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ABSTRACT
We demonstrated the existence of a group algebraic structure hid-
den in relational knowledge embedding problems, which suggests
that a group-based embedding framework is essential for designing
embedding models. Our theoretical analysis explores merely the
intrinsic property of the embedding problem itself hence is model
independent. Motivated by the theoretical analysis, we have pro-
posed a group theory-based knowledge graph embedding frame-
work, in which relations are embedded as group elements, and
entities are represented by vectors in group action spaces. We pro-
vide a generic recipe to construct embedding models associated
with two instantiating examples: SO3E and SU2E, both of which
apply a continuous non-Abelian group as the relation embedding.
Empirical experiments using these two exampling models have
shown state-of-the-art results on benchmark datasets.
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1 INTRODUCTION
Knowledge graphs (KGs) are prominent structured knowledge bases
for many downstream semantic tasks [7]. A KG contains an entity
set E = {𝑒𝑖 }, which correspond to vertices in the graph, and a
relation set R = {𝑟𝑘 }, which forms edges. The entity and relation
sets form a collection of factual triplets, each of which has the form
(e𝑖 , r𝑘 , e𝑗 ) where r𝑘 is the relation between the head entity e𝑖 and
the tail entity e𝑗 . Since large scale KGs are usually incomplete due
to missing links (relations) amongst entities, an increasing amount
of recent works [2, 9, 15, 17] have devoted to the graph comple-
tion (i.e., link prediction) problem by exploring a low-dimensional
representation of entities and relations.
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More formally, each relation r acts as a mapping Or [·] from its
head entity e1 to its tail entity e2:

r : e1 ↦→ Or [e1] =: e2 . (1)

The original KG dataset represents these mappings in a tabular
form, and the task of knowledge graph embedding (KGE) is to find
a better representation for these abstract mappings. For example,
in the TransE model [2], relations and entities are embedded in
the same vector space, and the operation Or [·] is simply a vector
summation: Or [e] = e + r. In general, the operation could be ei-
ther linear or nonlinear, either pre-defined or learned. Importantly,
graph completion relies on the fact that relations are not indepen-
dent. For example, the hypernym and hyponym are inverse to each
other; while kinship relations usually support mutual inferences.
These dependencies would impose constraints on the operation
design. Previous studies [13, 16] have concerned some specific cases
of inter-relation dependencies, including (anti-)symmetry and com-
positional relations.

In this work, however, we attempt to deliver a high-level analysis
from a general perspective. More particularly, we ask the following
three questions:

(1) What constraints/requirements does a general KGE task im-
pose on embeddings?

(2) What kind of embedding method would satisfy these con-
straints?

(3) How to explicitly construct embedding models?
Note that the first question concerns general KGE tasks rather than
specific datasets nor embedding models, and, therefore, requires
an analysis including all possible knowledge graph structures. We
find that, to accommodate all possible KG datasets, there are five re-
quirements for the relation embedding: closure, identity, inverse,
associativity, and non-commutativity. The first four coincide
with the algebraic definition of groups in mathematics, and imply
a direct answer to the second question: embedding all relations
into a group manifold (and designing mapping operations as group
actions) would automatically satisfy all requirements; in addition,
the last requirement, non-commutativity, further suggests imple-
menting non-Abelian groups for the most general KGE tasks. The
third question asks for a general recipe to embed relations as group
elements.

One main contribution of this work is it provides a framework
for addressing the KG embedding problem from a novel and more
rigorous perspective: the group-theoretic perspective. We prove
that the intrinsic structure of general KGE tasks coincides with the
complete definition of groups. To our best knowledge, this is the first
proof that rigorously legitimates the application of group theory in
KG embedding. With this framework, we also establish connections
with many existing models (see Sec 3.3), including: TransE [2],
TransR [9], TorusE [5], RotatE [13], ComplEx [15], DisMult [17].
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The remaining sections are organized as following: Section 2
mentions some related works, and emphasizes the distinction be-
tween our analysis and others; in Section 3, we answer the first two
question proposed above, achieving a conclusion that continuous
non-Abelian groups suit general KGE tasks well, which leads to
the exampling continuous non-Abelian group embedding models
(NagE) in later sections; in Section 4, we provide a general recipe
for group-embedding approach of KGE problems, associated with
two novel instantiating models: SO3E and SU2E, which completes
the answer for all three questions; we demonstrate the power of
the proposed embedding framework by comparing the experimen-
tal results of our two example models with other state-of-the-art
models in Section 5, and conclude all discussions in Section 6.

2 RELATEDWORKS
From the group theory perspective, our work may be related to the
TorusE [5], the RotatE [13], DihEdral [16], and QuatE [18] models.

The TorusE model frames the KG entity embedding in a Lie
group manifold to deal with the compactness problem. The authors
proved that the additive nature of the operation in the TransEmodel
contradicts the entity regularization. However, if a non-compact
embedding space is used, entities must be regularized to prevent
the divergence of negative scores. Therefore the TorusE model used
𝑛-torus, a compact manifold, as the entity embedding space. In
other words, TorusE embeds entities in group manifolds, while our
work embeds relations as group manifolds.

