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We present a new discretization approach to advection-diffusion problems with Robin 
boundary conditions on complex, time-dependent domains. The method is based on second 
order cut cell finite volume methods introduced by Bochkov et al. [8] to discretize the 
Laplace operator and Robin boundary condition. To overcome the small cell problem, 
we use a splitting scheme along with a semi-Lagrangian method to treat advection. We 
demonstrate second order accuracy in the L1, L2, and L∞ norms for both analytic test 
problems and numerical convergence studies. We also demonstrate the ability of the 
scheme to convert one chemical species to another across a moving boundary.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The convective transport and diffusion of chemical species occurs in a broad range of systems. Many applications in-
volve chemical concentrations that evolve within complex, time-dependent regions, including blood flow and clotting in the 
cardiovascular system [14,25], particulate and chemical vapor transport in the lungs [15,39,43], and drug absorption in the 
digestive tract [7,33,48]. In some cases, critical interactions occur between fluid-phase and structure-bound chemicals. These 
interactions can appear in the model equations as a Robin boundary condition for the fluid-bound chemical. For example, 
the interaction between circulating proteins and membrane-bound proteins plays a pivotal role in thrombus formation [14]. 
Modeling these interactions becomes even more challenging as one considers the motion of the flow domain itself.

The numerical simulation of PDEs in complex domains has garnered significant attention for decades. Embedded bound-
ary methods are popular approaches to such problems in which a fixed rectangular Cartesian grid is overlayed on the 
complex structure. Embedded boundary approaches typically alter the PDE to include an additional source term that is 
non-zero only near the boundary. For instance, the immersed boundary method [17,35] uses an integral transform with 
a regularized delta function kernel to enforce boundary conditions along irregular interfaces immersed in a background 
Cartesian grid. These methods typically are designed for Dirichlet boundary conditions, and they have to be modified with 
special interpolation procedures to allow for other types of boundary conditions [9,32,49]. Volume penalization [22] meth-
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ods and diffuse domain [27,44,47] methods both introduce phase field models to track the interface. A smoothed version 
of the interface is then used to modify the original PDE to account for the boundary conditions, ultimately yielding an 
approach similar to the immersed boundary method. These methods all have the effect of smoothing the boundary of the 
complex domain over several grid cells. Regularization lowers solution accuracy near the boundary, and this can limit their 
effectiveness in applications in which boundary interactions are important. One alternative approach is the immersed in-
terface method [24,28,45], which derives jump conditions across the interface and then builds these jump conditions into 
the discretized equations. Using this method to impose boundary conditions requires relating the boundary conditions to 
jump conditions along the interface. Many applications have successfully used the immersed interface method, but to our 
knowledge, the jump conditions for arbitrary spatially dependent Robin boundary conditions have not yet been determined. 
A closely related approach is the ghost fluid method [10], which uses an interpolation procedure to build stencils near 
the interface that incorporate the boundary conditions. This approach can lead to non-symmetric and, in some cases, ill-
conditioned systems that require specialized solvers [46]. Another alternative to these methods is the immersed boundary 
smooth extension (IBSE) method [36,40], which can solve PDEs on complex geometries by embedding the geometry in a 
simpler region and solving the PDE on the extended domain that now includes both “physical” and “non-physical” sub-
domains. In the IBSE approach, a body force is incorporated in the “non-physical” regime to extend the physical solution 
smoothly outside the physical domain. This allows for high order accuracy to the boundary, but at the cost of solving an 
additional multiharmonic problem, with the order depending on the number of interface conditions.

The approach that we use here to impose boundary conditions along a complex boundary while retaining a Cartesian grid 
discretization framework is based on a cut-cell finite volume formulation. In these flux-based methods, fluxes are carefully 
calculated to account for the portion of cells that are inside the physical domain. This approach allows for accurate solutions 
along the boundary, but comes at the expense of computing cell geometries at the interface. This expense can be alleviated 
through the use of a level set function to track the surface [30]. Recent work by Helgadottir et al. [18] demonstrated the 
ability to impose Dirichlet, Neumann, and Robin boundary conditions for Poisson problems. Cut-cell methods can suffer 
from the so-called “small cell problem,” however, in which cells with small volumes necessitate the use of extremely small 
time step sizes for conditionally stable time stepping schemes. This becomes a serious problem for hyperbolic equations 
for which accurate, efficient, and unconditionally stable implicit time-stepping schemes are difficult to create. Approaches 
to alleviate the small cell problem for advective PDEs involve using an implicit method only for the cut-cells [29], merging 
small cells with their neighbors to effectively create a larger cell [38], or partitioning fluxes into “shielded” and “unshielded” 
zones based on the geometry of the cut-cell [23]. These methods have been successfully deployed in two spatial dimensions, 
but extending them to three spatial dimensions remains a challenge. Recently, cut-cell methods that do not suffer from the 
small cell problem have been introduced to handle moving boundaries [38,42]; however, a formulation involving Robin 
boundary conditions that achieves second order accuracy has yet to be developed. The major contribution of this study is 
the construction of such a method with second order accuracy.

