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Fast neutrino cooling of nuclear pasta in neutron stars: Molecular dynamics simulations

Zidu Lin®,' Matthew E. Caplan,”> Charles J. Horowitz®,? and Cecilia Lunardini ®'
' Department of Physics, Arizona State University, 450 East Tyler Mall, Tempe, Arizona 85287-1504, USA
2Department of Physics, Illinois Sate University, Normal, Illinois 61790, USA
3Center for the Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, Indiana 47405, USA

® (Received 18 June 2020; accepted 17 August 2020; published 6 October 2020)

The direct Urca process of rapid neutrino emission can occur in nonuniform nuclear pasta phases that are
expected in the inner crusts of neutron stars. Here, the periodic potential for a nucleon in nuclear pasta allows
momentum conservation to be satisfied for direct Urca reactions. We improve on earlier work by modeling a
rich variety of pasta phases (gnocchi, waffle, lasagna, and anti-spaghetti) with large-scale molecular dynamics
simulations. We find that the neutrino luminosity due to direct Urca reactions in nuclear pasta can be 3 to 4 orders
of magnitude larger than that from the modified Urca process in the NS core. Thus neutrino radiation from pasta
could dominate radiation from the core and this could significantly impact the cooling of neutron stars.
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I. INTRODUCTION

Neutron stars (NS) cool primarily by neutrino emission
from their dense interiors [1,2]. Therefore, x-ray observations
of NS surface temperatures can provide insight into exotic
high density phases that may be present. Many neutron stars
are thought to cool relatively slowly by the modified Urca
process where two correlated nucleons undergo a cycle of
beta decay followed by electron capture that radiates neutrino
antineutrino pairs [2]. Two nucleons are needed in order
to conserve both momentum and energy during the weak
interactions. However, this restricts the available phase space
and reduces the neutrino emissivity Qnurea Of the modified
Urca process.

Alternatively, if the proton fraction in dense matter is
very high, above a critical value of Y$ =0.11-0.15 [3], it is
possible for a single neutron to beta decay and conserve both
momentum and energy. This leads to the direct Urca process
that has a much higher neutrino emissivity [3]. The high
proton fraction necessary for direct Urca can only be achieved
at sufficiently high densities for those equations of state with
large symmetry energies [3]. Until recently, the direct Urca
process has been generally believed to occur in the inner cores
of very high mass neutron stars [4], where the density is large
enough so that Yffj is achieved. If direct Urca is allowed,
it can serve as the most important cooling channel and its
presence can be tested by x-ray observations of NS thermal
radiations. For example, recently the neutron star in MXB
1659-29 was observed to have a very low surface temperature,
despite large accretion heating. This strongly suggests en-
hanced neutrino cooling from a direct Urca or similar process
[5].

The original direct Urca process occurs in the inner cores
of massive NSs. More recently a number of direct Urca-
like processes that take place at lower densities are being
explored. Schatz et al. discuss a possible Urca cycle where
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a large amount of energy is emitted as neutrinos, mainly
from the nuclei with odd mass number A in the outer crust
of a NS, which undergoes first beta decay and then electron
capture [6]. Here nuclear recoil allows the conservation of
both momentum and energy and neutrino radiation from this
cycle could rapidly cool a layer of the crust.

Nonuniform phases of nuclear matter may allow another
way to conserve both momentum and energy for the weak
interactions. At just below nuclear density, competition be-
tween coulomb repulsion and nuclear attraction can rearrange
nuclear matter into rodlike, slablike, or other complex shapes
that are known as nuclear pasta [7,8]. Nuclear pasta is ex-
pected at the base of the NS crust, just before the transition
to uniform nuclear matter in the NS core [9,10].

In Ref. [11], Gusakov et al. showed that the direct Urca
process can possibly occur in nuclear pasta. Due to the pe-
riodic potential created by the inhomogeneous density distri-
butions of nuclear pasta, nucleons in the inner crust would
acquire large quasimomenta, and in this way satisfy the mo-
mentum conservation required by the direct Urca process.
Gusakov et al. [11] use a liquid drop model by Oyamatsu
[12] to describe the pasta and focus on two high density
pasta phases (inverted cylinder and inverted sphere) when
calculating the neutrino emissivity. Gusakov et al. found that
the neutrino emissivity due to the direct Urca process in a
layer of nuclear pasta can be 2 orders of magnitude stronger
than the modified Urca process (although still about 5 orders
of magnitude weaker than the Urca process in the neutron
star core). Thus, in a neutron star where the central density
is too low to support the direct Urca reaction in the core,
this neutrino emission reaction in the NS crust can profoundly
affect NS cooling.

In addition, Urca emission from nuclear pasta could mod-
ify the cooling of neutron star crusts in similar ways to
Ref. [6]. Here the surface layers could thermally decouple
from the deeper regions so that x-ray bursts and other surface
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phenomena might be independent of the strength of deep
crustal heating.

