].



Algorithm 4 DP-NF-INIT, data dependent initialization of activa-
tion normalization layers

1: Input: Dataset X = {x(l), o, x(™) }, transformation f (e.g.
MADE [22]), number of layers K, initialization privacy budget ¢,
initialization privacy tolerance J, data-independent parameter
initialization method R (e.g. He initialization [27]).

2: {91, N ,9[(} — R()

3: fork=1,...,Kdo

4: X « Clip(fg(k) (X), 5)

24/4K In(1/8) Afi
b)  p(X) + Lap( KAL)

W(k) - O'(X) + Lap(Z\/4Kln(1/5)A&)

£
X « (X - bRyl
: end for
: Output concatenation of 0(1), b(l), w(l), o, O(K), b(K), w&)

o o N

A.4 DP-SGD

Algorithm 3 is a formal description of DP-SGD of [1], from which
our approach is based. Specifically, Algorithm 1 is an instantiation
of DP-SGD, substituting negative log likelihood for the generic loss
function in Algorithm 3.

Algorithm 3 DP-SGD, differentially private stochastic gradient
descent [1]

1: Input: Dataset X = {x(l), - ,x(”) }, loss function £(60), learn-
ing rate 7, noise multiplier o, batch size L, gradient norm
bound C.

2: Initialize 6y randomly

3. fort € [T] do

4. Take a Poisson random subsample L; with per-example prob-

ability L/N.

5.  Compute gradient

6 foreachi € L;, compute g (x;) < Vg, L(0;,x;)
7. Clip gradient

8 gr(xi) & g (xi)/ max(1, ||ge (xi)||2/C)

9:  Add noise

10: §Gi(xi) « (2 gexi) + N(0,02C2))

11:  Descend

122 Ope1 < Or — 12 (xi)

13: end for

14: Output 67 and compute overall (¢, §) using a privacy account-
ing method.

B DP-NF EXTENSIONS

B.1 Data-Dependent Initialization of
Normalization Layers

Intermediate normalization layers such as batch normalization [29]
and activation normalization [33] have been shown to improve the
stability of normalizing flow models. In our context, batch normal-
ization is incompatible with our approach since that batch statistics
are shared when computing the forward pass of the layer, preclud-
ing the ability to calculate truly independent per-example gradients

as required by NoisySGD. Activation normalization is more appro-
priate in our setting since no such batch statistics are calculated.
Activation normalization is characterized by an offset and scaling
of its inputs feature-wise by a learned set of parameters b and w,
ie. y(i) — (x —p)/w.In practice, typically these parameters are
set via data-dependent initialization [46] by computing a forward
pass on a sampled batch of data and setting b and w to be the per-
feature means and standard deviations of the inputs it had observed
respectively. Since these statistics are calculated directly from the
data, this approach is not privacy-preserving.

One potential approach to making differentially private activa-
tion normalization is to privatize these statistics using the Laplace
Mechanism [16]. This approach is outlined in Algorithm 4, where
clip(X, ¢) clips the values of X to be in the range [-¢/2, ¢/2], p(X)
computes the feature-wise mean of X, o(X) computes the feature-
wise standard deviation of X, and R is some data-independent
parameter initialization method which maps standardized inputs

to standardized outputs in expectation, e.g., He initialization [27].
We note that Algorithm 4 is far from the only approach for dif-

ferentially private activation normalization. If the analyst has some
domain knowledge about appropriate ranges of these parameters,
she could use the differentially private Propose-Test-Release frame-
work [15] to first normalize X and then add noise proportionally
to her proposed (and tested) sensitivity. While this approach seems
practical for the outer layers, it is unlikely that an analyst would
have numerical intuition for appropriate parameter values in all
layers (especially when K is large). Thus even though the noise
addition scheme described in Algorithm 4 may seem naive, it is
likely the most practical approach.

Although the utility of activation normalization layers is quite
evident, the original work [33] proposing such layers provided
little evidence to support the idea that data-dependent initializa-
tion yielded statistically significant improvements over a default
initialization scheme, i.e., b < 0 and w < 1. In our experiments,
we observed little distinction in contexts where the input data
was assumed to be standardized and parameters were initialized
to maintain variance between layers. Despite this, we include the
approach for completeness for potential future contexts where data-
dependent initialization of such parameters deems necessary.

