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Abstract—We present an algorithm that takes as input
a graph G with weights on the vertices, and computes
a maximum weight independent set S of G. If the input
graph G excludes a path P, on k vertices as an induced
subgraph, the algorithm runs in time n°**1°=° ") Hence,
for every fixed k our algorithm runs in quasi-polynomial
time. This resolves in the affirmative an open problem
of [Thomassé, SODA’20 invited presentation]. Previous to
this work, polynomial time algorithms were only known
for P,-free graphs [Corneil et al., DAM’81], Ps-free graphs
[Lokshtanov et al., SODA’14], and Ps-free graphs [Grzesik
et al., SODA’19]. For larger values of t, only 2°(VFnlos™)
time algorithms [Bacsé et al., Algorithmica’19] and quasi-
polynomial time approximation schemes [Chudnovsky et
al., SODA’20] were known. Thus, our work is the first to
offer conclusive evidence that INDEPENDENT SET on [P%-
free graphs is not NP-complete for any integer k.

Additionally we show that for every graph H, if there
exists a quasi-polynomial time algorithm for INDEPENDENT
SET on C-free graphs for every connected component C' of
H, then there also exists a quasi-polynomial time algorithm
for INDEPENDENT SET on H-free graphs. This lifts our
quasi-polynomial time algorithm to 7} -free graphs, where
Ty has one component that is a Py, and £ — 1 components
isomorphic to a fork (the unique 5-vertex tree with a degree
3 vertex).

Index Terms—graph algorithm, independent set, Pj-free
graphs

I. INTRODUCTION

An independent set (also known as a stable set) in a
graph G is a vertex set .S such that no pair of distinct
vertices in S are adjacent in G. In the INDEPENDENT
SET problem the input is a graph G on n vertices and
integer k, the task is to determine whether G contains
an independent set .S of size at least k. INDEPENDENT
SET is a well-studied and fundamental graph problem
which is NP-complete [1], [2] and intractable within
most frameworks for coping with NP-hardness. Indeed,
INDEPENDENT SET was one of the very first problems
to be shown to be NP-hard to approximate [3], [4], one
of the first intractable problems from the perspective
of parameterized complexity [5], one of the first prob-
lems to be shown not to have a 2°(™) time algorithm
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assuming the Exponential Time Hypothesis (ETH) [6],
and one of the very first problems whose hardness of
parameterized approximation, assuming the Gap-ETH,
was established [7].

With the above in mind, it is natural that a significant
research effort has been devoted to identifying classes of
input graphs for which the INDEPENDENT SET problem
is substantially easier than on general graphs. Of partic-
ular interest are the classes where INDEPENDENT SET
becomes polynomial time solvable. Most famously the
problem becomes polynomial time solvable on Perfect
graphs [8], other examples of polynomial time solvable
cases include k£ x Ko,-free graphs [9] and graphs of
bounded cliquewidth [10]. For an extensive list, see [11]
and the companion website [12]. On the other hand the
problem remains NP-complete even on planar graphs of
maximum degree 3 [13], unit disc graphs [14], triangle-
free graphs [15] and AT-free graphs [16].

This paper fits in a long line of work to precisely
classify the complexity of INDEPENDENT SET on all
hereditary graph classes defined by a single forbidden
induced subgraph H (and more generally, by a finite set
‘H of forbidden induced subgraphs). A graph G is said
to be H-free if G does not contain a copy of H as an
induced subgraph. For a set ‘H of graphs, G is H-free
if G is H-free for all H € H. The ultimate goal of this
research direction is to establish a dichotomy theorem
that for every finite set H of graphs determines whether
INDEPENDENT SET on H-free graphs is polynomial time
solvable, or NP-complete .

In 1982 Alekseev [18] observed that INDEPENDENT
SET remains NP-complete on the class of H-free graphs
for every finite set # that does not include a graph
H whose every connected component is a path or a

IThere is of course the possibility that INDEPENDENT SET on H-
free graphs has NP-intermediate complexity for some choice of H.
We believe this is unlikely, however that is pure speculation.

Full version of this paper is available at arxiv.org [17].
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subdivision of the claw (X 3). Since then, no new
NP-completeness results for INDEPENDENT SET on H-
free graphs have been found for any other finite set
‘H. Thus, it is consistent with current knowledge that
INDEPENDENT SET is polynomial time solvable on H-
free graphs for all other finite sets H. At the same
time, progress on algorithms has been embarrassingly
slow. The only connected graphs H for which NP-
completness of INDEPENDENT SET does not follow
from Alekseev’s result are paths and subdivisions of
the claw. Polynomial time algorithms for INDEPENDENT
SET on claw-free graphs were found independently by
Sbihi [19] and Minty [20] in 1980. A polynomial time
algorithm on fork-free graphs (a fork is a claw with
one subdivided edge) was found by Alekseev [21].
Subsequently, Lozin and Milanic [22] gave an algorithm
for WEIGHTED INDEPENDENT SET on fork-free graphs.
For paths, INDEPENDENT SET on P,-free graphs was
shown to be polynomial time solvable by Corneil et
al. [23] in 1981. After a series of papers giving poly-
nomial time algorithms for various subclasses of Ps-
free graphs [24]-[29], in 2014 Lokshtanov et al. [30]
gave a polynomial time algorithm on Ps free graphs.
Two years later, Lokshtanov et al. [31] devised a quasi-
polynomial time algorithm on PFgs-free graphs, before
Grzesik et al. [32] designed a polynomial time algorithm
for Ps-free graphs in 2019. This summarizes the state-of-
the-art for polynomial time solvability of INDEPENDENT
SET on H-free graphs.

It appears that the currently known techniques are very
far from being able to yield polynomial time algorithms
for INDEPENDENT SET on Pj-free graphs for k = 8, let
alone for all values of k. More concretely, the polynomial
time algorithms for Ps-free graphs of Lokshtanov et
al. [30] and for Ps-free graphs of Grzesik et al. [32]
are based on the same method. First, from a sample
of two articles the complexity of applying this method
seems to grow exponentially with k. Second, and more
importantly, in a recent manuscript Grzesik et al. [33]
show that a crucial component of this method fails
completely on Pj-free graphs for k£ > 8.

The slow progress on polynomial time algorithms
have prompted researchers to look for weaker forms of
tractability of INDEPENDENT SET on Pj-free graphs.
Bacs et al. [34] provided 20(Vkn1ogn) time algorithms
for INDEPENDENT SET on Pj-free graphs (see also [35],
[36]). Finally, Chudnovsky et al. [37] obtained quasi-
polynomial time approximation schemes for Pj-free
graphs for all k. In fact their result is much more gen-
eral - they obtain quasi-polynomial time approximation
schemes on H-free graphs for all sets H for which NP-
hardness does not follow from Alekseev’s [18] obser-
vation. While the results above are general, they are
consistent with INDEPENDENT SET being NP-complete
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on all H-free classes of graphs on which polynomial time
algorithms are not already known. In this paper we ob-
tain a quasi-polynomial time algorithm for WEIGHTED
INDEPENDENT SET on Pj-free graphs for every k. In
particular we prove the following theorem.