Finally, a strong Urca process could produce significant
bulk viscosity, which arises from the phase shift between NS
density oscillations and the restoration rate of beta equilibrium
via Urca emissions [13,14]. Such a strong bulk viscosity in the
nuclear pasta layer could dominate over that in outer NS cores
due to modified Urca process, and could be important for the
damping of r-mode oscillations in NSs.

In this paper, we present improved calculations of the
neutrino emissivity of pasta based on large-scale molecular
dynamics (MD) simulations. These semiclassical simulations
allow us to freely explore more complex nuclear pasta shapes
and to directly calculate the emissivity. The method we use in
this work has been extensively used in the past to study the
thermal conductivity, electrical conductivity, shear viscosity,
and neutrino opacity of nuclear pasta [15—17]. We investigate
the effect of four main pasta phases (gnocchi, waffle, lasagna,
antispaghetti) observed in our MD nuclear pasta model on the
direct Urca process in the inner crust. The paper is organized
as follows: in Sec. II, we discuss our molecular dynamics
simulations of the nuclear pasta and the physics of the direct
Urca process in the pasta layer. In Sec. III, we present the
calculation of the neutrino emissivity, which is very sensitive
to the nuclear pasta structure. We then calculate the neutrino
luminosity due to direct Urca process in the pasta and compare
it with the luminosity due to the modified Urca process in the
NS core. Finally, we conclude in Sec. IV.

II. METHOD

A. Direct Urca emissivity and its reduction factor
in neutron star crust

To calculate the neutrino emissivity of the direct Urca
process in neutron star crusts, we first determine the wave
functions of protons and neutrons in the nuclear pasta layer,
which is roughly approximated using perturbation theory and
is expressed as a Bloch wave function as in Ref. [11]. The
nucleon wave function is written as

q)jz Xs 1pr+ZCq ) 1)

q7#0

where V is the normalization volume, q is the inverse lattice
vector, p is the momentum of a nucleon, Cq = V;(q)/(E, —
Ey),and p’ = p + q. Finally V;(q) is the Fourier transformed
nucleon potential in the nuclear pasta with j = N, P, where
N stands for a neutron and P stands for a proton. Given
the nucleon wave functions, the neutrino emissivity Q is
calculated similarly as in Ref. [11], and we get:

O(T, n) = Qo(T, n)R(n), @)
where Qg is the direct Urca emissivity in uniform matter
without the momentum conservation constraint, 7 is tem-
perature and n is baryon number density. Specifically, Qy is

written as
5T
Qo(T, n) = mGz cos® Oc(fy; + 3g3)mympm,T®
A\ /3
~ 4 x 1027<—€) T96 ergcm’3s’1, 3
no
with Ty = T/10° K. In the calculations we assume that

my p = my,p, Where my, , is the effective mass of a neutron or
a proton at the Fermi surface. The effect of the nuclear pasta
structure on Q is manifested in the function R(n), which is:

R(n) = Z Z [mjV ((I)
j=N,P q

— F(20;D™™ +2aj)]®, 4)

(2(x jD?m + Zaf)

where Pr; is the Fermi momentum of a nucleon, «; = q/Pr,
Dy = [(Prp £ Pre)* — Piy — ¢*1/2Prng, Dpr = [(Ppy £

Pro) = Pip — ¢?)/2Prpq,  DP™ =min[1,D;,], DT =
max[—1,D;_], and F(x)= %1n|(«/1 +x4+1)/WV1+x—

1)] — +/1 4+ x/x. Following [11], a simplified Thomas-Fermi
approximation is used in our calculation, and the Fermi
momentum of a neutron and a proton is calculated as
Pry = (3n%ny)'/3 and Ppp = Pr, = (3m%np)'/3. Finally, ©
is a step function: ® =1 if the momentum conservation
is satisfied in the direct Urca-like reactions, and ® =0
otherwise. The step function constrains the region of allowed
momentum transfer q in direct Urca reactions in the nuclear
pasta layer:

Pry — Prp — Pre < q < Py + Prp + Pre. (5)

To determine R, we need to specify the baryon density n,
the electron fraction Y,, as well as the Fourier transformed
nucleon potential V;(q) in pasta phases. In this work our
MD simulations are used to find the baryon density n at
which the nuclear pasta phases of gnocchi, lasagna, waffle,
and antispaghetti form. A detailed description of the MD
simulation is presented in Sec. II C. The electron fraction Y,
in the pasta layer of neutron stars should be applied in Eq. (2).
Oyamatsu [12] studied the nuclear pasta at beta equilibrium,
and found that the pasta forms at proton fraction ¥p ~ 0.03.
Correspondingly we calculated the function R(n) at around
Yp = 0.03, to study the direct Urca process in realistic condi-
tions of inner NS crust.

The Fourier transformed nucleon potential V;(q) is ob-
tained directly from our numerical simulations of different
pasta phases and will be described in more detail in Sec. II B.
Interestingly, we found high peaks of V;(q) based on our
large scale nuclear pasta simulations, which could potentially
amplify the value of R in Eq. (4), and could give a much
larger neutrino emissivity. More details about the impact from
peaks of V;(q) on the neutrino emissivity will be discussed in
Sec. III C.

