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Abstract—We present an algorithm that takes as input
a graph G with weights on the vertices, and computes
a maximum weight independent set S of G. If the input
graph G excludes a path Pk on k vertices as an induced
subgraph, the algorithm runs in time nO(k2 log3 n). Hence,
for every fixed k our algorithm runs in quasi-polynomial
time. This resolves in the affirmative an open problem
of [Thomassé, SODA’20 invited presentation]. Previous to
this work, polynomial time algorithms were only known
for P4-free graphs [Corneil et al., DAM’81], P5-free graphs
[Lokshtanov et al., SODA’14], and P6-free graphs [Grzesik
et al., SODA’19]. For larger values of t, only 2O(

√
kn logn)

time algorithms [Bacsó et al., Algorithmica’19] and quasi-
polynomial time approximation schemes [Chudnovsky et
al., SODA’20] were known. Thus, our work is the first to
offer conclusive evidence that INDEPENDENT SET on Pk-
free graphs is not NP-complete for any integer k.

Additionally we show that for every graph H , if there
exists a quasi-polynomial time algorithm for INDEPENDENT

SET on C-free graphs for every connected component C of
H , then there also exists a quasi-polynomial time algorithm
for INDEPENDENT SET on H-free graphs. This lifts our
quasi-polynomial time algorithm to Tk-free graphs, where
Tk has one component that is a Pk, and k− 1 components
isomorphic to a fork (the unique 5-vertex tree with a degree
3 vertex).

Index Terms—graph algorithm, independent set, Pk-free
graphs

I. INTRODUCTION

An independent set (also known as a stable set) in a

graph G is a vertex set S such that no pair of distinct

vertices in S are adjacent in G. In the INDEPENDENT

SET problem the input is a graph G on n vertices and

integer k, the task is to determine whether G contains

an independent set S of size at least k. INDEPENDENT

SET is a well-studied and fundamental graph problem

which is NP-complete [1], [2] and intractable within

most frameworks for coping with NP-hardness. Indeed,

INDEPENDENT SET was one of the very first problems

to be shown to be NP-hard to approximate [3], [4], one

of the first intractable problems from the perspective

of parameterized complexity [5], one of the first prob-

lems to be shown not to have a 2o(n) time algorithm

assuming the Exponential Time Hypothesis (ETH) [6],

and one of the very first problems whose hardness of

parameterized approximation, assuming the Gap-ETH,

was established [7].

With the above in mind, it is natural that a significant

research effort has been devoted to identifying classes of

input graphs for which the INDEPENDENT SET problem

is substantially easier than on general graphs. Of partic-

ular interest are the classes where INDEPENDENT SET

becomes polynomial time solvable. Most famously the

problem becomes polynomial time solvable on Perfect

graphs [8], other examples of polynomial time solvable

cases include k × K2-free graphs [9] and graphs of

bounded cliquewidth [10]. For an extensive list, see [11]

and the companion website [12]. On the other hand the

problem remains NP-complete even on planar graphs of

maximum degree 3 [13], unit disc graphs [14], triangle-

free graphs [15] and AT-free graphs [16].

This paper fits in a long line of work to precisely

classify the complexity of INDEPENDENT SET on all

hereditary graph classes defined by a single forbidden

induced subgraph H (and more generally, by a finite set

H of forbidden induced subgraphs). A graph G is said

to be H-free if G does not contain a copy of H as an

induced subgraph. For a set H of graphs, G is H-free
if G is H-free for all H ∈ H. The ultimate goal of this

research direction is to establish a dichotomy theorem

that for every finite set H of graphs determines whether

INDEPENDENT SET onH-free graphs is polynomial time

solvable, or NP-complete 1.

In 1982 Alekseev [18] observed that INDEPENDENT

SET remains NP-complete on the class of H-free graphs

for every finite set H that does not include a graph

H whose every connected component is a path or a

1There is of course the possibility that INDEPENDENT SET on H-
free graphs has NP-intermediate complexity for some choice of H.
We believe this is unlikely, however that is pure speculation.
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subdivision of the claw (K1,3). Since then, no new

NP-completeness results for INDEPENDENT SET on H-

free graphs have been found for any other finite set

H. Thus, it is consistent with current knowledge that

INDEPENDENT SET is polynomial time solvable on H-

free graphs for all other finite sets H. At the same

time, progress on algorithms has been embarrassingly

slow. The only connected graphs H for which NP-

completness of INDEPENDENT SET does not follow

from Alekseev’s result are paths and subdivisions of

the claw. Polynomial time algorithms for INDEPENDENT

SET on claw-free graphs were found independently by

Sbihi [19] and Minty [20] in 1980. A polynomial time

algorithm on fork-free graphs (a fork is a claw with

one subdivided edge) was found by Alekseev [21].

Subsequently, Lozin and Milanic [22] gave an algorithm

for WEIGHTED INDEPENDENT SET on fork-free graphs.

For paths, INDEPENDENT SET on P4-free graphs was

shown to be polynomial time solvable by Corneil et

al. [23] in 1981. After a series of papers giving poly-

nomial time algorithms for various subclasses of P5-

free graphs [24]–[29], in 2014 Lokshtanov et al. [30]

gave a polynomial time algorithm on P5 free graphs.

Two years later, Lokshtanov et al. [31] devised a quasi-

polynomial time algorithm on P6-free graphs, before

Grzesik et al. [32] designed a polynomial time algorithm

for P6-free graphs in 2019. This summarizes the state-of-

the-art for polynomial time solvability of INDEPENDENT

SET on H-free graphs.

It appears that the currently known techniques are very

far from being able to yield polynomial time algorithms

for INDEPENDENT SET on Pk-free graphs for k = 8, let

alone for all values of k. More concretely, the polynomial

time algorithms for P5-free graphs of Lokshtanov et

al. [30] and for P6-free graphs of Grzesik et al. [32]

are based on the same method. First, from a sample

of two articles the complexity of applying this method

seems to grow exponentially with k. Second, and more

importantly, in a recent manuscript Grzesik et al. [33]

show that a crucial component of this method fails

completely on Pk-free graphs for k ≥ 8.

The slow progress on polynomial time algorithms

have prompted researchers to look for weaker forms of

tractability of INDEPENDENT SET on Pk-free graphs.

Bacsó et al. [34] provided 2O(
√
kn logn) time algorithms

for INDEPENDENT SET on Pk-free graphs (see also [35],

[36]). Finally, Chudnovsky et al. [37] obtained quasi-

polynomial time approximation schemes for Pk-free

graphs for all k. In fact their result is much more gen-

eral - they obtain quasi-polynomial time approximation

schemes on H-free graphs for all sets H for which NP-

hardness does not follow from Alekseev’s [18] obser-

vation. While the results above are general, they are

consistent with INDEPENDENT SET being NP-complete

on allH-free classes of graphs on which polynomial time

algorithms are not already known. In this paper we ob-

tain a quasi-polynomial time algorithm for WEIGHTED

INDEPENDENT SET on Pk-free graphs for every k. In

particular we prove the following theorem.

Theorem 1. There exists an algorithm that given a
graph G and weight function w : V (G) → N outputs
the weight of a maximum weight independent set of G.
If G is Pk-free then the algorithm runs in nO(k2 log3 n)

time.