B.2 DP-MoG as a Prior

Thus far it has been assumed that we use the spherical multivariate
Gaussian distribution to act as a prior for our model. Although,
naturally any distribution could act as such a prior as long as it
exhibits a tractable density function. For example, simply extending
the single standardized Gaussian to a mixture of Gaussians has
been shown [44] to exhibit modest performance improvements.
This mixture could be fit to the data [30] a priori as well.

Hence, a natural extension to our proposed approach would be
to fit DP-MoG first with privacy budget (¢1, 81) to act as a prior, and
then to refine this prior by training a sequence of nonlinear bijective
functions with privacy budget (e2,d2) to yield an encompassing
normalizing flow model. This yields a worst-case (¢1 + €2, 81 + 92)-
differential private guarantee by sequential composition. Although,
this guarantee is easily improved by composing these privacy guar-
antee under some alternative privacy definition (e.g. RDP or GDP)



Table 2: Test negative log likelihood (lower is better) on Pinwheel dataset (Figure 10) for varying privacy budgets ¢, composed
via the moments accountant. From top to bottom: Standard DP-NF with a single spherical Gaussian as a prior, DP-NF with a
GMM prior of 5 components (fit non-privately), DP-NF with a GMM prior of 5 components (learned privately for ¢ = 0.2,5 = 0),
DP-MoG with 5 components, DP-MoG with 10 components. When a privacy budget is expended on the prior, this was included

when calculating the overall cost indicated by the column headings.

Pinwheel

§=370x107> e=150 €=250 =350 &=4.50
DP'NFspherical Gaussian prior 2.80 2.78 2.74 2.63
DP-NFnon-private GMM prior 3.05 2.40 1.91 1.87
DP-NFprivate GMM prior, & = 0.2 2.77 2.70 2.62 2.47
DP-MoGs 2.75 2.76 2.76 2.76
DP-MoGjyg 2.76 2.88 2.77 2.77

before subsequently converting to a corresponding (e, §)-DP guar-
antee. One might hypothesize that this approach would yield prefer-
able results in contexts where the distribution at hand is composed
of several discontinuous components, while exhibiting locally non-
linear density within each component.

Figure 10: Pinwheel Dataset

To capture this context, we evaluate the efficacy of this approach
on the Pinwheel dataset, as illustrated in Figure 10 (further details
of this dataset are given in Appendix C). The Pinwheel dataset is
a common density estimation benchmark consisting of a number
of disconnected components with nonlinear boundary. A Gaussian
mixture model would naturally have difficulty approximating such
a distribution for a small number of components, while classical
normalizing flow models with a single standardized Gaussian as a
prior might have difficulty expressing its discontinuous density.

As shown in Table 2, using a trained GMM to act as a prior
can aid in performance. First, we note that both DP-NF and DP-
MoG demonstrate difficulty in achieving negative log likelihoods
lower than 2.65-2.70, even when the number of components for
DP-MoG is increased. DP-NF with DP-MoG as a prior modestly
outperforms both alternatives used in isolation. Additionally, if one
assumes that a GMM prior of five components fit to the population
can be assumed to be public, one achieves dramatic performance
improvements over all methods.

C ADDITIONAL RESULTS AND TRAINING
DETAILS

In this section, we provide additional results on the performance
of DP-NF, compared to the baseline mechanism of DP-MoG, as
evaluated on several real and synthetic datasets. These datasets are
summarized in Table 3. Details of the real and synthetic datasets
are respectively given in Sections C.1 and C.2. Further details of
hyperparameter training for all experiments are given in Section
C3.

C.1 Additional Results on Real Datasets

Our analysis aims to cover a range of datasets composed of both
synthetic and real-world datasets. In this section, we provide short
descriptions of each dataset used for evaluation, and provide results
of DP-NF evaluated on these datasets.

Table 3: Dimensionality D and number of examples n for
each dataset.

Dataset Real D n
Life Science Real 10 26,733
Gowalla Real 2 100,000
Power Real 6 100,000
Gaussians Synthetic 2 30,000
Half-Moons Synthetic 2 30,000
Pinwheel Synthetic 2 30,000

Life Science. The Life Science dataset is a density estimation
benchmark dataset from the UCI machine learning repository [12]
used in our baseline [45] in their evaluation of DP-MoG. It contains
26,733 real-valued records of dimension 10 characterizing the prin-
ciple components of measurements made in a variety of chemical
and biological experiments.

