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Abstract—This paper presents an automated design and
optimization framework for electric transportation power systems
(ETPS), enabled by machine learning (ML). The use of physical
models, simulations, and optimization methods can greatly aid the
engineering design process. However, when considering the
optimal co-design of multiple inter-dependent subsystems that
span multiple physical domains, such model-based simulations can
be computationally expensive, and traditional metaheuristic
optimization methods can be unreliable. Bayesian optimization
(BO), a ML framework, paves one feasible pathway to realize an
efficient design process practically. However, current state-of-the-
art BO algorithms are non-compatible or perform poorly when
applied to system-level ETPS design with multiple objectives and
constraints. This paper proposes a novel BO algorithm referred to
as Max-value Entropy Search for Multi-objective Optimization
with  Constraints (MESMOC) to solve multi-objective
optimization (MOO) problems with black-box constraints that can
only be evaluated through design simulations. After full
presentation of the algorithm, MESMOC is applied to a realistic
ETPS design case using a heavy-duty electric vertical-takeoff-
landing (eVTOL) urban aerial vehicle (UAV) power system. Two
MOO experimental trials show a drastic reduction in the number
of design simulations to discover a high-quality Pareto front. In
Trial 1, MESMOC uncovered the entire Pareto front while only
requiring to explore ~4% of the design space. With expanded
design parameters and a larger design space in Trial 2, a near-
complete but high-quality Pareto front was uncovered. Both trials
compared MESMOC to the popular genetic algorithm NSGA-II
and another BO algorithm PESMOC, showing superior
performance.
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I. INTRODUCTION
A. Background

Electrification of vehicles introduces significant
complexity to electrical system design. Electric transportation
power systems (ETPS) include many interacting subsystems
that span across multiple disciplines, requiring collaboration
among various domain experts. Model-based design, with
mathematical models and simulations representing real-
physical systems, evaluates the performance of a design
without the need of first building expensive hardware
prototypes [l]. Model-based design complements the
multidisciplinary design optimization (MDO) used in the
automotive and aerospace industries, both known for their
large and complex systems. While simulations are more
efficient than hardware prototyping, design space exploration
remains a time-consuming procedure. Autonomous and
efficient methods to quickly find optimal designs are desired.

Model-based design begins at the system-level, where
high-level models of a proposed architecture are developed.
The selected optimal architecture and system parameters then
serve as the design specifications for each subsystem, such as
the battery pack, DC-AC inverter, or electric motor. An
emphasis on system-level functionality is beneficial, as the
overall performance of a large ETPS outweighs the
performance of an individual component. For example,
selecting a state-of-the-art power electronics converter may
not be feasible due to size, weight, or temperature constraints
when integrated with the rest of the system. Effective system-
level design considers these constraints during the exploration
stage to ensure the optimal solution is feasible.

System-level design relies on expensive simulations to
explore feasibility and performance, especially in the early
development process. Simulations require models with multi-
physics domains (e.g., electrical, mechanical, thermal) that run
on timescales of micro-seconds, milli-seconds, seconds, and
minutes depending on the required fidelity and can be
computationally slow. For example, a 300-minute mission in a
more electric aircraft thermally integrated power system
simulates one design candidate in ~15 minutes [2]. Even if
simulation times were reduced by an order of magnitude, the
high number of design candidates, typically in the order of
thousands, can still slow down the evaluation of all designs.
Additionally, modeling uncertainties using Monte Carlo
simulations further increases computation time [3]. Such
simulations can take a few hours to several days to explore the
entire design space and are usually tailored for a particular
drive cycle or mission profile. When another mission profile is
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replaced, such computations must start over, creating lengthy
engineering processes.

This paper focuses on formulating the design automation
problem and increasing optimization efficiency at the system-
level. Optimization methods capable of efficiently searching
through a large design space reduce the need for human
interference. Engineers make decisions that limit the design
space size, or otherwise it is computationally unreasonable to
exhaustively search a complete design space. By shifting the
decision-making process to an optimization algorithm, design
automation can be achieved while also enabling the efficient
search of large design spaces. Hence, effective design
automation relies on the performance and efficiency of the
optimization algorithm.

B.  Related Works

When considering the multidisciplinary design of ETPS,
it is often impossible to optimize all objectives at once due to
their conflicting nature, such as minimizing energy
consumption, total weight, and cost. This leads to a set of
Pareto optimal solutions where an objective cannot be
improved without degrading another — the outcome of multi-
objective optimization (MOO). It is important to distinguish
between single-objective optimization (SOO) and MOO. The
goal of SOO is to find the global optimum based on one
criterion, whereas, with MOO, a global optimum may no
longer exist [4]. The two approaches to MOO are to either
linearly combine multiple SOO problems with weights or
apply metaheuristic methods [5].

The former combined SOO approach is less favorable as
it can lead to aggressive exploitation behavior resulting in sub-
optimal solutions [6]. Indeed MOO can be solved by using
scalarization to reduce it to SOO that will optimize the
weighted objective function ¥X, w; - f;, where w; stands for
the weights of each individual objective function f;. The
performance of this SOO approach critically depends on the
scalarization weights. However, there is no algorithmic or
automated procedure in the literature to specify the
scalarization weights. Reducing a problem into a single
objective also requires more human intervention through
prioritizing each objective. Prior work [7][8] typically
employs random scalarization weights. ParEGO [8] is a
prototypical example algorithm, whereas MESMO [6] has
showed that solving the MOO directly does significantly
better than SOO algorithms such as the ParEGO. Other SOO
algorithms such as TuRBO [9], BOHB [10], and HesBO [11]
can be used with scalarization to solve MOO problems, but
they suffer from the same drawback of scalarization (i.e., no
method specifies scalarization weights and random
scalarization performs poorly), and none of these algorithms
can handle black-box constraints.

For the latter metaheuristic approach, algorithms capable
of true Pareto front optimization primarily use gradient-free
methods, such as genetic algorithms (GAs), particle swarm
optimization (PSO), ant colony optimization (ACO), and
divided rectangle (DIRECT) [5][7][12], to address the
nonlinear, nonconvex, and combinatorial nature of ETPS
system-level design. Such metaheuristic methods have been
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used for the design of a solar-powered hybrid airship [13], an
all-electric vehicle [14], and hybrid electric vehicles [15][16],
to name a few. While these metaheuristic methods have shown
to be somewhat effective optimizers, they suffer from the
following limitations: 1) requiring a large number of design
evaluations, which may not be practical when design
simulations are computationally expensive; 2) suffering from
convergence related challenges; 3) not always able to uncover
the optimal Pareto front [17].

Bayesian optimization (BO) [42] is a machine learning
(ML) based framework that has the potential to overcome the
drawbacks of GA, especially in reducing the number of
expensive design simulations to discover (approximate)
optimal Pareto solutions [18]. While ML models are typically
trained with previously generated data, BO instead builds
statistical surrogate models throughout the optimization
process, using the knowledge of prior design evaluations to
improve these models continuously. These models are
employed to intelligently select the sequence of designs for
evaluation by maximizing a utility function defined in terms of
the learned statistical model’s prediction and uncertainty.
Optimizing the utility function is a cheaper alternative because
evaluating the surrogate models is often less time-consuming
than evaluating the physical models. Details of several ML
terminologies are thoroughly described in Sections I and IV.