Theorem 1 implies that unless NP ⊆ QP, INDEPEN-

DENT SET on Pk-free graphs is not NP-complete for

any k. This is the first conclusive evidence against NP-

completeness for any k ≥ 7. The running time of the

algorithm of Theorem 1 matches that of Chudnovsky

et al. [37], but computes optimal solutions instead of

(1 − ε)-approximate ones. It is also worth mentioning

that our algorithm and analysis is substantially simpler

than the quasi-polynomial time algorithm of Lokshtanov

et al. [31] for the special case of P6-free graphs. We have

been unsuccessful in generalizing Theorem 1 to a quasi-

polynomial time algorithms for H-free graphs where

H is a subdivision of a claw. However, the techniques

used to prove Theorem 1 can be used to show that

such an algorithm would automatically generalize to all

classes of H-free graphs for which NP-hardness is not

already known. More concretely, for a graph H let OH

be an oracle that takes as input an H-free graph G and

outputs the weight of a maximum weight independent

set in G. Further, let CC(H) denote the set of connected

components of H . Our second result is the following.

Theorem 2. There exists an algorithm that given as
input a graph H , a graph G, and weight function
w : V (G) → N as well as access to oracles OHi

for all Hi ∈ CC(H), outputs the weight of a maximum
weight independent set of G. If G is H-free then the
algorithm uses at most nO(|H|2|CC(H)| log3(n)) operations
and oracle calls on induced subgraphs of G.

Theorem 2 has two immediate consequences. First,

coupled with Theorem 1 and the polynomial time al-

gorithm for WEIGHTED INDEPENDENT SET on fork-

free graphs, Theorem 2 yields a quasi-polynomial time

algorithm for WEIGHTED INDEPENDENT SET on Tk-

free graphs, where Tk is the graph with k connected

components the first of which is a Pk and each of

the remaining k − 1 are isomorphic to a fork. Second,

Theorem 2 implies that if WEIGHTED INDEPENDENT

SET has a quasi-polynomial time algorithm on H-free

graphs for every subdivided claw H , then WEIGHTED

INDEPENDENT SET also has a quasi-polynomial time

algorithm on all H-free classes of graphs, for finite

sets H, for which NP-hardness does not follow from
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Alekseev’s result. Or, stated more poetically, the buck

stops at the (subdivided) claw.

a) Methods.: The starting point for our algorithm

is the 2O(
√
n logn) time algorithm for Pk-free graphs of

Bacsó et al. [34]. The algorithm of Bacsó et al. [34] is

simple enough that we can give a quite detailed overview

here. It combines two methods - “degree reduction” and

“balanced separation”.

The “degree reduction” approach can be summarised

as follows. As long as the input graph G contains a

vertex v of sufficiently high degree (degree ≥ d) then

branch on v. That is, find the best solution avoiding

v by a recursive call on G − v, and the best solution

containing v by adding v to the solution obtained from

a recursive call on G − N [v]. Output the best of these

two solutions. A simple recurrence analysis shows that

this reduces the problem to solving 2O(n log n
d ) instances

in which no vertex has degree at least d. Bacsó et al. [34]

set d =
√
n log n and obtain 2O(

√
n logn) instances with

maximum degree
√
n log n.

The “balanced separation” technique is based on the

classic “Gyárfás path” argument [38] for proving that Pk-

free graphs are χ-bounded. A simple lemma (Lemma 2

of Bacsó et al. [34]), whose proof spans less than a page,

shows that in every Pk free graph G there exists a vertex

set X1 of size at most k − 1, such that every connected

component of G − N [X1] has at most n/2 vertices.

Bacsó et al. [34] apply this result to instances output by

the degree reduction procedure above. In such instances,

|N [X1]| ≤ O(
√
n log n), assuming k is a constant. Then,

after guessing the intersection of the optimal solution

with N [X1] (there are at most 2|N [X1]| ≤ 2
√
n logn

such guesses) the connected components of G−N [X1]
become independent sub-instances of size at most n/2,

on which the algorithm may be called recursively. Thus,

solving a single instance on n vertices reduces to solving

2O(
√
n logn) instances on at most n/2 vertices. Analyzing

the corresponding recurrence shows that the total running

time of the algorithm is upper bounded by 2O(
√
n logn).

If we wish to improve the running time from

2O(
√
n logn) to quasi-polynomial, we may only apply

degree reduction with d = Ω( n
logO(1) n

), and we can not

afford to guess the intersection of the balanced separator

N [X1] with an optimal solution. At this point we apply

a slight generalization of degree reduction, to degree

reduction relative to a vertex set S. Here we branch

on vertices v that have at least d′ neighbors in S (the

vertex v itself does not have to be in S). A simple

recursion analysis shows that this will reduce a single

instance to n|S|/d′ instances where every vertex has at

most d′ neighbors in S. We apply degree reduction on the

balanced separator N [X1] with d′ = |N [X1]|/c for some

constant c (possibly depending on k). Thus, the initial

degree reduction, followed by the degree reduction on

N [X1], reduces the task of solving a single instance G

to that of solving the problem on 2log
O(1) n instances in

which every vertex has degree at most n/ logO(1) n and

furthermore has at most |N [X1]|/c neighbors in the set

N [X1]. Here we are working with induced subgraphs

of the original graph G, so when we say N [X1] we

really mean what remains of the set N [X1] (with the

neighborhood taken in the graph G) in the subgraph of

G that is currently being considered.

The route above is perhaps the most natural one to try

to obtain a quasi-polynomial time algorithm. Indeed, it

is also the engine in the quasi-polynomial time algorithm

of Lokshtanov et al. [31] for P6-free graphs. However

it is not at all clear how to deal with the instances

output by this degree reduction. For P6-free graphs,

Lokshtanov et al. [31] (essentially) show that if the

balanced separator N [X1] is chosen very carefully, then

the degree reduction procedure never gets stuck: as long

as N [X1] is non-empty some vertex is a neighbor to

a constant fraction of N [X1]. Thus the algorithm will

make quasi-polynomially many calls on instances where

the balanced separator N [X1] has been reduced to the

empty set, in which case each connected component of

the graph is substantially smaller than the original graph.

This leads to a recurrence that solves to quasi-polynomial

time. We are not able to prove an analogous statement

for Pk-free graphs for higher values of k, and so we are

faced with the problem of how to deal with the degree-

reduced instances described above.