Theorem 1. There exists an algorithm that given a
graph G and weight function w : V(G) — N outputs
the weight of a maximum weight independent set of G.
If G is Py-free then the algorithm runs in nO(k log®n)
time.

Theorem 1 implies that unless NP C QP, INDEPEN-
DENT SET on Pj-free graphs is not NP-complete for
any k. This is the first conclusive evidence against NP-
completeness for any £ > 7. The running time of the
algorithm of Theorem 1 matches that of Chudnovsky
et al. [37], but computes optimal solutions instead of
(1 — e)-approximate ones. It is also worth mentioning
that our algorithm and analysis is substantially simpler
than the quasi-polynomial time algorithm of Lokshtanov
et al. [31] for the special case of Ps-free graphs. We have
been unsuccessful in generalizing Theorem 1 to a quasi-
polynomial time algorithms for H-free graphs where
H is a subdivision of a claw. However, the techniques
used to prove Theorem 1 can be used to show that
such an algorithm would automatically generalize to all
classes of -free graphs for which NP-hardness is not
already known. More concretely, for a graph H let O
be an oracle that takes as input an H-free graph G and
outputs the weight of a maximum weight independent
set in G. Further, let CC(H) denote the set of connected
components of H. Our second result is the following.

Theorem 2. There exists an algorithm that given as
input a graph H, a graph G, and weight function
w : V(G) — N as well as access to oracles Op,
for all H; € CC(H), outputs the weight of a maximum
weight independent set of G. If G is H-free then the
algorithm uses at most nOUHI?ICC(H)| log? () operations
and oracle calls on induced subgraphs of G.

Theorem 2 has two immediate consequences. First,
coupled with Theorem 1 and the polynomial time al-
gorithm for WEIGHTED INDEPENDENT SET on fork-
free graphs, Theorem 2 yields a quasi-polynomial time
algorithm for WEIGHTED INDEPENDENT SET on Tj-
free graphs, where T} is the graph with &k connected
components the first of which is a P, and each of
the remaining k£ — 1 are isomorphic to a fork. Second,
Theorem 2 implies that if WEIGHTED INDEPENDENT
SET has a quasi-polynomial time algorithm on H-free
graphs for every subdivided claw H, then WEIGHTED
INDEPENDENT SET also has a quasi-polynomial time
algorithm on all H-free classes of graphs, for finite
sets H, for which NP-hardness does not follow from



Alekseev’s result. Or, stated more poetically, the buck
stops at the (subdivided) claw.

a) Methods.: The starting point for our algorithm
is the 20(v21o87) time algorithm for Pj-free graphs of
Bacsé et al. [34]. The algorithm of Bacsé et al. [34] is
simple enough that we can give a quite detailed overview
here. It combines two methods - “degree reduction” and
“balanced separation”.

The “degree reduction” approach can be summarised
as follows. As long as the input graph G contains a
vertex v of sufficiently high degree (degree > d) then
branch on v. That is, find the best solution avoiding
v by a recursive call on G — v, and the best solution
containing v by adding v to the solution obtained from
a recursive call on G — N[v]. Output the best of these
two solutions. A simple recurrence analysis shows that
this reduces the problem to solving 20(* ") instances
in which no vertex has degree at least d. Bacsé et al. [34]
set d = /nlogn and obtain 20(V1°87) instances with
maximum degree /n logn.

The “balanced separation” technique is based on the
classic “Gydrfés path” argument [38] for proving that Py-
free graphs are y-bounded. A simple lemma (Lemma 2
of Bacso et al. [34]), whose proof spans less than a page,
shows that in every P, free graph G there exists a vertex
set X7 of size at most k£ — 1, such that every connected
component of G — N[X;] has at most n/2 vertices.
Bacsé et al. [34] apply this result to instances output by
the degree reduction procedure above. In such instances,
|N[X1]] < O(yv/nlogn), assuming k is a constant. Then,
after guessing the intersection of the optimal solution
with N[X;] (there are at most 2/N[Xill < gvnlogn
such guesses) the connected components of G — N[X|]
become independent sub-instances of size at most n/2,
on which the algorithm may be called recursively. Thus,
solving a single instance on n vertices reduces to solving
20(vnlogn) jnstances on at most n,/2 vertices. Analyzing
the corresponding recurrence shows that the total running
time of the algorithm is upper bounded by 2°(vV7logn),

If we wish to improve the running time from
20(vnlogn) o quasi-polynomial, we may only apply
degree reduction with d = Q(;—57—), and we can not
afford to guess the intersection of the balanced separator
N[X;] with an optimal solution. At this point we apply
a slight generalization of degree reduction, to degree
reduction relative to a vertex set S. Here we branch
on vertices v that have at least d’ neighbors in S (the
vertex v itself does not have to be in S). A simple
recursion analysis shows that this will reduce a single
instance to n!5!/?" instances where every vertex has at
most d’ neighbors in S. We apply degree reduction on the
balanced separator N [X;] with d’ = |N[X;]|/c for some
constant ¢ (possibly depending on k). Thus, the initial
degree reduction, followed by the degree reduction on
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N[X;], reduces the task of solving a single instance G
to that of solving the problem on 2106°" n instances in
which every vertex has degree at most n/ logo(l) n and
furthermore has at most |N[X1]|/c neighbors in the set
N[X;]. Here we are working with induced subgraphs
of the original graph G, so when we say N|[X;] we
really mean what remains of the set N[X;] (with the
neighborhood taken in the graph () in the subgraph of
G that is currently being considered.

The route above is perhaps the most natural one to try
to obtain a quasi-polynomial time algorithm. Indeed, it
is also the engine in the quasi-polynomial time algorithm
of Lokshtanov et al. [31] for Ps-free graphs. However
it is not at all clear how to deal with the instances
output by this degree reduction. For Ps-free graphs,
Lokshtanov et al. [31] (essentially) show that if the
balanced separator N[X7] is chosen very carefully, then
the degree reduction procedure never gets stuck: as long
as N[X;] is non-empty some vertex is a neighbor to
a constant fraction of N[X;]. Thus the algorithm will
make quasi-polynomially many calls on instances where
the balanced separator N[X;] has been reduced to the
empty set, in which case each connected component of
the graph is substantially smaller than the original graph.
This leads to a recurrence that solves to quasi-polynomial
time. We are not able to prove an analogous statement
for Py-free graphs for higher values of k, and so we are
faced with the problem of how to deal with the degree-
reduced instances described above.