Engineers face a myriad of physical constraints that
prohibit the realization of a design. An optimization algorithm
that does not address a highly constrained design will perform
poorly. For example, device thermal limits set an upper bound
to power flow. High-power systems thus require larger and
more costly devices and cooling to avoid these thermal limits.
If minimizing system weight and cost are design objectives,
then optimization without constraints would select lightweight
and cheap converters that could not handle the required power
demand. Therefore, adding constraints to the MOO is
essential. There is a large body of literature on single-
objective BO algorithms with and without constraints [9]-
[11][18][19][43][44]. However, there is less work on the more
challenging problem of BO for multiple objectives
[6][8]1[20][21][45][46] and only one prior work addressing
constrained MOO problems, named PESMOC [22]. PESMOC
is an information-theoretic approach that relies on the
principle of input space entropy search. However, it is
computationally expensive to optimize the acquisition
function behind PESMOC. A series of approximations are
performed to improve the efficiency potentially at the expense
of accuracy. Additionally, PESMOC addresses the constraints
satisfaction only in the design of the acquisition function,
while this paper addresses the constraints satisfaction in both
acquisition function design and optimization.

In electrical engineering, BO algorithms have been used
to optimize a converter level design of a multi-output
switched-capacitor voltage regulator and achieved a 90%
reduction in the number of simulations required to optimize
design parameters [23]. However, there has been little
research in developing power electronic system-subsystem-
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oriented design automation tools

optimization.

using ML-based

C. Major Contributions

In this paper, a novel ML-based optimization algorithm is
proposed, namely Max-value Entropy Search for Multi-
objective Optimization with Constraints (MESMOC), capable
of searching through a constraint-heavy design space to
efficiently discover Pareto optimal designs. This paper also
serves as the first-of-its-kind that such an ML-based multi-
objective BO under constraints is successfully demonstrated
for an ETPS design. Experiments, although not of ETPS
design, using a prior version of the ML algorithm without
constraints, i.e., MESMO, consistently outperform state-of-
the-art algorithms at providing an accurate, computationally-
efficient, and robust optimization solver [6]. This work builds
upon MESMO and extends it to handle black-box constraints
that cannot be evaluated without expensive design
simulations, an open problem in the BO literature, and
provides a successful demonstration on an ETPS design
application. While the entire optimization procedure is called
MESMOC, it specifically refers to the acquisition function
used in the more general BO procedure. The key idea is to
build statistical models of both design objectives and
constraints and use these models to select the sequence of
designs for evaluation based on the information-theoretic
principle of output space entropy search: maximize the
information gain about the optimal constrained Pareto front.
This ML algorithm enables automating the system-level
design process by intelligently searching through large design
spaces.

The ML algorithm must be applied to a physical model,
i.e., the domain knowledge. For this paper, a static or averaged
model is developed for each component in the power system,
including multiple physical domains. Plenty of literature exists
on the development and experimental validation of ETPS
physical models, hence not a focus of this paper. For example,
a multi-timescale parametric electrical battery model is
described in [24], and [2][25][26] demonstrate the integration
of multiple subsystems for ETPS. Once the physical models
are combined to form the desired system architecture,
MESMOC can treat the simulation as a black-box function
where the outputs are optimization objectives and constraint
evaluations, and the inputs are design parameters. MESMOC
then evaluates the input design parameters which maximize
the information gain about the optimal Pareto front in each
iteration until an optimal Pareto set is found.

Without loss of generality, this paper details a case design
of an all-electric vertical-takeoff-landing (eVTOL) heavy-
duty, freight carrying, urban aerial vehicle (UAV) power
system. However, the proposed ML-based power system
design framework is generic and can be used for various
complex applications, such as more electric aircraft, on/off-
road vehicles, ships, green buildings, renewable energy
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systems, etc. Using a UAV system, this paper effectively
demonstrates the drastic reduction of the number of simulation
iterations towards converging to Pareto optimal designs.
Experimental results demonstrate MESMOC’s consistent
performance over GA and PESMOC, in both Pareto front
quality and convergence rate, where in one trial the optimal
Pareto front is discovered by MESMOC after exploring only
~4% of the design space.

D. Paper Organization

For the rest of the paper, an overview of the ML-enabled
design optimization process is presented in Section II. The
details of the ETPS modeling in Section III will help
comprehension of the proposed ML framework. Then a
complete description of the MESMOC algorithm is in Section
IV. Section V will discuss the practical issues when
integrating physical models with the ML algorithm. The
experimental results of the Pareto front search using
MESMOC, accompanied by a performance comparison to
other popular algorithms in the literature, will be presented in
Section VI. Section VII concludes the paper and recommends
future work.

II. HIGH-LEVEL ETPS DESIGN PROCESS USING ML

An overview of the proposed design process is presented
in Fig. 1, which will be referred to throughout this section.
The design process begins by constructing subsystem models
of ETPS to be used in a mission-based multi-physics power
system simulation. This physical modeling part is reflected in
the upper box “multi-physics power system simulator” in Fig.
1. A mixed-fidelity modeling (e.g., static, dynamic, quasi-
dynamic) approach may be chosen, depending on the design
objectives and level of details. Regardless, the ML algorithm
suits a variety of modeling methods, since they are treated as
black-box functions. The power system simulator outputs the
design objectives and constraints based on a set of selected
design parameters x and a mission profile discussed in Section
III. Given the simulator outputs, the optimization problem
solved by the ML algorithm can be generically defined as

mxin f1(x)

H}Vin f2(x)

m}cian(x) (1)
s.t. ¢q(x)< 0
(X)) <0

agx)< 0
where there are K minimization objective functions f(.y(x) and

L inequality constraint functions c(.y(x) in the negative null
form. Equality constraints are omitted from (1) for simplicity.
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Fig. 1. An overview of the proposed ML design process for an ETPS.

Next comes the design parameter selection and evaluation
process. A design parameter vector x,, where ¢ denotes the
iteration number, represents the set of parameters used in each
power subsystem model, such as battery pack voltage and
capacity, and motor quantity and size. The pre-defined design
space X, is the set of all possible design parameter vectors
X:{xq,x,, ...,x,}, where n is the design space size, which
means all possible combinations of individual physical
parameter choices. The vital role of MESMOC is to
intelligently select the proper x; for the next iteration without
the need to go through all » design vectors, which will be
discussed in the next two paragraphs and in detail in Section
IV.

Referring to the upper side of Fig. 1, assuming an x; is
chosen, then the power system simulation yields an output
vector, y, = F(x;), where F is the black-box function defined
by the physical models. To be specific, given K design
objectives and L constraints that the system must satisfy, the
power system simulation output is Ve =

{yf1' e Yo Ve ...,yCL} . An objective function f, (k€
{1,---,K}) can be any design evaluation metric to be
optimized, such as energy consumption, system weight, cost,
or reliability. Likewise, a constraint function ¢; (I € {1,---,L})
is a metric that limits the physical realization, such as
component temperatures, battery state, or spatial limits. The
latest input x, and output y, join a pool of all previous
evaluated inputs and outputs D; (i.e., Dy = Di_q U {X, ¥¢})-
This entire pool of data, known as prior experimental data, is
used by the ML algorithm to intelligently select new design
parameters x, for the next iteration.

