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Abstract

Concurrent systems software is widely-used, complex, and
error-prone, posing a significant security risk. We introduce
VRM, a new framework that makes it possible for the first
time to verify concurrent systems software, such as operating
systems and hypervisors, on Arm relaxed memory hardware.
VRM defines a set of synchronization and memory access
conditions such that a program that satisfies these conditions
can be mostly verified on a sequentially consistent hardware
model and the proofs will automatically hold on relaxed mem-
ory hardware. VRM can be used to verify concurrent kernel
code that is not data race free, including code responsible for
managing shared page tables in the presence of relaxed MMU
hardware. Using VRM, we verify the security guarantees of a
retrofitted implementation of the Linux KVM hypervisor on
Arm. For multiple versions of KVM, we prove KVM’s security
properties on a sequentially consistent model, then prove that
KVM satisfies VRM’s required program conditions such that
its security proofs hold on Arm relaxed memory hardware.
Our experimental results show that the retrofit and VRM con-
ditions do not adversely affect the scalability of verified KVM,
as it performs similar to unmodified KVM when concurrently
running many multiprocessor virtual machines with real ap-
plication workloads on Arm multiprocessor server hardware.
Our work is the first machine-checked proof for concurrent
systems software on Arm relaxed memory hardware.
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1 Introduction

Concurrent systems software such as commodity operating
system (OS) kernels and hypervisors form the backbone of
safety-critical systems, the latter increasingly used to run
virtual machines (VMs) on hosts in the cloud. Despite their
importance, these multiprocessor systems are complex and
error-prone, posing a significant security risk as large code-
bases contain many vulnerabilities. It is crucial to ensure the
formal correctness of these commodity software systems.
Broadly speaking, a proof of correctness involves three
components: (1) a specification, an abstract model of how the
program is meant to behave which serves as the standard
of correctness; (2) a hardware model, an abstract model of
the hardware that executes the program which defines the
machine interface with which a program may interact; and
(3) an implementation, a concrete program definition repre-
senting the software we hope to verify. The proof needs to
show that any behavior exhibited by the implementation run-
ning on the hardware model is captured by the specification.
Its soundness ultimately rests on the accuracy of the hard-
ware model. If the actual hardware exhibits behaviors beyond
the specified hardware model, then any proof of correctness
constructed upon that model cannot give any meaningful
guarantees about the behavior of the real program.
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Recent efforts [9, 10, 12, 21, 23, 25, 30, 34, 39, 53] prove the
correctness of software systems over simple hardware models.
For example, seL4 [30], Komodo [18], and Serval [43] assume a
uniprocessor hardware model; it is unknown how their proofs
can be extended to multiprocessor hardware. CertiKOS [22-
24], AtomFS [56], and Mailboat [8] are multiprocessor sys-
tems, but are all verified using a sequentially consistent (SC)
hardware model, which assumes that memory accesses be-
have as if the operations of all the CPUs were executed in
some sequential order while preserving program order [33].

Unfortunately, this is not how real multiprocessor systems
behave. To alleviate memory access bottlenecks, modern in-
struction set architectures such as Arm, RISC-V, and x86 sup-
port relaxed memory (RM) hardware, allowing CPUs to re-
order memory accesses and execute out of program order.
CPUs may observe RM effects and disagree about the order
they observe each other accessing memory. Consider the fol-
lowing example with two threads:

Example 1 (Out-of-order write).
PRE: [x] =[yl=r0=r1=0

CPU1 CPU2

(a) ro := [x1; () r1 := [yl;

(b) Lyl :=1 (d) [x] :=r1

RM EXECUTION: (b) — (c) — (d) — (a)
PosT:ro = r1 =1

On SC hardware, either (a) or (c) will be executed first, which
means that at least one of ro and r1 will be 0. However, on RM
hardware, both ro and r1 can be 1. Since the accessed address
in (b) is independent of the one in (a), (b) can be executed
out-of-order before (a), and the whole execution order can be
(b) = (c) = (d) — (a), which cannot occur on SC hardware.
Using uniprocessor or SC multiprocessor models may make
proofs for software systems tractable, but they fail to provide
any guarantees about the behavior of these systems executing
on real RM hardware. While more realistic hardware models
have been proposed which model RM effects [19, 47, 48], they
have not been shown to be practical or feasible to use for
verifying real systems software.

There are some circumstances in which a program’s be-
havior on SC hardware is equivalent to its behavior on RM
hardware. If a program is data race free (DRF), i.e., no two
threads can access one memory location at the same time,
its behavior on SC and most RM hardware is the same [1].
However, this theorem is of limited utility in practice because
it requires the entire program be DRF, including the lock im-
plementations used to guarantee that the program is DRF, and
locks are inherently not DRF as they are designed to allow
concurrent reads of a lock value which may be updated.

A more useful notion is the local DRF condition, which
allows a program to have some parts that are DRF and other
parts that are not. If a program satisfies the local DRF condi-
tion, such as a program in which all shared objects are cor-
rectly protected by locks even though the locks themselves
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may not be DREF, its behavior on SC hardware is equivalent to
its behavior on RM hardware that obeys certain architectural
constraints [17, 27]. However, the local DRF condition must
hold on RM hardware, not just an SC model. Using an SC
model to attempt to prove that a program is local DRF so that
an SC model can be used would be circular and insufficient
to make any claims about whether the program is actually
local DRF on RM hardware. Furthermore, although x86-TSO
hardware satisfies the architectural constraints required for
applying the local DRF condition, other architectures such as
Power and Arm do not, the latter being particularly important
given its dominance in mobile and embedded systems and its
increasing use in personal computers and cloud computing.
For those architectures, whether or not a program is local
DREF provides no guarantee about whether its behavior is the
same on SC and RM hardware.

To address this problem, we introduce VRM (Verification
on Relaxed Memory), a new framework for verifying concur-
rent systems software on RM hardware. We focus on kernel
code, code that runs at a higher privilege level, as used in OS
kernels and hypervisors, given their central importance in
protecting our computing infrastructure. VRM defines a set
of six synchronization and memory access conditions, which
we refer to as weak data race free (WDRF) conditions. VRM
proves that kernel code that satisfies these conditions can be
verified mostly on an SC hardware model and have the proofs
hold when running on Arm RM hardware.

wDREF conditions can be thought of as a weaker notion of
DRF which requires that the kernel code is DRF except for
(1) data races in lock implementations bounded by memory
barriers and (2) limited read/write races in page table imple-
mentations. The second relaxation of DRF is important in
practice because kernel code is often responsible for manag-
ing page tables, which may be shared across multiple CPUs
on multiprocessor hardware and concurrently read via MMU
hardware while they are being updated by kernel code. To ac-
count for page table implementations in the presence of MMU
hardware that may exhibit RM behaviors, the wDRF condi-
tions include additional requirements regarding the kernel’s
own page table, shared page table writes, and TLB invalida-
tions. The wDRF conditions further limit the propagation of
RM behaviors from user programs to the kernel by requiring a
degree of memory isolation between user and kernel memory.
The wDRF conditions required by VRM must themselves hold
on RM hardware.