Herein, we develop a cut-cell method for advection-diffusion equations on moving domains that allows for the imposition 
of general Robin boundary conditions. To avoid the small cell problem, we introduce a split cut-cell semi-Lagrangian scheme, 
in which the diffusive operator is handled using well established finite volume methods, and the advective operator is 
treated using a semi-Lagrangian method. The benefit of splitting the two operators is two fold. First, in the diffusive solve, 
the flux from the boundary does not need to account for the change in location of the boundary. This allows us to leverage 
recent work by Papac et al. [34] and Bochkov et al. [8] to solve a Poisson-like problem with stationary boundaries. Second, 
the semi-Lagrangian scheme for advection has no CFL stability constraint, so the small cell problem is no longer an issue. 
We demonstrate that this method can accurately resolve concentrations near the boundary for both Robin and Neumann 
boundary conditions, including inhomogeneous Robin boundary conditions. In addition, we show that this method is able 
to handle conversion of one concentration into another across the boundary, effectively modeling surface reactions.

2. Continuous equations

We consider the advection and diffusion of a chemical species with concentration q (x, t) in an arbitrary domain �t , 
embedded in a larger rectangular region B. Both q (x, t) and �t are transported by the same velocity field u (x, t). We 
assume that q (x, t) diffuses with diffusion coefficient D . We consider the particular case in which q (x, t) satisfies Robin 
boundary conditions on the boundary �t of �t , so that

∂q (x, t)
∂t

+ ∇ ·
(
u (x, t)q (x, t) − D∇q (x, t)

)
= f (x, t) ,x ∈ �t, (1a)

D∇q (x, t) · n (x, t) + a (x, t)q (x, t) = g (x, t) ,x ∈ �t, (1b)

in which n (x, t) is the outward unit normal of �t and f (x, t) is a given volumetric source function. Although q (x, t) could 
be extended to be defined on B, in our implementation, q (x, t) is defined only inside �t , and the bounding region B is 
used only to define the cells contained within �t .

We describe the boundary �t using a signed distance function φ (x, t) such that

�t = {x ∈ B| φ (x, t) = 0}. (2)
2
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The signed distance function is passively advected by the prescribed velocity,

∂φ (x, t)
∂t

+ ∇ · (u (x, t)φ (x, t)) = 0,x ∈ B. (3)

Because φ (x, t) will not in general remain a signed distance function under advection by (3), a reinitialization procedure 
is used to maintain the signed distance property. This can be achieved by computing the steady-state solution to the 
Hamilton-Jacobi equation

∂φ̂ (x, τ )

∂τ
+ sgn

(
φ̂ (x, τ )

)(∥∥∥∇φ̂ (x, τ )

∥∥∥ − 1
)

= 0, (4)

φ̂ (x,0) = φ (x, t) ,

after which φ (x, t) is set to the steady state solution.

3. Numerical methods

To simplify notation, we describe the method in two spatial dimensions. Extensions to a third spatial dimension are 
straightforward, with the exception of calculating cut-cell geometries [30].

We use a splitting scheme to split equation (1a) into a diffusion step,

∂q (x, t)
∂t

− ∇ · (D∇q (x, t)) = f (x, t) ,x ∈ �t (5a)

D∇q (x, t) · n (x, t) + a (x, t)q (x, t) = g (x, t) ,x ∈ �t, (5b)

in which the domain �t remains fixed, followed by an advection step,

∂φ (x, t)
∂t

+ ∇ · (uφ (x, t)) = 0 for x ∈ B (6a)

∂q (x, t)
∂t

+ ∇ · (uq (x, t)) = 0 for x ∈ �t, (6b)

in which we evolve both the level set and the function q (x, t). We note that because �t and q (x, t) evolve with the same 
velocity, no boundary condition is needed with equation (6). The use of this splitting procedure incurs an additional error. 
This approach can still yield second order temporal accuracy through Strang splitting [41], which will be described later.

We overlay a Cartesian grid on top of B such that B consists of rectangular grid cells ci, j and B = ∪ci, j with a grid cell 
spacing of �x = �y = h. The concentration field is approximated at the cell centroid of each full or partial cell contained 
within �t .

In the following sections, we describe the discretization of equations (5) and (6). In what follows, unless otherwise noted, 
qi, j refers to the concentration at the cell centroid of the cell ci, j ∩ �t .

3.1. Diffusion step

To solve the diffusion step from equations (5), we employ a cut-cell finite volume method based on the approaches of 
Papac et al. [34] and Arias et al. [1]. We summarize the derivation here, and refer the interested reader to a more detailed 
description in previous work. Integrating equation (5a) over a cell ci, j that is entirely or partially interior to �t and dividing 
by the volume of the cell, we get

1∣∣ci, j ∩ �t
∣∣

∫
ci, j∩�t

∂q (x, t)
∂t

dx = 1∣∣ci, j ∩ �t
∣∣

∫
ci, j∩�t

D�q (x, t)dx. (7)

We define Q i, j as the cell average of q (x, t) in the cell ci, j ∩ �t . Replacing the cell average in the left side of equation (7)
and employing the divergence theorem on the right-hand side, we get

dQ i, j

dt
= 1∣∣ci, j ∩ �t

∣∣
∫

∂
(
ci, j∩�t

) D∇q (x, t)n · dA, (8)

in which n is the outward unit normal of ∂
(
ci, j ∩ �t

)
. We can further divide the integral in equation (8) into an integral 

over the cell boundary ∂ci, j ∩ �t and an integral over the physical boundary �t ∩ ci, j

∫
∂
(
c ∩�

) D∇q (x, t) · ndA =
⎛
⎜⎝ ∫

∂ci, j∩�t

+
∫

ci, j∩�t

⎞
⎟⎠ D∇q (x, t)n · dA. (9)
i, j t

3



A. Barrett, A.L. Fogelson and B.E. Griffith Journal of Computational Physics 449 (2022) 110805
Fig. 1. Depiction of the nomenclature used in the diffusion discretization for the cell length fractions (a) and for the boundary fluxes (b).