In the DihEdral model, the 𝐷4 group the author used plays the
same role as groups in our work: group elements correspond to
relations. The motivation of DihEdral is to resolve the non-Abelian
composition (i.e., the compositional relation formed by r1 and r2
would change if the two are switched). Nevertheless, DihEdral
applies a discrete group 𝐷8 for relation embedding while using a
continuous entity embedding space, whichmay suffer two problems
as discussed in the later Section 3.3. The RotatE model was designed
to accommodate symmetric, inversion, and (abelian) composition
of triplets at the same time. Different from these previous works,
our work does not target at one or few specific cases but aims
at answering the more general question: finding the generative
principle of all possible cases, and thus to provide guidance for
model designs that can accommodate all cases.

More importantly, in most preceding works related to groups [3,
16], group theory serves as an alternative perspective to explain
the efficiency of specific models; while the theoretical analysis in
our current work in Section 3 is model/dataset independent and is
merely initiated by KGE tasks themselves, and the group embedding
approach automatically emerges as the natural method which could
satisfy all constraints for a general KGE task. To our the best of
our knowledge, this is the first proof that rigorously legitimates the
implementation of group theory in KG embeddings.

Another interesting connection refers to QuatE [18]model, where
the authors proposed quaternions (also octonions and sedenions in
the appendix), which served as an extension of complex numbers
for KGE. The intuition of their model was not related to group
theory at all. However, in Model Analysis (Section 5.3 in [4]), the
authors stated that: “Normalizing the relation to unit quaternion
is a critical step for the embedding performance.” While this was

empirically observed, an explicit reason is absent. This phenomena
can be easily understood from the group theory perspective, as
long as one realizes the mathematical correspondence: SU(2) group
is an isomorphism to unit quaternions. This explains the necessity
of applying “normalization” on quaternions: only unit quaternions
are consistent with the group structure (SU(2) in specific), while
non-unit ones cannot form a group. One of our newly proposed
model, SU2E, is therefore closely related to QuatE model with "unit-
scaling", although our proposal does not concern different number
systems at all. It is also worth to mention that when comparing
with other proceeding models, the authors applied a completely
different criteria for the QuatE experiments: a "type constraint" was
introduced in their experiments, which filtered out a significant
portion of challenging relation types during the evaluation phase.
As a contrast, our SU2E model proposed in later sections investi-
gated the similar setting but compared with other models under the
common criteria (without "type constraint"), and showed superior
results as a continuous non-Abelian group embedding for the first
time.

3 GROUP THEORY IN RELATIONAL
EMBEDDINGS

In this section, we formulate the group-theoretic analysis for rela-
tional embedding problems. Firstly, as most embedding models rep-
resent objects (including entities and relations) as vectors, the task
of operation design thus can be stated as finding proper transfor-
mations of vectors. Secondly, as we mentioned in the introduction,
our ultimate goal of reproducing the whole knowledge graph using
atomic triplets further requires certain types of local patterns to be
accommodated. We now discuss these structures, which in the end
naturally leads to the definition of groups in mathematics.

3.1 Hyper-relation Patterns:
relation-of-relations

One difficulty of generating the whole knowledge graph from
atomic triplets lies in the fact that different relations are not indepen-
dent of each other. The task of relation inference relies exactly on
their mutual dependency. In other words, there exist certain relation
of relations in the graph structure, which we term as hyper-relation
patterns. A proper relation embedding method and the associated
operations should be able to capture these hyper-relations.

Now instead of studying exampling cases one by one, we ask
the most general question: what are the most fundamental hyper-
relations? The answer is quite simple and only contains two types,
namely, inversion and composition:

• Inversion: given a relation r, there may exist an inversion
r̄, such that, ∀e1, e2 ∈ E:

r : e1 ↦→ e2 −→ r̄ : e2 ↦→ e1 . (2)

The inversion captures any relation path with a length equal
to 1 (in the unit of relations).

• Composition: given two relations r1 and r2, theremay exist
a third relation r3, such that, ∀e1, e2, e3 ∈ E:{

r1 : e1 ↦→ e2
r2 : e2 ↦→ e3

−→ r3 : e1 ↦→ e3 . (3)



Any relation paths longer than 1 can be captured by a se-
quence of compositions.

One may notice the phrase may exist in the above definition, this
simply emphasizes that the existence of these derived conceptual
relations r̄ and r3 depends on the specificKGdataset; while, on the
other hand, to accommodate general KG datasets, the embedding
space should always contains the mathematical representations of
these conceptual relations.