VRM provides a multi-layer hardware model so that pro-
gram properties that must be proven in the presence of RM
behavior can be verified on a RM hardware model, which
can then be lifted to an SC hardware model to simplify the
rest of the program verification. VRM’s bottom-layer RM
operational model is Promising Arm [48], which has been
previously shown to be equivalent to the Armv8 axiomatic
model [47] in Coq. For kernel code which satisfies wWDRF con-
ditions, we prove that properties of the kernel code verified on
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an SC model hold on the Promising Arm model, and therefore
on Arm RM hardware.

We demonstrate the effectiveness of VRM on real software
by using it to verify a retrofitted version of the Linux KVM hy-
pervisor [29]. We build on our previous work on SeKVM [35-
37], a verified KVM implementation for Arm, and show how
VRM extends its proofs to hold in the presence of Arm RM be-
havior. Using VRM, we prove for the first time that a KVM im-
plementation can guarantee the confidentiality and integrity
of VMs on Arm RM hardware. We prove this for multiple
implementations of KVM across multiple Linux kernel ver-
sions for multiple hardware configurations, showing that the
wDRF conditions hold for all KVM versions. No changes to
the verified KVM implementation or its proofs were required
to use VRM. We measure the performance of the verified
KVM versions and show that it performs comparably to un-
modified KVM when running up to 32 multiprocessor VMs
concurrently with real application workloads on Arm server
hardware. These results show that even though verified KVM
requires some modifications to KVM to prove its security
guarantees, and satisfies the wDRF conditions so that those
guarantees extend to RM hardware, neither of these require-
ments adversely affect its performance scalability on Arm
multiprocessor hardware.

2 Relaxed Memory Behavior Bugs

To illustrate the challenges with verifying kernel code on RM
hardware, we discuss six kinds of RM behavior bugs that can
be verified to be correct using an SC model, showing that
systems verified using an SC model cannot provide any mean-
ingful guarantees about program behavior on RM hardware.
Unlike SC hardware which preserves the program order, RM
hardware can reorder instructions, for example, when the two
instructions do not have data dependencies (i.e., value written
to a register by one instruction is used as data by another),
address dependencies (i.e., value written to a register by one
instruction is used in an address calculation by another), co-
herence constraints (i.e., two instructions access the same
memory location), or any explicit barrier between them.

Shared memory access synchronized vialocks. Locksare
commonly used for mutual exclusion on shared memory ac-
cesses. However, a lock implementation that is proven to be
correct using an SC model may misbehave on RM hardware.

Example 2 (VM booting). Figure 1 showsa gen_vmid() func-
tion used in a hypervisor to get the next unused VM identifier
(VMID) when booting anew VM, which is synchronized using
a standard ticket lock implementation. One can easily prove
that this function is correct and well synchronized on an SC
model—only one CPU at a time can execute the critical sec-
tion (lines 11-14) and each new VM will have a unique vmid,
assuming the number of VMs is less than MAX_VM.

Consider the following execution with two CPUs getting
vmid simultaneously:
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1 // ticket, now, and next_vmid are shared vars
2 void acquire_lock() {

3 u32 my_ticket = fetch_and_incr(ticket);

4 while (my_ticket != now) {3};

5 3}

6 void release_lock() {

7 now++;

8 1

9 u32 gen_vmid() {

10 acquire_lock();

11 u32 vmid = next_vmid;
12 if (vmid < MAX_VM)

13 next_vmid++;

14 else panic();

15 release_lock ();

16 return vmid;

17}

Figure 1. A ticket lock implementation that is correct on SC hard-
ware, and its application to synchronize VM booting.

PRE:my_ticket; = 4, my_tickety =5, now = 4
CPU1 CPU2

gen_vmid(): gen_vmid():
acquire_lock(): acquire_lock():

(d) while(my_ticket!=now);
(e) vmid = next_vmid;

(a) while(my_ticket!=now);
(b) vmid = next_vmid;

release_lock();
return vmid;

= ()= (d)

(c) release_lock();
return vmid;

RM EXECUTION: (a) — (b) — (e) — -+

PosT: vmid; = vmid,
Suppose CPU 1’s ticket is 4, CPU 2’s ticket is 5, and the cur-
rent ticket now is 4. One would expect that CPU 2 is trapped
in the while loop until CPU 1 releases the lock, such that the
returned vmid must be different for CPU 1 and CPU 2. How-
ever, the Arm architecture allows CPU 2 to predict that the
loop conditionmy_ticket != nowevaluates to false, and then
execute (e) speculatively. It is possible that the speculative
execution of CPU 2’s (e) happens right after CPU 1 sets its
vmidin (b), before CPU 1 updates next_vmid, such that both
CPU 1 and CPU 2 get the same vmid. CPU 2 may then execute
the loop condition (d) after CPU 1 releases the lock in (c).In
this case, now becomes 5 and the previous prediction of the
speculative execution of (e) can be validated and it will not
reverted. In other words, with the implementation in Exam-
ple 2, two VMs may incorrectly receive the same vmid, causing
further problems in other hypervisor code that expects each
VM to have a unique vmid.

Shared memory access synchronized via auxiliary vari-
ables. Shared memory access can also be synchronized us-
ing other methods such as auxiliary variables. However, they
are harder to implement correctly on RM hardware.

Example 3 (VM context switch). Figure 2 shows the VM
context switch code in a hypervisor. An auxiliary variable
vcpu_state maintains whether or not a virtual CPU (vCPU) of
aVMaisactively running on a physical CPU and can have value
ACTIVE or INACTIVE. To stop running a vCPU, the hypervisor
saves the context of avCPU (lines 2-3) then sets the vcpu_state



SOSP ’21, October 26-29, 2021, Virtual Event, Germany

1 void save_vm(void) {

2 // save the context of a vCPU

3 .