The key insight of our algorithm is the following:
if we re-apply the “Gydrfds path” argument of Bacso
et al. [34] on the degree-reduced instances to obtain
a new balanced separator N[Xs)|, then N|[X5] can not
have large intersection with N[X;]. This is because
N[X5] is the neighbor set of a constant size set (X3)
and no vertex in the degree-reduced instance has many
neighbors in N[X;]. We now apply the degree reduction
procedure again, this time on N|[X5]. If this reduction
procedure completely reduces X; or X, to the empty
set, or disconnects the graph into connected components
so that the largest one has at most 0.9n vertices, then
we have won, because the connected components of our
instances are substantially smaller than on the original
graph. If the procedure gets stuck then we obtain yet
another balanced separator X3, observe that X3 has
small intersection with X5 and X;, and do degree-
reduction on X3. And this keeps going, we keep adding
new balanced separators into the mix until the degree-
reduction procedure sufficiently disconnects the graph
(i.e the largest connected component of the instances
becomes sufficiently smaller than the original graph. The
hard part of the analysis is to prove that the graph does
become substantially disconnected by the time at most
O(logn) separators have been added to the instance.



The actual final form of the algorithm is slightly
different from what we describe above. Indeed, based
on the ideas in the previous paragraph we can get an
algorithm with running time O(2"") for every ¢ > 0,
however to obtain quasi-polynomial time we need to be
slightly more careful. The main difference is that we
do not do degree reduction on each individual separator
N[X;]. Instead we define level sets. Level 4 is the set
of all vertices that appear in at least ¢ of the separators
N[Xi],...,N[X,] that we have constructed so far. We
will maintain that throughout the course of the algorithm
the size of level ¢ drops exponentially with ¢. Thus there
will only be O(logn) levels, and we can afford to run
degree reduction so that for each level, no vertex sees
more than a (kk}gn)o(l) fraction of that level. Then,
when we add a new separator, because it is the neighbor
set of only a constant number of vertices, each level
will increase by at most a factor of 1 + (kk}gn)O(l) of
the size of the previous level. Thus, such a process may
continue to depth (klogn)©() while maintaining the
invariant that the size of the level ¢ drops exponentially
with 4.

If recursion depth 2(klogn) is reached without suffi-
ciently disconnecting the graph (i.e the largest connected
component C' of the graph still has size at least N/2,
where N is the number of vertices in the original graph)
this means that we have found Q(klogn) balanced
separators for the graph such that no vertex is contained
in more than O(logn) of them. A simple counting
argument then shows that the average distance between
pairs of vertices in the component C' has to be at
least kl(l;?,:’ > k, contradicting that G is Pj-free. This
means that after recursion depth O(klogn), the graph
has already been disconnected! At this point running
the algorithm from scratch on each of the connected
components yields at most n instances of size at most
n/2 which solves to quasi-polynomial time.

Our algorithm for Theorem 2 follows the same tem-
plate as the algorithm for Theorem 1. The key difference
is that instead of growing a sequence of balanced separa-
tors we grow a sequence of (neighborhoods of) induced
copies in G of connected components of H. Again the
sequence has the property that the sets in the sequence
do not overlap too much, so if we can grow the sequence
to length Q(|H|°™ logn) then we can find an induced
copy of H in G.

II. PRELIMINARIES

All graphs in this paper are assumed to be simple,
undirected graphs. We denote the edge set of a graph G
by E(G) and the vertex set of a graph by V(G). If v
€ V(G), then we use N[v] to denote the closed neigh-
borhood of v, i.e. the set of all neighbors of v together
with v itself. We use N (v) to denote the set N[v] — {v}.
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If X C V(G), then N[X] = J,cx N[z] and N(X) =
N[X]—X. We use CC(G) to denote the set of connected
components of G. If Gy, G,..., G,,, are graphs, then we
use G; + G3 + ... + G, to denote the graph that that
has vertex set V(G1) UV (G2)U...UV(Gy,), and edge
set E(G1) U E(G2)U...UE(Gy,).

Given a weight function w : V(G) — N the weight
of a vertex set S is defined as w(S) = »  cqw(v).
An independent set in G is a vertex set S such that
no pair of vertices in S have an edge between them.
We define mwis(G) to be the weight of the maximum
weight independent set in G. The length of a path is
the number of vertices in the path and we denote by P
the path of length k. If X C V(G) then we will use
G(X) to denote the the graph induced by the vertex set
X, and if it is clear from the context we will use G — X
to denote the graph G(V(G) — X).

Given a positive number ¢ and a graph G, we call a
set S C V(G) a c-balanced separator if no connected
component of G — S has over c vertices. A vertex multi-
Sfamily F is a collection of vertex sets that allows for mul-
tiple instances of its vertex sets. If 7 = {571, 52,...,5,}
and X is a set of vertices, then F — X is the vertex
multi-family {S; — X,S2 — X,...,S, — X}. For two
vertex multi-families .4 and B their union is denoted by
A U B and is defined by the vertex multi-family that
contains all elements of A and of B. The multiplicity
of an element X in A U B is its multiplicity in A plus
its multiplicity in B. We will use log(x) to denote the
function max([log,(z)], 1) throughout this paper. The
proofs of Lemmas and Observations marked with a (x)
have been omitted due to space restrictions and can be
found in the full version of the paper [17].

III. QUASI-POLYNOMIAL TIME ALGORITHM FOR
P;.-FREE GRAPHS

In this section we prove Theorem 1. We will make use
of the following balanced separator lemma from Bacsé
et al. [34].

Lemma 1. [34] There exists an algorithm that given a
graph G runs in polynomial tlme and outputs an induced
path P in G such that N(V( is a V( U _balanced
separator of G.

We begin by proving a slight strengthening of
Lemma 1.

Lemma 2. x There exists an algorithm that takes as
input a graph G, and a positive integer i such that 2° <
|V (G)|, runs in polynomial time and outputs a set X
such that N[X] is a @-balanced separator in G.
Furthermore, if G is Pj-free then |X| < 201 . k.




To describe the algorithm of Theorem 1 we first need
to define the notion of level sets relative to a vertex multi-
family F.

Definition 1. Given a graph G and a vertex multi-family
F consisting of vertex sets of G, for positive integers 4,
the i level relative to F is denoted by L(F,i) and
defined as follows

LF,i)={veV(G) : {SeF : ve S} >i}

In other words L(F,1) is a vertex set containing all
vertices of G that are contained in at least ¢ sets in F.
Our algorithm will also make use of a number N, this
number will be approximately equal to the number of
vertices in the input graph G.