The key insight of our algorithm is the following:

if we re-apply the “Gyárfás path” argument of Bacsó
et al. [34] on the degree-reduced instances to obtain
a new balanced separator N [X2], then N [X2] can not
have large intersection with N [X1]. This is because

N [X2] is the neighbor set of a constant size set (X2)

and no vertex in the degree-reduced instance has many

neighbors in N [X1]. We now apply the degree reduction

procedure again, this time on N [X2]. If this reduction

procedure completely reduces X1 or X2 to the empty

set, or disconnects the graph into connected components

so that the largest one has at most 0.9n vertices, then

we have won, because the connected components of our

instances are substantially smaller than on the original

graph. If the procedure gets stuck then we obtain yet

another balanced separator X3, observe that X3 has

small intersection with X2 and X1, and do degree-

reduction on X3. And this keeps going, we keep adding

new balanced separators into the mix until the degree-

reduction procedure sufficiently disconnects the graph

(i.e the largest connected component of the instances

becomes sufficiently smaller than the original graph. The

hard part of the analysis is to prove that the graph does

become substantially disconnected by the time at most

O(log n) separators have been added to the instance.
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The actual final form of the algorithm is slightly

different from what we describe above. Indeed, based

on the ideas in the previous paragraph we can get an

algorithm with running time O(2n
ε

) for every ε > 0,

however to obtain quasi-polynomial time we need to be

slightly more careful. The main difference is that we

do not do degree reduction on each individual separator

N [Xi]. Instead we define level sets. Level i is the set

of all vertices that appear in at least i of the separators

N [X1], . . . , N [Xt] that we have constructed so far. We

will maintain that throughout the course of the algorithm

the size of level i drops exponentially with i. Thus there

will only be O(log n) levels, and we can afford to run

degree reduction so that for each level, no vertex sees

more than a ( 1
k logn )

O(1) fraction of that level. Then,

when we add a new separator, because it is the neighbor

set of only a constant number of vertices, each level

will increase by at most a factor of 1 + ( 1
k logn )

O(1) of

the size of the previous level. Thus, such a process may

continue to depth (k log n)O(1) while maintaining the

invariant that the size of the level i drops exponentially

with i.
If recursion depth Ω(k log n) is reached without suffi-

ciently disconnecting the graph (i.e the largest connected

component C of the graph still has size at least N/2,

where N is the number of vertices in the original graph)

this means that we have found Ω(k log n) balanced

separators for the graph such that no vertex is contained

in more than O(log n) of them. A simple counting

argument then shows that the average distance between

pairs of vertices in the component C has to be at

least k logn
logn ≥ k, contradicting that G is Pk-free. This

means that after recursion depth O(k log n), the graph

has already been disconnected! At this point running

the algorithm from scratch on each of the connected

components yields at most n instances of size at most

n/2 which solves to quasi-polynomial time.

Our algorithm for Theorem 2 follows the same tem-

plate as the algorithm for Theorem 1. The key difference

is that instead of growing a sequence of balanced separa-

tors we grow a sequence of (neighborhoods of) induced

copies in G of connected components of H . Again the

sequence has the property that the sets in the sequence

do not overlap too much, so if we can grow the sequence

to length Ω(|H|O(1) log n) then we can find an induced

copy of H in G.

II. PRELIMINARIES

All graphs in this paper are assumed to be simple,

undirected graphs. We denote the edge set of a graph G
by E(G) and the vertex set of a graph by V (G). If v
∈ V (G), then we use N [v] to denote the closed neigh-

borhood of v, i.e. the set of all neighbors of v together

with v itself. We use N(v) to denote the set N [v]−{v}.

If X ⊆ V (G), then N [X] =
⋃

x∈X N [x] and N(X) =

N [X]−X . We use CC(G) to denote the set of connected

components of G. If G1, G2,..., Gm are graphs, then we

use G1 + G2 + ... + Gm to denote the graph that that

has vertex set V (G1)∪ V (G2)∪ ...∪ V (Gm), and edge

set E(G1) ∪ E(G2) ∪ ... ∪ E(Gm).

Given a weight function w : V (G) → N the weight

of a vertex set S is defined as w(S) =
∑

v∈S w(v).
An independent set in G is a vertex set S such that

no pair of vertices in S have an edge between them.

We define mwis(G) to be the weight of the maximum

weight independent set in G. The length of a path is

the number of vertices in the path and we denote by Pk

the path of length k. If X ⊆ V (G) then we will use

G(X) to denote the the graph induced by the vertex set

X , and if it is clear from the context we will use G−X
to denote the graph G(V (G)−X).

Given a positive number c and a graph G, we call a

set S ⊂ V (G) a c-balanced separator if no connected

component of G−S has over c vertices. A vertex multi-
family F is a collection of vertex sets that allows for mul-

tiple instances of its vertex sets. If F = {S1, S2, . . . , Sn}
and X is a set of vertices, then F − X is the vertex

multi-family {S1 − X,S2 − X, . . . , Sn − X}. For two

vertex multi-families A and B their union is denoted by

A ∪ B and is defined by the vertex multi-family that

contains all elements of A and of B. The multiplicity

of an element X in A ∪ B is its multiplicity in A plus

its multiplicity in B. We will use log(x) to denote the

function max(
log2(x)�, 1) throughout this paper. The

proofs of Lemmas and Observations marked with a (�)

have been omitted due to space restrictions and can be

found in the full version of the paper [17].

III. QUASI-POLYNOMIAL TIME ALGORITHM FOR

Pk-FREE GRAPHS

In this section we prove Theorem 1. We will make use

of the following balanced separator lemma from Bacsó

et al. [34].

Lemma 1. [34] There exists an algorithm that given a
graph G runs in polynomial time and outputs an induced
path P in G such that N(V (P )) is a |V (G)|

2 -balanced
separator of G.

We begin by proving a slight strengthening of

Lemma 1.

Lemma 2. � There exists an algorithm that takes as
input a graph G, and a positive integer i such that 2i <
|V (G)|, runs in polynomial time and outputs a set X

such that N [X] is a |V (G)|
2i -balanced separator in G.

Furthermore, if G is Pk-free then |X| ≤ 2i+1 · k.
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To describe the algorithm of Theorem 1 we first need

to define the notion of level sets relative to a vertex multi-

family F .

Definition 1. Given a graph G and a vertex multi-family

F consisting of vertex sets of G, for positive integers i,
the ith level relative to F is denoted by L(F , i) and

defined as follows

L(F , i) = {v ∈ V (G) : |{S ∈ F : v ∈ S}| ≥ i}
In other words L(F , i) is a vertex set containing all

vertices of G that are contained in at least i sets in F .

Our algorithm will also make use of a number N , this

number will be approximately equal to the number of

vertices in the input graph G.

Definition 2. The ith branch threshold is denoted by Δi

and is defined as Δi = N/2i. Given a multi-family F ,

a vertex v ∈ V (G) is a branchable vertex if there exists

an i ≥ 1 such that |N [v] ∩ L(F , i)| ≥ Δi.

In the following G is always a graph, w is a weight

function w : V (G) → N, N is an integer, and F is a

multi-family of subsets of V (G). We now describe the

main subroutine ALG1 in the algorithm of Theorem 1.

The algorithm takes as input G, w, N and F and (as

we will prove) outputs the weight of a maximum weight

independent set in G. The algorithm of Theorem 1 will

call ALG1 with parameters G, N = |V (G)|, w, and

F = ∅. ALG1 is a recursive branching algorithm with

only four rules. First, if G has at most one vertex, then

return V (G). Second, if the largest component of G has

at most |N |/2 vertices then solve the problem recursively

on each component and return the sum. Third, if there

exists a branchable vertex v, then branch on v (i.e solve

the problem with v forced in to the independent set, and

v forced out). Finally, if none of the previous rules apply

then add a new balanced separator N [X] (obtained by

Lemma 2) to F . In other words, make a recursive call

on the instance (G,w,N,F ∪ {N [X]}).
ALG1 is very similar to well known exact exponential

time branching algorithms for INDEPENDENT SET [39].