B. Nucleon potential in pasta

In Sec. IT A, we show that the effect of nuclear pasta
structure on the direct Urca-like process is manifested in
Eq. (4), where R ij(q). In this section we further calculate
the potential energy of a nucleon V; in nuclear pasta
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numerically. The Indiana University semiclassical molecular
dynamics simulation TUMD [16] is used to study the nuclear
pasta structure, and the code is described with more details
in Sec. IIC. In MD simulations the dynamical evolution of
Niot nucleons is simulated in a box with side length Lyox =
(Neot /n)%, and the structure of nuclear pasta is depicted by
the time-dependent spatial distributions of nucleons in the
box, which are called trajectory configurations of the nuclear
pasta. In this work, the nuclear pasta phases we explored are
simulated in boxes with Ly, ranging from 83.4 to 150.8 fm,
and the potential energy of a nucleon V; (j = N, P) at r; is

Mol
Vi(r) =Y _V(l.m), (6)
m=1
where V (I, m) is a semiclassical potential for a two body
nucleon interaction with the spacing of nucleons being 7, =
[r; — rm| [see Eq (8) for a detailed definition of V (I, m)], and
r; =sdi+tdj + udk, with d being the spacmg of the poten-
tial grids, s, 7, u being integers and 7, J, k being orthogonal
unit vectors. Consequently, we have Ngiq = (Lpox/d )3 grid
points on which we calculate the nucleon potential of nuclear
pasta. The grid point spacing d is chosen so that d < Lyox and
is approximately 2 fm, near the characteristic nucleon spacing
in our model.
Given V;(r;), we calculate the Fourier transformed nucleon
potential V;(q) numerically, as

ZNE‘“’ Vy(r;) x exp(iq - r;)d>

Vi(q) = . @)
’ Liy
where q = (Z=M)i+ (Z=N)] + (7Z=O0)k, with M, N, O

being 1ntegers

We use 100 trajectory configurations from the MD nuclear
pasta simulations spaced by 1000 MD timesteps. The nucleon
potential V;(r;) of each configuration x is calculated per

Eq. (6), and is averaged by V;(r;) = Y"1% Vi (r;)/100.

C. Molecular dynamics of nuclear pasta

We use the Indiana University molecular dynamics code
(TuMD) to simulate nuclear pasta, as in past work [10,16,18—
26]. For completeness, we include a brief review here. [IUMD
uses a semiclassical potential V (I, m) for a two body nucleon
interaction, which is

VI, m) = ae”m'™ 4+ [b+ ct,(D)r.(m)le /™ + V.1, m).
(8)
Here a =110 MeV, b= —-26 MeV, ¢ =24 MeV, A =
1.25 fm?, and

2
Vel m) = e ep(1)yzp(m) ©)
Im

is the Coulomb repulsion between protons. We set A = 10
fm as the Coulomb screening lengﬁth 7, = 1 for proton and
7, = —1 for neutron, and 7, = = 1. Note that r;; =
VI —x P+ i —yiP+ 1z — z]]2 where the periodic dis-

tance (given by [/] = Min(|/|, L — |I|)) is used.
All simulations described in this work use periodic bound-
ary conditions in a cubic box, with side length L. All simula-

tions are isothermal and at constant density with an MD time
step of 2 fm/c.

This two-body interaction is simple and the nuclear at-
traction is short ranged, allowing us to efficiently simulate
hundreds of thousands of nucleons [10,23,25]. The geometric
pasta phase can be specified by three thermodynamic param-
eters: the nucleon number density n, temperature 7', and the
proton (electron) fraction Y,, though hysteresis effects and
formation history can be relevant for determining the exact
structure of large volumes of pasta [10,16]. This model has
now been used extensively to study the phases and structure of
nuclear pasta. It is known to form a variety of phases similar
to diblock copolymers including gnocchi (spheres), lasagna
(planar or lam), waffles (perforated lam), and antispaghetti
(uniform matter with cylindrical holes), which will be the
subject of this work [10,16,22,23]. Our model, having finite
temperature, also exhibits a large variety of additional phases
and “defects” as well, such as helicoids that connect lasagna
(structurally identical to Terasaki ramps), and may buckle over
large lengths and disrupt long-range order [23-26]. This work
is therefore not confined to the unit cell; our MD model allows
us to study both the simple idealized cases and phases with
long range disorder self-consistently, which is not possible
with fully quantum mechanical simulations which are limited
to small numbers of particles [27,28].