We approximate the first integral by∫
∂ci, j∩�t

D∇q (x, t) · ndA ≈Lg
i+ 1

2 , j

q̂i+1, j − q̂i, j
�x

− Lg
i− 1

2 , j

q̂i, j − q̂i−1, j

�x
(10)

+Lg
i, j+ 1

2

q̂i, j+1 − q̂i, j
�y

− Lg
i, j− 1

2

q̂i, j − q̂i, j−1

�y
,

in which q̂i, j is the point-wise concentration at the center of the cell ci, j and Lg
i+ 1

2 , j
is the length fraction of the face (

i + 1
2

)×[
j − 1

2 , j + 1
2

]
covered by the irregular domain, see Fig. 1a. It is challenging to compute Lg

i+ 1
2 , j

exactly. The smooth-

ness of the level set is determined by the zero contour. For shapes that have sharp features, the level set will inherit these 
features. However, to achieve second order accuracy for smooth level sets, it suffices to use a linear approximation

Lg
i+ 1

2 , j
=

⎧⎪⎪⎨
⎪⎪⎩

�y

∣∣∣∣ φ
i+ 1

2 , j− 1
2

φ
i+ 1

2 , j− 1
2
−φ

i+ 1
2 , j+ 1

2

∣∣∣∣ , if φi+ 1
2 , j− 1

2
φi+ 1

2 , j+ 1
2

< 0,

�y, if φi+ 1
2 , j− 1

2
< 0 and φi+ 1

2 , j+ 1
2

< 0,

0, otherwise.

(11)

While in the evolution of the level set φ (x, t), the degrees of freedom live at cell centers, in equation (11), we require the 
value of φ (x, t) at cell nodes. In our computations, we use a simple bi-linear interpolant to find these nodal values. In three 
spatial dimensions, evaluating the corresponding quantity Lg

i+ 1
2 , j,k

would involve computing the surface area.

We emphasize that q̂i, j refers to the cell center of the (possibly cut) grid cell ci, j regardless of the location of the 
physical boundary �t . In cases where the cell center does not correspond to the location of degrees of freedom, e.g., near 
cut-cells, we must reconstruct these values. Here, we perform this reconstruction using either a moving least squares (MLS) 
approximation, or a radial basis function (RBF) interpolant. Both procedures are described in more detail in Section 3.3. We 
note that this reconstruction is not required in the methods of Arias et al. [1] and Bochkov et al. [8], as those methods 
always define the degrees of freedom at cell centers.

As done in Bochkov et al. [8], the second integral is approximated using a linear approximation to q (x, t) on the boundary 
in the direction normal to �t∫

ci, j∩�t

D∇q (x, t) · ndA =
∫

ci, j∩�t

(g (x, t) − aq (x, t))dA ≈ L�
i, j

(
g
(
ri, j, t

) − aq
(
ri, j, t

))
, (12)

in which ri, j is the closest point on �t to xi, j and L�
i, j = ∣∣ci, j ∩ �t

∣∣ (see Fig. 1b). The value q 
(
ri, j, t

)
is found using a Taylor 

series expansion

q
(
xi, j, t

) = q
(
ri, j, t

) + di, j
∂q

(
ri, j, t

)
∂n

+O
(
h2

)
, (13)

in which di, j = φ
(
xi, j ,t

)∣∣∇φ
(
xi, j ,t

)∣∣ is the distance between ri, j and cell center xi, j . On the boundary, we have that

D
∂q

(
ri, j, t

)
+ aq

(
ri, j, t

) = g
(
ri, j, t

)
. (14)
∂n

4
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We solve equations (13) and (14), dropping the O
(
h2

)
terms, for q 

(
ri, j, t

)
and use this value in the approximation to the 

integral in equation (12). As shown previously [8], this system is well posed for a sufficiently refined grid.
The cut-cell volume 

∣∣ci, j ∩ �t
∣∣ and physical boundary length 

∣∣ci, j ∩ �t
∣∣ are found by decomposing the cut-cell and 

boundary into simplices, for which analytic formulas for the volume exist [30].
We approximate equation (5) using the implicit trapezoidal rule:

1

�t
Q n+1

i, j − D

2
∣∣ci, j ∩ �−∣∣

(
Lg
i+ 1

2 , j

qn+1
i+1, j − qn+1

i, j

�x
− Lg

i− 1
2 , j

qn+1
i, j − qn+1

i−1, j

�x

+Lg
i, j+ 1

2

qn+1
i, j+1 − qn+1

i, j

�y
− Lg

i, j− 1
2

qn+1
i, j − qn+1

i, j−1

�y

)

= 1

�t
Q n

i, j +
D

2
∣∣ci, j ∩ �−∣∣

(
Lg
i+ 1

2 , j

qni+1, j − qni, j
�x

− Lg
i− 1

2 , j

qni, j − qni−1, j

�x
(15)

+Lg
i, j+ 1

2

qni, j+1 − qni, j
�y

− Lg
i, j− 1

2

qni, j − qni, j−1

�y

)
+ 1∣∣ci, j ∩ �−∣∣ f n+ 1

2
i, j .