The key differences are that we use the multi-family F
of balanced separators to guide which vertex to branch

on, that when no rules apply we add a separator to the

family F (at a glance this appears to make no progress at

all, but it increases the size of the level sets, making more

vertices branchable), and that we wait with recursing

on connected components until the size of the largest

component becomes less than N/2 (this is primarily to

simplify the analysis).

ALG1

1: Input: G, w, N , F .

2: Output: mwis(G).
3: if |V (G)| ≤ 1 then

4: return w(V (G))
5: else if (maxC∈CC(G) |V (C)|) ≤ N/2 then
6: return

∑
C∈CC(G) ALG1(C,w, |V (C)|, ∅)

7: else if exists branchable vertex v then
8: return max (ALG1(G− v, w,N,F − {v}),

ALG1(G−N [v], w,N,F −N [v]) + w(v))
9: end if

10: obtain X by applying Lemma 2 on G with i = 2
11: return ALG1(G,w,N,F ∪ {N [X]})

We will distinguish between the three different kinds

of recursive calls that ALG1 can make. If the else if
condition on line 5 holds, then the algorithm makes

the recursive calls on line 6. In this case we say that

ALG1 recurses on connected components. If the else
if condition on line 7 holds, then the algorithm makes

the recursive calls on line 8. In this case we say that

ALG1 branches on a branchable vertex. Otherwise the

algorithm makes the recursive call on line 10. In this

case we say that ALG1 adds a balanced separator. We

will frequently need to refer to parts of the execution

of the algorithm. For disambiguation, we collect the

terminology here.

An instance is a four-tuple (G,w,N,F). A run
of the algorithm refers to the entire execution of the

algorithm on an instance. A call ALG1(G,w,N,F)
refers to the computation done in the root node of

the recursion tree of the run ALG1(G,w,N,F). We

remark that parameters G,w,N , and F never change

during the call ALG1(G,w,N,F). When a run or a

call ALG1(G,w,N,F) recursively calls ALG1 on the

instance (G′, w,N ′,F ′) we say the run or the call

executes a run or a call on (G′, w,N ′,F ′). This will

sometimes be referred to as makes a recursive call
ALG1(G

′, w,N ′,F ′). A run of ALG1(G,w,N,F) is

called a k-fair run if G is a Pk-free graph, N =
|V (G)|, F = ∅, and w is a weight function. A

call ALG1(G,w,N,F) is called a k-fair call if it

is executed during the course of a k-fair run. An

instance (G,w,N,F) is called a k-fair instance if

ALG1(G,w,N,F) is a k-fair call. Note that N ≥
|V (G)| for every fair instance.

Lemma 3. � ALG1(G,w,N,F) terminates on every
input.

Lemma 4. � A run ALG1(G,w,N,F) always returns
the weight of a maximum weight independent set of G
under the weight function w.

We have now proved that ALG1 always terminates and

that it always outputs the correct answer. The remainder

of the section is devoted to the running time analysis. We

will now prove some lemmas to help us bound the run

time of ALG1 on k-fair runs. First, in Observation 1 we

will prove that F remains a multi-family of balanced
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separators of G throughout the execution of the algo-

rithm. In Observation 2 we will show that no vertex

appears in many (more than logN ) sets in F . This will

ensure that F can never grow too large, because, as

we will show in Lemma 5, a connected Pk-free graph

can not contain a large fractional packing of balanced

separators.

Observation 1. � Let (G, w, N , F) be a k-fair instance.
Then every set S ∈ F is a N

4 -balanced separator of G.

Observation 2. For every k-fair instance (G,w,N,F),
we have that L(F , log(N) + 1) = ∅.
Proof. Consider a k-fair call ALG1(G,w,N,F). We

will prove the statement by induction on the depth

the call ALG1(G,w,N,F) in the recursion tree

of a run ALG1(G
∗, w, |V (G∗)|, ∅) which executes

ALG1(G,w,N,F).
If F = ∅ then the result is trivially true.

Suppose now that F �= ∅, it follows ALG1

executes ALG1(G,w,N,F) during a k-fair call

ALG1(G
′, w,N,F ′) by branching on a branchable ver-

tex or by adding a balanced separator N [X]. In the

first case F = F ′ − S for some vertex set S. By

the induction hypothesis L(F ′, log(N) + 1) = ∅ and

hence L(F , log(N) + 1) = ∅. In the second case,

ALG1(G,w,N,F ′) does not branch on a branchable

vertex, so we have that L(F ′, log(N)) = ∅ since every

vertex in L(F ′, log(N)) is branchable. It follows that

L(F , log(N) + 1) = L(F ′ ∪ {N [X]}, log(N) + 1) =
∅.

Lemma 5. For every k-fair instance (G,w,N,F) it
holds that |F| ≤ 10k · log(N).

Proof. Consider a k-fair instance (G,w,N,F). We

will prove the result by induction on the depth

of the call ALG1(G,w,N,F) in the recursion tree

of a run ALG1(G
∗, w, |V (G∗)|, ∅) which executes

ALG1(G,w,N,F).
In the base case F = ∅, and the claim of the

lemma holds trivially, so assume F �= ∅. Thus

the call ALG1(G,w,N,F) is executed by a k-fair

call ALG1(G
′, w,N ′,F ′). By the induction hypothesis

|F ′| ≤ 10k·log(N) (N = N ′ since F �= ∅). Thus, unless

ALG1(G
′, w,N ′,F ′) recurses by adding a balanced

separator we have that |F| ≤ 10k · log(N) as well.

So assume that ALG1(G
′, w,N ′,F ′) adds a balanced

separator N [X] and that therefore G′ = G, N ′ = N and

F = F ′ ∪ {N [X]}. We prove that |F ′| < 10k · log(N),
then the result follows since |F| = |F ′|+ 1.

Suppose for contradiction that |F ′| > 10k · log(N),
we will now produce an induced path of length

k in G, contradicting that G is Pk-free. The call

ALG1(G
′, w,N ′,F ′) = ALG1(G,w,N,F ′) added a

balanced separator, and so the size of the largest con-

nected component, C, in G is greater than N
2 . This,

together with Observation 1 then gives that every set

S ∈ F is a
|V (C)|

2 -balanced separator for C. Consider the

following random process. Uniformly at random, select

vertices x and y in C. For all S ∈ F , let XS denote the

random variable that is 1 if x and y are not in the same

connected component of C−S and 0 otherwise. Since S
is a

|V (C)|
2 -balanced separator for C, the probability that

x and y are in the same connected component of C −S
is at most 1

2 . Thus XS = 1 with probability at least 1
2 .

We denote by Fx,y all sets S ∈ F such that x and y are

not in the same component of C − S, again including

multiplicity. By linearity of expectation we have that

E[|Fx,y|] =
∑
S∈F

E[XS ] ≥ |F|/2 > 5k · log(N).