An important feature of KG is that with the above two hyper-
relations, one could generate any local graph pattern and eventually
the whole graph, as relational paths with arbitrary length have been
captured. Note the term of inversion and composition might have
different meanings from ones in other works: most existing works
study triplets to analyze hyper relations, while the definition we
provide above is based purely on relations. This is more general
in the sense that any conclusion derived would not depend on
entities at all, and some different hyper relations could, therefore,
be summarized as a single one. For example, there are enormous
discussions on symmetric triplets and anti-symmetric triplets [13],
which are defined as:

symmetric: (e1, r, e2) −→ (e2, r, e1),
anti-symmetric: (e1, r, e2) −→ ¬(e2, r, e1).

In fact, if for any choice of e1,2, one could produce a symmetric pair
of true triplets using r, this would imply a property of r itself, and
in which case, one could then simply derive:

r̄ = r. (4)

This is a special case of the inversion hyper-relation; and simi-
larly, the anti-symmetric case simply implies r̄ ≠ r, which is quite
common, and does not require extra design. The deep reason for
discussing hyper-relations which relies merely on relations rather
than triplets is that the logic of relation inference problem itself is
not entity-dependent.

3.2 Emergent Group Theory
To accommodate both general inversions and general compositions,
we now derive explicit requirements on the relation embedding
model. We start by defining the product of two relations r1 and r2:
r1 · r2, as subsequently "finding the tail" twice according to the two
relations, i.e.

Or1 ·r2

[
·
]

:= Or1

[
Or2 [·]

]
. (5)

With the above definition, (3) can be rewritten as: r3 = r1 · r2. One
would realize that the following properties should be supported by
a proper embedding model:

(1) Inverse element: to allow the possible existence of inver-
sion, the elements r̄ should also be an element living in the
same relation-embedding space1.

(2) Closure: to allow the possible existence of composition, in
general, the elements r1 · r2 should also be an element living
in the same relation-embedding space2.

1Given a graph, not all inversions correspond to meaningful relations, but an embed-
ding model should be able to capture this possibility in general.
2Given a graph, not all compositions correspond to meaningful relations, but an
embedding model should be able to capture this possibility in general.

(3) Identity element: the possibly existing inversion and com-
position together define another special and unique relation:

i = r · r̄, ∀r ∈ R . (6)

This element should map any entity to itself, and thus we
call it identity element.

(4) Associativity: In a relational path with the length longer
than three (containing three or more relations {𝑟1, 𝑟2, 𝑟3, ...}),
as long as the sequential order does not change, the following
two compositions should produce the same result:

(r1 · r2) · r3 = r1 · (r2 · r3) . (7)

The associativity is actually rooted in our definition of r1 · r2
in (5) through the subsequent operating sequence in the
entity space, from which, we can derive directly that:

O(r1 ·r2) ·r3

[
·
]
= Or1 ·r2

[
Or3 [·]

]
= Or1

[
Or2

[
Or3 [·]

] ]
(8)

= Or1

[
Or2 ·r3 [·]

]
= Or1 · (r2 ·r3)

[
·
]
,

which then leads to the association (7). To help readers un-
derstand the practical meaning of associativity in real life
cases, here we provide a simple example of the relational
associativity:

r1 = isBrotherOf, r2 = isMotherOf, r3 = isFatherOf.

Meanwhile, the following compositions are also meaningful:

r1 · r2 = isUncleOf, r2 · r3 = isGrandmotherOf.

In this example, one could easily see that:

(r1 · r2) · r3 = r1 · (r2 · r3) = isGranduncleOf.

This is a simple demonstration of the associativity.
(5) Commutativity/Nonconmmutativity: In general, com-

muting two relations in a composition, i.e. r1 · r2 ↔ r2 · r1,
may compose either the same or different results. We pro-
vide a simple illustrative examples for non-commutative
compositions. Consider the following real world kinship:

r1 = isMotherOf, r2 = isFatherOf. (9)

Clearly, the composition r1 · r2 and r2 · r1 correspond to
isGrandmotherOf and isGrandfatherOf relations respectively,
which are different. This is a simple example of non- com-
mutative cases. In real graphs, any cases may exist, and a
proper embedding method should be able to accommodate
both.

The first four properties are exactly the definition of a group. In
other words, the group theory automatically emerges from the rela-
tional embedding problem itself, rather than being applied manually.
This is a quite convincing evidence that group theory is indeed
the most natural language for relational embeddings if one aims at
ultimately reproducing all possible local patterns in graphs. Besides,
the fifth property on commutativity/nonconmmutativity are actu-
ally termed as abelian/non-Abelian in the group theory language.
Since abelian is only a special case, to accommodate all possibilities,
one should, in general, consider a non-Abelian group for the
relation embedding, and guarantee at the same time it contains



at least one nontrivial abelian subgroup. We would term the corre-
sponding embedding method as NagE: the non-Abelian group
embedding method.

More explicitly, given a graph, to implement a group structure
in embedding, one should embed all relations as group elements,
which are parametrized by certain group parameters. For instance:
the translation group 𝑇 can be parametrized by a real number 𝛿 .
And correspondingly, due to its vector nature, the embedding of
entities could be regarded as a representation (rep) space of the
same group. For the translation group, R (the real field) is a rep
space of 𝑇 .