In our computational examples, we use GMRES without preconditioning to solve this system of equations. The solver typi-
cally converges to a solution with tolerance 10−12 after approximately 20 to 50 iterations.

3.2. Advection step

For the advection step, we use a semi-Lagrangian method [11,37] to advance both the level set φ (x, t) and the concen-
tration field q (x, t). We solve equation (6) by first finding the preimage Xi, j = χ−1

(
xi, j, tn+1

)
of the fluid parcel located at 

xi, j at time tn+1. The mapping χ (x, t) satisfies the differential equation

∂χ (x, t)
∂t

= u (x, t) for x ∈ B. (16)

The preimage Xi, j can be found by integrating equation (16) backwards in time. We use an explicit two step Runge-Kutta 
method:

X�
i, j = xi, j − �t

2
u

(
xi, j, t

n+1) , (17a)

Xn
i, j = xi, j − �tu

(
X�
i, j, t

n+ 1
2

)
. (17b)

Having found the preimage, we can interpolate the solution at time tn at the preimage locations Xn
i, j .

Our interpolation procedure consists of one of two possible methods depending on whether Xn
i, j is near cut-cells. Away 

from cells pierced by the zero level set, we use a tensor product of special piecewise Hermite polynomials called Z-splines 
[6]. The Z-spline Zm (x) interpolating the data (xi, f i = f (xi))

n
i=1 is a piecewise polynomial function that satisfies

Zm (x) ∈ Cm ([x1, xn]) , (18a)

dp

dxp
Zm (x)

∣∣∣∣
x j

= f pm, j for p = 0, . . . ,m and j = 1, . . . ,n, (18b)

Zm (x) ∈ π2m+1 ([xi, xi+1]) for i = 1, . . . ,n − 1, (18c)

in which f pm, j is the approximation of the pth order derivative of f (x) computed from high-order finite differences of f j
using 2m + 1 points, and π2m+1 is the space of polynomials of degree less than or equal to 2m + 1.

It is possible to define Zm for a general set of data points (or abscissae) via the cardinal Z-splines [6]

Zm (x) =
∑
i

f i Z̃m (x− xi) . (19)

The cardinal Z-splines have two key properties. First, the cardinal Z-splines have compact support, Z̃m (x) = 0 for |x| >

m + 1, which allows for efficient local evaluation of interpolants. Second, cardinal Z-splines are interpolatory, which makes 
the interpolant trivial to form. Because data values are defined on a regular Cartesian grid, the computation of the full 
interpolant uses a tensor product of cardinal Z-splines

Zm (x) =
∑∑

qi, j Z̃m (x− xi) Z̃m
(
y − y j

)
. (20)
i j

5
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In our computations, we use the quintic Z-splines, which are defined in terms of

Z2 (x) =

⎧⎪⎪⎨
⎪⎪⎩

1− 15
12 x

2 − 35
12 x

3 + 63
12 x

4 − 25
12 x

5, if |x| ≤ 1,
−4+ 75

4 x− 245
8 x2 + 545

24 x3 − 63
8 x4 + 25

24 x
5, if 1 < |x| ≤ 2,

18− 153
4 x+ 255

8 x2 − 313
24 x3 + 21

8 x4 − 5
24 x

5, if 2 < |x| ≤ 3,
0, otherwise.

(21)

In cases where we do not have enough points to define the Z-spline, e.g., near cut-cells, we use the procedure described 
in Section 3.3. We note that although the interpolation procedure described here has a discontinuous switch between 
operators, this does not appear to affect the overall convergence rates in our numerical tests of the methodology.

We note that this form of the semi-Lagrangian method is not conservative, but, in our experiments, the change in the 
amount of material was very small. Conservative versions of semi-Lagrangian methods have been developed [21,26]. The 
core change is to advect grid cells instead of individual points, and then integrate the resulting interpolating polynomial over 
the grid cell. Because conservation is not critical to our ultimate problem of interest, we use the simpler non-conservative 
approach in this work.

The evolution of the level set and the concentration use the same procedure, except for the choice of reference grid. The 
reference grid for the level set consists of the entire domain B, whereas the reference grid for the concentration consists of 
the domain �tn+1 = {

x ∈ B|φ (
x, tn+1

)
< 0

}
. Therefore, we update the level set prior to updating the concentration.

3.3. Moving least squares and radial basis function interpolation

Near cut-cells, it is necessary to form interpolants on unstructured data. In this study, we compare the accuracy of a 
moving least squares (MLS) approximation and a local radial basis function (RBF) interpolant. This procedure is used both 
in the diffusion step, to extrapolate data from cut-cell centroids to full-cell centers, and also in the advection step, for cells 
where the Z-spline interpolant can not be formed. We describe the procedure in the context of reconstructing a function 
f (x) from the data points {xi, f (xi)} with i = 1, 2, . . . , n in which n is an arbitrary number of points.