The proposed MESMOC utilizes statistical models,
represented as My, and M, , to learn the true mapping
function from the input parameters to the design objectives

Authorized licensed use limited to: Washington State Universi

and constraints, respectively. The statistical models provide
Gaussian probability distributions, based on the prior
information, of the objective and constraint values for each
design candidate in X. Approximations of the objectives
( fi, ., fx) and constraints ( é,..,¢;, ) are generated by
sampling from these distributions via random Fourier features
[27]. Each objective and constraint is often approximated
multiple times to create a set of sampled functions. Further
details of function sampling will be presented in Section IV.

Table 1. Nomenclature reference for the ML optimization process.

Symbol Description
K Number of objectives
k € {1,---,K}, indexing term
L Number of constraints
l € {1,---,L}, indexing term
X Design space
X Optimal Pareto set
Y- Optimal Pareto front
x € X, design parameter vector
y Power system simulator output vector
fie(x) Objective function
c(x) Constraint function
M Surrogate statistical model
D Training data set
a(x) Acquisition function
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Fig. 2. Block diagram of UAV power system showing the interfaces between each component model [28].

With these sampled functions, a set of approximate Pareto
fronts Y; are generated by solving multiple cheap and fast
MOO problems with a GA based algorithm. This procedure is
considered cheap because the sampled functions provide quick
design evaluations compared to the power system simulation.
The approximated Pareto fronts Y, and previously evaluated
designs D; are then used to construct the acquisition function
a(x), which infers the potential information gain about the
optimal constrained Pareto front Y* for a given design x.
MESMOC utilizes a max-value entropy search-based
acquisition function, which is covered in more detail in
Section IV. The next simulated design x; is selected by
maximizing a(x) that ensures the maximum information gain
about the optimal constrained Pareto front Y™ is achieved in
the next iteration.

Then this x; feeds to the next iteration of the multi-
physics power system simulator as discussed previously. After
the design x; is evaluated, the results y, are used to update
statistical models My, and M. The process is then repeated.
Throughout the optimization process, the estimated Pareto
front is continuously updated according to the new
information and will approach the optimal constrained Pareto
front Y*. After a specified number of iterations, the final
Pareto set is ready to review. Table I summarizes a
nomenclature reference.

III. ELECTRICAL POWER SYSTEM MODELING

This section serves to understand the physical domain of
the ML design automation and optimization framework. As this
paper intends to explore the use of ML to reduce the number of
iterations for ETPS optimization, technical details and
validations of the ETPS models will not be the focus but are
discussed in separate literature [2][25][26]. In fact, the type of
power system modeling is of minor importance as the
optimization algorithm treats it as a black-box function. Still,
some level of the physical understanding allows to comprehend
the application of the ML algorithm better. In this paper, a time-
based quasi-static simulation capturing averaged power
calculations is used. While the quasi-static simulation does not
capture the full dynamics of the system, the accuracy and
usefulness of the approach for UAV power system design has
been demonstrated in [25].

A.  System Overview

The UAV system architecture consists of a central Li-ion
battery pack, hex-bridge DC-AC inverters, permanent magnet
synchronous machines (PMSM), and necessary wiring, as
shown in Fig. 2. A set of variable design parameters, such as the
battery pack configuration and motor size, are included in the
system models. This set, known as the design space, will be
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searched by the ML algorithm to find the optimal designs. The
sweeping ranges of the design parameters will be discussed in
Section VI.

The mass of the aircraft frame and its cargo is held
constant for all designs. The total craft mass my,, varies
depending on the number of cells in the battery pack, motor
sizing, and the number of motors. Note that power electronics
mass is assumed constant for this study since the semiconductor
weight variation is relatively small. Other design details may be
included, such as heat sinks or filters. However, this paper
focuses on the development of the ML-physical integrated
framework rather than a high-fidelity model.

The system follows a pre-configured mission-profile during
a simulation, such as the 30-minute mission shown in Fig. 3 that
represents a roundtrip flight. The mission-profile is structured
as a normalized thrust vs. time array with increments of 1
second in the case of static modeling. Thrust values are scaled
by the UAV’s total mass and converted into propeller
mechanical speed Wypecn, and torque T,,e.n,, Which serve as
inputs to the motor model. Thrust to speed and torque
conversion is achieved in the same manner as [25], where a
propeller-dependent relation is developed. The required motor
power characteristics to achieve this mission profile are back-
propagated through the motor drive to the battery. Total thrust
output power and system power loss are used to determine the
total energy consumed throughout the flight, denoted as E; ;-

B. Motor

The motors considered in this design illustration are fixed-
phase fixed-pole (e.g., 3¢ 8-pole) PMSMs. A chosen reference
motor provides initial electrical and mechanical parameters. All
potential motor designs are scaled from this reference using two
design parameters: 1) number of coil winding turns N;, and 2)
height of the stator structure hy. These two physical parameters
are selected because of their influence over the electrical
parameters. For example, the formula for a single coil’s
inductance,
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is dependent on N, and hg, where l,; is the length of the coil,
governing motor diameter, and p is the magnetic permeability
constant. For a given set of N; and hg, the thickest wire gauge
in AWG for the stator coil is selected while still satisfying the
winding fill factor limit. In general, motor design is
accomplished by perturbing reference values of stator
resistance, synchronous inductance, back EMF constant, and
mass using these two design parameters. The model utilizes the
per-phase equivalent circuit of a PMSM motor for all electrical
calculations.
The inputs and outputs of the motor subsystem is given in

[Iphase' Mg, By, Pm,luss' Tm,n+1] =
MOtor(wmech' Tmech) Vin' Tm,n| Nm' Nt' hs)

3

where the inputs are mechanical speed w;,..n, mechanical
torque Tpecn, input voltage from the inverter V;,,, and motor
winding temperature T, ,,, all under various combinations of N,
number of motors, N;, hy. Not all the necessary math will be
covered in this paper; however, an overview is provided to aid
comprehension. For a detailed derivation of this model, see
[25][26].

For the model outputs, the RMS phase current can be found
from the mechanical output power and loss using

Iphase — WmechTmecht Pm,loss (4)

3VEMF

The modulation index m, is given in

mg = \/th/ Vin Q)
but requires knowledge of the terminal voltage V; given the
back EMF voltage Vgyr and voltage drop due to motor
impedance. While m, is calculated in the motor model, it is
utilized in the inverter subsystem, to be described in the
following subsection. P,, represents the input power to the
motor and is found with (6), where P, 0,55, in (7), is the
combined mechanical and electrical losses.