Definition 2. The i branch threshold is denoted by A;
and is defined as A; = N/2¢. Given a multi-family F,
a vertex v € V(G) is a branchable vertex if there exists
an ¢ > 1 such that |[N[v] N L(F,i)| > A,;.

In the following G is always a graph, w is a weight
function w : V(G) — N, N is an integer, and F is a
multi-family of subsets of V' (G). We now describe the
main subroutine ALG; in the algorithm of Theorem 1.
The algorithm takes as input G, w, N and F and (as
we will prove) outputs the weight of a maximum weight
independent set in G. The algorithm of Theorem 1 will
call ALG; with parameters G, N = |V(G)|, w, and
F = 0. ALG, is a recursive branching algorithm with
only four rules. First, if G has at most one vertex, then
return V(G). Second, if the largest component of G has
at most | N|/2 vertices then solve the problem recursively
on each component and return the sum. Third, if there
exists a branchable vertex v, then branch on v (i.e solve
the problem with v forced in to the independent set, and
v forced out). Finally, if none of the previous rules apply
then add a new balanced separator N[X] (obtained by
Lemma 2) to F. In other words, make a recursive call
on the instance (G, w, N, F U {N[X]}).

ALG; is very similar to well known exact exponential
time branching algorithms for INDEPENDENT SET [39].
The key differences are that we use the multi-family F
of balanced separators to guide which vertex to branch
on, that when no rules apply we add a separator to the
family F (at a glance this appears to make no progress at
all, but it increases the size of the level sets, making more
vertices branchable), and that we wait with recursing
on connected components until the size of the largest
component becomes less than N/2 (this is primarily to
simplify the analysis).

ALG,
1. Input: G, w, N, F.
2: Output: mwis(G).
3. if |[V(G)| <1 then
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4:  return w(V(G))

5: else if (maXCecc(G) |V(C)|) < N/2 then

6 return > o) ALG1(C,w, [V(C)|,0)

7: else if exists branchable vertex v then

8.  return max (ALG1(G —v,w, N, F — {v}),
ALG;(G — N[v],w, N, F — N[v]) + w(v))

9: end if

: obtain X by applying Lemma 2 on G with i = 2
: return ALG,(G,w, N, FU{N[X]})

We will distinguish between the three different kinds
of recursive calls that ALG; can make. If the else if
condition on line 5 holds, then the algorithm makes
the recursive calls on line 6. In this case we say that
ALG; recurses on connected components. If the else
if condition on line 7 holds, then the algorithm makes
the recursive calls on line 8. In this case we say that
ALG branches on a branchable vertex. Otherwise the
algorithm makes the recursive call on line 10. In this
case we say that ALG; adds a balanced separator. We
will frequently need to refer to parts of the execution
of the algorithm. For disambiguation, we collect the
terminology here.

An instance is a four-tuple (G,w,N,F). A run
of the algorithm refers to the entire execution of the
algorithm on an instance. A call ALG(G,w,N,F)
refers to the computation done in the root node of
the recursion tree of the run ALG;(G,w,N,F). We
remark that parameters G,w, N, and F never change
during the call ALG1(G,w,N,F). When a run or a
call ALG1(G,w, N, F) recursively calls ALG; on the
instance (G’,w,N’,F') we say the run or the call
executes a run or a call on (G',w, N', F'). This will
sometimes be referred to as makes a recursive call
ALG(G',w,N',F"). A run of ALG1(G,w,N,F) is
called a k-fair run if G is a Pg-free graph, N =
[V(G)|, F = 0, and w is a weight function. A
call ALG(G,w,N,F) is called a k-fair call if it
is executed during the course of a k-fair run. An
instance (G,w,N,F) is called a k-fair instance if
ALG(G,w,N,F) is a k-fair call. Note that N >
|V (G)| for every fair instance.

Lemma 3. x ALG,(G,w, N, F) terminates on every
input.

Lemma 4. x A run ALG,(G,w, N, F) always returns
the weight of a maximum weight independent set of G
under the weight function w.

We have now proved that ALG; always terminates and
that it always outputs the correct answer. The remainder
of the section is devoted to the running time analysis. We
will now prove some lemmas to help us bound the run
time of ALGy on k-fair runs. First, in Observation 1 we
will prove that F remains a multi-family of balanced



separators of G throughout the execution of the algo-
rithm. In Observation 2 we will show that no vertex
appears in many (more than log N) sets in F. This will
ensure that F can never grow too large, because, as
we will show in Lemma 5, a connected Pj-free graph
can not contain a large fractional packing of balanced
separators.

Observation 1. x Let (G, w, N, F) be a k-fair instance.

Then every set S € F is a %—balanced separator of G.

Observation 2. For every k-fair instance (G, w, N, F),
we have that L(F,log(N)+1) = 0.

Proof. Consider a k-fair call ALG;(G,w,N,F). We
will prove the statement by induction on the depth
the call ALG;(G,w,N,F) in the recursion tree
of a run ALG{(G*,w,|V(G*)|,0) which executes
ALG: (G, w, N, F).

If F () then the result is trivially true.
Suppose now that F # (), it follows ALGy
executes ALG;(G,w,N,F) during a k-fair call
ALG{(G',w, N, F') by branching on a branchable ver-
tex or by adding a balanced separator N[X]. In the
first case F = F' — S for some vertex set S. By
the induction hypothesis L(F',log(N) + 1) = ( and
hence L(F,log(N) + 1) = 0. In the second case,
ALG;(G,w, N, F') does not branch on a branchable
vertex, so we have that L(F’,log(N)) = 0 since every
vertex in L(F’,log(NN)) is branchable. It follows that
L(F,log(N) + 1) = L(F U{N[X]},log(N) + 1) =
0. O

Lemma 5. For every k-fair instance (G,w,N,F) it
holds that |F| < 10k - log(NV).

Proof. Consider a k-fair instance (G,w,N,F). We
will prove the result by induction on the depth
of the call ALG{(G,w,N,F) in the recursion tree
of a run ALG:(G*,w,|V(G*)|,0) which executes
ALG; (G, w, N, F).

In the base case F (), and the claim of the
lemma holds trivially, so assume JF # (. Thus
the call ALG:(G,w,N,F) is executed by a k-fair
call ALG1(G’,w, N’, F'). By the induction hypothesis
|F'| < 10k-log(N) (N = N’ since F # ()). Thus, unless
ALG (G',w,N', F') recurses by adding a balanced
separator we have that |[F| < 10k - log(N) as well.
So assume that ALG; (G, w, N', F') adds a balanced
separator N [X|] and that therefore G’ = G, N’ = N and
F = F U{N[X]}. We prove that |F'| < 10k - log(N),
then the result follows since |F| = |F’| + 1.