Power. The Power dataset is a density estimation benchmark
dataset from the UCI machine learning repository [12] used in much
of the normalizing flow literature [24, 44]. It contains measurements
of electric power consumption in a household over a period of 47
months, and was preprocessed according to the description given
in [44].

Gowalla. The Gowalla dataset contains the locations in terms
of longitude and latitude of the social network’s users’ check-ins.
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Figure 11: Dimension-wise histograms of synthetically gen-
erated Life Science data, superimposed over real data, for
£ = 05and § = 1.52 X 107°. Dimensions are given in or-
der from 0 to 9 left-to-right, top-to-bottom. Top two rows:
DP-NF. Bottom two rows: DP-MoG. Note that synthetic data
from DP-NF represents the real data well, while DP-MoG is
relatively unable to to capture concentrated regions of den-
sity in the real data.

The total number of points is 1,256,384, which was reduced to
100,000 via a random sample. It was used in the evaluation of our
baseline [45], but applied to the task of k-means clustering rather
than learning the components of a Gaussian mixture model.

We evaluated the performance of DP-NF and the baseline DP-
MoG for comparison on these real-world datasets. Results on the
Life Science dataset are given in the body of the paper in Table 1.
Results on the Power and Gowalla datasets are given in Table 4
below.

Table 4: Average test log likelihood for varying privacy bud-
gets ¢. Error bars denote standard deviation over ten inde-
pendent cross-validation splits. DP-MoGy refers to a Gauss-
ian mixture of x components. Omitted entries occur when
model training was early-stopped because it had already
converged at lower ¢ values.

Power

§=111%x10"° e=1.25 e=1.75 £ =225
DP-NF (GDP) -2.12+£0.29 - -
DP-NF (MA) -3.43+0.19 —-2.47+0.13 -2.16+0.25

DP-MoG1o (MA)
DP-MoGjg (zCDP)

—-2.88+£0.04 -2.87+0.04 -—2.86=+0.04
-3.29+£0.04 -3.10+0.04 -—3.04+0.04

Gowalla

§=111%x10"° e=2.25 £ =3.50 £=4.00
DP-NF (GDP) —0.44 £ 0.35 - -
DP-NF (MA) -1.81+0.11 -0.77 £0.30 0.47 £0.32
DP-MoGy; (MA) —-0.92+0.01 -0.92+0.01 -0.91+0.01
DP-MoGj; (zCDP) —0.87 £0.01 —0.93+0.01 —0.93 +0.01

We also provide Figure 11, which is the full version of Figure
3 in Section 4. Figure 11 provides dimension-wise histograms of
the synthetically generated data for all ten dimensions of the Life
Science dataset, presented in numerical order by axis index from
left to right. The top two rows correspond to our baseline, and the
bottom two rows correspond to our approach. For each image, we
visualize the synthetically generated data (given in orange) and
superimpose it over real data (given in blue) for comparison. We
observe that for nearly all ten features, the distribution of data
generated by DP-NF closely resembled that of the real data while
DP-MoG was unable to replicate regions of concentrated density
for certain dimensions.

C.2 Additional Results on Synthetic Datasets

We also evaluate our DP-NF method on several synthetic datasets.
We perform this on the Half-Moons dataset (Figure 7), as well as a
synthetically constructed dataset of a mixture of 8 Gaussians (Figure
12). This is done to demonstrate the heightened expressiveness
of our approach as compared to a Gaussian mixture approach,
alongside a worst-case scenario where the data is truly generated
by a mixture of Gaussians, where DP-MoG would be expected to
outperform our method. Results are presented in Table 5.