4 u32 vmid = get_vmid();

5 u32 vcpuid = get_vcpuid();

6 vecpu_state[vmid][vcpuid] = INACTIVE;

7

8 wvoid restore_vm(void) {

9 u32 vmid = get_vmid();

10 u32 vcpuid = get_vcpuid();

11 acquire_lock_vm(vmid);

12 if (vcpu_state[vmid][vcpuid] == INACTIVE)
13 vcpu_state[vmid][vcpuid] == ACTIVE
14 else panic();

15 release_lock_vm(vmid);

16 // restore the context of a vCPU

17

18 3}

Figure 2. An implementation of context switch in a hypervisor.

of the vCPU to INACTIVE. To start running a vCPU, the hyper-
visor first confirms that the vcpu_state is INACTIVE, in which
case it sets the vcpu_state to ACTIVE and proceeds to restoring
the context of the vCPU, Otherwise, the hypervisor panics.
On an SC model, this example can be verified to be correct,
because the hypervisor only restores a vCPU’s context and
starts running the vCPU if the corresponding ownership vari-
able is INACTIVE, and such an ownership variable can only be
set to INACTIVE after the context is saved. Thus, the context is
correctly restored to its previously saved state. On RM hard-
ware, however, an older version of the vCPU context may be
wrongly restored, as depicted in the following execution:
PrE: a vCPU running on CPU 1

CPU1 CPU 2

in save_vm()

(a) //save vCPU context; (c) restore_vm();

(b) vcpu_state[vmid]
[vcpuid] = INACTIVE;

RM ExecuTtion: (b) — (c) — (a)

PosT: Incorrect vCPU context restored by CPU 2
When CPU 1 executes save_vm(), the step to save the vCPU’s
context (a) canbereordered after the step (b) setting the own-
ership variable, since there is no data or address dependency
between (a) and (b). When CPU 2 invokes restore_vm(), the
ownership variable may have already been set to INACTIVE,
but the vCPU’s context has not been saved by CPU 1 yet. The
vCPU context restored by CPU 2 may then be an incorrect
older version.

Shared page table access. Shared page tables can be ac-
cessed concurrently on multiple CPUs. They are used by OS
kernels to support threads sharing the same address space, or
hypervisors to support multiprocessor VMs. Even if all page
table updates are well synchronized, shared page tables may
still have data races due to MMU hardware. When a shared
page table is updated by an OS kernel within a critical section
on one CPU, threads using the same page table on other CPUs
can simultaneously read the page table via MMU hardware
during address translation. In other words, read/write data
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races are inevitable for shared page tables that may lead to
unexpected bugs on RM hardware.

Example 4 (Out-of-order page table reads). Consider two
threads and a page table such that 0x10 and 0x11 are all-0 phys-
ical pages, 0x20 and 0x21 are all-1 physical pages, and variables
x and y are in virtual pages 0x80 and 0x81, respectively:

PRrE: page mapping 0x80 > 0x10, 0x81+> 0x11

CPU1 CPU 2
(a) pte[0x80] := 0x20; (c) ro := [y];
(b) pte[0x81] := 0x21 (d) r1 := [x]

RM EXECUTION: (d) — (a) — (b) = (c¢)
PosT:ro =1, r1 =0

On an SC model, the result “ro = 1, r1 = 0” can never be
produced because when [y] returns 1 in the instruction (c),
both remaps of the page table entries (PTEs) on CPU 1 must
have completed, so [x] in (d) must also return value 1. On
RM hardware, such a result is allowed by the execution order
(d) — (a) = (b) — (c) because two reads in (c) and (d) are
neither data nor address dependent and can be executed in
an out-of-order manner.

Example 5 (Out-of-order page table writes). Consider two
threads and a two-level page table:

Pre: yisaleaf of x, zis an addressin y

CPU1 CPU2
(a) pgdx] := EMPTY; || () r1 := [z]
(b) ptely] :=p

RM EXECUTION: (b) — (c) — (a)
PosT: (c) reads values in physical page p

CPU 1 modifies the shared page table in the critical section by
first unmapping the page directory (PGD) x and then setting
the PTE y, a leaf entry of x, to some page p. Simultaneously,
CPU 2 accesses the virtual address z mapped using x and y.
On an SC model, CPU 2 cannot access the physical page p
because when pis mapped toyin the instruction (b), the PGD x
has already been unmapped. The page table walk of (c) either
uses the old page table or triggers a page fault when visiting
the empty PGD x. However, on RM hardware, the instruction
(b) can be reordered before (a) since these two stores are not
data or address dependent. Thus, there is a chance that the
page walk of (c) on CPU 2 uses the updated PTE y before PGD
x is unmapped and the physical page p is mistakenly accessed.

TLB management. A translation lookaside buffer (TLB) is
a cache to speedup address translation. When maintaining
page tables, OS kernels also need to maintain TLBs to be con-
sistent with the page tables, i.e., the value in the TLB is either
invalid, or the same as the value in the page table. Unexpected
bugs may result from RM behavior during TLB management.

Example 6 (Out-of-order page table and TLB reads). Con-
sider two threads with a page table and TLB such that 0x10
is a physical page and y is an address in the virtual page 0x80:
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PRE: page mapping 0x80+ 0x10

CPU1 CPU2
(a) pte[0x80] := EMPTY; || (c) ro := [y];
(b) TLB invalidate 0x80

(d) r1 :=[yl;

RM ExXECUTION: (b) — (c) — (a) — (d)
PosT: CPU 2’s TLB 0x80 +> 0x10;
page mapping 0x80 > EMPTY

On an SC model, after CPU 1 unmaps 0x80 and invalidates all
the corresponding TLB entries, CPU 2 can no longer access
the physical page 0x10 in future instructions such as (d). How-
ever, on RM hardware, the execution order (b) — (c) — (a)
can result in the TLB being inconsistent with the page table.
In this order, (b) first invalidates TLB entries. When (c) is ex-
ecuted, CPU 2 finds that the TLB entry for 0x80 is invalid and
will then get the mapping result from the page table, which
is 0x10. This step may insert the mapping 0x80 +— 0x10 back
to CPU 2’s TLB. Future instructions (e.g., (d)) executed on
CPU 2 can then access physical page 0x10 through the TLB
even after CPU 1 unmaps 0x80 in (a).

Information flow between an OS kernel and user pro-
grams. OS kernels, and hypervisors, run with user pro-
grams, or VMs, that may run arbitrary code. Even if a kernel
itself is well synchronized, it may still have unexpected be-
havior due to it accessing user programs’ memory with RM
behavior.

Example 7. Suppose CPU 1 and CPU 2 run the code in Ex-
ample 1 as user programs, and then increase the value of [z]
if ro or r1is 1. CPU 3 runs the following kernel code that has
access to the user program’s memory [z]:

PrRe: [x] =[yl=[z]=r0=r1=0

CPU 1 (User) CPU 2 (User) CPU 3 (Kernel)
(a) ro := [x]; (c) r1 :=[yl; if [z] == 2:
(b) Lyl :=1; (d) [x] :=r1 r2 :=9;

barrier; barrier; else

if ro ==1: if r1==1: r2 :=1;

[z] +=1; [z] +=1; r3 :=1/rz;

RM EXECUTION: (b) — (c) — (d) — (a)

PosT: Divide-by-zero error on CPU 3
r2is always set to 1 on an SC model because the branch condi-
tion can never be satisfied, but may become 0 on RM hardware
and trigger a divide-by-zero error because both ro and r1 can
be 1. In other words, kernel code cannot be verified alone
without considering how user program behavior may affect
the kernel’s execution.