Suppose for contradiction that |[F'| > 10k - log(V),
we will now produce an induced path of length
k in G, contradicting that G is Py-free. The call
ALG{(G',w,N'|F') = ALG;(G,w,N,F’') added a
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balanced separator, and so the size of the largest con-
nected component, C, in G is greater than % This,
together with Observation 1 then gives that every set
S e Fisa Y9l pajanced separator for C. Consider the
following random process. Uniformly at random, select
vertices x and y in C. For all S € F, let Xg denote the
random variable that is 1 if x and y are not in the same
connected component of C'— S and 0 otherwise. Since S
isa m-balanced separator for C, the probability that
x and y are in the same connected component of C' — .S
is at most 3. Thus Xg = 1 with probability at least 3.
We denote by F, , all sets S € F such that = and y are
not in the same component of C' — S, again including
multiplicity. By linearity of expectation we have that

E(|Foyll = Y E[Xs] = |F|/2 > 5k - log(N).
SeF

It follows there exists vertices a and b in C' such that
|Fa,p| > Bk-log(N). Let P be a shortest path connecting
a and b in C. Since G is P.-free, P has at most k —
1 vertices. By Observation 2, each of these vertices is
contained in at most log(N) sets in F, . But then there
exists a set S € F,; disjoint from V' (P) contradicting
that ¢ and b are not in the same component of C—S. [

The following observation shows that the level sets do
not grow a lot in each successive recursive call, and that
they therefore never get very large. Note in particular
that the size of level set ¢ drops exponentially with .

Observation 3. For every k-fair call ALG, (G, w, N, F)
that adds a balanced separator N[X| and every i,

|L(FU{N[X]},6)] < Ajq - 8k + [L(F,9)].
Furthermore, for every k-fair instance (G',w,N', F"),
|L(F, i) < Aj_q -8k |F].

Proof. Consider a k-fair call ALG;(G,w, N, F) that
adds a balanced separator N[X]. Let X; denote the
set of vertices in L(F,j) N {N[X]}, then we can see
that |L(F U {N[X]},7)| < L(F,j) + |X;_1|. Since
the call ALG; (G, w, N, F) adds a balanced separator,
N[X], there are no branchable vertices. So, we have that
for all v € G, |[N[v] N L(F,j)| < A;. Furthermore, by
Lemma 2, since N[X] is generated as an £ -balanced
separator and therefore a %—balanced separator for G,
X consists of most 8k vertices, hence | X;_1| < A;_1-8k
and the result |L(FU{N[X]},4)| < A;_1-8k+]|L(F,q)|
follows.

The second statement follows by combining induction,
the first part of this observation, and the fact that if the
call ALG; (G, w, N, F) executes ALG;(G’,w, N, F'),
then |F| < |F’| if and only if the call ALG; (G, w, N, F)
adds a balanced separator.



For k-fair instances (G,w, N, F) we define a mea-
sure:

(G, w, N, F) = 400k? - log*(N) - (N + |V(G)))

> (zEan )

JAVERY
+ 16k - N - log(N) - (10k - log(N) — |F])

If (G,w,N,F) is not a k-fair instance, then
wr(G,w, N, F) is undefined. Note that ux(G,w, N, F)
must always be an integer, and that it is independent of
the weight function w. We will say that two instances
(G,w,N,F) and (G',w',N', F') are essentially differ-
ent if G' A£G, N' # N or F' # F.

Lemma 6. x For every positive integer L, the number of
essentially different k-fair instances (G,w, N, F) such
that ui(G,w, N, F) = u is finite. In addition, for every
k-fair instance it holds that j,(G,w, N, F) > 0.

Lemma 7. x For every k-fair instance (G,w, N, F) it
holds that ji;(G,w, N, F) < 1050k - N - log?(N)

We define T; (G, w, N, F) to be the running time of a
k-fair run of ALG; starting with the inputs (G, w, N, F).
We also define

max
G,N,F S.t.
pr (G w,N,F)<p

Tk(u)_ Tk(G,U},N,f)

When we analyze run time we assume that arithmetic
(addition, subtraction, comparisons) on weights of ver-
tices and vertex sets is constant time. Thus, both the
running time of ALG; and the measure of an instance
(G,w, N, F) are independent of the weight function w.
Thus, by Lemma 6, Ty (1) is well defined.

Lemma 8. If u > 1 then Ty(u) satisfies the following
recurrence:

1T (.950)

(Te(p — 1)+

Ti(ull — 1/(2100 - log?(1)))))
Ty (u[1 —1/(200k - log())])

Ti(p) < p®M+maz

Proof. Let (G,w,N,F) be a k-fair instance such that
pi(G,w,N,0) = p > 1 and Tj(u) is the run time
of ALGy(G,w, N, F). If the call ALG;(G,w, N, F)
recurses on connected components, then it makes at
most |V (G)| recursive calls on instances of the form
(G',w,N',0), where |V(G")| < |V(G)| and N’ < &.
It follows that for each of these recursive calls we have
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(G w, N', 0) = 400k? - 1og?(N') (N' + [V (G")])
+ 160k2 - N’ - log®(N')
N
< 400k - logz(N)(E + |V(G)]) + 80k* - N -log®(N)
< 400k? - log®(N)(N + [V(G)]) — 100k* - N -log?(N)
< 11— 100k? - N -log*(N)
<.95p  (by Lemma 7)

Also, the algorithm does |V (G)|°M) = €M) work
in a call where it recurses on connected components.
Therefore, if the instance ALG;(G,w, N,F) recurses
on connected components, we must have that T (u) <
pOW + [V(G)| - Ti(:95p) < pOM + - Ti(95p).

If the call ALG; (G, w, N, F) branches on a branch-
able vertex, v, then it makes two recursive calls, one
execution ALG;(G — {v},w, N, F — {v}), where the
instance (G — {v}, w, N, F — {v}) has measure u;(G —
{v},w,N,F — {v}) < pn— 1, and the other execution
is ALG1(G — N[v],w,N,F — N[v]). Note that for a
branchable vertex, v, we have that

Z(|L(I—N[v],i)\-% < ;(IL(E i)\-%)—

7

N

2 )

since for at least one level ¢ we have that |N[v] N

L(F,i)| > A; and 72— = 1/2. Tt follows that

pe(G — N[v],w, N, F — N[v]) = 400k* - log*(N) - (N

+IV(G) - NI + Z (IL(f— MU Ai-v_l)
+16k - N -log(N) - (10k - log(N) — | F|)
< 400k*1og*(N) - (N + [V(G)])
+ 16k - N -log(N) - (10k - log(N) — | F]) — g
<pu-— E
- 2
<u (1 _ 21()OI<;2110g2(N)> (by Lemma 7)
1