This suggests the group representation theory is useful in knowl-
edge graph embedding problems when talking about entity embed-
dings, and we leave this as a separate topic for subsequent works
later. In the later section, we provide a general recipe for the graph
embedding implementation.

3.3 Embedding models using different groups
In this section, we discuss embedding methods using different
groups, from simple ones as 𝑇 (the translation group) and 𝑈 (1),
to complicated ones including 𝑆𝑈 (2), 𝐺𝐿(𝑛,V) (where V could be
any type of fields), or even Aff (V). It is important to note that, in
practice, continuous groups are more reasonable than discrete
ones, due to the two following reasons:

• The entity embedding space is usually continuous, which
matches reps of the continuous group better. If used to accom-
modate a discrete group, a continuous space always contains
infinite copies of irreducible reps of that group, which makes
the analysis much more difficult.

• When training the embedding models, a gradient-based op-
timization search would be applied in the parameter space.
However, different from continuous groups whose group pa-
rameter are also continuous, the parametrization of a discrete
group uses discrete values, which brings in extra challenges
for the training procedure.

With the two reasons above, we thus mainly consider continuous
groups which are more reasonable choices. The other important fea-
ture of a group is commutativity, which we would mention for each
group below. Besides the relational embedding group G, the entity
embedding space and the similarity measure also need to be deter-
mined. As discussed above, the entity embedding should be a proper
rep space of G. While for similarity measure 𝑑 (·), we choose among
the popular ones including 𝐿𝑝 -norms (𝐿𝑝 ) and the cos-similarity
(cos), and a complete score function 𝑠r (e1, e2) for a triplet (e1, r, e2)
would be the distance from the relation-transformed head entity to
the tail entity. One would notice many choices reproduce precedent
works, and we show two examples below.

3.3.1 Example group: 𝑇 . One could use 𝑛-copies of 𝑇 , the trans-
lation group, for the relation embedding. This is a noncompact
abelian group. The simplest rep-space would be the real field R,
which should also appear 𝑛 times as R𝑛 . The group embedding then
produces the following embedding vectors:

e =⇒ ®𝑣e =
(
𝑥1, 𝑥2, · · · , 𝑥𝑛

)
, ∀e ∈ E;

r =⇒ ®𝑣r =
(
𝛿1, 𝛿2, · · · , 𝛿𝑛

)
, ∀r ∈ R;

both of which are 𝑛-dim. Here both 𝑥𝑖 and 𝛿𝑖 are real numbers. In a
triplet, the relation ®𝑣𝑟 acts as an addition vector added to the head
entity e1. If one further chooses 𝐿𝑝 -norm as the similarity measure,
the complete score function 𝑠r (e1, e2) would be:

∥(®𝑣r + ®𝑣e1 ) − ®𝑣e2 ∥𝑝 , (10)

this actually corresponds to the well-known TransE model [2].
Therewas a regularization in the original TransEmodel that changes
the entity rep-space, which however has been removed in many
later works by properly bounding the negative scores.

3.3.2 Example group: 𝑈 (1). One could use 𝑛-copies of 𝑈 (1), the
1-dim unitary transformation group, for the relational embedding.
This is a compact abelian group. The simplest rep-space would be
the real field C, which should also appear 𝑛 times as C𝑛 . The group
embedding then produces the following embedding vectors:

e =⇒ ®𝑣e =
(
𝑥1, 𝑥2, · · · , 𝑥𝑛

)
, ∀e ∈ E;

r =⇒ ®𝑣r =
(
𝜙1, 𝜙2, · · · , 𝜙𝑛

)
, ∀r ∈ R;

where 𝑥𝑖 is a complex number containing a both real and imaginary
part, while 𝜙𝑖 is a phase variable take values from 0 to 2𝜋 . Therefore
the entity-embedding dimension is 2𝑛, while the relation dimension
is 𝑛. In a triplet, the relation ®𝑣r acts as a phase shift on the head
entity e1. In a matrix form, one could define Rr as the diagonal
matrix with the 𝑖-th diagonal element being 𝑒𝑖𝜙𝑖 . If one further
chooses 𝐿𝑝 -norm as the similarity measure, the complete score
function 𝑠r (e1, e2) would be:

∥Rr · ®𝑣e1 − ®𝑣e2 ∥𝑝 = ∥
[
𝑒𝑖®𝑣r

]
◦ ®𝑣e1 − ®𝑣e2 ∥𝑝 , (11)

where ◦ means a Hadamard product. This precisely leads to the
RotatE model [13].