Bn = Pour + Pm,loss (6)

Prtoss = 3R515hase + Prech,loss @)

The differential equation of the motor winding’s temperature
gradient is represented by

= Prioss T hairAm (Tq — Tm,n+1) (®)

where my,,c,, is the motor’s thermal capacitance, h;,- is the heat
transfer coefficient based on the Nusselt number, A4,, is the
surface area of the motor coils, T, is the ambient temperature,
and T,,, 11 is the updated motor temperature. As this is a static
model, only the steady-state temperature is required. Therefore,
(8) can be reduced to

Tn+1 =Ta + Zmloss 9

Amhair

ATmmn+1
my, Cp —dt

C. Motor Drive

The motor drive is a 3¢ hex-bridge DC-AC inverter
consisting of MOSFET/diode pairs. For this given topology and
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use of static modeling, two practical design parameters are the
MOSFET/diode selection My, , and the switching frequency
fsw- Inverter modeling is based on [25], which uses an averaged
switching approach to calculate inverter losses and basic control
requirements. Similar to the motor subsystem, (10) shows the
inputs and outputs of the inverter subsystem, where Vp is the
DC bus voltage, I pqse is a phase RMS current of the motor
stator, m, is the amplitude modulation index of the SPWM
switching scheme, P, is the motor input power from (6), and
T; n s the temperature of the MOSFET/diode.

[Ibat: Pi,loss: Ti,n+1] =
Inverter(VDC' Iphase' mg, Pm' Ti,n | f;w' Msw)

(10)

In order to determine the left-hand-side outputs in (10),
some intermediate loss calculations are required. The
conduction loss of a single MOSFET is found with

an

which averages the time-varying duty cycle [29] to approximate
the losses with a drain-source on-resistance R,y and Ippase- Ron
comes from the selected MOSFET datasheet where curve-fitting
is used to adjust the on-resistance given at T;,. The MOSFET
switching loss is given in

Psw,‘m = fow " (Eon +Eoff) (12)
which is broken up into a turn-on energy (13) and turn-off
energy (14) [30]. Approximating E,, and E,sr requires the

reverse recovery charge Q,, and rising/falling current and
voltage times obtained from the datasheet and [31].

1 Mg cos ¢
Pc,m =2 Iz%hase “Rop - [§+ 113_71-]

\/Elphase Lritlry

Eon =Vpc - n T"' Qrr Ve (13)
V2Iphase truttyi
Eofy = V¢ - — Lt 20 (14)

Similar to the MOSFET conduction loss, diode conduction
loss is given in (15) but uses the forward voltage drop rather
than the on-resistance. Q,.- of the diode is required to solve for
the switching power loss using (16) and can be found on the
datasheet. It is worth noting these approximate loss calculations
result in worst case scenario values.

) 1 aCos ¢
Pc,d =Von " 2Iphase ' [;_ = ;OS ] (15)
Qrr'Vpc fsw
Poya = 050 (16)

Total power loss P; 155 0f the inverter is found by summing up
(11)-(16) and scaled with the number of switches. The required
input current from the battery I,,, is derived from the total
power into the inverter and Vp.

An aluminum heatsink is assumed to attach all switching
devices. Given a heatsink thermal capacitance mgc, , the
differential equation for the heatsink temperature T, gradient is

ﬂ _ Tj-Ts
o = Ronss + 17
where T; is the MOSFET/diode junction temperatures, Ty is the

ambient temperature. Ryp js and R s, are the semiconductor
junction to heatsink and heatsink to ambient air thermal

Ta—Ts

m
S
Rth,sa
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resistances, respectively. Note that T; is equivalent to the
inverter temperature T;,, in (10). As this model assumes steady-
state behavior, thermal capacitances are ignored, and (17) can
be simplified to (18) for a one-second interval. Equation (19) is
then used to find the semiconductor junction temperatures using
P; 1,ss and junction to sink thermal resistance.

TjnRthsat TaRth,js

(18)
(19)

T. =
sn+l Rth,js"'Rth,sa

Tj,n+1 =Tsne1 T+ Piioss - Rth,js
D. Battery

The Li-ion battery pack configuration consists of three
design parameters: 1) number of cells in series N, 2) number of
cells in parallel N, and 3) the battery cell model dataset, M.
The number of cells in series determines the battery pack
voltage, whereas the number of cells in parallel indicates the
pack’s Ah capacity. As individual battery cell current can be
determined using N,, it is only necessary to model a single
battery cell. It is assumed that each cell is identical and
discharges at the same rate.

Battery cell modeling follows the work [24], where a
Randle’s equivalent circuit is used. Battery constants of the
equivalent circuit such as the open-circuit voltage V,., and the
RC-network’s  resistance R, and capacitance Cy are
parametrically computed as a function of the state of charge
(50C). Using experimentally gathered parameters (denoted by
ay), V,. is calculated by

In(V,.) = ay + a; In?(SOC) + --- + a5 In®(SOC)  (20)

or
Voo = exp| X p_, @ In(50C)| @1

Resistances R(, and capacitances Cy, one for each time-
constant RC-network, is calculated the same way as V. using
(21) but with a different set of a; parameters. In [24], the a;,
parameters are found over different time scales of seconds,
minutes, and hours. However, as this paper focuses on static
modeling, capacitive elements can be ignored, allowing
simplification of resistances into a single constant R;,,;.
A function notation of the battery pack model is stated as

[Vbat:SOCn+1r Pb,loss] =
Battery(SOCy, Ipqe | Ng, Ny, Myqr)

showing the subsystem interface. The three outputs are
calculated based on the present SOC,,, current demand /I, and
the battery pack design parameters. With known V,. and R,
and single-cell current demand of the system I, battery
terminal voltage V4, and power loss Py, 555 are found using
Ohm’s law and I?R losses, respectively. After every time step
of the simulation, the SOC, ., is adjusted given the energy
consumption during the last interval. Battery temperature
change is not considered here.

(22)
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IV. MESMOC: MAX-VALUE ENTROPY SEARCH FOR MULTI-
OBJECTIVE OPTIMIZATION WITH CONSTRAINTS

In this section, we first provide the ML theory background
and formal problem setup. Subsequently, we describe the novel
ML-based optimization algorithm referred to as MESMOC to
accelerate design automation of ETPS by saving a significant
amount of resources.

A. ML Background and Problem Setup

Bayesian Optimization Framework is a very efficient
framework to solve global optimization problems using black-
box evaluations of expensive objective functions. Let ¥ € R®
be an input design space with d design parameters. In a single-
objective problem setting, we are given an unknown real-
valued objective function f: X — R, which can evaluate each
design x € X to produce an evaluation y = f(x). Each
evaluation f(x) is expensive in terms of the consumed
resources. For example, in the case of the ETPS design
problem, there involves performing an expensive simulation to
evaluate the design quality. The main goal is to find a design
x* € X that approximately optimizes f by performing a limited
number of function evaluations. BO algorithms learn a cheap
surrogate statistical model from the training data obtained from
past function evaluations. This statistical model can predict the
design output that is not evaluated yet and can quantify
uncertainty in prediction. The prediction/uncertainty estimates
from this model are used to intelligently select the next input
design for evaluation by trading-off exploration (selecting
designs with high uncertainties) and exploitation (selecting
designs with better predicted objective values) to quickly direct
the search towards optimal inputs. The three key elements of a
BO framework are as follows:

1) Statistical Model of the true function f(x). Gaussian
Process (GP) [32] is the most commonly used model. A GP
over a space X is a random process from X to R. It is
characterized by a mean function u: X = R and a covariance or
kernel function k: X X X = R. If a function f is sampled from
GP(u, k), then f(x) is distributed normally NV (u(x), k(x, x))
for a finite set of inputs from x € X.