B ———

The algorithm does |V (G)|°™M) = u©M) work in a call
where it branches on a branchable vertex. Therefore, if
the call ALG;(G,w, N, F) branches on a branchable
vertex, then we have that Ty (1) < pu@® + Ty (p—1) +
Ti(p[l — Wlogz(u)])‘

Finally, if the call ALG;(G,w,N,F) adds a bal-
anced separator, N[X], then it makes a single recursive

21002 - log?()



call ALG;(G,w, N, F U N[X]). By Observation 3 and
Lemma 7 we obtain the following.

pr(Gyw, Ny FU{N[X]}) < p+ 8k - N -log(n)
1 }>

200k - log(p)
The algorithm does |V(G)[°M) = p©M) work in a
call where adds a balanced separator. Therefore, if the
call ALG;(G,w, N, F) adds a balanced separator, then

Ti(p) < O + Tio(ull — so051050m7))-

The result now follows from the observation that
ALG; (G, w, N, F) always recurses on connected com-
ponents, branches on a branchable vertex, adds a bal-
anced separator, or returns without making further re-
cursive calls. O

— 16k - N -log(N) < p ([1

Since Ty (u) is a non negative, non decreasing func-
tion, by adding the three possibilities in the max of
Lemma 8 we immediately obtain the following simpli-
fied recurrence.

Corollary 1. Tk(,u) < MO(l) —+ /JTk(95:u) + Tk(/l’ -
1)+ Tr (11 = s rogrgay) + Tk (1l = soarisggn)) <
Ti(p — 1) + pO® 4+ 3p - Ty ([l — Wlogz(u)])

Lemma 9. T}, (1) = pO®* log®(n)

Proof. For the sake of being able to apply induction
to prove the bound, it will be beneficial for us to
define the function T} (1) = Ty (| 1]). We will prove that
T} () = pC**108° (1) | then it will follow that Ty (1) =
O 108" () since Ty (n) < Tj(u+1) = pO* log”(w),
Since T}, rounds down its input and Lemma 6 shows the
measure /. is always non-negative for any fair instance, it
suffices to prove the desired bound on 7}, by induction
on the natural numbers. We may also assume p is an
integer. The base case is established by observing that
the runtime of algorithm on all such fair instances where
its measure p is at most 1 is bounded by a constant.
Now, for the inductive hypothesis, assume that there
exists a number c such that for all integers, a, less
than p > 1, T}(a) < a**1°8°(@) By Corollary 1 we
have the inequality T} () < Ti(p — 1) + pOW +
3pTy ([l — Wlogz(“)]) and repeatedly applying the
inequality to the first term on the right hand side, gives
Ti (1) < pOWM + 3% - Ty (u[1 - Wlogz(u)” By the
inductive hypothesis then, we have the following:
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1

— ]JCk2-log3(y,)
2100k2 - log® (1)

Ti(p) < @M + 3p2 1l

< Mo(l)
1
2100k2 - log? (1)

ck? 1og3 ()

< No(l) + 3/1'2 . ’uck2~log3(u) . e 2100kZ10g2 (1)

+3u2- Mck2-10g3(u)[1 _ ]ck;log?’(u)

(sincel—xz<e™™)

clog(u)
2100

< pOM 4 g2 . ok log® () . o~

< ;fk2'1°g3(“) ( for ¢ chosen large enough )

We are now ready to prove Theorem 1.

Proof of Theorem 1. The algorithm returns the answer
of ALG;(G,|V(G)|,w, D). By Lemma 3 ALG; termi-
nates, by Lemma 4 ALG; returns return the weight of
a maximum weighted independent set. For the running
time, observe that (G,w, N,0) is a k-fair instance and
let p = pr(G,w,N,D). By Lemma 7 we have that
i < 1050k% - N -log®(N) = n®1), Hence, by Lemma 9
it follows that (G, w, N, () < T(p) = pC* 108> (1) =
nO (k> log®(n)) ]

IV. DISCONNECTED FORBIDDEN INDUCED
SUBGRAPHS

Let H be a graph. We denote by Oy an oracle that
takes an H-free graph G as input and outputs the weight
of a maximum weight independent set in G. In this
section we present a quasi-polynomial time algorithm
for MAXIMUM WEIGHT INDEPENDENT SET in H-free
graphs, assuming we have access to the oracles O¢ for
all C € CC(H). Specifically we will prove Theorem 2.

In the following, H = Hy + Hy +...+ H._; is a graph,
G is a graph, w is a weight function on the vertices
of G, N is a positive integer, and F is a vertex multi-
family of subsets of V(G). We now present the algorithm
ALGy of Theorem 2. The algorithm is very similar
to the algorithm ALG; for Py free graphs, the main
difference is that instead of packing balanced separators
in the family F, the algorithm “packs” (neighborhoods
of) copies of induced H;’s.

ALG:

1. input: H, G, w, N, F.

2: output: mwis(G).

3: 4= |F| mod c

4. if exists branchable vertex v then

5 return max (ALGy(H,G —v,w, N, F — {v}),
ALG2(H,G — N[v|,w, N, F — N[v]) + w(v))

6: else if exists induced H; then

obtain X < induced H; in G



8 return ALGy(H,G,w,N,FU{N[X]})
9: end if
10: return OHl(G)

The proof of correctness and running time analysis for
ALG:s, closely follows that of ALG;. The main difference
is in the proof of why the family F can not grow beyond
size log N (Lemmata 12 and 13). The other parts are
just minor modifications of corresponding results from
Section III.

We will distinguish between the two different kinds of
recursive calls that ALGy can make. If the if condition
of line 4 holds, then the algorithm makes the recursive
calls on line 5. In this case we say that ALGy branches
on a branchable vertex. If the else if condition of line 6
holds, then the algorithm makes the recursive call in line
8. In this case we say that ALGy adds a neighborhood.
We define instances, runs, calls, execution and making a
recursive call similarly as for ALG;. Just as for ALGq,
a run of ALGy(H,G,w, N, F) is called a fair run if
G is an H-free graph, N = |V (G)|, F =0, and w is a
weight function. A call ALG2(H, G, w, N, F) is called
a fair call if it is executed during the course of a fair
run. An instance (H,G,w,N,F) is a fair instance if
ALGy(H,G,w, N, F) is a fair call.

Lemma 10. x ALG2(H,G,w, N, F) terminates on ev-
ery input.

Lemma 11. x A run ALG2(H, G, w, N, F) returns the
weight of a maximum weight independent set of G.

Observation 4. x For every fair instance
(H,G,w,N,F), we have that L(F,log(N)+1) = 0.