We address the robustness of our semiclassical model for
this problem. Past work with this model has focused on the
parameter space near 7 = 1 MeV, nucleon densities between
n= 0.01 and 0.12 fm~3, and electron (proton) fractions
between ¥, = 0.3 and 0.5 because this is the parameter range
for which our model produces pasta [10]. At significantly
higher temperature the nucleons dissolves into a gas, while
at temperatures near 0.5 MeV the nucleons crystallize and be-
come locked into a lattice. Similarly, at lower proton fractions
our model forms a gas of nucleons [25]. Therefore, we are
confined to this parameter range to study pasta when using
UMD simulations, although the proton fraction range applied
in the simulations is higher than expected in inner crusts of
NSs. Nevertheless, our pasta model is still consistent with
mean field and fully quantum mechanical simulations which
produce all the same pasta phases we observe at similar densi-
ties [27,29]. We note that at very low proton fractions of ¥, =
0.05 and Y, = 0.1, which are close to the beta equilibrium
conditions, a large-scale quantum simulation of pasta phases
[27] gives similar nuclear pasta structures when comparing
them with results from TUMD. The pasta phases may have
many minima in their energy landscape separated by large
tunneling barriers, and so configurations which are stable on
MD timescales may not be true ground states. Nevertheless,
initial and final configurations are generally equivalent to
each other in all simulations reported in this work so these
configurations are stable on MD timescales, and furthermore
we do not observe any trend in total simulation energy.

As one of our primary goals in this work is to calculate
the temperature independent function R in Eq. (2), which
controls the magnitude of neutrino emissivity relating to pasta
structures, the exact thermodynamic parameters of our pasta
simulations do not heavily bias our results; we use them to
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TABLE I. Summary of molecular dynamics configurations studied in this work. We include nucleon number density n, temperature 7',
number of nucleons Ny, proton (electron) fraction Y,, and their source in the literature.

Identifier n (fm=3) T (MeV) Nt Y, Source

Gl 0.015000 1.0 51200 0.3 Refs. [30,31]

G2 0.014951 1.0 51200 0.4 Refs. [30,31]

L1 0.050000 1 102400 0.4 Refs. [21,24]

L2 0.050000 1.2 102400 0.5 Present work, derivative of L1 and Ref. [25]
L3 0.050000 1 204800 0.4 Present work

L4 0.050007 0.8 204800 0.4 Present work

W1 0.050000 1 102400 0.3 Present work, derivative of L1 and Ref. [31]
W2 0.05 1.6 102400 0.4 Present work, derivative of Ref. [24]

W3 0.05 1 204800 0.3 Present work, derivative of Ref. [21]

W4 0.050007 0.8 204800 0.3 Present work, derivative of L4

AS1 0.0882 0.8 51200 0.3 Present work

AS2 0.0882 0.8 51200 0.4 Refs. [30,31]

generate structural conditions which contain sufficiently large
numbers of nucleons to be in classical limit.

III. RESULTS

A. Molecular dynamics simulations

We study 12 MD simulations of nuclear pasta in this work:
two gnocchi, four lasagna, four waffles, and two antispaghetti.
We give each an identifier for readability, such as G1 and
G2 for the gnocchi simulations, etc. Initial conditions for
our MD simulations are assembled from or derived from
our body of past work and archival data, though a few new
configurations were generated for this work. The preparation
of these simulations are briefly described in the following,
while a summary of the molecular dynamics conditions is
included in Table I.

The initial conditions for these simulations were all
evolved for at least 10° MD time steps prior to collecting data
to guarantee they were dynamically equilibrated. For consis-
tency, all configurations used to calculate R were generated
from equilibrium MD simulations specifically for this work.

G1 and G2 were taken from past studies [30] which con-
sidered phases of nuclear pasta at different proton fractions
and are shown in Fig. 1. In that work, high density matter

(b) G2

was expanded by incrementally increasing the box size after
each time step. This results in much more regularly distributed
gnocchi than in simulations equilibrated from random, as they
fission from large structures generally more symmetrically.
A clear body-centered-cubic (BCC) lattice is visible, with
nuclear separations comparable to nuclear radii.

Simulations of lasagna can be seen in Fig. 2. L1 and L2
were likewise taken from past work [21,24,25] and allow us
to study finite-size effects and how the orientation of pasta
within the simulation volume may affect our calculations.
L1 was prepared by including a sinusoidal external potential
during a brief initial simulation, while L2 is generated from
L1 by random switching neutrons for protons, resulting in
plates with spontaneous splay at a higher Y,. L3, instead, is
unique to this work, though prepared similarly to L1. L4,
while having similar parameters to our other simulations of
lasagna, was prepared by simulating at the slightly lower
temperature of 0.8 MeV. At this temperature many defects
are frozen in, including helicoids and buckles which present
a sort of “fingerprint” defect. This allows us to compare more
idealized plates to a structure without long-ranged order. L4 is
long lived in MD.