It follows there exists vertices a and b in C such that

|Fa,b| > 5k ·log(N). Let P be a shortest path connecting

a and b in C. Since G is Pk-free, P has at most k −
1 vertices. By Observation 2, each of these vertices is

contained in at most log(N) sets in Fa,b. But then there

exists a set S ∈ Fa,b disjoint from V (P ) contradicting

that a and b are not in the same component of C−S.

The following observation shows that the level sets do

not grow a lot in each successive recursive call, and that

they therefore never get very large. Note in particular

that the size of level set i drops exponentially with i.

Observation 3. For every k-fair call ALG1(G,w,N,F)
that adds a balanced separator N [X] and every i,

|L(F ∪ {N [X]}, i)| ≤ Δi−1 · 8k + |L(F , i)|.
Furthermore, for every k-fair instance (G′, w,N ′,F ′),

|L(F ′, i)| ≤ Δi−1 · 8k · |F ′|.
Proof. Consider a k-fair call ALG1(G,w,N,F) that

adds a balanced separator N [X]. Let Xj denote the

set of vertices in L(F , j) ∩ {N [X]}, then we can see

that |L(F ∪ {N [X]}, j)| ≤ L(F , j) + |Xj−1|. Since

the call ALG1(G,w,N,F) adds a balanced separator,

N [X], there are no branchable vertices. So, we have that

for all v ∈ G, |N [v] ∩ L(F , j)| ≤ Δj . Furthermore, by

Lemma 2, since N [X] is generated as an N
4 -balanced

separator and therefore a
|G|
4 -balanced separator for G,

X consists of most 8k vertices, hence |Xj−1| ≤Δj−1·8k
and the result |L(F∪{N [X]}, i)| ≤ Δi−1 ·8k+|L(F , i)|
follows.

The second statement follows by combining induction,

the first part of this observation, and the fact that if the

call ALG1(G,w,N,F) executes ALG1(G
′, w,N ′,F ′),

then |F| < |F ′| if and only if the call ALG1(G,w,N,F)
adds a balanced separator.
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For k-fair instances (G,w,N,F) we define a mea-

sure:

μk(G,w,N,F) = 400k2 · log2(N) · (N + |V (G)|)
+

∑
i

(
|L(F , i)| · N

Δi−1

)

+ 16k ·N · log(N) · (10k · log(N)− |F|)

If (G,w,N,F) is not a k-fair instance, then

μk(G,w,N,F) is undefined. Note that μk(G,w,N,F)
must always be an integer, and that it is independent of

the weight function w. We will say that two instances

(G,w,N,F) and (G′, w′, N ′,F ′) are essentially differ-
ent if G′ �= G, N ′ �= N or F ′ �= F .

Lemma 6. � For every positive integer μ, the number of
essentially different k-fair instances (G,w,N,F) such
that μk(G,w,N,F) = μ is finite. In addition, for every
k-fair instance it holds that μk(G,w,N,F) ≥ 0.

Lemma 7. � For every k-fair instance (G,w,N,F) it
holds that μk(G,w,N,F) ≤ 1050k2 ·N · log2(N)

We define Tk(G,w,N,F) to be the running time of a

k-fair run of ALG1 starting with the inputs (G,w,N,F).
We also define

Tk(μ) = max
G,N,F s.t.

μk(G,w,N,F)≤μ

Tk(G,w,N,F).

When we analyze run time we assume that arithmetic

(addition, subtraction, comparisons) on weights of ver-

tices and vertex sets is constant time. Thus, both the

running time of ALG1 and the measure of an instance

(G,w,N,F) are independent of the weight function w.

Thus, by Lemma 6, Tk(μ) is well defined.

Lemma 8. If μ > 1 then Tk(μ) satisfies the following
recurrence:

Tk(μ) ≤ μO(1)+max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μTk(.95μ)

(Tk(μ− 1)+

Tk(μ[1− 1/(2100k2 · log2(μ))]))
Tk(μ[1− 1/(200k · log(μ))])

Proof. Let (G,w,N,F) be a k-fair instance such that

μk(G,w,N, ∅) = μ > 1 and Tk(μ) is the run time

of ALG1(G,w,N,F). If the call ALG1(G,w,N,F)
recurses on connected components, then it makes at

most |V (G)| recursive calls on instances of the form

(G′, w,N ′, ∅), where |V (G′)| ≤ |V (G)| and N ′ ≤ N
2 .

It follows that for each of these recursive calls we have

μk(G
′, w,N ′, ∅) = 400k2 · log2(N ′)(N ′ + |V (G′)|)

+ 160k2 ·N ′ · log2(N ′)

≤ 400k2 · log2(N)(
N

2
+ |V (G)|) + 80k2 ·N · log2(N)

≤ 400k2 · log2(N)(N + |V (G)|)− 100k2 ·N · log2(N)

≤ μ− 100k2 ·N · log2(N)

≤ .95μ (by Lemma 7)

Also, the algorithm does |V (G)|O(1) = μO(1) work

in a call where it recurses on connected components.

Therefore, if the instance ALG1(G,w,N,F) recurses

on connected components, we must have that Tk(μ) ≤
μO(1) + |V (G)| · Tk(.95μ) ≤ μO(1) + μ · Tk(.95μ).

If the call ALG1(G,w,N,F) branches on a branch-

able vertex, v, then it makes two recursive calls, one

execution ALG1(G − {v}, w,N,F − {v}), where the

instance (G−{v}, w,N,F −{v}) has measure μk(G−
{v}, w,N,F − {v}) ≤ μ − 1, and the other execution

is ALG1(G − N [v], w,N,F − N [v]). Note that for a

branchable vertex, v, we have that

∑
i

(|L(F−N [v], i)|· N

Δi−1
≤

∑
i

(|L(F , i)|· N

Δi−1
)−N

2
,

since for at least one level i we have that |N [v] ∩
L(F , i)| ≥ Δi and Δi

Δi−1
= 1/2. It follows that

μk(G−N [v], w,N,F −N [v]) = 400k2 · log2(N) · (N
+ |V (G)−N [v]|) +

∑
i

(
|L(F −N [v], i)| · N

Δi−1

)

+ 16k ·N · log(N) · (10k · log(N)− |F|)
≤ 400k2 log2(N) · (N + |V (G)|)
+
∑
i

(
|L(F , i)| · N

Δi−1

)

+ 16k ·N · log(N) · (10k · log(N)− |F|)− N

2

≤ μ− N

2

≤ μ

(
1− 1

2100k2 · log2(N)

)
(by Lemma 7)

≤ μ

(
1− 1

2100k2 · log2(μ)

)

The algorithm does |V (G)|O(1) = μO(1) work in a call

where it branches on a branchable vertex. Therefore, if

the call ALG1(G,w,N,F) branches on a branchable

vertex, then we have that Tk(μ) ≤ μO(1) +Tk(μ− 1)+
Tk(μ[1− 1

2100k2·log2(μ)
]).

Finally, if the call ALG1(G,w,N,F) adds a bal-

anced separator, N [X], then it makes a single recursive
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call ALG1(G,w,N,F ∪ N [X]). By Observation 3 and

Lemma 7 we obtain the following.