The MLS approximation is formed by finding the best approximation q (x) at a point xc of the form

q (x) =
N∑
j=1

c j p j (x) (22)

in which the p j (x) form a basis for the space of polynomials up to a certain degree and N is the number of polynomials 
in the basis. The approximation q (x) is chosen to be optimal with respect to the standard weighted L2 inner product with 
weight function w (x)

〈 f (x) , g (x)〉 =
∫
�

f (x) g (x) w (x)dx. (23)

We use a stencil width of approximately two grid cells. It is known that the weight function must be singular at the data 
locations xi for the MLS approximation to interpolate the data [5]. Here, we use

w (x) = e−‖x−xc‖2 . (24)

Because this weighting function is not singular at xc, the reconstructed polynomial will not be interpolatory. The MLS 
calculation reduces to solving a linear system of the form


Ac = 
f (25)

in which A is a matrix whose entries consist of ai, j = p j (xi) and 
 is a diagonal matrix with λi,i = w (xi). In preliminary 
computational tests, we observed that using a lower order reconstruction for the diffusion step is more robust without 
affecting the order of accuracy while quadratic reconstructions can be used in the advection step. Consequently, we use a 
quadratic polynomial in the reconstructions for the advection step and a linear reconstruction with the diffusion step for 
the tests reported in section 4.

The RBF approximation is constructed via a polyharmonic spline of the form

q (x) =
n∑
j=1

λ jφ
(∥∥x− x j

∥∥) +
s∑

j=1

β j p j (x) (26)

in which φ (x) is a polyharmonic radial basis function of degree m and p j (x) are a set of s polynomial basis functions 
[5,13]. The degree of the polynomials k is chosen such that m = 2k + 1. The coefficients are chosen so that
6
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q
(
x j

) = f j for j = 1, . . . ,n, (27)
n∑

k=1

λ j pk
(
x j

) = 0 for j = 1, . . . ,n. (28)

This leads to the linear system for the coefficients(
A P
P T 0

)(
λ

β

)
=

(
f
0

)
(29)

in which A is a square matrix with elements Ai, j = φ
(∥∥xi − x j

∥∥)
and P is a rectangular matrix with elements Pi, j = p j (xi). 

In our computations, we use the polyharmonic spline φ (x) = ‖x‖3 combined with linear polynomials.

3.4. Full procedure and implementation

We summarize the full procedure we use to advance the solution from time tn to time tn+1:

1) If needed, reinitialize the level set φ (x, t) into the signed distance function by iterating equation (4) to steady state 
using the procedure as described by Nangia et al. [31].

2) Update the diffusion equation to half time tn+ 1
2 using the methods described in Section 3.1.

3) Update the level set using the prescribed velocity u to time tn+1 by the methods described in Section 3.2.
4) Advect the concentration using the prescribed velocity u by the methods described in Section 3.2.
5) Update the diffusion equation to full time tn+1 using the concentration and level sets from the previous two steps.

The above procedure is implemented using the SAMRAI [19] infrastructure, which provides an efficient, parallelized envi-
ronment for structured adaptive mesh refinement. The diffusion solve is computed using matrix free solvers with operators 
provided by IBAMR [16,20] and Krylov methods provided by PETSc [2–4].

4. Results

Here we demonstrate the capabilities of the method both using a prescribed level set and an level set advected with the 
fluid. We start with diffusion dominated examples before exploring inclusion of advection and spatially varying boundary 
conditions.

4.1. Diffusion from a point source

We consider the advection-diffusion of a point source within a disk of radius R . The disk is advected with velocity 
u = (

cos
(
π
4

)
, sin

(
π
4

))
. The exact concentration is

q (x, t) = 10

4D
(
t + 1

2

)e− ‖x−xc(t)‖2
4D

(
t+ 1

2

)
for x ∈ B, (30)

in which xc (t) is the center of the disk. We apply Robin boundary conditions of the form

D
∂q

∂n
= g (x, t) − a (x, t)q (x, t) . (31)

We set a (x, t) = 1 and use the method of manufactured solutions to determine the value of g (x, t). For this example, 
we specify the location of the level set φ at each timestep. This procedure allows us test the convergence of the advection-
diffusion step without having to account for numerical error in the evolution of the level set function. We note that whereas 
this example includes a trivial semi-Lagrangian backwards integration step, the interpolation procedure and diffusion step 
are non-trivial.

The extended domain B is the box [0, 12] × [0, 12] and is discretized using N grid cells in each direction. We use a disk 
radius of R = 1 and initial center xc(0) = (1.521,1.503). The choice of center slightly offsets the disk from the background 
grid so that different cut-cells are generated on opposite sides of the disk. We use a diffusion coefficient of D = 0.01. The 
simulations are run at an advective CFL number of CCFL = �x

|u|�t = 0.5.

Fig. 2 shows convergence plots, which demonstrate second order accuracy in the L1, L2, and L∞ norms. The coarsest 
simulation uses N = 128 grid cells in each direction of the background Cartesian mesh, which corresponds to approximately 
26 grid cells covering the diameter of the disk. Despite the relatively coarse description of the disk, we still see errors that 
are on the order of one percent.