On the other hand, one could also use the 𝑛-torus T𝑛 as the
rep-space:

e =⇒ ®𝑣e =
(
𝜃1, 𝜃2, · · · , 𝜃𝑛

)
, ∀e ∈ E;

r =⇒ ®𝑣r =
(
𝜙1, 𝜙2, · · · , 𝜙𝑛

)
, ∀r ∈ R;

where 𝜃𝑖 represents a coordinate on the torus. Still using the 𝐿𝑝 -
norm similarity measure, the complete score function 𝑠r (e1, e2)
now is:

∥Rr · ®𝑣e1 − ®𝑣e2 ∥𝑝 = ∥𝑒𝑖®𝑣r ◦ 𝑒𝑖®𝑣e1 − 𝑒𝑖®𝑣e2 ∥𝑝 , (12)

which leads to the TorusE model [5]. In the original implemen-
tation of TorusE, there is an additional projection 𝜋 from R𝑛 to
T𝑛 .3

3.3.3 A summary of some example groups. We summarize the re-
sults of several chosen examples in Table 1.

Note in the Table 1, some groups have not been studied, but there
are still some existing models which use a quite similar embedding
space; while the major gap, between the existing models and their
group embedding counterparts, is the constraint of group struc-
tures on the parametrization. For example, implementing group
embedding with 𝐺𝐿(𝑛,R), the 𝑛-dim general linear groups defined
on field-R, would lead to a model similar to RESCAL [12]. However,
the original RESCALmodel does not have a built-in group structure:
3Due to the special relation between 𝑇 and𝑈 (1) , i.e.𝑈 (1) � 𝑇 /(2𝜋Z) , one could
also regard TorusE as an implementation of group-embedding with𝑇 , which is more
similar to the motivation in the original paper [5].



Group Space Abelian 𝑑 (·) Studied Related Work
𝑇 R𝑛 YES 𝐿𝑝 ✓ TransE [2]

𝑈 (1) C𝑛 YES 𝐿𝑝 ✓ RotatE [13]
𝑈 (1) T𝑛 YES 𝐿𝑝 ✓ TorusE [5]
𝑆𝑂 (3) R3𝑛 NO 𝐿𝑝 – –
𝑆𝑈 (2) C2𝑛 NO 𝐿𝑝 – –

𝐺𝐿(1,R) R𝑛 YES cos ✓ DisMult [17]
𝐺𝐿(1,C) C𝑛 YES cos ✓ ComplEx [15]
𝐺𝐿(𝑛,R) R𝑛 NO cos – RESCAL [12]
Aff (R𝑛) R𝑛 NO 𝐿𝑝 – TransR [9]

𝐷4 R𝑛 NO 𝐿𝑝 ✓ DihEdral [16]
Table 1: Examples of the group embedding.

it uses arbitrary𝑛×𝑛 real matrices, some of whichmay not be invert-
ible, and hence are not group elements in 𝐺𝐿(𝑛,R). It is, therefore,
worth to add the extra invertible constraint in RESCAL, which re-
quests matrices constructed through group parametrization rather
than assigned arbitrary matrix elements. A similar analysis holds
for the affine group Aff(R𝑛).

4 GROUP EMBEDDING FOR KNOWLEDGE
GRAPHS

In this section, we would firstly provide a general recipe for the
group embedding implementation, and then provide two explicit
examples of NagE, both of which apply a continuous non-Abelian
group that has not been studied in any precedent works before.

4.1 A general group embedding recipe
We summarize the group embedding procedure as following:

(1) Given a graph, choose a proper group G for embedding. The
choice may concern property of the task, such as commuta-
tivity and so on. And as stated above, in most general cases,
a non-Abelian continuous group should be proper.

(2) Choose a rep-space for the entity embedding. For simplicity,
one could use multiple (𝑛) copies of the same rep 𝜌 , which
is the case of most existing works. Suppose 𝜌 is a 𝑝-dim rep,
then the total dimension of entity embedding would be 𝑝𝑛,
which is written as a vector ®𝑣e. Roughly speaking, 𝑘 captures
the relational structure and 𝑛 encodes other feature.

(3) Choose a proper parametrization of G, that is, choose a set
of parameters indexing all group elements in G. Suppose the
number of parameters required to specify a group element is
𝑞, then the total dimension of relation embedding ®𝑣r would
be 𝑞𝑛. A group element can now be expressed as a block-
diagonal matrix Rr, with each block M𝑖 being a 𝑝 × 𝑝 matrix
whose entries are determined by the vector ®𝑣r.

(4) Choose a similarity measure 𝑑 (·), the score value 𝑠r (e1, e2)
of a triplet (e1, r, e2) is then:

𝑠r (e1, e2) ≡ 𝑑
(
Rr · ®𝑣e1 , ®𝑣e2

)
(13)

Below we demonstrate the group embedding approach by imple-
menting it with exampling continuous non-Abelian groups. As
shown in table 1, two simple continuous non-Abelian groups that
have not been studied are 𝑆𝑂 (3) and 𝑆𝑈 (2), we will implement

them as relation embedding manifolds, which, as a result, produce
two NagE models.