Figure 12: Gaussian Dataset

C.3 Hyperparameters and Training details

In this subsection we detail decisions about hyperparameter section
in training, including the gradient clipping parameter C, regular-
ization of the loss function, and choice of privacy accountants.
For the gradient clipping parameter C, prior work [1] suggested
that a reasonable heuristic for setting this clipping parameter was to
set C equal to the median of the {2 norms of the unclipped gradients
observed over the course of a non-private training execution. In
the context of normalizing flows, we found that much larger values
for C yielded significantly preferable results. A natural explanation
for this arises under consideration of log likelihood as an objective.
In cases where a given point is assigned near-zero density, a large
gradient update would be incurred to prevent further deterioration.
When this gradient update is clipped, the resulting update may be
insufficient to avoid associated numerical instability if this point
is assigned density further approaching zero. Despite excess noise



Table 5: Average test log likelihood for varying privacy bud-
gets ¢. Error bars denote standard deviation over ten inde-
pendent cross-validation splits. DP-MoGy refers to a Gauss-
ian mixture of x components. Omitted entries occur when
model training was early-stopped because it had already
converged at lower ¢ values.

Half-Moons

§=3.70x107° £ =1.50 =225 £=3.00
DP-NF (GDP) —2.23+£0.06 - -
DP-NF (MA) —-2.57+0.04 -2.43+0.06 -2.22+0.06
DP-MoGs (MA) —-2.59+0.01 -2.58+0.01 -2.58+0.01
DP-MoGs (zCDP) -2.73+0.01 -2.60+0.01 —2.60+0.01
Gaussians

§=3.70x 107> £ =1.50 =225 e =3.00
DP-NF (GDP) -2.45+0.11 - -
DP-NF (MA) —-2.73+0.02 -2.61+0.08 —-2.45+0.11
DP-MoGg (MA) -2.44+0.01 -2.45+0.01 -2.45+0.01
DP-MoGg (zCDP) —-2.42+0.01 -2.41+0.01 —2.43+0.01

being applied to updates with larger C, we found this to merely
prolong training without a significant degradation in resulting
model quality.

With respect to regularization, [44] suggested a modest amount
of £, regularization (i.e., a coefficient of 107°) in the context of non-
private normalizing flows. We found this regularization approach
to substantially degrade the quality of the resulting models and was
generally omitted in our training. This makes intuitive sense, as the
suggested regularization of [44] serves to decrease model weights
over the course of training, and differentially private optimization
applies Gaussian noise vectors of constant variance to gradients
throughout training. As model weights tend toward zero, one would
expect that the noise injection from privacy eventually dominates
the learned criteria of the model.

For privacy accountants, we found that composition under Gauss-
ian differential privacy (GDP) [11] consistently yielded the tight-
est privacy bounds throughout our experiments. See Figure 9 in

Appendix A.3 for an illustration of the improvements in privacy
composition that can be achieved by GDP, over the moments ac-
countant of [1]. Since our baseline method DP-MoG yielded the best
performance under the moments accountant in [45], we included
both GDP composition and moments accountant for fair compar-
ison. We found that DP-NF consistently outperformed DP-MoG
even when both methods used the moments accountant, and that
further performance improvements could be achieved by DP-NF
using GDP composition as a privacy accountant method.

D LIMITATIONS OF PROPOSED APPROACH

Normalizing flow models are trained in a manner which minimizes
the average negative log likelihood of the observed data. As such,
it is not uncommon when training such models that a given point
is assigned near-zero density, provoking a loss approaching in-

finity. We observed this issue was somewhat exacerbated due to
differentially private optimization, in part due to noise injection,

but primarily as a result of subsampling. In the case of uniform
subsampling, as required in our privacy analysis, there is no strict
guarantee that any individual point is regularly sampled. This acts
in contrast to typical sampling methodology in which the dataset
is repeatedly shuffled and partitioned into equal sized batches over
the course of an epoch. Rigorous privacy guarantees associated
with equally sized and disjoint sampling is, to the best of our knowl-
edge, a currently unsettled issue [37] and a potential avenue for
improvement given its theoretical convergence guarantees. We did
not find this limitation to be ultimately confounding in any way.

Additionally, given that DP-NF is ultimately a deep learning
based approach to density estimation, it naturally involves the
optimization of a large number of parameters and a high resource
expenditure in terms of time and space complexity. This is especially
highlighted in comparison to DP-MoG as a baseline, which takes
on the order of seconds to run on CPU as compared to our method
which can take on the order of an hour on GPU. Although, we find
this tradeoff between resource expenditure and distribution quality
to be justified, particularly in the context of differentially private
data analysis and social science applications which rarely demand
strict resource constraints within reason.
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