3 The wDRF Conditions

As shown in Section 2, kernel code may misbehave on RM
hardware even after being verified using an SC model. In
other words, verifying kernel code with an SC model does
not provide any meaningful guarantee of its behavior on real
RM hardware, even though it may require far less proof effort
than verifying the code directly using an RM model.
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Our insight is to use the examples of buggy programs from
Section 2 to define a set of synchronization and memory access
conditions such that for kernel code satisfying these condi-
tions, the guarantees verified using an SC model still hold on
the Arm architecture. We can then reduce the proof effort
on RM hardware to verifying that these conditions hold as
opposed to having to directly verify all aspects of the code on
RM hardware. To characterize this specific class of kernel pro-
grams, we introduce weak data race free (WDRF) conditions
defined as the following six conditions:

1. (DRF-KERNEL) Shared memory accesses in the kernel
are well synchronized (i.e., protected by synchroniza-
tion methods) except for the implementation of syn-
chronization methods and page table management.

2. (No-BARRIER-MIsUSE) Barriers are correctly placed in
the kernel to guard critical sections and synchroniza-
tion methods.

3. (WRITE-ONCE-KERNEL-MAPPING) If the kernel’s own
page table is shared, it can only be written once—only
empty page table entries of the kernel can be modified.

4. (TRANSACTIONAL-PAGE-TABLE) Shared page table writes
within a critical section are transactional. A series of
shared page table writes is called transactional if, un-
der arbitrary reordering of these writes, any page table
walk can only see (1) the walking result before all page
table writes, (2) the walking result after all page table
writes occur in program order, or (3) a page fault.

5. (SEQUENTIAL-TLB-INVALIDATION) A page table unmap
or remap must be followed by a TLB invalidation, with
a barrier between them.

6. (MEMORY-IsoLATION) The memory space accessible by
the kernel code should be partially isolated with user
programs such that user programs cannot modify ker-
nel memory, and either (1) the kernel code will not read
user memory, or (2) the verification of the kernel on an
SC model does not rely on the concrete implementation
of user programs.

Section 4 proves that any behavior of a wDRF kernel im-
plementation running over the Arm RM architecture can be
captured by running the same kernel implementation over an
SC model. To demonstrate that these conditions are useful for
verifying real systems, Section 5 proves that an Arm imple-
mentation of the Linux KVM hypervisor satisfies the wDRF
conditions, and can therefore be verified on an SC model.
Before jumping to the proofs, we first discuss the intuition
behind each condition and how these conditions can prevent
RM behavior bugs.

The DRF-KERNEL condition is a commonly-used approach
in writing kernel code to limit data races and RM behavior,
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such as shown in Example 1. However, synchronization meth-
ods and page table modifications are often not DRF. The No-
BARRIER-MISUSE condition is used to constrain synchroniza-
tion methods. It guarantees that the code within a critical
section cannot be reordered with the implementation of the
synchronization method. This prevents well-synchronized
programs from misbehaving on RM hardware, as shown in
Example 2 and Example 3.

The WRITE-ONCE-KERNEL-MAPPING, TRANSACTIONAL-PAGE-
TABLE, and SEQUENTIAL-TLB-INVALIDATION conditions are
used to constrain page table modifications. The WRITE-ONCE-
KERNEL-MAPPING condition forbids RM behavior on a ker-
nel’s regular memory access due to out-of-order reads of the
kernel’s page table, as shown in Example 4. Kernel code for
64-bit systems often satisfies or approximates this condition
by mapping all physical memory to the kernel page table at
boot. The TRANSACTIONAL-PAGE-TABLE condition guarantees
that page table writes will not result in any behavior on RM
hardware that cannot be produced by SC models. Since data
races over shared page tables are inevitable due to MMU hard-
ware, page tables are often updated in practice according to
this condition to ensure that any potential out-of-order page
table writes cannot result in an undesirable page mapping that
may leak secrets, as shown in Example 5. The SEQUENTIAL-
TLB-INVALIDATION condition precludes RM behavior in TLB
management code. TLB invalidation is commonly performed
according to this condition in practice to avoid undesirable
TLB shootdown problems, such as shown in Example 6.

Finally, the MEMORY-IsoLATION condition forbids informa-
tion flow from user to kernel via memory so that RM behav-
iors of user programs cannot be propagated to the kernel. The
stronger version of the condition disallows kernel code from
reading user memory, preventing the undesirable behavior
shown in Example 7. This condition is simpler to prove, but
may not strictly hold in practice for many systems. For exam-
ple, the condition does not hold for an OS kernel that obtains
arguments from user programs by reading their memory. The
weaker version of the condition allows a kernel to read user
programs’ memory if the verification of the kernel on an SC
model is independent of the user programs’ implementation.
If the proofs to verify the kernel on an SC model rely on the
implementation of user programs, it may be the case that the
user programs behave differently on RM hardware such that
the guarantees proven on the SC model no longer hold on RM
hardware. However, if the proofs are independent of the user
programs’ implementation, then we only need to show that
the set of possible kernel behaviors on SC and RM models are
the same. Note that the behavior of a kernel program P to-
gether with a user program Q on RM hardware may not be the
same as the behavior of PUQ on SC. However, this does not
matter aslong as the executionresult can be captured by PUQ’
on SC for some other user program Q. For example, in Exam-
ple 7, the user program Q’ can be a program that randomly sets
[z]tobeO, 1, or 2. This weaker version of the condition is likely
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to hold for real kernels as they usually have no dependencies
on user programs for their correct behavior. To distinguish
between the stronger and weaker versions of the condition,
we will use MEMORY-ISOLATION to refer to the former and
WEAK-MEMORY-ISOLATION to refer to the latter. We will ini-
tially use the MEMORY-ISOLATION condition, but then show
in Section 4.3 how the WEAK-MEMORY-ISOLATION condition
can be used instead so that VRM can verify kernel programs
that do not satisfy the MEMORY-ISOLATION condition.

Not all systems satisfy the wDRF conditions, but we hy-
pothesize that these conditions are useful in practice for real
systems. The wDRF conditions are sufficient but not neces-
sary for a program to have the same behaviors on SC and RM
models. It is possible to extend the proof to weaker conditions
to accommodate a system design, as we discuss in Section 4.3.
As for the systems that exhibit different behaviors on SC and
RM models, VRM cannot be used to extend their proofs using
an SC model to RM hardware. Instead, these systems must be
reasoned about directly on a RM hardware model, which can
be infeasible for real systems due to the huge proof burden.

4 The VRM Framework

The VRM framework enables proofs of wDRF programs con-
structed using an SC model to extend to the Promising Arm
model [48], which has been proven equivalent to the Armv8
axiomatic specification [16, 47]. The key theorem of VRM is:

Theorem 1 (wDRF theorem). For any system that satisfies
the wDRF conditions, for any piece of the kernel program P, any
possible observable behavior of P on Armv8 RM hardware is
also observable on an SC model.

The guarantee. We first explain what Theorem 1 means
before diving into its formal proof. This wDRF theorem guar-
antees that RM hardware will not introduce any “additional
observable behavior” for a kernel program satisfying wDRF
conditions with respect to the kernel’s behavior on an SC
model. Here, the observable behavior of the kernel program
consists of (1) the execution results (i.e., the kernel states) of
any piece of the kernel program and (2) the results of user pro-
grams’ memory accesses that may be affected by the kernel
program’s update to the user’s page table. Note that this theo-
rem’s guarantee only holds for the kernel program. User pro-
grams, or VMs when the kernel is a hypervisor, are allowed to
contain arbitrary racy code, such that user programs, or VMs,
may indeed have different behaviors on RM and SC hardware.