4.2 SO3E: NagE with group 𝑆𝑂 (3)
The 3D special orthogonal group 𝑆𝑂 (3) is one of the simplest con-
tinuous non-Abelian group. As an illustrative demonstration, we
construct an embeddingmodel with 𝑆𝑂 (3) structure and implement
it in real experiments. Following the general recipe above, after
determining the group G = 𝑆𝑂 (3), we choose a proper rep-space
for entity embedding: [R3]⊗𝑛 , which consists 𝑛-copies of R3. Each
R3 subspace transforms as the standard rep-space of 𝑆𝑂 (3). All
relations thus act as 3𝑛 × 3𝑛 block diagonal matrix, with each block
being a 3 × 3 complex matrix carrying the standard representation
of 𝑆𝑂 (3).

Next, we choose a proper parametrization of 𝑆𝑂 (3). Instead of
the more general angular momentum parametrization, due to our
choice of using the standard representation, we could parameterize
the 𝑆𝑂 (3) elements using Euler angles (𝜙, 𝜃,𝜓 ), which is easier for
implementation.

Put all together, our group embedding is then fixed as:

e =⇒ ®𝑣e =
(
𝑥1, 𝑦1, 𝑧1, · · · , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛

)
, ∀e ∈ E;

r =⇒ ®𝑣r =
(
𝜙1, 𝜃1,𝜓1, · · · , 𝜙𝑛, 𝜃𝑛,𝜓𝑛

)
, ∀r ∈ R;

both of which are 3𝑛-dim. In a triplet, the relation vector ®𝑣r acts as
a block diagonal matrix Rr, with each block matrix𝑀𝑖 acting in the
subspace of (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ):

M1 0 . . . 0

0 M2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . M𝑛





𝑥1
𝑦1
𝑧1
𝑥2
𝑦2
𝑧2

.

.

.

𝑥𝑛
𝑦𝑛
𝑧𝑛



. (14)



And each 3 × 3 block M𝑖 is parametrized as following:

M11
𝑖 = cos𝜓𝑖 cos𝜙𝑖 − cos𝜃𝑖 sin𝜓𝑖 sin𝜙𝑖

M12
𝑖 = cos𝜓𝑖 sin𝜙𝑖 + cos𝜃𝑖 cos𝜓𝑖 cos𝜙𝑖

M13
𝑖 = sin𝜓𝑖 sin𝜃𝑖

M21
𝑖 = − sin𝜓𝑖 cos𝜙𝑖 − cos𝜃𝑖 sin𝜓𝑖 cos𝜙𝑖

M22
𝑖 = − sin𝜓𝑖 sin𝜙𝑖 + cos𝜃𝑖 cos𝜓𝑖 cos𝜙𝑖

M23
𝑖 = cos𝜓𝑖 sin𝜃𝑖

M31
𝑖 = cos𝜓𝑖 sin𝜃𝑖

M32
𝑖 = − cos𝜓𝑖 cos𝜃𝑖

M33
𝑖 = cos𝜃𝑖 (15)

4.3 SU2E: NagE with group 𝑆𝑈 (2)
The 2D special unitary group 𝑆𝑈 (2) is another simple continuous
non-Abelian group. We choose the rep-space for entity embedding
as: [C2]⊗𝑛 , which consists 𝑛-copies of C2. Each C2 subspace trans-
forms as the standard rep-space of 𝑆𝑈 (2). All relations thus act
as 2𝑛 × 2𝑛 block diagonal matrix, with each block being a 2 × 2
complex matrix carrying the standard representation of 𝑆𝑈 (2).

Next, we choose a proper parametrization of 𝑆𝑈 (2). An analysis
with the corresponding Lie algebra 𝔰𝔲(2) shows that any group
element could be written as [6]:

𝑒𝑖𝛼 [n̂·®J] = cos𝛼 1̂ + 𝑖 sin𝛼 n̂ · ®J, (16)

where 𝛼 is a rotation angle taken from [0, 2𝜋], and n̂ is a unit vector
on 𝑆2, represented by two other angles (𝜃, 𝜙); moreover, the symbol
1̂ means an identity matrix, and ®J are three generators of the group:
(J𝑥 , J𝑦, J𝑧), which, in the standard rep have the following form:

𝐽𝑥 =

[
0 1
1 0

]
, 𝐽𝑦 =

[
0 -i
i 0

]
, 𝐽𝑧 =

[
1 0
0 -1

]
.

Put all together, our group embedding is then fixed as:

e =⇒ ®𝑣e =
(
𝑥1, 𝑦1, 𝑥2, 𝑦2, · · · , 𝑥𝑛, 𝑦𝑛

)
, ∀e ∈ E;

r =⇒ ®𝑣r =
(
𝛼1, n̂1, 𝛼2, n̂2, · · · , 𝛼𝑛, n̂𝑛

)
, ∀r ∈ R;

where 𝑥𝑖 and 𝑦𝑖 are complex numbers, and 𝛼𝑖 and n̂𝑖 = (𝜃𝑖 , 𝜙𝑖 )
represent angles. In a triplet, the relation ®𝑣r acts as a block diagonal
matrix Rr, with each block matrix 𝑀𝑖 acting in the subspace of
(𝑥𝑖 , 𝑦𝑖 ). And each 2 × 2 block M𝑖 is parametrized as [6]:[

cos𝛼𝑖 + 𝑖 sin𝛼𝑖 sin𝜃𝑖 𝑖𝑒−𝑖𝜙𝑖 · sin𝛼𝑖 cos𝜃𝑖
𝑖𝑒−𝑖𝜙𝑖 · sin𝛼𝑖 cos𝜃𝑖 cos𝛼𝑖 − 𝑖 sin𝛼𝑖 sin𝜃𝑖

]
.