We also consider the case where the level set φ is advected with the same velocity. In this case, numerical issues make 
it difficult to assess the pointwise error on the Cartesian grid because the piecewise linear reconstruction used to determine 
7
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Fig. 2. Convergence rates for an advecting and diffusion concentration field initialized from a point source in a constant flow using either a RBF (a) or MLS 
(b) reconstruction. Also shown is the convergence rate for the integral in equation (32) using either an RBF or MLS reconstruction (c). In all cases, the error 
using RBF reconstructions is more than an order of magnitude smaller than MLS reconstructions. Simulations are run to a final time of T = 10 and at a CFL 
number of CCFL = 0.5. We use a diffusion coefficient of D = 0.01. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

the cut-cells gives different cut-cell geometries than that of a prescribed level set. Instead, we compare the solution at the 
boundary to the imposed boundary condition. We compute the solution on the boundary using a moving least squares 
linear extrapolation from cut-cells to the cell boundary. Further, to assess the convergence rate, we compute the error of 
the surface integral

E =
∣∣∣∣∣∣
2π∫
0

q (x, t)dθ −
2π∫
0

q̃ (x, t)dθ

∣∣∣∣∣∣ , (32)

in which θ is the angle along the boundary from the center of the disk, q (x, t) is the exact solution from (30), and q̃ (x, t) is 
the approximate solution computed using the moving least squares extrapolation as described in Section 3.3. A convergence 
plot is shown in Fig. 2 and indicates that the method achieves between first and second order convergence rates. In both 
the evolved and prescribed level set cases, the RBF reconstruction yields errors that are more than an order of magnitude 
smaller than the MLS reconstructions.

4.2. Solid body rotation

In this section, we again consider diffusion from a point source, but instead apply a solid body rotation to the disk. In 
this case, the semi-Lagrangian sub-step contains a non-trivial integration in time, and therefore tests all components of the 
solver. We again prescribe the initial condition as in equation (30), and apply boundary conditions as in equation (31).

The computational domain B is [−4, 4] × [−4, 4] and is again discretized using N grid cells in each direction. We use 
a disk radius of R = 1 and initial center xc(0) = (1.521,1.503). We use a diffusion coefficient of D = 0.1. The prescribed 
velocity is u = 2π (−y, x). Simulations are run at an advective CFL number of 0.5 to a final time of T = 1. Fig. 3 shows 
the initial and final solution. We can see that the solution maintains symmetry throughout the simulation. Fig. 4 shows 
convergence rates for both RBF and MLS reconstructions. Figs. 4a and 4b show convergence rates in which the level set 
is prescribed. We see second order convergence rates in all norms for the prescribed level set case. Fig. 4c shows the 
convergence rate for the solution extrapolated to the boundary for the case in which the level set is evolved with the fluid 
velocity. In this case, we see approximately second order convergence rates. In both of these cases, the error for the RBF 
reconstruction is almost an order of magnitude lower than that of the MLS reconstruction.

4.3. Advection diffusion in oscillatory Couette flow

We now consider the advection and diffusion of a concentration inside a vesicle under oscillating Couette flow with no 
flux boundary conditions. Specifically, we specify the rotational component of the velocity field as
8
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Fig. 3. Initial (a) and final (b) configuration for a diffusing concentration field initialized from a point source in a rigid body rotational flow field. The zero 
contour of φ is shown in red. Simulations are run at an advective CFL number of CCFL = 0.5 to a final time of T = 1.

Fig. 4. Convergence rates for advecting and diffusion concentration field initialized from a point source in a solid body rotational flow using either a RBF (a) 
or MLS (b) reconstruction. Also shown is the convergence rate for the integral in equation (32) using both an RBF or MLS reconstruction (c). Simulations 
are run at an advective CFL number of CCFL = 0.5 to a final time of T = 1.

uθ (r) =
(
ar + b

r

)
sin (πt) , (33a)

a = �2R2
2 − �1R2

1

R2
2 − R2

1

, (33b)

b = (�1 − �2) R2
1R

2
2

R2
2 − R2

1

, (33c)

where R1 and R2 are the radii of the coaxial cylinders, and �1 and �2 are the angular velocities of the cylinders. Here, we 
set the radii to be R1 = 0.5 and R2 = 3.75 with respective angular velocities �1 = 10.0 and � = 1.0.

The vesicle is described by the level set φv (x, t) so that the initial condition is

φv (x,0) = ∥∥x− xv,c
∥∥ − R (34)

where R = 1 is the radius of the disk, and xv,c = (1.521,1.503) is the center of the disk. We initialize the concentration 
field qv via

qv (x,0) = (
cos

(
π

∥∥x− xv,c
∥∥) + 1

)2 (35)

For comparison, we define another concentration field qo (x, t) outside the vesicle, but inside the cylinders. The second 
level set is defined by
9
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Fig. 5. Concentrations qo (orange) and qv (blue) at time points 0.0 (a), 0.5 (b), 1.0 (c), 1.5 (d), and 2.0 (e). The zero contour of the level set φo is shown 
in green. The diffusion coefficient is fixed at D = 0.05 with 1024 grid cells in each direction. We use a fixed time-step corresponding to a maximum CFL 
number of CCFL = 0.5 to a final time of T = 2.

φo (x, t) = max (−φv (x, t) ,‖x‖ − R1, R2 − ‖x‖) . (36)

The initial condition is given by

qo (x,0) =
{ (

cos
(
π

∥∥x− xo,c
∥∥) + 1

)2 if
∥∥x− xo,c

∥∥ ≤ 1
0 otherwise,

(37)

in which xo,c = −xv,c.
The computational domain B is the box [−4, 4] × [−4, 4] and is discretized using N grid cells in each direction, and 

the diffusion coefficient for both the interior and exterior concentration fields is D = 0.05. Fig. 5 shows the solution at five 
different time values during the simulation. Over the course of the simulations, the concentration field inside the disk stays 
completely contained within the disk, while the outside concentration field is free to diffuse between the coaxial cylinders.