2) Acquisition Function (o) to score the utility of evaluating a
candidate input X € X based on the statistical model. Some
popular acquisition functions in the single-objective literature
include expected improvement (EI), upper confidence bound
(UCB), predictive entropy search (PES), and max-value
entropy search (MES) [33].

3) Optimization Procedure to select the best scoring
candidate input according to @, depending on the statistical
model. DIRECT [34] is a very popular approach for acquisition
function optimization.

Problem Setup of Multi-Objective Optimization with
Constraints: Our goal is to minimize real-valued objective
functions f; (x), fo(x), -+, fx (x), with K > 2, while satisfying
L black-box constraints of the form c;(x) = 0,c,(x) =
0,-++,c.(x) = 0 over continuous space ¥ € R? (e.g., battery
cell voltage, motor winding temperature, etc.). Each evaluation
of an input x € X produces a vector of objective values and

constraint values ¥ = (¥f,, ", Vrr Ve, = Ve, ) Where yp, =
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fie(x) for all k€{1,2,,K} and y, =¢(x) for all [ €
{1,2,---,L}. We say that a valid design x, satisfying all
constraints, Pareto-dominates another design x' if fi(x) <
fi(x"), vk and there exists some k € {1,2,---,K} such that
fir(x) < fi(x"). The optimal solution of MOO problem with
constraints is a set of designs X* < X such that no design x’ €
X\X™ Pareto-dominates a design x € X' * and all designs in X'
satisfy the L problem constraints. The solution set X * is called
the optimal Pareto set, and the corresponding set of function
values Y* is called the optimal Pareto front. Our goal is to
approximate X* by minimizing the number of function
evaluations.

B. MESMOC for Multi-Objective Optimization with
Constraints

In this subsection, we first provide an overview of the

proposed MESMOC algorithm, then explain the technical
details of the algorithm by mathematically describing the
output space entropy-based acquisition function.
Overview of MESMOC algorithm. We propose an
acquisition function referred to as MESMOC that computes the
information gain of a new design x with respect to the optimal
Pareto front Y*. In each iteration of MESMOC, we select the
design that provides the maximum information gain for
evaluation. The algorithm has four major steps as depicted by
Fig. 1.

Step 1: Learning surrogate models (Posterior
estimation). Gaussian processes are shown to be effective
surrogate statistical models. We model the objective functions
and black-box constraints by independent GP models
Mf1'Mfz"“'MfK and Mcl,J\/[Cz,---,MCL with a zero mean
and i.i.d. (independent and identically distributed) observation
noise. Let D = {(x;,¥;)}i=1 be the training data from the past
t—1 iterations, where x; €X is a design and y; =
fs - Yo Ve ¥4} is the output vector resulting from
evaluating the objective functions and constraints at x;. We
learn surrogate models from D.

Step 2: Pareto front sampling. We sample black-box
functions and constraints from the model. We employ the
sampled functions to generate a set of sampled Pareto fronts via
a cheap constrained multi-objective optimization solver.

Step 3: Acquisition function optimization. We optimize
the acquisition function based on the sampled pareto fronts to
select the design with the highest information gain while
satisfying the constraints for the next evaluation.

Step 4: Design evaluation: we evaluate the objective

functions and constraints for the selected design, and add them
to the aggregate training data to update the statistical models
based on this new information.
Output space entropy-based acquisition function. Input
space entropy-based methods such as PESMO and PESMOC
[21][22] select the next candidate input x, by maximizing the
information gain about the optimal Pareto set X'*. For ease of
notation, we drop the subscript in below discussion. The
acquisition function based on input space entropy is given as

Authorized licensed use limited to: Washington State Universi

a(x) =I1{x,y},X"|D)
=H(X" D) —E,[HOX* | DU {x,y})]
=Hy | D,x) —Ex<[HY | D,x,X7)]

Information gain is defined as the expected reduction in
entropy H(+) of the posterior distribution P(X™ | D) over the
optimal Pareto set X'* as given in (23). This mathematical
formulation relies on a very expensive and high-dimensional
(m - d dimensions) distribution P(X* | D), where m is the size
of the optimal Pareto set X*, and d is the dimension of the
input space (number of design parameters). Furthermore,
optimizing the expected entropy, Ex+[H(y | D,x,X*)], in
(23) poses significant challenges: a) a series of approximations
are required, which can be potentially sub-optimal [21]; and b)
optimization, even after approximations, is expensive; and c)
performance is strongly dependent on the number of Monte-
Carlo samples.

To overcome the above challenges of computing the input
space entropy-based acquisition function, [6] proposed to
maximize the information gain about the optimal Pareto front
Y*. However, the MESMO algorithm in [6] did not address the
challenge of a constrained Pareto front. We propose an
extension of MESMO’s acquisition function to maximize the
information gain between the next candidate input for
evaluation x and the optimal constrained Pareto front Y*, given
as

(23)

ax) =I1({xy}LY"1D)
=HY"ID)—E,[H(Y" IDU{x,y})]
=HyID,x)—Ey:[Hy 1D, x,Y")]
In this case, the output vector y is K + L dimensional: y =
Ufo Vi Vo Yey = Ye,) Where yg, = fi(x) for all k€
{1,2,--,K} and y,=c¢(x) for all [€{12-, L}
Consequently, the first term in the r.h.s. of (24), entropy of a
factorizable (K + L)-dimensional Gaussian distribution P(y |
D, x), can be computed in a closed form as

H(y | D,x) = (K+L)(12+ln(2n)) o5

Yk=11n (05, () + Xl In (0, (%))

where szk (x) and chl (x) are the predictive variances of k"

24

function and [*" constraint GPs at input x, respectively. The
second term in the r.h.s. of (24) is an expectation over the
Pareto front Y*. We can approximately compute this term via
Monte-Carlo sampling as

By [H(y | D,x,Y")] = T3, [HY | D, x,Y:)]

where S is the number of samples, and Y; denotes a sample
Pareto front. The main advantages of our acquisition function
are computational efficiency and robustness to the number of
samples [6].

There are two key algorithmic steps to compute (26): 1)
compute Pareto front samples Y;; and 2) compute the entropy
with respect to a given Pareto front sample Y.

1) Computing Pareto front samples via cheap multi-
objective optimization. To compute a Pareto front sample Y,
we first sample functions and constraints from the posterior GP

(26)

2332-7782 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution reC{uireDs IEEFT pe(rjm(ijssionDSee httﬁ;//w&vxv.ée()e;;)rg{pg%alécgtb(}gsljglzg)(fiards/Fublications/rights/indexhtml for more information.
Ity. Downloaded on December 24, a KoV rom

EEE Xplore.  Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTE.2021.3113958, IEEE

Transactions on Transportation Electrification

models via random Fourier features [31] and then solve a cheap
multi-objective optimization over the K sampled functions and
L sampled constraints.
Cheap MO solver: We sample f; from GP model M, for each
of the K functions and ¢; from GP model M, for each of the L
constraints. A cheap constrained multi-objective optimization
problem over the K sampled functions f;, f5,*, fx and the L
sampled constraints ¢;,¢,,+,¢; is solved to compute the
sample Pareto front Y; . This cheap multi-objective
optimization also allows us to capture the interactions between
different objectives while satisfying the constraints. We employ
the popular constrained NSGA-II algorithm [35] to solve the
constrained MO problem with cheap objective functions noting
that other MOO algorithms (GAs, PSO, etc.) can be used for
similar effects.