4.4 Similarity measure and loss function
We choose 𝐿2-norm as the similarity measure 𝑑 (·) to compute the
score value:

𝑠r (e1, e2) = ∥Rr · ®𝑣e1 − ®𝑣e2 ∥2 (17)

We design the model loss function for a triple (e1, r, e2) as follows:
𝐿 = − log𝜎 [𝛾 − 𝑠r (e1, e2)]

−
𝑛∑
𝑖=1

𝑝
(
e′1i, r, e

′
2i
)

log𝜎
[
𝑠𝑟

(
e1i

′, e2i
′) − 𝛾

]
𝑝

(
e′1j, r, e

′
2j | {(e1i, r, e2i)}

)
=

𝑒
𝛼 [𝛾−𝑠r (e′1j,e

′
2j) ]∑

𝑖 𝑒
𝛼 [𝛾−𝑠r (e′1i,e

′
2i) ]

where 𝜎 is the Sigmoid function, 𝛾 is the margin used to prevent
over-fitting. e′1i and e′2i are negative samples while 𝑝

(
e′1i, 𝑟 , e

′
2i

)
is the adversarial sampling mechanism with temperature 𝛼 we
adopt self-adversarial negative sampling setting from [13]. We term
the resulting model as SO3E and SU2E respectively for the above
two groups. We mention other implementation details in the next
section.

5 EXPERIMENTS
5.1 Experimental Setup

Datasets: The most popular public knowledge graph datasets
include FB15K [1] andWN18 [10]. FB15K-237 [14] andWN18RR [4]
datasets were derived from these two, in which the inverse relations
were removed. FB15K dataset is a huge knowledge base with gen-
eral facts containing 1.2 billion instances of more than 80 million
entities. For benchmarking, usually, a frequency filter was applied
to obtain occurrence larger than 100 resulting in 592,213 instances
with 14,951 entities and 1,345 relation types. WN18 was extracted
from WordNet [10] dictionary and thesaurus, the entities are word
senses and the relations are lexical relations between them. It has
151,442 instances with 40,943 entities and 18 relation types.

Evaluation Protocols: We use three categories of protocols for
evaluations, namely, cut-off Hit ratio (H@N), Mean Rank(MR) and
Mean Reciprocal Rank (MRR). H@N measures the ratio of correct
entities predictions at a top 𝑛 prediction result cut-off. Following
the baselines used in recent literature, we chose 𝑛 = 1, 3, 10. MR
evaluates the average rank among all the correct entities. MRR is
the average rank inverse rank of the correct entities.

Implementation Details: We implemented our models using py-
torch4 framework and experimented on a server with an Nvidia
Titan-1080 GPU. The Adam [8] optimizer was used with the de-
fault 𝛽1 and 𝛽2 settings. A learning rate scheduler observing val-
idation loss decrease was used to reduce learning rate by half af-
ter patience of 3000. Batch-size was set at 1024. We did a grid
search on the following hyper-parameters: embedding dimension
𝑑 ∈ {100, 250, 400, 500}; learning rate 𝜂 ∈ {3𝑒 − 4, 1𝑒 − 4, 3𝑒 − 5, 1𝑒 −
5, 3𝑒 − 6}; number of negative samples during training 𝑛𝑛𝑒𝑔 ∈
{128, 256, 512}; adversarial negative sampling temperature 𝛼 ∈
{0.5, 0.75, 1.0, 1.25}; loss function margin 𝛾 ∈ {6, 9, 12, 20, 22, 24, 26}.

5.2 Results and Model analysis
Empirical results on FB15k and WN18 are reported in Table 2. We
compared the embedding results of different groups, including
𝑇 , 𝑈 (1), 𝐺𝐿(1,R), 𝐺𝐿(1,C), 𝑆𝑂 (3) and 𝑆𝑈 (2), which are mainly
categorized by the commutativity. As discussed in Sec. 3.3, the
4https://www.pytorch.org



Group Commutativity WN18 FB15k ExampleMRR H@1 H@3 H@10 MRR H@1 H@3 H@10
T Abelian 0.495 0.113 0.888 0.943 0.463 0.297 0.578 0.749 TransE

U(1) Abelian 0.949 0.944 0.952 0.959 0.797 0.746 0.830 0.884 RotatE
U(1) Abelian 0.947 0.943 0.950 0.954 0.733 0.674 0.771 0.832 TorusE

GL(1,R) Abelian 0.822 0.728 0.914 0.936 0.654 0.546 0.733 0.824 DistMult
GL(1,C) Abelian 0.946 0.942 0.949 0.954 0.692 0.599 0.759 0.840 ComplEx
SO(3) non-Abelian 0.950 0.944 0.953 0.960 0.794 0.740 0.831 0.886 SO3E
SU(2) non-Abelian 0.950 0.944 0.954 0.960 0.791 0.734 0.831 0.886 SU2E

Table 2: Link prediction on WN18 and FB15k (bold represent the best scores, underlined represent the second best).