Figs. 6 and 7 show numerical convergence results for the concentrations inside the vesicle and outside the vesicle but 
inside the two cylinders respectively. We estimate the convergence rate r using Richardson extrapolation via

r = log2
‖q4h − q2h‖
‖q2h − qh‖ , (38)

in which qh is the solution with a grid spacing of h. To compute the difference ‖q2h − qh‖, we first interpolate the fine 
solution qh onto the coarser grid q2h . Because the interpolation from a fine grid to a coarse grid is nontrivial near cut-cells, 
we exclude all cut-cells and any cells that neighbor cut-cells in the computation of the norm. To assess the error on the 
10
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Fig. 6. Numerical convergence study for the interior of the disk in the L1 (a), L2 (b), and L∞ (c) norms. The convergence rates are computed from 
simulations with N = 128, 256, 512 grid cells (blue) and N = 256, 512, 1024 grid cells (orange). Also shown is the convergence rate for the extrapolation of 
the solution to the boundary (d).

Fig. 7. Numerical convergence study for the exterior of the disk but inside the two cylinders in the L1 (a), L2 (b), and L∞ (c) norms. The convergence 
study is computed from simulations with N = 128, 256, 512 grid cells and N = 256, 512, 1024 grid cells. The dip in convergence rates near the end of the 
simulation occurs when there is a significant value of qo near the boundaries.

cut-cells, we perform a reconstruction of the solution on the surface of the disk by extrapolating the solution to the disk in 
each cut-cell, then computing a cubic spline of these data points. Fig. 6d shows convergence of this reconstruction for the 
solution inside the vessicle. We obtain second order convergence rates using RBFs at all points in time for the finest grids. 
In contrast, the MLS reconstruction does not show optimal convergence rates for the range of grid spacings considered. We 
expect that under additional grid refinement the MLS approximation will settle to second order accuracy, but this is not 
achieved over the range of grid spacings considered herein. The dips in convergence rates in Fig. 7 occur when significant 
values of qo begin to appear in cut cells. Additionally, Figs. 8 and 9 show the norms of the differences. To quantify the 
difference in accuracy between MLS and RBF reconstructions, we estimate the error coefficient C in the expression

‖qh − q‖ ≈ Chp, (39)
11
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Fig. 8. Norms of solution differences for the concentration field inside the domain for the L1 (a), L2 (b), and L∞ (c) norms. The dashed lines correspond to 
MLS reconstruction while the solid lines correspond to a RBF reconstruction. Also shown are the norms of solution differences for the extrapolation to the 
boundary (d).

Fig. 9. Norms of solution differences for the concentration field outside the domain for the L1 (a), L2 (b), and L∞ (c) norms. The dashed lines correspond 
to MLS reconstruction while the solid lines correspond to a RBF reconstruction.

in which q is the exact solution and p is the order of accuracy. We approximate C by comparing differences between two 
grids of refinement h and 2h through the following equation

C ≈ ‖qh − q2h‖
hp (1− 2p)

. (40)

For both MLS and RBF reconstructions, we have p = 2. Table 1 shows our estimates of the C coefficient for both reconstruc-
tions. In all cases, the RBF reconstruction is more accurate.

4.4. Choice of time step size

Previous sections use time step sizes based on a CFL number of 0.5. We note that each substep consists of an uncondi-
tionally stable method. While the affect on stability of the splitting error is unclear, we briefly explore the choice of time 
12
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Table 1
The leading order error coefficient C for both MLS and RBF reconstructions is estimated 
using equation (40). In all cases, the RBF reconstruction yields superior accuracy.

qo qv

L1 norm L2 norm L∞ norm L1 norm L2 norm L∞ norm

CMLS 41.01 26.71 30.37 5.85 3.49 6.68
CRBF 16.20 11.12 12.88 3.44 1.60 2.50

Table 2
The leading order error coefficient C as estimated by equation (40)
as a function of the CFL number CCFL. We see a decrease in error 
as the CFL number is increased.

qo

CCFL 0.5 1.0 1.5 2.0 2.5 3.0

L1 norm 16.20 12.44 10.08 8.18 7.04 6.98
L2 norm 11.12 8.95 7.47 6.38 5.69 5.25
L∞ norm 12.88 11.81 10.55 9.43 8.46 7.61

qv

CCFL 0.5 1.0 1.5 2.0 2.5 3.0

L1 norm 3.44 3.01 2.86 2.64 2.40 2.18
L2 norm 1.60 1.47 1.38 1.24 1.08 0.95
L∞ norm 2.50 2.65 2.49 2.17 1.81 1.60

step size in this section. We again use the oscillatory Couette flow example with radial basis function reconstructions as in 
the previous section; however, we now vary the CFL number. Recall we defined the CFL number as CCFL = �x

|u|�t in which |u|
is the maximum velocity over both space and time so that we used a fixed time step size throughout the entire simulation. 
As before, we estimate the C coefficient (see equation (40)), and the values are reported in Table 2. We observe a decrease 
in the error as the CFL number increases. This is not surprising because the error term for the semi-Lagrangian method 
contains a term that scales like O

( 1
�t

)
, so that the error can decrease for larger timesteps [12], although this reduction in 

error will eventually break down.