Our waffle configurations, which are similar to lasagna but
with holes perforating the plates, are shown in Fig. 3. W1

FIG. 1. Neutron density distributions and potential energy distributions for the gnocchi phase. Panels (a) and (b) represent neutron density
distribution in gnocchi simulated with 51 200 nucleons at ¥, = 0.3 and at Y, = 0.4 respectively. In panels (c) and (d) we show the potential
energy distribution of a neutron from 0 (deep blue) to 50 (red) MeV in the gnocchi.
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FIG. 2. Results are shown for density and real space potential energy distribution of a neutron, due to lasagna structure. Panels (a)—
(d) represent neutron density distribution in the lasagna simulated with 102 400 nucleons at Y, = 0.4, 102 400 nucleons at ¥, = 0.5, 204 800
nucleons at ¥, = 0.4, and 204 800 nucleons at ¥, = 0.4 but not aligned with the box surface respectively. Also, in panels (e)—(h) we show the
potential energy distribution of a neutron from 0 (deep blue) to 50 (red) MeV in the lasagna.

is a trivial variation of L1, obtained by reducing Y,. W2 is may affect our calculations of the reduction factor. The plates
similarly produced from past work [24], and allows us to study in W2, however, do not show a regular lattice of holes like
how the orientation of the plates in the simulation volume W1; the higher temperature results in many short-lived holes

(b) W2

(c) W3
" i, oy P TR
o Ty P 2P

FIG. 3. Results are shown for density and real space potential energy distribution of a neutron, due to waffle structure. Panels (a)-
(d) represent neutron density distribution in the in “waffle” with 102 400 nucleons at ¥, = 0.3, 102 400 nucleons at ¥, = 0.4, 204 800 nucleons
at Y, = 0.3, and 204 800 nucleons at ¥, = 0.3 but not aligned with the box surface respectively. Also, in panels (e)-(h) we show the potential
energy distribution of a neutron from 0 (deep blue) to 50 (red) MeV in the waffle.
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(b) AS2
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(d) AS2
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e
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FIG. 4. Results are shown for neutron density distribution due to anti-spaghetti structure. Panels (a) and (b) represent neutron density
distribution in antispaghetti simulated with 51 200 nucleons at ¥, = 0.3 and 51 200 nucleons at ¥, = 0.4 respectively. Also, results are shown
for potential energy distribution of a neutron, due to antispaghetti structure. In panels (c) and (d) we show the potential energy distribution of

a neutron from O (deep blue) to 50 (red) MeV in antispaghetti.

as thermal fluctuations of the pasta surface. W3 is similar to
L3 and is a variation on past work [21], allowing us to resolve
finite-size effects, while W4 is obtained from L4 by reducing
the proton fraction from Y, = 0.4to ¥, = 0.3.

Lastly, our antispaghetti configurations are shown in Fig. 4.
AS1 and AS2 are obtained similarly to G1 and G2, having
been taken from work which expanded dense initial conditions
[30]. In AS1 we resolve the low symmetry in the tunnel
system, where the tunnels bend and in a few locations connect
via three-way junctions. AS1 is effectively a disordered form
of AS2, which shows a high-symmetry hexagonal packing of
antispaghetti tunnels.

B. Nucleon potential in real space and momentum space

First, we discuss the relationship between the nucleon
number density distributions and nucleon potential energy dis-
tributions in nuclear pasta. Since the nuclear pasta is neutron
rich and the distributions of protons have similar structure
as those of neutrons, we choose to only show the neutron
density and potential distributions in Figs. 1-4. Interestingly,
the potential energy distributions of nuclear pasta exhibit
similar nonuniform characteristics when they are compared
to the number density distributions, due to the short-range
nature of the nuclear force. In this way, one might expect that
the structural information of nuclear pasta will be imprinted
on its Fourier transformed nucleon potential V (q) and on the
magnitude of neutrino emissivity in the direct Urca process
[see Eq. (4)].

We show Fourier transformed proton and neutron poten-
tials as a function of momentum transfer ¢ in Figs. 5 and 6.
These potentials for different pasta phases are then compared
in Fig. 7. As shown in Fig. 7, the Fourier transformed nucleon
potentials display a large peak at |q| ~ 50-80 MeV due to
the fact that the periodic spacing of nuclear pasta potential
is comparable to the wavelength of the nucleon momentum
transfer . To have a clearer understanding of the relationship
between the pasta structure and the properties of the peaks of
V(q), in the Appendix we analytically evaluated the position
and the height of the peak of a gnocchi phase assuming it is
composed of perfectly spherical nuclei and has a clear BCC
lattice structure. We further discuss the possible relationship

between the V(q) and the static structure factor S(q) of the
nuclear pasta, where the latter embodies the coherence effect
on nuclear pasta electron scattering and on the nuclear pasta
neutrino scattering in NSs [16,17]. The static structure factor
of nuclear pasta displays large peaks in q domain when the
wavelength of q is comparable to the interparticle spacing.
Due to the structural similarities between distributions of
nucleon densities and distributions of nucleon potentials in
nuclear pasta (see Figs. 1-4, where the neutron density and
potential distributions are shown), the peaks of V(q) and
the peaks of nuclear pasta static structure factor [15,17] are
approximately in the same region of |q].