Lemma 12. Let G be a graph, N an integer greater
than 1, and let H Hy+ Hy + ..+ H._1 be a
graph. If there exists a sequence of subsets of V(G),
{Xm} = Xo, X1, .., Xe.|H|1og(N)—1 Such that for all i,
X; C V(G), the subgraph induced by X; is isomorphic
10 H; (mod ¢y and for all v € X; we have that {v} N
NI[X,] # 0 for at most 1og(N) X;’s where j < i, then
there exists a subset I C {0,1,2,...,c-|H|-log(N)—1}
such that X7 = UZ—GI X; forms an induced H in G.

Proof. Let GG and H be graphs, N an integer greater than
1, and Xo, X1, ..., Xc.|H|.1og(V)—1 @ sequence of sets of
vertices with the properties given in the statement of the
lemma. Given an X, set ¢ = j — (j (mod c). We will
refer to the segment X;, X;41,..., X;4.—1 as X;’s block.

The proof is by induction on c. If ¢ = 1 then the
statement is trivially true. Assume now that ¢ > 1 and
that the statement is true for all smaller values. There are
at most |H._1| - log(IN) X,’s such that some vertex of
X\ H|-log(N)—1 belongs to X, j # c-|H|-log(N) — 1.
Remove from the sequence each such X; along with all
other vertex sets in X;’s block, as well as all X;’s such
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that ¢ — 1 = ¢ (mod c). After these deletions, re-name
the sets X; in the updated sequence so that the index
j of each set X is equal to the position of X; in the
sequence (starting with Xj).

Let H' = H — H._;. There are at least log(N) - (c-
|H|—c: | Hoy | = | H|+| Ho 1)1 = log(N)-(c—1)-| H' |-
1 remaining vertex sets in the updated sequence, and this
new sequence along with H' and G satisfies the condi-
tion of the inductive hypothesis. It follows that there ex-
ists a set X such that G[X}] = H' and X} is the union
of sets in the (updated) sequence. Since X..|f|.10g(N)—1
does not belong to the neighborhood of any of the vertex
sets in the new sequence, X, r|10g(N)—1 18 disjoint from
N[X7], and hence X7 = X7 U Xc.|g|.10g(N)—1 induces
H in G, completing the proof. O

Lemma 13. For every fair instance (H,G,w,N,JF)
with H = Ho + Hy + ... + H._1, it holds that |F| <
c-|H|-log(N)

Proof. Let the fair instance (H,G,w,N,F) be as in
the statement of the lemma, furthermore let G’ be the
graph used in the initial input of ALGy of the fair run
that produces the instance (H,G,w, N, F). Assume to
the contrary, that |F| > ¢+ |H| - log(N). In the fair run
that executes the call ALGo(H,G,w, N, F), consider
the sequence of recursive calls (ordered by when the
call occurs) that lead to the call ALG2(H, G, w, N, F).
In particular, consider the subsequence:
ALGY(H,G° w, N, F°), ALGy(H, G, w, N, FY),...,
ALGngHOg(N)_l (H, C;vc-\H|-log(N)717 w, N,
J—_'c~|H|~log(N)71)

such that the call ALGY(H, G, w, N, F?) is the (i +
1)t call to add a neighborhood N[X;]. By Observation
4, we can see that for all X;, and for all vertices v € Xj,
{v} N N[X;] # 0 for at most log(N) X;’s with j < i.
The result follows now by observing that G’, H, N,
and the sequence Xo, X1, ..., Xc.|f)-10g(v)—1 satisfy the
hypothesis of Lemma 12, contradicting that G’ is H-free.

O
Observation 5. x For every fair call
ALGy(H,G,w,N,F) that recurses by adding a

neighborhood N[X] and for every i,
IL(FUNIX]0)| < Ay - [H] + |L(F, )
Furthermore, for every fair instance (H,G',w, N', F'),
|L(F',9)| < Aj—y - [H| - |F|

For fair instances (H, G, w, N, F) we define the mea-
N

sure
AV )

+2|H[- N -log(N) - ([H| - [CC(H)| - log(N) — |F])

(.G, N, 7) = V(@) + 3 (1270



If (H,G,w,N,F) is not a fair instance, then
wg(H,G,w,N,F) is undefined. Note that
wr(H,G,w,N,F) must always be an integer and
that it is independent of the weight function w.
We will say that two instances (H,G,w,N,F) and
(H,G",w',N',F') are essentially different if G' # G,
N' £ Nor F' +F.

If N = 1 then a fair run ALG2(H, G, w, N, F) clearly
terminates after a constant number of steps (since in a
fair run, |V (G)| < N) regardless of the other inputs, so
from now on we will assume N > 1.

Lemma 14. * For every positive integer p, the number of
essentially different fair instances (H,G,w, N, F) such
that pp(H,G,w,N,F) = u is finite. In addition, for
every fair instance u(H,G,w,N,F) > 0.

Lemma 15. x uy(H,G,w, N, F) < 4|H|*-|CC(H)| -
N -log®(N) for every fair instance (H,G,w, N, F).

We define Ty (H, G, w, N, F) to be the running time
(including the number of oracle calls) of ALGs starting
with the inputs (H, G, w, N, F). We also define

TH(M): TH(Hvavav]:)

max
G,N,F s.t.
e (H,Gw,N,F)<p
Just as for ALG;, when we analyze run time we
assume that arithmetic on weights takes constant time.
Thus, both the running time of ALG5 and the measure
of an instance (H,G,w,N,F) are independent of the
weight function w, and so by Lemma 14, T (p) is well
defined.

Lemma 16. If ;1 > 1 then Ty (1) satisfies the following
recurrence:

(T (p = 1)+
Tp (p) < p@V4maz ¢ Tr(ull — 8|H|2~|CC(}’1)|-10g2(u)]))
1
T (1l = aT1080))

Proof. Let (H,G,w,N,F) be a fair instance such
that pugy(H,G,w,N,F)) = p > 1 and Ty(u) is
the run time of ALGq(H,G,w,N,F). If the call
ALGy(H,G,w, N, F) branches on a branchable vertex,
v, then it makes two recursive calls, one execution on
(H,G — {v},w,N,F — {v}), which has measure at
most ¢ — 1. The other execution is on the instance
(H,G — N[v],w, N, F — N[v]). Note that for a branch-
able vertex, v, we have that:

5 (ILF = Nl - 52
<> (LFDl 2 ) - §

since for at least one level ¢ we have that |[N[v] N
L(F,i)| > A; and 52 =172,
Hence,

pp(H,G — N[v],w, N, F — N[v]) =

V(G) = Nlull + Si(1L(F = Nlol, )] - 5 —)
+ 2| N - Jog(N) - (H] - CC(1)] - log(N)

— |F = N[

< V(@) + Z <|L(F,i) : Ai)