μk(G,w,N,F ∪ {N [X]}) < μ+ 8k ·N · log(n)
− 16k ·N · log(N) < μ

(
[1− 1

200k · log(μ) ]
)

The algorithm does |V (G)|O(1) = μO(1) work in a

call where adds a balanced separator. Therefore, if the

call ALG1(G,w,N,F) adds a balanced separator, then

Tk(μ) ≤ μO(1) + Tk(μ[1− 1
200k·log(μ) ]).

The result now follows from the observation that

ALG1(G,w,N,F) always recurses on connected com-

ponents, branches on a branchable vertex, adds a bal-

anced separator, or returns without making further re-

cursive calls.

Since Tk(μ) is a non negative, non decreasing func-

tion, by adding the three possibilities in the max of

Lemma 8 we immediately obtain the following simpli-

fied recurrence.

Corollary 1. Tk(μ) ≤ μO(1) + μTk(.95μ) + Tk(μ −
1)+Tk(μ[1− 1

2100k2·log2(μ)
])+Tk(μ[1− 1

200k·log(μ) ]) <
Tk(μ− 1) + μO(1) + 3μ · Tk(μ[1− 1

2100k2·log2(μ)
])

Lemma 9. Tk(μ) = μO(k2·log3(μ))

Proof. For the sake of being able to apply induction

to prove the bound, it will be beneficial for us to

define the function T ′
k(μ) = Tk(�μ�). We will prove that

T ′
k(μ) = μO(k2·log3(μ)), then it will follow that Tk(μ) =

μO(k2·log3(μ)) since Tk(μ) ≤ T ′
k(μ+1) = μO(k2·log3(μ)).

Since T ′
k rounds down its input and Lemma 6 shows the

measure μ is always non-negative for any fair instance, it

suffices to prove the desired bound on T ′
k by induction

on the natural numbers. We may also assume μ is an

integer. The base case is established by observing that

the runtime of algorithm on all such fair instances where

its measure μ is at most 1 is bounded by a constant.

Now, for the inductive hypothesis, assume that there

exists a number c such that for all integers, a, less

than μ > 1, T ′
k(a) ≤ ack

2·log3(a). By Corollary 1 we

have the inequality T ′
k(μ) ≤ T ′

k(μ − 1) + μO(1) +
3μT ′

k(μ[1− 1
2100k2·log2(μ)

]) and repeatedly applying the

inequality to the first term on the right hand side, gives

T ′
k(μ) ≤ μO(1) + 3μ2 · T ′

k(μ[1− 1
2100k2·log2(μ)

]). By the

inductive hypothesis then, we have the following:

T ′
k(μ) ≤ μO(1) + 3μ2�μ[1− 1

2100k2 · log2(μ) ]�
ck2·log3(μ)

≤ μO(1)

+ 3μ2 · μck2·log3(μ)[1− 1

2100k2 · log2(μ) ]
ck2·log3(μ)

≤ μO(1) + 3μ2 · μck2·log3(μ) · e−
ck2·log3(μ)

2100k2·log2(μ)

( since 1− x ≤ e−x )

≤ μO(1) + 3μ2 · μck2·log3(μ) · e− c log(μ)
2100

≤ μck2·log3(μ) ( for c chosen large enough )

We are now ready to prove Theorem 1.

Proof of Theorem 1. The algorithm returns the answer

of ALG1(G, |V (G)|, w, ∅). By Lemma 3 ALG1 termi-

nates, by Lemma 4 ALG1 returns return the weight of

a maximum weighted independent set. For the running

time, observe that (G,w,N, ∅) is a k-fair instance and

let μ = μk(G,w,N, ∅). By Lemma 7 we have that

μ < 1050k2 ·N · log2(N) = nO(1). Hence, by Lemma 9

it follows that T (G,w,N, ∅) ≤ T (μ) = μO(k2·log3(μ)) =
nO(k2·log3(n)).

IV. DISCONNECTED FORBIDDEN INDUCED

SUBGRAPHS

Let H be a graph. We denote by OH an oracle that

takes an H-free graph G as input and outputs the weight

of a maximum weight independent set in G. In this

section we present a quasi-polynomial time algorithm

for MAXIMUM WEIGHT INDEPENDENT SET in H-free

graphs, assuming we have access to the oracles OC for

all C ∈ CC(H). Specifically we will prove Theorem 2.

In the following, H = H0 + H1 +...+ Hc−1 is a graph,

G is a graph, w is a weight function on the vertices

of G, N is a positive integer, and F is a vertex multi-

family of subsets of V (G). We now present the algorithm

ALG2 of Theorem 2. The algorithm is very similar

to the algorithm ALG1 for Pk free graphs, the main

difference is that instead of packing balanced separators

in the family F , the algorithm “packs” (neighborhoods

of) copies of induced Hi’s.

ALG2

1: input: H,G,w,N,F .

2: output: mwis(G).
3: i = |F| mod c
4: if exists branchable vertex v then
5: return max (ALG2(H,G− v, w,N,F − {v}) ,

ALG2(H,G−N [v], w,N,F −N [v]) + w(v))
6: else if exists induced Hi then
7: obtain X ← induced Hi in G
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8: return ALG2(H,G,w,N,F ∪ {N [X]})
9: end if

10: return OHi(G)

The proof of correctness and running time analysis for

ALG2 closely follows that of ALG1. The main difference

is in the proof of why the family F can not grow beyond

size logN (Lemmata 12 and 13). The other parts are

just minor modifications of corresponding results from

Section III.

We will distinguish between the two different kinds of

recursive calls that ALG2 can make. If the if condition

of line 4 holds, then the algorithm makes the recursive

calls on line 5. In this case we say that ALG2 branches
on a branchable vertex. If the else if condition of line 6

holds, then the algorithm makes the recursive call in line

8. In this case we say that ALG2 adds a neighborhood.

We define instances, runs, calls, execution and making a

recursive call similarly as for ALG1. Just as for ALG1,

a run of ALG2(H,G,w,N,F) is called a fair run if

G is an H-free graph, N = |V (G)|, F = ∅, and w is a

weight function. A call ALG2(H,G,w,N,F) is called

a fair call if it is executed during the course of a fair

run. An instance (H,G,w,N,F) is a fair instance if

ALG2(H,G,w,N,F) is a fair call.

Lemma 10. � ALG2(H,G,w,N,F) terminates on ev-
ery input.

Lemma 11. � A run ALG2(H,G,w,N,F) returns the
weight of a maximum weight independent set of G.

Observation 4. � For every fair instance
(H,G,w,N,F), we have that L(F , log(N) + 1) = ∅.
Lemma 12. Let G be a graph, N an integer greater
than 1, and let H = H0 + H1 + ... + Hc−1 be a
graph. If there exists a sequence of subsets of V (G),
{Xm} = X0, X1, ..., Xc·|H|·log(N)−1 such that for all i,
Xi ⊂ V (G), the subgraph induced by Xi is isomorphic
to Hi (mod c), and for all v ∈ Xi we have that {v} ∩
N [Xj ] �= ∅ for at most log(N) Xj’s where j < i, then
there exists a subset I ⊆ {0, 1, 2, . . . , c·|H|·log(N)−1}
such that XI =

⋃
i∈I Xi forms an induced H in G.