The formal model for Armv8. To prove Theorem 1, we
first need to formally model Armv8 relaxed memory as the
basis to specify programs’ RM behavior. There is a long line
of work [2, 4, 19, 47, 48] proposing formal memory models
for RM hardware. Among them, the Promising model [27, 48]
is the most “promising” one. In the Promising model, a pro-
gram execution is represented by execution traces for each
individual CPU, a global promise list, and read-from / fulfill
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CPU1 Promise list CPU 2
(HINIT: [x] = [yl =0
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Figure 3. An execution trace for Example 1 in the Promising model.

relations between the traces and promise list. The promise list
represents the global history of all writes. A promise can be
denoted as “c: a«v” meaning that address ais set to value v by
CPU c. Each memory access event in a CPU’s execution trace
must point to a promise in the promise list through either the
read-from relation rf (for load events) or the fulfill relation ff
(for store events). A load event gets the value of the promise
it reads from. As for a store event, the value it writes must be
the same with the value in the promise it fulfills.

Figure 3 shows how the RM behavior of Example 1 can
be represented in the Promising model. The instruction (a)
reads from the promise (3) that is fulfilled by the instruction
(d), while the instruction (c) reads from the promise (2) that
is fulfilled by the instruction (b). The model allows an instruc-
tion to read from a promise that will be fulfilled by a future
write, making it possible to represent RM behavior.

To ensure the model is not more relaxed than the hardware,
the Promising model can introduce constraints to limit the
read-from and fulfill relations. The Promising Arm model
implements the constraints for Armv8 hardware, which in-
clude: (1) a data dependency constraint which ensures that
instructions from the same CPU that are data dependent can-
not be reordered, (2) an address dependency constraint which
ensures that instructions from the same CPU that are address
dependent cannot be reordered, (3) a coherence constraint
which ensures that memory accesses from the same CPU that
access the same memory location cannot be reordered, and
(4) a barrier constraint which ensures that memory accesses
from the same CPU cannot be reordered across barriers.

While the Promising Arm model can precisely model Arm’s
RM behavior, it is hard to use for verifying real programs. To
reason about a program’s behavior using this model, one first
needs to enumerate all possible promise lists and then validate
each promise list to see if it can be fulfilled by the program.
The validating step also has to deal with non-determinism
since there may be more than one promise from which a load
instruction can read. It is infeasible to verify every single
line of a complex software system using this model. VRM
addresses this problem by allowing most of a kernel program
to be verified using an SC model and propagating the proven
guarantees to Promising Arm.

Proof structure. Now we come to the proof. For simplic-
ity, we decompose the proof into two stages. Section 4.1 first
proves that, if a kernel program is running solely without
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interacting with any user programs, the kernel program has
the same execution results on RM and SC models if it satisfies
three wDRF conditions: DRF-KERNEL, NO-BARRIER-MISUSE,
and WRITE-ONCE-KERNEL-MAPPING. Section 4.2 extends the
proofs to accommodate running user programs, including
considering the kernel’s behavior on page tables for user
programs, and proves Theorem 1 if the kernel program also
satisfies the other three wDRF conditions: TRANSACTIONAL-
PAGE-TABLE, SEQUENTIAL-TLB-INVALIDATION, and MEMORY-
IsoLATION. Section 4.3 weakens the MEMORY-ISOLATION con-
dition to allow the kernel program to read user programs’
memory under certain circumstances, so that VRM can be
used for a broader class of systems that do not strictly satisfy
the strong MEMORY-ISOLATION condition.

4.1 Proof for the solely running kernel program

We prove the following theorem:

Theorem 2. Given a kernel program P running solely with-
out user programs, or VMs, if P satisfies the DRF-KERNEL, No-
BARRIER-MISUSE, and WRITE-ONCE-KERNEL-MAPPING condi-
tions, then for any execution of P over the Promising Arm model,
we can find a corresponding execution of P over an SC model
such that their execution results are the same.

Since the kernel is running by itself, the TRANSACTIONAL-
PAGE-TABLE, SEQUENTIAL-TLB-INVALIDATION, and MEMORY-
IsoLATION conditions are not needed for this theorem.

We first simplify the proof by removing the effects of virtual
memory in the kernel program. The WRITE-ONCE-KERNEL-
MAPPING condition requires that the kernel’s own page table
entries can only mapped once, enforcing that each virtual ad-
dress of the kernel can only be mapped to at most one physical
address during the entire execution of the kernel. Thus, we
canreplace all virtual addresses with physical addresses in the
kernel program and do not consider the kernel’s own virtual
addresses in the rest of the proof. It is also the reason that we
do not need to worry about TLB behavior in this setting.

Then, the key to prove Theorem 4.1 is to come up with a sys-
tematic approach to constructing an observably equivalent
SC execution from an RM execution generated by akernel pro-
gram that satisfies the DRF-KERNEL and NO-BARRIER-MISUSE
conditions. We achieve this by introducing a new push/pull
Promising hardware model to encode these conditions into
the RM execution and construct the SC execution from the RM
execution that satisfies these conditions. We show that the
program execution on Promising Arm is equivalent to its exe-
cution on push/pull Promising, and its execution on push/pull
Promising is equivalent to its execution on an SC model.

The push/pull Promising model. The push/pull Promis-
ing model is based on Promising Arm, inheriting its data
dependency, address dependency, coherence, and barrier con-
straints, but additionally encodes the DRF-KERNEL and No-
BARRIER-MISUSE conditions into push/pull promises that are
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valid |1=PU11 X| |1:x«1| |1:push x|

valid |1:pu'|'| x| |1:x<—1| |2:pu'|'| y| |l:push X| |2:y<—2| |2:push y

Invalid

Figure 4. Examples of valid and invalid push/pull promise lists.

fulfilled using barriers. Push/pull promises are inspired by Cer-
tiKOS’s push/pull semantics [23, 24], which have been used to
reason about whether a program is DRF using an SC model. In
push/pull semantics, to access a shared memory location, the
CPU must acquire ownership of the location through a special
pull primitive, which logically “pulls” the content from the
shared memory to the CPU’s local memory such that further
accesses can be done as if the memory location were private.
After the accesses, the CPU “pushes” back all modifications
to the shared memory through a special push primitive. The
hardware model panics when pulling a location that is cur-
rently owned by a CPU or pushing alocation that is not owned
by the current CPU. A program is DRF if all invocations of
pull and push primitives in the program never cause a panic.