Let us now discuss the relationship between the nuclear
pasta potentials in real space and the corresponding Fourier
transformed potentials. First, in Fig. 1 the gnocchi phases G1
and G2 are simulated at different electron fractions, namely
Y, = 0.3 and Y, = 0.4. However the distributions of nucleon
potential in real space are very similar to each other, and
correspondingly the peaks of V(q) of these two simulations
approximately overlap with each other, as shown in the upper
left panel of Figs. 5 and 6. Second, the lasagna phases L1-L4
are simulated with different numbers of nucleons, different Y,,
and different orientations of the lasagna plates, as shown in
Fig. 2. In the left lower panel of Figs. 5 and 6, the peak of V (q)
based on simulation L1 looks very similar to that based on L3,
which indicates that the number of nucleons involved in our
simulations will not severely affect the outcome, and that the
finite-size effect of our MD simulations is minor. However,
although the location of the peaks based on these four simu-
lations basically agree with each other, the heights of peaks
based on L2 and L4 are obviously smaller than those based
on L1 and L3. This is due to the fact that lasagna simulations
of L2 and L4 exhibit more irregular local structures such as
the connection between two plates and the curvature of the
plates, while keeping about the same spacing of plates as in L1
and L3. Third, the waffle phases are simulated with different
numbers of nucleons, electron fractions Y,, and orientations
of the waffle plates. In the upper right panel of Figs. 5 and
6, the distributions of V(q) based on W1 and W3 are similar,
which once again demonstrates that the finite-size effect on
our evaluations is small. But the peak of W1 is obviously
higher than the other three simulations, which is possibly
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FIG. 5. Fourier transformed potential energy distribution of a proton in gnocchi (upper left), waffle (upper right), lasagna (lower left), and
antispaghetti (lower right) respectively. The vertical dot-dashed and dotted black lines are lower bounds of allowed ¢ when Y, = 0.03 and
Y, = 0.05 respectively, above which V(q) is included in function R [see Eq. (4)]. The upper bounds of ¢ lie beyond the range of the plots and
are not shown here. Properties of these pasta phases are summarized in Table 1.

due to a more regular distribution of these waffle plates and
short-lived holes in this specific simulation, as shown in Fig. 3.
Finally, we present the distribution of V(q) corresponding
to antispaghetti in the lower right panel in Figs. 5 and 6.
Although the location of the main peaks based on AS1 and
AS?2 are approximately the same, the heights of peaks based
on these two simulations are very different. This is because
AS1 is actually a disordered form of AS2, and the latter shows
clearly the long-range correlations that AS1 lacks and exhibits
a much clearer periodic structure than AS2 does, as shown in
Fig. 4.

C. Neutrino emissivity

In this section we calculate the direct Urca neutrino emis-
sivity in nuclear pasta. The effect of nuclear pasta structure on
the neutrino emissivity is illustrated in Figs. 8 and 9, where
R varies as a function of Y,, at fixed baryon densities. As
Y, decreases, the lower bound of allowed q rises, and the
contribution from the peaks of V (q) to the R will be excluded
if the lower bound is higher than qpeax, With qpeax being the
corresponding momentum transfer at the peak of V(q). As a

result, the function R decreases rapidly at around ¥, = 0.01,
0.035, 0.035, and 0.045 for gnocchi, waffle, lasagna, and
antispaghetti phases respectively in Figs. 8 and 9. We note
that the electron fraction for nuclear pasta in the inner crust at
beta equilibrium is approximately 0.03 < Y, < 0.035, based
on the liquid drop models [12]. Indeed, the region of ¥, at beta
equilibrium in the inner NS crust demonstrates the close prox-
imity to the enhancement of R and hence the enhancement of
neutrino emissivities via direct Urca reactions due to nuclear
pasta structures. In Table II we summarize the R values of
different pasta phases. To illustrate the contribution from V (q)
peaks, R is calculated in Table II at two different electron
fractions, ¥, = 0.03 and ¥, = 0.05. As shown in Figs. 5 and 6,
at ¥, = 0.03 the R of most nuclear pasta phases (except those
corresponding to G1 and G2) do not include the contributions
from V(q) peaks because of momentum conservation. At
Y, = 0.05, all pasta phases summarized in this table have
large R due to the contribution from peaks of their V(q).
Correspondingly, the neutrino emissivity is greatly enhanced,
and is only 1-2 orders of magnitude weaker than that via
direct Urca reactions. However, when the peaks of V(q) are
excluded due to momentum conservation requirement, the R
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FIG. 6. Fourier transformed potential energy distribution of a neutron in gnocchi (upper left), waffle (upper right), lasagna (lower left),
and antispaghetti (lower right) respectively. The vertical dot-dashed and dotted black lines are lower bounds of allowed ¢ when Y, = 0.03 and

Y, = 0.05 respectively, above which V(q) is included in function R [see Eq. (4)]. The upper bounds of ¢ lie beyond the range of the plots and
are not shown here. Properties of these pasta phases are summarized in Table 1.

decreases by 3—4 magnitude of orders. In the latter case our
results about R are reasonably close to the calculations in
Ref. [11], while the remaining deviations between our results
of R and those reported in Ref. [11] are possibly due to the

differences between the pasta models applied.