Proof. Let G and H be graphs, N an integer greater than

1, and X0, X1, ..., Xc·|H|·log(N)−1 a sequence of sets of

vertices with the properties given in the statement of the

lemma. Given an Xj , set i = j − (j (mod c). We will

refer to the segment Xi, Xi+1,..., Xi+c−1 as Xj’s block.

The proof is by induction on c. If c = 1 then the

statement is trivially true. Assume now that c > 1 and

that the statement is true for all smaller values. There are

at most |Hc−1| · log(N) Xj’s such that some vertex of

Xc·|H|·log(N)−1 belongs to Xj , j �= c · |H| · log(N)− 1.

Remove from the sequence each such Xj along with all

other vertex sets in Xj’s block, as well as all Xt’s such

that c − 1 ≡ t (mod c). After these deletions, re-name

the sets Xj in the updated sequence so that the index

j of each set Xj is equal to the position of Xj in the

sequence (starting with X0).

Let H ′ = H −Hc−1. There are at least log(N) · (c ·
|H|−c·|Hc−1|−|H|+|Hc−1|)−1 = log(N)·(c−1)·|H ′|−
1 remaining vertex sets in the updated sequence, and this

new sequence along with H ′ and G satisfies the condi-

tion of the inductive hypothesis. It follows that there ex-

ists a set X ′
I such that G[X ′

I ] = H ′ and X ′
I is the union

of sets in the (updated) sequence. Since Xc·|H|·log(N)−1

does not belong to the neighborhood of any of the vertex

sets in the new sequence, Xc·|H|·log(N)−1 is disjoint from

N [X ′
I ], and hence XI = X ′

I ∪ Xc·|H|·log(N)−1 induces

H in G, completing the proof.

Lemma 13. For every fair instance (H,G,w,N,F)
with H = H0 + H1 + ... + Hc−1, it holds that |F| <
c · |H| · log(N)

Proof. Let the fair instance (H,G,w,N,F) be as in

the statement of the lemma, furthermore let G′ be the

graph used in the initial input of ALG2 of the fair run

that produces the instance (H,G,w,N,F). Assume to

the contrary, that |F| ≥ c · |H| · log(N). In the fair run

that executes the call ALG2(H,G,w,N,F), consider

the sequence of recursive calls (ordered by when the

call occurs) that lead to the call ALG2(H,G,w,N,F).
In particular, consider the subsequence:

ALG0
2(H,G0, w,N,F0),ALG1

2(H,G1, w,N,F1), . . . ,

ALG
c·|H|·log(N)−1
2 (H,Gc·|H|·log(N)−1, w,N,

Fc·|H|·log(N)−1)
such that the call ALGi

2(H,Gi, w,N,F i) is the (i+
1)th call to add a neighborhood N [Xi]. By Observation

4, we can see that for all Xi, and for all vertices v ∈ Xi,

{v} ∩N [Xj ] �= ∅ for at most log(N) Xj’s with j < i.
The result follows now by observing that G′, H , N ,

and the sequence X0, X1, ..., Xc·|H|·log(N)−1 satisfy the

hypothesis of Lemma 12, contradicting that G′ is H-free.

Observation 5. � For every fair call
ALG2(H,G,w,N,F) that recurses by adding a
neighborhood N [X] and for every i,

|L(F ∪N [X], i)| ≤ Δi−1 · |H|+ |L(F , i)|
Furthermore, for every fair instance (H,G′, w,N ′,F ′),

|L(F ′, i)| ≤ Δi−1 · |H| · |F ′|
For fair instances (H,G,w,N,F) we define the mea-

sure

μH(H,G,w,N,F) = |V (G)|+
∑
i

(
|L(F , i)| · N

Δi−1

)

+ 2|H| ·N · log(N) · (|H| · |CC(H)| · log(N)− |F|)
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If (H,G,w,N,F) is not a fair instance, then

μH(H,G,w,N,F) is undefined. Note that

μH(H,G,w,N,F) must always be an integer and

that it is independent of the weight function w.

We will say that two instances (H,G,w,N,F) and

(H,G′, w′, N ′,F ′) are essentially different if G′ �= G,

N ′ �= N or F ′ �= F .

If N = 1 then a fair run ALG2(H,G,w,N,F) clearly

terminates after a constant number of steps (since in a

fair run, |V (G)| ≤ N ) regardless of the other inputs, so

from now on we will assume N > 1.

Lemma 14. � For every positive integer μ, the number of
essentially different fair instances (H,G,w,N,F) such
that μH(H,G,w,N,F) = μ is finite. In addition, for
every fair instance μ(H,G,w,N,F) ≥ 0.

Lemma 15. � μH(H,G,w,N,F) ≤ 4|H|2 · |CC(H)| ·
N · log2(N) for every fair instance (H,G,w,N,F).

We define TH(H,G,w,N,F) to be the running time

(including the number of oracle calls) of ALG2 starting

with the inputs (H,G,w,N,F). We also define

TH(μ) = max
G,N,F s.t.

μH(H,G,w,N,F)≤μ

TH(H,G,w,N,F)

Just as for ALG1, when we analyze run time we

assume that arithmetic on weights takes constant time.

Thus, both the running time of ALG2 and the measure

of an instance (H,G,w,N,F) are independent of the

weight function w, and so by Lemma 14, TH(μ) is well

defined.

Lemma 16. If μ > 1 then TH(μ) satisfies the following
recurrence:

TH(μ) ≤ μO(1)+max

⎧⎪⎪⎨
⎪⎪⎩

(TH(μ− 1)+

TH(μ[1− 1
8|H|2·|CC(H)|·log2(μ)

]))

TH(μ[1− 1
4|H|·log(μ) ])

Proof. Let (H,G,w,N,F) be a fair instance such

that μH(H,G,w,N,F)) = μ > 1 and TH(μ) is

the run time of ALG2(H,G,w,N,F). If the call

ALG2(H,G,w,N,F) branches on a branchable vertex,

v, then it makes two recursive calls, one execution on

(H,G − {v}, w,N,F − {v}), which has measure at

most μ − 1. The other execution is on the instance

(H,G−N [v], w,N,F −N [v]). Note that for a branch-

able vertex, v, we have that:∑
i

(
|L(F −N [v], i)| · N

Δi−1

)
≤∑

i

(
|L(F , i)| · N

Δi−1

)
− N

2

since for at least one level i we have that |N [v] ∩
L(F , i)| ≥ Δi and Δi

Δi−1
= 1/2.