2) Entropy computation with a sample Pareto front. Let
Y: = {z',-+-,2™} be the sample Pareto front, where m is the
size of the Pareto front and each z' is a (K + L) -vector
evaluated at the K sampled functions and L sampled constraints
A {Zfil,"',ZfiK,Zél,"',ZéL} , and i€{l,---,m} . The
following inequality holds for each component y; of the (K +
L) -vector y = {yg, ,¥Ye,} in the entropy term
H(y 1D, xYs):

y, <max(z}, -z VjE{fu - focnaa)  (27)

The inequality essentially means that the j** component of y
(i.e., y;) is upper-bounded by a value obtained by taking the
maximum of j* components of all m (K + L)-vectors in the
Pareto front Y; . This inequality has been proven by a
contradiction in [21] for j € {f;, -, fx}. We assume the same
forj € {cy,"",cL}.

By combining the inequality (27) and the fact that each
function is modeled as an independent GP, we can model each
component y; as a truncated Gaussian distribution since the
distribution of y; must satisfy y; < max{z}, e,z
Furthermore, a common property of entropy measure allows us
to decompose the entropy of a set of independent variables into
a sum over entropies of individual variables [36]:

¥ 1 D, x,Ys) = Xy H (¥7, |D, x,max{zf,, -
+Xi=1 H 0 |D, x,max{zg, -+ 27 })

The r.h.s. is a summation over entropies of (K + L)-variables

Y= Ve Ve Ve, ) The differential entropy for each

yj is the entropy of a truncated Gaussian distribution [37] and
given by

’ny'yL'1'

ka}) (28)

H(y, D, x,y/%) =
] (29)

fk fk
e ¥s (v “(x))
[(“Zﬂ + In(o7, (%)) + 1n(p(),sfk (x)) — %
20(ys” (%))

H(e,|D, %,y,"") =
] (30)

1 1
(1+In(27)) cl _ Vs s ()
[ 4 in(or, (0) + n0 (" () — Bt D
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Consequently, we have:
H(y 1D, x,Ys) =

fk fk

(1+In(2m)) f Vs (0)¢ys " (%)

Y=t [—nz +In(ap, (%)) + InP(ys “(x) — =—F——= ]
20(ys (%)

Q! 3
L [a+men) a A COL IV (x))]
+ 3o [FEE 4 (o, () + Ind (" () — Bt D
(€29)
crx fk*
Ys© =, (X) Vs _p'fk(x) cr* Srex
- xX) = ———; and
PERRRE (x) g s Ys
are the maximum values of constraint & and function f
reached after the cheap multi-objective optimization over
sampled functions and constraints: ysc "= max{z}l,---z?ll},
ysf = max{z}k,---z}'lz}; ¢ and @ are the p.d.f. (probability
distribution function) and c.d.f. (cumulative distribution
function) of a standard normal distribution, respectively. By

combining (24), (25), and (31), we obtain the final form of our
acquisition function as

where y;'(x) =

Lies |k rweolka) .
a(x) =< ls=1 Zk:1m ln¢>(VSf )

€l cl
L Ve () ¢
+ Zl=1 24)(},21()‘)) Ind)(ys (x))
A complete description of the MESMOC algorithm is
summarized in Algorithm 1. The blue colored steps correspond
to the computation of our output space entropy-based
acquisition function via sampling.

(32)

V. ML-PHYSICAL MODEL INTEGRATION AND SYSTEM DESIGN
FRAMEWORK

Now that an understanding of the MESMOC ML algorithm
and the ETPS models has been established, the integration of
the two can be discussed.

A. Practical Issues in Model-ML Integration

The physical modeling approach described in Section III
requires a proper interface with the ML algorithm. A major
challenge of model-ML integration is how to handle failed
design cases, as the failed designs still provide useful learning
information although the simulations face non-preferred
conditions. In order to maintain consistent results, simulations
must continue running regardless of whether the design
succeeds the mission under constraints or not. Consistency in
results is essential, since MESMOC learns from every
simulation. However, simulations are subject to instability when
the vehicle is operating at extreme limits. For example, the
motor winding temperature is especially susceptible to positive
feedback and eventual simulation instability.

Simulation instability can be prevented by suppressing
model critical variables, which are often constraint variables
(e.g., temperature, voltage, current, etc.), when a specified limit
is exceeded. A soft limit approach still allows differentiation
between healthy and ill designs by preserving information about
the extremity of constraint violations. A hyperbolic function,
such as the tanh trigonometric function, realizes this soft limit
by asymptotically approaching a value. When a variable’s
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Algorithm 1 MESMOC Algorithm

Input: input space ¥; K black-box functions f4(x), f2(x),

c1(x), cz(x),++, € (x); and maximum number of iteration

1: Initialize Gaussian process models M, , My, , -, M,
points

2:forcacht = Ny + 1 to T,y do:

-+, fx(x); L black-box constraints
S Tmax
and Mo, M,,, -, M, by evaluating at Ny initial

given in equation (32)

cL(xy))

o Mo,

3: Select X, « argmax,cy a;(x)

st. (e, =0,-, 1, =20)
4: a,(.) is computed as:
5: for each sample s € 1, -+, S
6: Sample f;, ~ My, Vke(l-- K}
7: Sample ¢; ~ M, VIe€{l,-,L}
8: // Solve cheap MOO over (f, -+, fx) constrained by (&4, -, &)
9: Ys < argmax,ex(f1, -, fx)

st. (€,=20,---,6,=0)

10: Compute a,(.) based on the § samples of Y5 as
11 Evaluate x5y, < (f1(Xe), -, fr(Xe), €1(xXe), -+,
12: Aggregate data: D « D U {(x4, y:)}
13: Update models Mh'Mfz"“'MfK and Mcl,M
14: t « t + 1 return Pareto front of f1(x), f2(x), -, fx(x) based on D
15: end for

16: return Pareto front of f;(x), f2(x), -, fx(x) based on

D

constraint is to be violated, a hyperbolic function suppresses the
output through variable saturation. For the example of motor
winding temperature, applying a soft limit when the temperature
exceeds its physical limit reduces further positive feedback by
saturating the calculated temperature. This provides more
information to the ML algorithm than a hard ceiling limit, where
various failed system designs would report the same motor
temperature that would be indistinguishable by the ML.

In the case of battery energy depletion, the SOC is reset to
the simulation’s initial SOC. This is preferred over terminating a
simulation at the minimum allowed SOC, as the reported total
energy consumed will likely be much lower than a design that
completes the mission. A depth of discharge (DOD) variable
keeps track of the total amount of battery discharged throughout
multiple SOC resets. By resetting the SOC, the total energy
consumed will more accurately represent the necessary energy
to complete the mission for a specific design.