Finally, the neutrino emissivity Q from the core via modi-
fied Urca reactions are compared to Q from the nuclear pasta
layer in the inner crust due to direct Urca reactions. The
neutrino emissivities of the modified Urca process, in both the
neutron and proton branches (which are denoted as Oy and
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15+ ¢ 1
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> 6t SAs1 3 AS1
z 2104 ]
= o400 >
LI '|| :
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FIG. 7. Fourier transformed potential energy distribution of a neutron and a proton in gnocchi, waffle, lasagna, and antispaghetti are
compared. The properties of these pasta phases are summarized in Table 1.
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Oup respectively), are summarized below (see the detailed
description of modified Urca in Ref. [32]):

np

1/3
) ngan,Bn ergcm’3s’1, (10)
1o

Oun ~ 8.1 x 1021<

(Ppe + 3Ppp — Pry)?
8Pr.Prp
where «, = 1.13, 8, = 0.68, and ®yp is the threshold for

the proton branch, allowing the modified Urca process when
Pry < 4Pp,. We calculate Qyn and Qup at core density

an

Oump,

Omp ~ Qun

1l -oTn
0.01
o — Gt
107 w1
L1
10701 - AS1|
000 002 004 006 008 010
Ye

Neore = 219, Where ng is the saturation density 0.16 fm=3.
The neutron star is assumed to be isothermal and neutrino
emissivities from the core and the crust are both calculated
atT =3 x 108 K.

Given Quy and Qpp, in Table II we list an order-of-
magnitude estimate on the ratio of crust neutrino luminosity
to core neutrino luminosity at ¥, = 0.03 and Y, = 0.05. The
neutrino luminosity of modified Urca from the core is

12)

47
L ~ Tjoscore(QMN + Owump),

‘_UJ
2
3 Y - W1
L4 4
(@} 1017 ,'I L1 ]
o5 - AST
0.02 0.04 0.06 0.08 0.10
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FIG. 9. The left panel shows R as a function of Y, in different nuclear pasta phases, which are G1, W1, L1, and AS1 respectively. The right
panel shows neutrino emissivities in these phases. The corresponding densities of G1, L1, W1, and AS1 pasta phases are listed in Table I. The

temperature at which Q is calculated is at 7 = 3 x 10® K.
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TABLE II. Summary of Direct Urca emissivity in this work. We include function R, neutrino emissivity Q (in units of 10?! ergcm™3s

3.1

and the ratio of neutrino luminosity L via direct Urca from the crust at ¥, = 0.03 and at ¥, = 0.05 to that via modified Urca from the core. The

temperature corresponding to the calculations here is T = 3 x 108 K.

Identifier Ry,—0.03 Ry,—0.05 05 03 (10* ergem s ™) 05 05 (10* ergem™s™) L§™ o3/ L L™ 0s /L
Gl 0.046 0.58 19 280 1.9 x 10 2.9 x 10*
G2 0.11 0.95 44 470 4.5 x 10° 4.8 x 104
L1 9.2 x 107? 0.81 5.7 x 1072 590 5.8 6.1 x 10*
L2 1.2 x 1074 0.27 7.3 x 1072 200 7.5 2.0 x 10*
L3 1.6 x 1073 0.85 9.8 x 1073 620 1.0 6.4 x 10*
L4 2.7 x 107 0.36 0.17 260 17 2.7 x 10*
W1 5.6 x 1074 0.16 0.35 120 36 1.2 x 10*
W2 1.8 x 107* 0.27 0.11 190 12 2.0 x 10*
W3 9.1 x 107* 0.14 0.56 100 58 1.0 x 10*
W4 4.9 x 1074 0.26 0.3 190 31 2.0 x 10*
AS1 7.6 x 1074 0.047 0.57 41 58 4.2 x 10°
AS2 5.9 x 1073 0.03 4.4 27 452 2.8 x 10°

where Ryscore = 10 km is approximately the radius of neutron
star cores. The neutrino luminosity of direct Urca in the crust
is

L~ 47 RE 0 hO, (13)

where 7 = 100 m is approximately the width of the nuclear
pasta layer [29]. In the calculations of L™, we assume
that the inner crust is composed of nuclear pasta of a spe-
cific phase, e.g., only lasagna or only antispaghetti. A more
accurate estimation of L' might require considering the
coexistence of multinuclear pasta phases in the inner crust,
so that the total luminosity would be an appropriate average
of the luminosities of the various pasta phases. In Table II we
summarize the neutrino luminosities of direct Urca process
due to different nuclear pasta phases in neutron star crusts, and
see that they can be about 1-2 magnitude of orders stronger
than that in neutron star cores from the modified Urca process,
if the contribution from peaks of V(q) to neutrino emissivity
Q is excluded by momentum conservation. At sufficiently
high Y, (for example at ¥, = 0.05), contributions from the
peaks of V(q) to the function R can greatly amplify the
neutrino luminosity in neutron star inner crusts, making it
even stronger, which is about 3—4 magnitude of orders higher
than that due to the modified Urca reactions in the cores of
NSs.