4.5. Interaction of two concentrations in oscillatory Couette flow

We now consider the case of two fluid phase chemicals advecting and diffusing on two different domains, but interacting 
through a common boundary. Specifically, we consider oscillatory Couette flow of two chemicals, one of which is contained 
within a vesicle that passively advects with the flow and is initially in the shape of a disk. The other chemical exists outside 
the vesicle, but between the disks defining the domain of interest. Specifically, we solve the equations

∂qv
∂t

+ u · ∇qv = D�qv, x ∈ �v (41a)

−D
∂qv
∂n

= κ (qv − qo) ,x ∈ �v (41b)

∂qo
∂t

+ u · ∇qo = D�qo, x ∈ �o (41c)

−D
∂qo
∂n

= κ (qo − qv) ,x ∈ �v (41d)

−D
∂qo
∂n

= 0, x ∈ �o \ �v, (41e)

in which u is defined in the previous section and �v and �o are the domains for the concentration inside and outside the 
vesicle, respectively. The initial concentration for qv is given by equation (35), and for qo is initially uniformly zero.

We modify the time discretization of the diffusion step to use a modified trapezoidal rule for the boundary conditions. 
We first solve equation (15) for initial approximations q̃o and q̃v using explicit approximations for the boundary conditions

−D
∂q̃o
∂n

= κ
(
q̃o − qnv

)
, and (42)

−D
∂q̃v
∂n

= κ
(
q̃v − qno

)
. (43)

We then solve equation (15) for qn+1
o and qn+1

v again using the intermediate result when evaluating the boundary conditions
13
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Fig. 10. Concentrations qo (orange) and qv (blue) at times 0.0 (a), 0.5 (b), 1.0 (c), 1.5 (d), and 2.0 (e). The zero contour of the level set φo is shown in 
green. The diffusion coefficient is fixed at D = 0.05 with 1024 grid cells in each direction. We use a fixed time-step corresponding to a maximum CFL 
number of CCFL = 0.5 to a final time of T = 2.

−D
∂qn+1

o

∂n
= κ

(
qn+1
o − q̃v

)
, and (44)

−D
∂qn+1

v

∂n
= κ

(
qn+1
v − q̃o

)
, (45)

in which q̃v and q̃o are the results from the intermediate result.
For this example, we perform only RBF reconstructions at the boundaries. We set κ = 1. The remaining parameters are 

the same as in the previous section. Concentration values for various points in time are shown in Fig. 10. As qv reaches the 
boundary �v, it is converted to qo at a rate proportional to the difference in concentrations.

As in the previous section, we perform a numerical convergence study for both the interior and exterior fields. Figs. 11
and 12 show the convergence rates as a function of time. The convergence rates as we refine the grid appear to be con-
verging toward second order, although the method has not yet settled down into it’s asymptotic regime. We also perform 
a convergence study for the solution extrapolated to the boundary, which is shown in Fig. 11d. We again see approximate 
14



Fig. 11. Numerical convergence study for the interior of the disk in the L1 (a), L2 (b), and L∞ (c) norms. The convergence rates are computed from 
simulations with N = 128, 256, and 512 grid cells (blue), N = 256, 512, and 1024 grid cells (orange), and N = 512, 1024, and 2048 grid cells (green). Also 
shown are the convergence rates for the extrapolation of the solution to the boundary (d).

Fig. 12. Numerical convergence study for the exterior of the disk but inside the two cylinders in the L1 (a), L2 (b), and L∞ (c) norms. The convergence study 
is computed from simulations with N = 128, 256, and 512 grid cells (blue), N = 256, 512, and 1024 grid cells (orange), and N = 512, 1024, and 2048 grid 
cells (green).

second order rates for this reconstruction. A plot of the norms of the solution differences is shown in Figs. 13 and 14. The 
differences in the finest grid show a difference of less than one percent at the final time.

To assess conservation, we perform a convergence study on the total amount of the two concentration fields. Fig. 15
shows the total amounts of both fields as a function of time, while the sum of both amounts remains relatively constant. 
Despite this method not being conservative, we see a loss of less than one percent over the course of the finest simulation. 
The total amount of concentration converges at a rate that is between first and second order accuracy.

5. Conclusions

We have presented a numerical method to simulate advection-diffusion problems with Robin boundary conditions on 
irregular, evolving domains. The method shows second order convergence in the L1, L2, and L∞ norms. We have also 
A. Barrett, A.L. Fogelson and B.E. Griffith Journal of Computational Physics 449 (2022) 110805
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Fig. 13. Norms of solution differences for the concentration field inside the domain for the L1 (a), L2 (b), and L∞ (c) norms. Also shown are the norms of 
the differences between solutions extrapolated to the boundary (d).

Fig. 14. Norms of solution differences for the concentration field outside the domain for the L1 (a), L2 (b), and L∞ (c) norms.

Fig. 15. Total concentration of both qv and qo for interactions with a oscillatory Couette flow (a). The total amount converges at a rate that is between first 
and second order (b).
16
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demonstrated the ability to accurately reconstruct solution values on the boundary, achieving second order accurate re-
sults. We have further demonstrated the method to be able to capture transformation of one concentration into another 
concentration with all interaction mediated through boundary conditions. Although only two dimensional tests are pre-
sented, we expect this method to be easily extended to three spatial dimensions. The use of radial basis functions when 
compared to moving least squares gives optimal convergence rates and more accurate solutions for the grid spacings consid-
ered. Z-splines were used in this study for computational efficiency, although any suitable reconstruction procedure should 
work. This method has many possible applications, including models with chemical transport in evolving bodies, such as 
esophageal transport, oxygen flow in the lungs, and blood flow.
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