Group Commutativity WN18RR FB15k-237 ExampleMRR H@1 H@3 H@10 MRR H@1 H@3 H@10
T Abelian 0.226 - - 0.501 0.294 - - 0.465 TransE

U(1) Abelian 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533 RotatE
GL(1,R) Abelian 0.430 0.390 0.440 0.490 0.241 0.155 0.263 0.419 DistMult
GL(1,C) Abelian 0.440 0.410 0.460 0.510 0.247 0.158 0.275 0.428 ComplEx
SO(3) non-Abelian 0.477 0.432 0.493 0.574 0.340 0.244 0.378 0.530 SO3E
SU(2) non-Abelian 0.476 0.429 0.493 0.575 0.340 0.243 0.376 0.532 SU2E

Table 3: Link prediction on WN18RR and FB15k-237 (bold represent the best scores, underlined represent the second best).

former four groups have been implicitly applied in existing models.
For 𝑆𝑂 (3) and 𝑆𝑈 (2), we report the result of our own experiments.
Results of the other models are taken from their original literature:
TransE using group 𝑇 was proposed in [2]; RotatE using group
𝑈 (1) was proposed in [13] while TorusE with the same group was
proposed in [5]; group 𝐺𝐿(1,V) was implemented in DisMult [17]
with V = R and in ComplEx [15] with V = C.

Results on datasets FB15K-237 and WN18RR are demonstrated
in Table 3 respectively. We remove TorusE from the tables due to
the absence of results in the original work, and refer to [11] for
TransE.

In the FB15k dataset, the main hyper-relation is anti-/symmetry
and inversion. The dataset has a vast amount of unique entities.
Shown in Table 2, the RotatE model achieved good performance in
this dataset. SO3E and SU2E achieved comparable result across the
metrics. On the other hand, since inversion relations are removed
in FB15k-237, the dominant portion of hyper-relations becomes the
composition. We can see RotatE fail on this task due to non-Abelian
hyper-relations. Shown in Table 3, the continuous non-Abelian
group method SO3E and SU2E outperformed most of the metrics.

In the WN18 dataset, SO3E and SU2E outperformed all the base-
lines on all metrics shown in Table 2. TheWN18RR dataset removes
the inversion relations from WN18, left only 11 relations and most
of them are symmetry patterns. We can see from Table 3, SO3E and
SU2E model performed well due to their non-Abelian nature.

Drawn from the experiments, two factors significantly impact
the embedding model performance: the embedding dimension, and
group attributes (including commutativity and continuity). As the-
oretically analyzed in Section 3.2, and empirically shown above,
continuous non-Abelian groups are more reasonable choices for
general tasks. It is important to note that SO3E and SU2E proposed
above are exampling models for our group embedding framework,

and they use the simplest continuous non-Abelian groups. Much
more efforts could be devoted in this direction in the future.

6 CONCLUSION AND FUTUREWORK
We proved for the first time the emergence of a group definition in
the KG representation learning. This proof suggests that relational
embeddings should respect the group structure. A novel theoretic
framework based on group theory was therefore proposed, termed
as the group embedding of relational KGs. Embedding models de-
signed based on our proposed framework would automatically ac-
commodate all possible hyper-relations, which are building-blocks
of the link prediction task.

From the group-theoretic perspective, we categorize different
embedding groups regarding commutativity and the continuity
and empirically compared their performance. We also realize that
many recent models correspond to embeddings using different
groups. Generally speaking, a continuous non-Abelian group em-
bedding should be powerful for a generic KG completion task. We
demonstrate this idea by examining two simple exampling models:
SO3E and SU2E. With 𝑆𝑂 (3) and 𝑆𝑈 (2) as embedding groups, our
models showed promising performance in challenging tasks where
hyper-relations become crucial.

In the proposed framework, beside embedding relations as group
elements, entity embeddings live in different representation space
of the corresponding group. And therefore an investigation of group
representation theory in entity embedding is highly demanded. We
leave this in future works. On the other hand, although empirical
evaluations focus on linear models, it is important to note that the
proof of the group structure only relies on the KG task itself. This
means our conclusion also works for more general models, includ-
ing neural-network-based ones. Beyond KG embeddings, the same
analysis could be applied to other representation learning where



intrinsic relational structures are prominent. An implementation of
group structures in more general cases would be very interesting.
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