IV. CONCLUSION

In this paper we calculated the neutrino emissivity due to
a direct Urca process in nuclear pasta. This nonuniform phase
is expected near the base of the neutron star crust. Different
shaped pasta phases were explored using molecular dynamics
simulations containing 51 200 and 204 800 nucleons. In
our semiclassical simulations, both neutrons and protons are
free to explore a variety of shapes. We approximated the
wave functions of nucleons in our pasta simulations using
perturbation theory as in Ref. [11]. Given these nucleon wave
functions, the neutrino emissivity of the direct Urca process
was calculated for various nuclear pasta phases, including
gnocchi, waffle, lasagna, and antispaghetti. We found that the

neutrino luminosity due to a direct Urca process in nuclear
pasta can be 3—4 orders of magnitude larger than that from the
modified Urca process in neutron star cores. Thus neutrino
radiation from pasta could dominate over radiation from the
core. This enhanced emission could have a pronounced effect
on the cooling of neutron stars and on x-ray observations of
NS thermal radiation. Therefore, future work should explore
further the neutrino emissivity of nuclear pasta including that
from fully quantum mean field calculations. This will allow
calculations directly at low beta equilibrium values of Y,
and should provide a better understanding on how neutrino
emissivity depends on ¥,.

In the near future we expect more x-ray observations of
thermal radiation from NSs. These cooling observations may
depend on a variety of NS features such as the presence or
absence of a heavy element envelope, a direct Urca process
in the core, and a variety of superfluid and superconducting
pairing gaps [2]. In addition there could be a sizable contribu-
tion to cooling from nuclear pasta. The pasta mechanism, if
effective, should be present in all neutron stars and this will, if
all other NS features remain unchanged, make all stars cool
faster and therefore reach lower temperatures over a given
time interval. Therefore, the existence of nuclear pasta and
its associated direct Urca emissions, together with other NS
features mentioned above, should all be taken into account as
possible cooling variables in the future work of NS cooling
simulations. It should be possible to use x-ray observations of
both isolated and accreting NSs to sort out some features of
NS cooling and gain insight into the dense phases of matter
present in NSs.
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APPENDIX: ANALYTIC MODEL OF NUCLEON
POTENTIALS FOR THE GNOCCHI PHASE

In this Appendix we aim to gain an analytical under-
standing of the large-scale molecular dynamics numerical
simulations. We choose the gnocchi phase as the test bed,
which forms a body-centered-cubic (BCC) lattice when the
simulation is equilibrated. The Fourier transformed potential
V;(q) is defined as

1 .
Vi(q) = —/dVVj(r)e’q'r. (A1)
Vv
In a well equilibrated gnocchi phase a reciprocal lattice struc-
ture is formed and we assume that V;(r) = V;(r 4+ T), where
T is the lattice vector. V;(r) can be expressed in terms of a
Fourier decomposition, given its periodic structure:
Vi(r) = Ve T, (A2)
G
where G is the reciprocal lattice vector. Given Egs. (A2) and
(A1) becomes

Vil =Y / dVVge'“GtoT,
G YV

We see that V(q) reaches its peak at the diffraction points
where q = G, and find

(A3)

1 ‘
Vi(G) = — dvyv; T)e'6 r+T)
j( ) \% ; /ceu ](r +Te

N .
=— [ dvV,(r)eCT,

(A4)
14 cell

where N is the number of unit lattice cells in a MD simulations
and V is the volume of the box in MD simulations. Assuming
that we have s gnocchi in a unit cell located at ry, it is
convenient to write potential energy as the superposition of
potential energy V; associated with each gnocchi k of the

basis, so that V;(r) = Zle Vi(r — ry). We then have

N

/ dVV(r)e T =" / dVVi(r — ry)e 6T
cell k=1 cell
S
= [ dVV;(R)eTOR Y "M (AS)
/;ell ! Z

k=1

where R =r — r;. Assuming that the nucleon potential en-
ergy V; in the gnocchi is distributed uniformly with a sharp
surface radius R, Eq. (9) could be further simplified, since

. —GR GR in(GR
[ avvion = gy, “OROR) i)
cell

(A6)
For a BCC lattice, we have Zf: | e~ 6T = | 4 76" where
G = 2T’T(mﬁ +my] +msk)andr, = %(? + ] + k), with a be-
ing the center-to-center distance of the BCC lattice. It turns
out that 3°53_ ¢~GT = 1 4 (—1y™+™+m and we have
—GR cos(GR) + sin(GR)
G

VN(G) = 47TV_,'

X [1 + (_1)m1+mz+mz]]vv. (A7)
Finally, we compare the analytical expression of Vy(G) with
that from numerical simulations. In the gnocchi phase Gl,
the gnocchi center-to-center distance is approximately 30 fm,
the radius of the sphere is approximately 7.5 fm, and the
mean potential energy of neutrons in gnocchi is approximately
30 MeV. Plugging these numbers into Eq. (A7), we found
that the first peak locates at |q| = |G| ~ 58 MeV when m; +
my + m3 = 2, and Vy(G) ~ 2.3 MeV, which agrees with our
numerical results as shown in Fig. 6 quite well.
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