Hence,

μH(H,G−N [v], w,N,F −N [v]) =

|V (G)−N [v]|+Σi(|L(F −N [v], i)| · N

Δi−1
)

+ 2|H| ·N · log(N) · (|H| · |CC(H)| · log(N)

− |F −N [v]|)
≤ |V (G)|+

∑
i

(
|L(F , i)| · N

Δi−1

)

+ 2|H| ·N · log(N) · (|H| · |CC(H)| · log(N)− |F|)
− N

2

= μ− N

2

≤ μ

(
1− 1

8|H|2 · |CC(H)| · log2(N)

)
(by Lemma 15)

≤ μ

(
1− 1

8|H|2 · |CC(H)| · log2(μ)

)

Also, the algorithm does |V (G)|O(1) = μO(1) work in a

call where it branches on a branchable vertex. Thus, if

the call ALG2(H,G,w,N,F) branches on a branchable

vertex, then we have that:

TH(μ) ≤ TH(μ−1)+TH

(
μ[1− 1

8|H|2·|CC(H)|·log2(μ)
]
)

If ALG2(H,G,w,N,F) adds a neighborhood, N [X],
it makes a single call ALG2(H,G,w,N,F ∪ {N [X]}).
By Observation 5 and Lemma 15 we get the following:

μ(H,G,w,N,F ∪ {N [X]}) < μ+ |H| ·N · log(n)
−2|H| ·N · log(N) < μ

(
[1− 1

4|H|·|CC(H)|·log(μ) ]
)

Also, the algorithm does |V (G)|O(1) = μO(1) work

in a call where it adds a neighborhood. Thus, if the

call ALG2(H,G,w,N,F) adds a neighborhood, then

TH(μ) ≤ TH(μ([1− 1
4|H|·|CC(H)|·log(μ) ]). The result now

follows from the observation that ALG2(H,G,w,N,F)
only does |V (G)|O(1) = μO(1) work in a given call and

always branches on a branchable vertex, adds a balanced

separator, or immediately returns a value without making

further recursive calls.

Since TH(μ) is a non negative, non decreasing func-

tion, by adding the two possibilities in the max of

Lemma 16 we immediately obtain the following sim-

plified recurrence.

Corollary 2. TH(μ) ≤ μO(1)+TH(μ[1− 1
4|H|·log(μ) ])+

TH(μ− 1)+TH(μ[1− 1
8|H|2·|CC(H)|·log2(μ)

]) < TH(μ−
1) + μO(1) + 2TH(μ[1− 1

8|H|2·|CC(H)|·log2(μ)
])

Lemma 17. TH(μ) = μO(|H|2·|CC(H)|·log3(μ))

Proof. For the sake of being able to apply induction to

prove the bound, it will be beneficial for us to define

the function T ′
H(μ) = TH(�μ�). We will prove that
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T ′
H(μ) = μO(|H|2·|CC(H)|·log3(μ)), then it will follow

that TH(μ) = μO(|H|2·|CC(H)|·log3(μ)) since TH(μ) ≤
T ′
H(μ + 1) = μO(|H|2·|CC(H)|·log3(μ)). Since T ′

H rounds

down its input and Lemma 14 shows the measure μ is

always non-negative for any fair instance, it suffices to

prove the desired bound on T ′
H by induction on the nat-

ural numbers. We may also assume μ is an integer. The

base case is established by observing that the runtime of

algorithm on all such fair instances where its measure

μ is at most 1 is bounded by a constant. Now, for the

inductive hypothesis, assume that there exists a number

c such that for all integers, a, less than μ > 1, T ′
H(a) ≤

aO(|H|2·|CC(H)|·log3(a)). By Corollary 2 we have the

inequality T ′
H(μ) ≤ T ′

H(μ − 1) + μO(1) + 2T ′
H(μ[1 −

1
8|H|2·|CC(H)|·log2(μ)

]) and repeatedly applying the in-

equality to the first term on the right hand side, gives

T ′
H(μ) ≤ μO(1)+2μT ′

H(μ[1− 1
8|H|2·|CC(H)|·log2(μ)

]). By

the inductive hypothesis then, we have the following:

T ′
H(μ) ≤ μO(1)

+ 2μ�μ(1− 1

8|H|2|CC(H)| log2(μ) )�
c|H|2·|CC(H)|·log3(μ)

≤ μO(1)

+ 2μμc|H|2·|CC(H)|·log3(μ)(1

− 1

8|H|2 · |CC(H)| · log2(μ) )
c|H|2·|CC(H)|·log3(μ)

≤ μO(1) + 2μμc|H|2·|CC(H)|·log3(μ)e
− c|H|2·|CC(H)|·log3(μ)

8|H|2·|CC(H)|·log2(μ)

( since (1− x) ≤ e−x )

≤ μO(1) + 2μμc|H|2·|CC(H)|·log3(μ) · e− c log(μ)
8

≤ μc|H|2·|CC(H)|·log3(μ) ( for c chosen large enough )

We are now ready to prove Theorem 2.

Proof of Theorem 2. The algorithm returns the answer

of ALG2(H,G,w, |V (G)|, ∅). By Lemmata 10 and 11,

ALG2 will always terminate and return the weight of a

maximum weight independent set in G. For the running

time analysis, observe that (H,G,w, |V (G)|, ∅) is a fair

instance and let μ = μH(H,G,w,N,F). We assume

that |H| ≤ N , since the run time bound follows

trivially if |H| > N . By Lemma 15 we have that

μ < 4|H|2 ·|CC(H)|·N ·log2(N). Let n = N = |V (G)|,
then it follows that TH(H,G,w,N,F) ≤ TH(μ) =
μO(|H|2·|CC(H)|·log3(μ)) = nO(|H|2·|CC(H)|·log3(n)). This

completes the proof.

Theorem 2 sligthly increases the current reach of

Theorem 1. In particular, let Tk be the graph with k
connected components the first of which is a path Pk on

k vertices and the remaining k− 1 are forks (a fork is a

path on four vertices plus a single vertex adjacent to the

second vertex of the path). Lozin and Milanic [22] gave

a polynomial time algorithm for WEIGHTED INDEPEN-

DENT SET on fork-free graphs. Theorem 2 implies that

WEIGHTED INDEPENDENT SET on Tk free graphs can

be solved by making nO(k3 log3(n)) oracle calls to the

polynomial time algorithm of Lozin and Milanic [22]

or the algorithm of Theorem 1. Thus we obtain the

following result.

Theorem 3. There exists an algorithm that given a Tk-
free graph G and weight function w : V (G) → N,
runs in nO(k3 log3 n) time, and outputs the weight of a
maximum weight independent set of G.

V. CONCLUSION

In this paper we gave a quasipolynomial time algo-

rithm for WEIGHTED INDEPENDENT SET on Pk-free

graphs for all integers k. The dependence on k in

the exponent is O(k2) and so our algorithm is quasi-

polynomial even for k = logO(1) n and sub-exponential

for k = n
1
2−ε for ε > 0. In light of our algorithm it is

tempting to conjecture that (WEIGHTED) INDEPENDENT

SET on Pk-free graphs can be solved in polynomial time

for every k. Given how dependent our algorithms are on

branching on high degree vertices it looks unlikely that

our techniques can lead to polynomial time algorithms

for Pk-free graphs. Nevertheless it may be possible to

extract structural insights from our algorithms that could

eventually lead to polynomial time algorithms.

Our second main result (Theorem 2) implies that if

there exists a quasi-polynomial time algorithm for H-

free graphs for every subdivided claw H then there

exists a quasi-polynomial time algorithm for every finite

family H such that NP-completeness of INDEPENDENT

SET on H-free graphs does not follow from Alekseev’s

result [18]. Thus, a quasi-polynomial time algorithm

for subdivided-claw-free graphs would complete a di-

chotomy for the complexity of INDEPENDENT SET on

H-free graphs for every finite family H: every case is

either quasi-polynomial time solvable or NP-complete.
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