B. MESMOC Parallel Evaluation

To accelerate the overall design optimization process,
multiple instances of MESMOC can be run in parallel. For
each individual run, the surrogate statistical models are trained
only using the designs selected by that MESMOC instance. To
avoid redundant simulations, if a MESMOC instance selects a
design which has been previously evaluated by another
instance, the results will be shared. This parallel computing
approach diversifies the exploration across the runs to quickly
uncover the approximate Pareto design sets.

C. MESMOC Scalability

In the unconstrained version of MESMOC, namely
MESMO, paper [6] shows that MESMO maintains its
performance on problems with up to ten input space

C{uires IEEE
I
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dimensions and also evaluates experiments with up to six
objective functions. MESMOC is expected to perform the same
and will be demonstrated in Section VI. Additionally, there is
existing literature for a wrapper over any BO method that
allows for scaling to high dimensional input spaces [38]. Very-
high-dimensional design space, objectives, and constraints
enabled MESMOC or a hierarchical optimization process for
ETPS design will be of interest for future work.

D. Software Tools and Interface Requirement

The MESMOC algorithm is developed in Python while the
UAYV modeling is developed in MATLAB. MESMOC utilizes
an open-source BO library called Spearmint, and the PyGMO
library is used for the NSGA-II algorithm in the cheap MO
solver. The UAV models are developed with the basic
MATLAB setup without special toolboxes. The matlab.engine
library enables MATLAB function and script calls in the Python
environment. After software compatibility verification,
MESMOOC, given the full parameter ranges of the design space
to search through, calls on MATLAB simulation for design
evaluations. With the described set of tools and their integration,
the process of finding an optimal design is automated.

VI. EXPERIMENTS & RESULTS
A. Experiment Overview

As discussed in Section I, the MOO is a model-based
design methodology. It is used to run numerous simulation-
based experiments, as a standard industry practice, especially
common in the aviation sector. The design objective here is not
to validate dynamic control laws or model accuracy, hence
demonstration via hardware-in-the-loop or hardware is beyond
the scope. The MOO builds upon accurate models, on the other
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hand, which are verified elsewhere in literature. Therefore, this
section details various simulation-based experiments to
showcase the efficacy of the proposed ML-based MOO process.

Case studies must be given concrete design parameters,
objectives, and constraints. First, the optimization problem for
this eVTOL UAYV case design is formally defined by

m;l’l Etotal
mxin Myav
s.t. DOD < 0.75
Vpar = 3.0V
T < 130°C
T; < 125°C
m, < 1.155

This case study chooses two optimization objectives:
minimizing the energy consumption throughout the mission,
Eiotar, and minimizing the UAV’s total mass, my,y,. The two
selected objectives contain mutual tradeoffs, since heavier
components, such as motors, tend to be more efficient; however,
the extra weight consumes additional energy during flight.
These two objectives are common practice in industrial designs;
however, users may choose others such as reliability and cost.
Five representative constraints serve for demonstration purposes
in this paper. In particular, Li-ion batteries have a typical
operating range between 20% and 95% SOC, thus a maximum
DOD of 75%. A minimum battery cell terminal voltage, Vj 4, is
imposed to prevent cell damages [28]. The maximum motor
winding temperature, T,,,, limits thermal degradation of wire
lamination and is based on the NEMA insulation class B rating
[39]. Semiconductor device failure is avoided with a maximum
inverter temperature, T;, that is set marginally lower than the
datasheet information [28]. A maximum modulation index, m,,
is set to avoid excessive unwanted distortion that can occur
under an SPWM switching scheme [40]. At the end of a
simulation, the constraint and objective variables are returned to
MESMOOC, as described in Fig. 1 in Section II.

On the ML algorithm side, MESMOC is compared to the
known constrained GA, namely NSGA-II, and to the BO
method PESMOC. We evaluate the performance of MESMOC
and the baselines using the Pareto hypervolume (PHV) metric,
which is a commonly employed metric to measure the quality
of a given Pareto front [41]. The Platypus library was used for
the NSGA-II trials and configured for the same total number of
design evaluations as MESMOC and PESMOC. Given the
randomness in the NSGA-II process, which is a known issue,
we run the algorithm several times and report the Pareto front
of the best performing run (Figs. 4 and 6) and the hypervolume
curves of three different runs (Figs. 5 and 7), to be further
discussed in Subsections B and C.

Each optimization algorithm is applied to the design
process of a UAV power system in two trials to evaluate
performance. The first trial approaches the power system
design with a five-dimensional design space, while the second
trial adds an additional dimension to explore the scalability of
the ML algorithm wunder the same computing assumption. The
design space for both trials, comprised of each parameter and

(33)
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Table II. UAV Design Space Ranges for Trial 1 and Trial 2.

Design Parameter Range
Battery cells in series, Ng (#) [10:18]
Battery cells in parallel, Ny, (#) [16:70]
Quantity of motors, N,,, (#) [6:10]
Height of stator structure, hg (mm) [8:26]
Motor stator winding turns, N (#) [10:55]
Inverter switching frequency, f;,, (kHz) | [10:40]

the range, is summarized in Table II. The bounds on the design
space were found through a broad search using the brute force
method, similar to Latin hypercube sampling [7]. This method
of boundary selection is sufficient for demonstration purpose in
this paper, while real-life selections also consider the specific
application’s requirement, rule of thumb, hardware’s absolute
limits, and the designer’s confidence interval.

B. Trial 1: 5-Dimensional Design Space

The design space for this trial consists of 42,000 design
combinations using five parameters: N, Ny, Np,, N¢, and hg,
indicated in Table II. Based on the experimental setup
discussed in Subsection A and the constrained optimization
problem given in (33), brute force, MESMOC, PESMOC, and
NSGA-II methods were run. Fig. 4 shows the most meaningful
points evaluated by the four algorithms and their respective
Pareto fronts. The figure indicates each point as a potential
design with respect to the two objective functions, omitting
points that do not pass all the constraints. Note that the sporadic
empty spaces and discrete boundaries are due to a few factors:
1) the battery parameters, Ns and N,,, cause discrete changes to
the objectives; 2) the inherent difference in the energy
requirement and vehicle mass between n-motored UAVs
creates clusters of points within the objective space; and 3)
many designs in the design space are not valid due to constraint
violations and are thus not shown.
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Fig. 4. Trial 1: Pareto fronts and design space evaluated by brute force,
MESMOC, PESMOC and NSGA-II. Points beyond the upper right
corner are not shown as they are far away from the Pareto front and
affect the figure resolution if shown otherwise.
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Fig. 5. Trial 1: PHV through the design search for MESMOC,
PESMOC and three runs of NSGA-II.

MESMOC uncovered all six points in the optimal Pareto
front; this was achieved with 1,736 design evaluations,
equating to ~4% of the entire design space searched. In
comparison, PESMOC and NSGA-II did not find any of the
optimal Pareto optimal points under the same number of design
evaluations. Additionally, given that the constraints are defined
as a black-box, it is important to evaluate each algorithm’s
ability to select inputs that satisfy the constraints. PESMOC
and NSGA-II experiments show poor performance with
percentages of valid points selection of 4% and 39%,
respectively. For MESMOC, 95% of the selected inputs are
valid.