In our push/pull Promising model, besides promising a
stored value, a CPU can also promise to push (a push promise)
or pull (a pull promise) a memory location. The effects of push
and pull promises are similar to those for push/pull semantics.
After a CPU promises to pull a memory location, the location
is owned by the CPU. After a CPU promises to push a memory
location, the location is no longer owned by the CPU and
considered free. The DRF-KERNEL condition is satisfied if the
push/pull promise list is valid, meaning only free locations
are pulled, only owned locations are pushed by their owners,
and only the respective owner can access an owned location.
Figure 4 presents a few examples of valid and invalid push/pull
promise lists. The No-BARRIER-MISUSE condition is satisfied
by requiring push/pull promises to be fulfilled by a CPU by
memory barriers in that CPU’s execution. A load barrier (e.g.,
Arm’sload acquire instruction) can fulfill a pull promise issued
by the same CPU, and a store barrier (e.g., Arm’s store release
instruction) can fulfill a push promise. A full barrier can fulfill
both push or pull promises issued by the same CPU.

The push/pull Promising hardware panics if any push/pull
fulfill relation is not valid. A push/pull fulfill relation is valid
only if (i) the push/pull promise list is valid, (ii) all push/pull
promises are fulfilled by proper barriers, and (iii) the fulfill
relations must be consistent with program order. Figure 5
presents an example of how to fulfill a push/pull promise
list with barriers. If a valid push/pull fulfill relation exists,
we know that share memory accesses are well synchronized
by push/pull and are well protected by barriers. Note that,
when a read gets the forwarded value from a local program-
order-before write, it does not need to be protected by barriers
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CPU 1 |'Ioad bar‘r'ier'l |x H 1| |store barr'ierl

Promise

List |1:pu'|'| x| |1:x~—1| |2:pu'|'| y| |1:push x| |2;y<—2 | |2:push y|

CPU 2 |'Ioad barr‘ier‘l |y 1= 2| |store bar‘r'ierl

Figure 5. An example of a valid push/pull fulfill relation.

because it does not read from shared memory locations. A
kernel program satisfies the DRF-KERNEL and NO-BARRIER-
Misusk conditions on the push/pull Promising model if all
push/pull fulfill relations in the program never cause a panic.

Constructing an execution on the push/pull Promising
model. We first show that, for any program that satisfies the
DRF-KERNEL and No-BARRIER-MISUSE conditions, any possi-
ble execution over the Promising Arm model can be extended
into a valid execution over the push/pull Promising model
with the same execution results. Given a promise list of such a
program, we can insert pull and push promises when entering
and existing critical sections, respectively, and the resulting
list must be a valid push/pull promise list because the pro-
gram satisfies the DRF-KERNEL condition. We can then prove
that the inserted push/pull promises can be correctly fulfilled
because the No-BARRIER-MISUSE condition ensures that the
program contains proper barriers at the right places. In other
words, the constructed execution on the push/pull Promising
model is equivalent to the execution on Promising Arm.

Constructing an SC execution. We next construct an SC
execution from an execution over the push/pull Promising
model. For an SC model, the execution is represented as a
global list of events generated one by one by all CPUs. For
the push/pull Promising model, the execution is represented
by a global promise list and per-CPU local execution traces
such that the events from different CPUs lack a relative order.
To construct an SC execution, we need to know the relative
order of events generated by different CPUs. Only shared
memory accesses are not local to each CPU, so we just need to
determine the relative order of shared memory access events
by different CPUs.

Given two shared memory access events from different
CPUs, their relative order can be determined from the critical
sections to which they belong. We first locate the correspond-
ing push/pull promises using the barriers protecting these
two events that fulfill the promises. We then compare the
order of their corresponding push/pull promises in the global
promise list. We say the first event is before the second event
in the SC trace if, and only if, the push promise of the first
event is before the pull promise of the second event. Together
with the CPU-local program order of events from the same
CPU, we can construct a partial order for all shared mem-
ory access events. Thus, we can construct an SC execution
through a topological sort on the partial order. Figure 6 shows
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CcPU 1
|barrier||access x||barrier| |barrier||access ﬂ |barrier|

Promise
List: v

|1:pu11 x| |1:pu11 y| |1:push x| |2:pu11 x| |2:push x| |1:push y|

CPU 2 [barrier| [access x| [barrier
local order after
parvar (L s et S
order in SC

2: access X

critical section order after

Figure 6. An example of constructing an SC execution trace. The
critical section for the access to x by CPU 1 is before that by CPU 2,
thus in the SC trace, the access event to x by CPU 1 will occur before
the event by CPU 2. For the access to y by CPU 1 and the access to
x by CPU 2, their critical sections overlap in the promise list, thus
they have no relative order. Other promises and read-from/fulfill
relations for memory accesses are not shown for simplicity.

an example of constructing an SC execution. We can show
that all SC executions constructed from the same partial order
must have the same execution results.

Proving the equivalence of execution results. We now
prove that the SC execution constructed using the partial
order captures all possible RM behaviors of the program. We
just need to show that, if there is a partial order between two
events, their execution results are the same on the SC and
push/pull Promising models. We prove this by induction over
the construction rules of the partial order. Since the induction
step is trivial, we describe the proof for the base cases.

If the two events generated by different CPUs have a partial
order, they must access the same memory location, so the
first event’s push promise must be before the second event’s
pull promise. Since push/pull promises can only be fulfilled
by barriers, the events are separated by barriers. The Armv8
barrier constraint ensures that memory accesses cannot be
reordered across barriers. Thus, these events cannot be re-
ordered even over the push/pull Promising model and their
execution result is the same on an SC model.

If the two events are generated by the same CPU, there
are three cases. If they access the same memory location, the
Armv8 coherence constraint ensures that two events cannot
be reordered on the push/pull Promising model and their
execution result is the same on an SC model. If they access
different memory locations but are data or address dependent,
the Armv8 data or address dependency constraint ensure
that they cannot be reordered on the push/pull Promising
model and their execution result is the same on an SC model.
If they access different memory locations but are not data or
address dependent, any order of these two events will have
the same execution result, so any reordering on the push/pull
Promising model will have the same result as on an SC model.

By induction, we conclude that the partial order used to con-
struct the SC execution captures all the execution results over
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the push/pull Promising model for the kernel program satis-
fying the WRITE-ONCE-KERNEL-MAPPING, DRF-KERNEL, and
No-BARRIER-MISUSE conditions. Since the execution on the
push/pull Promising model is equivalent to that on Promising
Arm, the proof of Theorem 2 is complete.

4.2 Proof for the full system

Theorem 2 only discusses the execution of a solely running
kernel program but, in real systems, the kernel runs with user
programs, or a hypervisor runs with VMs, that may have arbi-
trary implementations. As shown in Example 7, this may cause
unexpected behaviors. To limit the effects of user programs,
we introduce the MEMORY-ISOLATION condition to enforce
that the kernel code does not read user programs’ memory
and user programs cannot access kernel memory, such that
user programs’ execution will not affect the behavior of the
kernel program, resulting the following theorem:

Theorem 3. Forany system satisfying the MEMORY-ISOLATION
condition and for any piece of the kernel program P, suppose P is
running along with the user program Q, then for any execution
of PUQ, we can find an execution of P running solely without
user programs such that the execution results of P are the same.