+2[H[- N -log(N) - (|H| - |CC(H)| - log(N) — |F])
N

2

_ N
=U 5

<:u<1_ ! 2
8|H|? - |CC(H)] - log™(N)

) (by Lemma 15)

1
=4 (1 " S|HE - [CC(H) - 10g2(u))

Also, the algorithm does |V (G)[°M) = %M work in a
call where it branches on a branchable vertex. Thus, if
the call ALGo(H, G, w, N, F) branches on a branchable
vertex, then we have that:
Ti(p) < Toap = 1)+ Tin (411 = sreretiorronn)

If ALG2(H, G,w, N, F) adds a neighborhood, N[X],
it makes a single call ALGy(H, G, w, N, FU{N[X]}).
By Observation 5 and Lemma 15 we get the following:
w(H,G,w, N, FU {N[Xg}) <p+|H|-N- log%z)

]

—2|H|- N -log(N) < p([1— m

Also, the algorithm does |V(G)|°™M) = pu©M) work
in a call where it adds a neighborhood. Thus, if the
call ALG2(H,G,w,N,F) adds a neighborhood, then
Ty () < Ty (u([1- WMD The result now
follows from the observation that ALGy(H, G, w, N, F)
only does |V (G)|°M) = 4®M) work in a given call and
always branches on a branchable vertex, adds a balanced
separator, or immediately returns a value without making
further recursive calls. O

Since Ty () is a non negative, non decreasing func-
tion, by adding the two possibilities in the max of
Lemma 16 we immediately obtain the following sim-
plified recurrence.

Corollary 2. Ty (p) < p©® —i—TH(u[l—m])—k
Tr(p— 1) +TH(N[1 - 8|H\2-\CC(}LI)\-10g2(u)]) < TH(U -
1) + pOD + 2Ty (ull - grapreermmeeroo )

Lemma 17. Ty (p) = pOUH P 1CCU) o (1)

Proof. For the sake of being able to apply induction to
prove the bound, it will be beneficial for us to define
the function T}, (u) = T(|p]). We will prove that
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Th(p) = ;LO(|H|2'|CC(H)|'IOg3(“)), then it will follow

that Ty (1) = MO(|H|2~|CC(H)|-10g3(u)) since Ty (p) <
Ty (p+ 1) = pCUHPCCH)1og® (1) | Since T}, rounds
down its input and Lemma 14 shows the measure p is
always non-negative for any fair instance, it suffices to
prove the desired bound on T, by induction on the nat-
ural numbers. We may also assume p is an integer. The
base case is established by observing that the runtime of
algorithm on all such fair instances where its measure
1 is at most 1 is bounded by a constant. Now, for the
inductive hypothesis, assume that there exists a number
¢ such that for all integers, a, less than p > 1, T}, (a) <
aOUHI*[cC(H)|og(@)) " By Corollary 2 we have the
inequality Ty (1) < Ty(p — 1) + pO® + 2T (u[1 —
8\H\2~\CC(}'{)|~log2(u)D and repeatedly applying the in-
equality to the first term on the right hand side, gives
Ty (p) < p@ + 20Ty (0l = s reetmmen ) BY
the inductive hypothesis then, we have the following:

Ty (p) < pOM
+ 2p[p(1

< pfm

_ 1 el ectnitog
8|H|?|CC(H)|log™ (1)

- ot HIPCCn) og ()

_ 1 el eetnl s ()
8|H|? - |CC(H)| - log™ (1)

c 2. -0g3 m

< pOW 4 9y el HI-CCCH| Mog® (1) o~ ST e Ton? ()
(since (1—z)<e ™)

< uOW 4 9 eI ICCUD] log () . o

clog(p)
8

< uclH‘Q"CC(H)"logs(“) ( for ¢ chosen large enough )

O
We are now ready to prove Theorem 2.

Proof of Theorem 2. The algorithm returns the answer
of ALG2(H, G, w,|V(G)|,0). By Lemmata 10 and 11,
ALG; will always terminate and return the weight of a
maximum weight independent set in GG. For the running
time analysis, observe that (H, G, w, |V (G)|,0) is a fair
instance and let p = py(H,G,w, N, F). We assume
that |H| < N, since the run time bound follows
trivially if |H| > N. By Lemma 15 we have that
p < 4|H?-|CC(H)|-N-log?(N).Letn = N = |V(G)],
then it follows that Ty (H,G,w,N,F) < Ty(p) =
NO(IH\z-ICC(H)\-logB(u)) = pO(H*|CC(H)|log®(n))  Thig
completes the proof. O

Theorem 2 sligthly increases the current reach of
Theorem 1. In particular, let 7}, be the graph with &
connected components the first of which is a path P}, on
k vertices and the remaining k& — 1 are forks (a fork is a

path on four vertices plus a single vertex adjacent to the
second vertex of the path). Lozin and Milanic [22] gave
a polynomial time algorithm for WEIGHTED INDEPEN-
DENT SET on fork-free graphs. Theorem 2 implies that
WEIGHTED INDEPENDENT SET on 7}, free graphs can
be solved by making nOk*1og(m) oracle calls to the
polynomial time algorithm of Lozin and Milanic [22]
or the algorithm of Theorem 1. Thus we obtain the
following result.

Theorem 3. There exists an algorithm that given a T},-
free graph G and weight function w : V(G) — N,
runs in nO Kk’ log*n) time, and outputs the weight of a
maximum weight independent set of G.

V. CONCLUSION

In this paper we gave a quasipolynomial time algo-
rithm for WEIGHTED INDEPENDENT SET on Pj-free
graphs for all integers k. The dependence on k in
the exponent is O(k?) and so our algorithm is quasi-
polynomial even for k = logo(l) n and sub-exponential
for k = n2¢ for ¢ > 0. In light of our algorithm it is
tempting to conjecture that (WEIGHTED) INDEPENDENT
SET on Pj-free graphs can be solved in polynomial time
for every k. Given how dependent our algorithms are on
branching on high degree vertices it looks unlikely that
our techniques can lead to polynomial time algorithms
for Pj-free graphs. Nevertheless it may be possible to
extract structural insights from our algorithms that could
eventually lead to polynomial time algorithms.

Our second main result (Theorem 2) implies that if
there exists a quasi-polynomial time algorithm for H-
free graphs for every subdivided claw H then there
exists a quasi-polynomial time algorithm for every finite
family H such that NP-completeness of INDEPENDENT
SET on H-free graphs does not follow from Alekseev’s
result [18]. Thus, a quasi-polynomial time algorithm
for subdivided-claw-free graphs would complete a di-
chotomy for the complexity of INDEPENDENT SET on
‘H-free graphs for every finite family H: every case is
either quasi-polynomial time solvable or NP-complete.
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