While Fig. 4 provides a visual aid to compare the Pareto
fronts to the entire design space, it does not show the
convergence behavior and progress of the algorithms. Hence
the PHV metric shown in Fig. 5 is used, measuring the
hypervolume of the best Pareto front throughout the search.
The graph depicts how each algorithm’s hypervolume
approaches the volume of the optimal PHV, which is calculated
from the brute force search results. Note that a single
generation for NSGA-II consists of many iterations based on
the population size, and an iteration is equivalent to a design
evaluation. From Fig. 5, not only does MESMOC successfully
discover the optimal Pareto front, it also converges faster than
PESMOC and NSGA-II do to their best front. This experiment
highlights MESMOC’s ability to reduce design evaluations
while also maintaining search accuracy.

C. Trial 2: 6-Dimensional Design Space

The terminating point for MOO algorithms such as GA or
BO is a continuing challenge. When the optimal Pareto front is
unknown, there is no deterministic method to generate a
termination point. As such, it is common to interpret the given
Pareto front after a set number of iterations as the most
optimal; the approximate number depends on the application
and complexity. Algorithms that provide an accurate and fast
convergence rate are then highly favorable, as the quality of
optimization is dependent on the Pareto front at the end of a
search. Different from Subsection B, this subsection compares
the non-optimal Pareto front quality of the proposed MESMOC
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to that of PESMOC and NSGA-II, by quadrupling the design
space size while retaining the same number of design
evaluations. To achieve this increase in design space, the
inverter switching frequency, f;,,, becomes a design parameter,
indicated in Table II. All other parameters and their ranges
remain the same as in Trial 1. Thus, the total number of design
combinations increases to 168,000. Under the same constrained
optimization problem as Trial 1, Fig. 6 shows the Pareto fronts
of all algorithms, along with the optimal Pareto front from
brute force. MESMOC uncovered two of the five points on the
Pareto front while PESMOC and NSGA-II did not discover any
Pareto optimal points. Although MESMOC does not find the
entire optimal Pareto front, it offers a strong final Pareto front.
Moreover, MESMOC maintains its high performance at
selecting 80% of valid designs while the performance of
PESMOC and NSGA-II degrades further to selecting only 1%
and 15% of valid points, respectively.

A PHV plot throughout the search with MESMOC,
PESMOC, and NSGA-II is provided in Fig. 7, showing that the
Pareto front found by MESMOC has a PHV quantitatively
close to the optimal PHV. Compared to the PHV in Fig. 5 from
Trial 1, MESMOC’s PHV curve in Trial 2 grows much slower
and contains extended periods of zero improvement. During the
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perceived periods of no improvement, MESMOC is still
selecting designs to simulate that will maximize the
information gain with respect to the optimal Pareto front. The
intelligent component of MESMOC to continually improve the
statistical model of the design space with respect to the
objective functions guarantees continual Pareto front
improvement. However, the increased design space size
requires more design evaluations to build a robust statistical
model of the objective functions. Before MESMOC was
terminated at 1,750 designs, the PHV was still increasing. On
the other hand, NSGA-II depends on random ‘mutations’ of its
current set of designs for PHV improvement. Because of the
GA’s inherent randomness, there is no guarantee it will
converge on the optimal Pareto front. The enhanced
performance of the output-space entropy search used in
MESMOC is made clear when compared to PESMOC, another
BO algorithm.

While MESMOC can drastically reduce the number of
design evaluations compared to brute force, PESMOC, and
NSGA-II, it comes at a cost, admittedly. The MESMOC
acquisition function relies on the previously evaluated design
parameters and objective values. Thus, the computational cost
of selecting the next design to simulate increases with respect
to the iteration number. To put it into context, MESMOC
consumes an average of 60 seconds per iteration throughout the
optimization process (excluding physical model’s simulation
time) for Trial 1 and an average of 68 seconds per iteration for
Trial 2. In terms of scalability, the time per iteration should
increase linearly with the increase of number of constraints and
objectives, experimentally shown in [6] with MESMO. This
computational cost increase is part of the motivation behind the
parallel implementation of MESMOC, as discussed in Section
V-B. Regardless, the performance of MESMOC is highly
favorable, as there is a tradeoff between computation time and
optimization accuracy for systems with a large design space. In
the end, the drastic reduction in the number of design
evaluations outweighs the computation gain in parameter
selection per iteration. The benefit is especially obvious when
simulating complex physical models treated as a black-box,
where each physical simulation iteration takes much time.

D. One Optimal UAV Power System Design

The UAV power system simulation is demonstrated with
the Pareto optimal design of Trial 1 that had the greatest system
mass but lowest energy consumption among the few Pareto
points. This design, with parameters Ny = 12, N, = 26, N,,, =
10, hy =12mm, N, =55, and f;,, = 30 kHz resulted in a
total UAV mass of 28.36 kg and consumed 1.965 kWh of
energy. The system behavior throughout the 30-minute flight is
given in Fig. 8. Fig. 8a provides the total system power
consumption and loss, along with the battery SOC throughout
the simulation. Fig. 8b-c contains the remaining design
constraints of (33), specifically the motor and inverter
temperatures, battery cell voltage, and inverter modulation
index. While the temperatures are calculated as steady-state,
they remain non-constant due to the feedback from
temperature-dependent resistance.
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VII. CONCLUSION AND FUTURE WORK

This paper presented a ML based design automation and
multi-objective optimization approach for ETPS — an enhancesd
model-based design methodology. A novel MESMOC ML
algorithm is proposed, capable of searching through a
constraint-heavy design space to efficiently discover Pareto
optimal designs. This paper also serves as the first-of-its-kind
that such an ML-based multi-objective BO under constraints is
successfully demonstrated for an ETPS design. The proposed
MESMOC algorithm is a specific instance of the general
Bayesian optimization framework to optimize multiple
objectives by handling constraints through expensive design
simulations. By treating the physical simulation of ETPS as a
black-box function, MESMOC builds statistical models of the
objective functions and constraints to intelligently search
through the design space to efficiently discover Pareto optimal
designs. MESMOC was shown to minimize the number of
design simulations, exploring only 4% of the design space to
uncover the full optimal Pareto front in Trial 1 experiment,
using an eVTOL UAV case study. In contrast, the popular GA
NSGA-II and another BO algorithm PESMOC, were
unsuccessful in their search. MESMOC consistently provided a
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better PHV than the baselines throughout all search iterations.
The increased design space size in Trial 2 demonstrated
MESMOC’s superior Pareto front accuracy when the design
space was extremely large to sufficiently explore, where two of
the five Pareto optimal points were uncovered. Although there
are some outstanding challenges, the ML based design
automation offers a promising solution to significantly reduce
engineering effort and time to determine an optimal power
system design.

Future work will investigate the improvement of Pareto
front discovery regardless of the size of the design space. This
will be approached from the side of design problem setup by
narrowing the breadth of search along with improvements in
algorithm development. An investigation into the reliability of
the search is also underway. Additional work will explore and
verify multi-fidelity physical ETPS models and their interaction
with ML.
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