By Theorems 2 and 3, we can show that the execution re-
sults of the kernel program are the same for SC and Promising
Arm models if the DRF-KERNEL, NO-BARRIER-MISUSE, WRITE-
ONCE-KERNEL-MAPPING, and MEMORY-ISOLATION conditions
are satisfied. Besides the execution results, there is one more
kind of observable behavior, namely a user program’s mem-
ory access results via shared page tables. For a kernel program
satisfying the TRANSACTIONAL-PAGE-TABLE and SEQUENTIAL-
TLB-INVALIDATION conditions, all page table writes within
the critical sections are transactional such that any observable
page table state, even considering TLB behavior, is either the
state at the beginning of the critical section or the state at the
end of the critical section. Since the above two states are ob-
servable in the SC trace constructed using the partial order, we
can prove that, for any kernel program satisfying all six wDRF
conditions, any of its observable behavior on the Promising
Arm model is also observable over its SC trace constructed us-
ing the partial order, thus completing the proof of Theorem 1.

4.3 Weakening the MEMORY-IsoLATION condition

Theorem 1 requires a strong condition that kernel code must
not read user memory, which may not hold for real systems.
For example, the KVM hypervisor reads a VM’s memory to
create a VM snapshot. To accommodate a broader class of sys-
tems, we can use the WEAK-MEMORY-ISOLATION condition,
to allow kernel code to read the memory of the user program
Q. We refer to the wDRF conditions with the WEAK-MEMORY-
IsoLATION condition used in lieu of the MEMORY-ISOLATION
condition as the weakened wDRF conditions.

Under the WEAK-MEMORY-ISOLATION condition, we know
that the observable behavior of the kernel is independent with
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the user programs’ implementation. Thus, if the user memory
is the same under SC and RM models, we can prove that the
observable behavior of the kernel is also the same for SC and
RMmodels, using a similar proofas for Theorem 1 based on the
wDRF conditions without the MEMORY-ISOLATION condition.
We can always find a user program Q' on an SC model that
produces the same user memory state as Q on an RM model,
for example, by having Q’ simply write the required values
into the user memory, thereby proving the following theorem:

Theorem 4. Forany system that satisfies the weakened wDRF
conditions and for any piece of kernel program P, suppose P is
running along with the user program Q, then for any execution
of PUQ in the Promising Arm model, we can find a user program
Q’ and an execution of PUQ’ in the SC model such that the
observable behaviors of P are the same.

Theorem 4 implies that the set of P’s observable behavior
on RM hardware across all possible user programs is the same
as the set on an SC model. Therefore, if we have a proof of
some kernel code verified using the SC model, the proof can be
extended to the Promising Arm model if the system satisfies
the weakened wDRF conditions.

5 Verifying a KVM Hypervisor on Arm

We have verified that a Linux KVM multiprocessor hypervisor
implementation, SeKVM, guarantees the confidentiality and
integrity of VMs [36]. SeKVM retrofits KVM [15] into a small
core, KCore, and a set of untrusted services, KServ, so that
the security properties of the entire KVM hypervisor can be
proven by verifying KCore alone. The retrofit uses Arm Virtu-
alization Extensions [7] to run KCore in Arm’s EL2 privilege
level, also known as hypervisor mode, so that it controls the
hardware and can isolate its memory from KServ and VMs.
KCore enables stage 2 page tables (Arm’s nested page tables)
for KServ and VMs to limit their access to physical memory
and uses SMMU (Arm’s I/O memory management unit) page
tables for DMA protection.! Although SeKVM is implemented
on Arm, it was verified on an SC model without showing how
its proofs hold for RM hardware. Using VRM, we prove that
SeKVM satisfies the weakened wDRF conditions, with KCore
as the kernel. Based on Theorem 4, we therefore prove that
SeKVM'’s security guarantees extend to Arm RM hardware.

5.1 WRITE-ONCE-KERNEL-MAPPING

KCore has its own EL2 page table, which is the kernel page
table in the WRITE-ONCE-KERNEL-MAPPING condition. When
the system is booted, all physical memory is mapped to a
contiguous virtual memory region in the kernel page table,
similar to how the Linux kernel manages physical memory
on 64-bit systems. The kernel page table is never changed
after boot except for the remap_pfn hypercall used for secure

10n Arm hardware without an SMMU, SeKVM guarantees VM confidentiality
and integrity assuming no DMA attacks.
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void acquire(){
u32 my_ticket =acquire fetch_and_inc(ticket);
while (my_ticket !=acquire now) {};
pull();

void release(){

push () ;
NOW ++release;

DO 0N U WDN =

3

Figure 7. The ticket lock implementation in Linux. An acquire or
release notation indicates that the memory access instruction is with
a barrier. Push/pull primitives have been added.

VM boot. remap_pfn maps a physical page to a virtual address
outside of the aforementioned contiguous virtual memory
region in KCore’s address space. Because physical pages allo-
cated by KServ to store VM images may not be contiguous,
remap_pfn maps those pages to a contiguous virtual memory
region required by the integrated crypto library (Ed25519)
to calculate a hash of the memory content for VM image au-
thentication. The hypercall never unmaps or remaps a virtual
page. Since unmap and remap are never needed, there is only
one primitive, set_el2_pt, that handles the kernel page table,
which is called by remap_pfn. We verify that set_el12_pt can
never overwrite an existing mapping. Thus, we guarantee the
WRITE-ONCE-KERNEL-MAPPING condition holds for SeKVM.

5.2 DRF-KERNEL and No-BARRIER-MISUSE

We verify that KCore satisfies the DRF-KERNEL and NO-BARRIER-
Misusk conditions by proving that (1) KCore’s lock imple-
mentation is correct, and (2) KCore uses the lock correctly
to protect shared memory accesses. For locks, KCore uses
Linux’s ticket lock implementation, shown in pseudocode in
Figure 7.% The ticket lock implementation itself contains data
races—the shared variables ticket and now can be accessed by
multiple threads simultaneously—so we need to reason about
the lock implementation directly on an RM model. Figure 7
shows that all memory reads (lines 2 and 3) use Arm’s load-
acquire instruction and the memory write (line 8) uses Arm’s
store-release instruction, which introduce barriers and forbid
reordering. We then can just prove that following the in-order
execution of acquire and release, (1) only the thread whose
ticket is equal to now can hold the lock, and (2) each thread has
aunique ticket number due to the atomicity of fetch_and_inc.
Together, these properties guarantee mutual exclusion.
Now that we have verified that the ticket lock is imple-
mented correctly, we need to prove that throughout KCore,
locks are used correctly to protect shared memory accesses.
KCore accesses memory based on the mappings in its own EL2
page table. As discussed in Section 5.1, all physical memory
is mapped to KCore’s EL2 page table at boot. Let us initially
assume that KCore only accesses physical memory through
these initial mappings, which we prove are one-to-one such

2The original code can be found at https://elixir.bootlin.com/linux/v4.18.20/
source/arch/armeé4/include/asm/spinlock.h#L30.
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that each physical address is only mapped to one virtual ad-
dress. We use the push/pull Promising model, as explained in
Section 4.1, to prove that locks correctly protect shared mem-
ory accesses by verifying that all push and pull primitives
never panic, thereby proving that the DRF-KERNEL condi-
tion holds. Figure 7 shows that the push primitive is directly
followed by a store barrier release and the pull primitive
follows a load barrier acquire, such that critical sections pro-
tected by the lock are correctly bounded by barriers, thereby
proving that the No-BARRIER-MISUSE condition holds.

In SeKVM, vCPU contexts are not directly protected by a
lock but by a state variable, similar to Example 3. Before access-
ing a vCPU context, a physical CPU must check that the state
of the vCPU context is INACTIVE, which means that it is not
used by other physical CPUs. Then, it sets the state to ACTIVE
and starts accessing the vCPU context. After finishing the
access, it will set the state back to INACTIVE. We prove that the
DRF-KERNEL condition holds by placing the push/pull prim-
itives for the vCPU context before setting INACTIVE and after
setting ACTIVE and proving that only one physical CPU can
pull the context at one time. We show that the No-BARRIER-
Misusk condition also holds because Arm’s load acquire and
store release instructions are used when setting INACTIVE and
checking INACTIVE, which include barriers.

This proof would be complete if KCore never mapped any
physical memory to its page table after booting. However, as
discussed in Section 5.1, there is one case when the kernel
page table is changed after booting, such that multiple virtual
pages can map to a single physical page. We prove that KCore
never writes to any of these virtual pages and, thus, will not
cause data races, satisfying the DRF-KERNEL condition.

5.3 WEAK-MEMORY-ISOLATION

We verify that SeKVM satisfies the WEAK-MEMORY-ISOLATION
condition by first proving that VMs and KServ, which are
considered user programs for the purposes of this condition,
cannot write KCore’s memory. Arm hardware ensures that
when stage 2 paging is enabled for VMs or KServ, they cannot
access any physical memory that is not mapped in their own
stage 2 page tables. Similarly, DMA-capable I/O devices con-
trolled by a VM or Kserv cannot access physical memory that
is not mapped in their SMMU page tables. We prove that that
the EL2 and SMMU registers that control stage 2 and SMMU
page tables, respectively, are always enabled as invariants
of the system, and that KCore’s memory is never mapped to
stage 2 or SMMU page tables. KCore tracks the owner of each
4 KB physical page of memory in an s2page data structure. A
page can only have one owner at any given time, which can
be KCore, KServ, or a VM. KCore will always check that it is
not the owner of a physical page before mapping it to a stage
2 or SMMU page table. Therefore, no pages owned by KCore
are ever mapped to any stage 2 or SMMU page table. Thus,
KCore’s memory is inaccessible to VMs and KServ, with the
exception of the stage 2 and SMMU page tables themselves,
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which are allocated from KCore’s memory and readable by
MMU and SMMU hardware, respectively, but never written
by MMU or SMMU hardware. Therefore, none of KCore’s
memory is ever written by VMs or KServ.

We then show that the SeKVM proofs do not rely on the
implementation of user programs. In SeKVM, reading from
VM or KServ memory is modeled by data oracles, a random
number generator to mask the expected information flow [36].
Since data oracles can generate any possible user program
memory contents, the SeKVM proofs hold for any possible
user programs and are independent of any concrete imple-
mentation of user programs. Given any RM behavior of the
VM or KServ, we can always find a data oracle to produce a
sequence of numbers resulting in the same memory contents
over an SC model. Therefore, SeKVM satisfies the WEAK-
MEMORY-IsoLATION condition.

5.4 TRANSACTIONAL-PAGE-TABLE

We prove that KCore satisfies the TRANSACTIONAL-PAGE-
TaBLE condition for all page tables that it manages other than
its own, namely stage 2 page tables for VMs and KServ, and
SMMU page tables. Since the proofs are similar, we first prove
this for stage 2 page tables, then discuss how the proof applies
to SMMU page tables.

KCore only has two primitives that update stage 2 page
tables, set_s2pt and clear_s2pt. set_s2pt establishes a new
page mapping and clear_s2pt unmaps an existing mapping.
KCore dynamically builds page tables in set_s2pt, by allocat-
ing free pages from a reserved page pool private to KCore. All
bytes of a newly allocated page are guaranteed to be 0. KCore
scrubs the pool of memory during initialization. When setting
a page mapping with set_s2pt, KCore walks from the page
table root to the target leaf table. During the page table walk, if
the next-level page table does not exist, it allocates a new page
from the reserved pool and inserts the page into the page table.
At the leaf table, it will check and set a new page mapping
only if it will not overwrite any existing mapping. The entire
walk-allocate-set procedure is within the critical section pro-
tected by the respective page table lock. clear_s2pt always
walks to the target leaf table and sets an existing pte to 0. It
does not reclaim any empty table so no table at any level will
be removed or substituted by other tables once inserted into
the page table tree.

We prove that both set_s2pt and clear_s2pt satisfy the
TRANSACTIONAL-PAGE-TABLE condition. clear_s2pt contains
at most one write to the page table so the proof is trivial.
Although set_s2pt may involve multiple writes to the page
table due to inserting new tables into the page table tree, it
is still transactional because (1) if it sets the mapping in an
existing table, only one page table write is required so it is
transactional; (2) if it sets the mapping in a newly inserted
table, for any reordering of the writes, any page table walk
will page fault unless it happens after all page table writes
have occurred, in which case it will see the final result of the
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table write to the last-level page table, so it is transactional.
In other words, a page fault occurs on any reordering of the
writes if not all the writes have occurred because either inter-
mediate levels of the page tree will be missing, resulting in
a page fault, or the update to the last-level page table will be
missing, also resulting in a page fault. Therefore, since both
set_s2pt and clear_s2pt satisfy the TRANSACTIONAL-PAGE-
TABLE condition, SeKVM satisfies this condition.

For SMMU page tables, KCore has two primitives, set_spt
and clear_spt. Other than allocating pages from a page pool
reserved for the SMMU, they work the same as set_s2pt and
clear_s2pt. The proof that SMMU page tables satisfy the
TRANSACTIONAL-PAGE-TABLE condition is therefore the same
as the proof for stage 2 page tables.

5.5 SEQUENTIAL-TLB-INVALIDATION

We prove that all SeKVM page tables satisfy the SEQUENTIAL-
TLB-INVALIDATION condition. For stage 2 page tables, we
verify that this condition holds over two primitives: set_s2pt
and clear_s2pt. As discussed in Section 5.4, set_s2pt must
operate on an empty entry so no TLB invalidation is needed.
The clear_s2pt primitive unmaps a page table entry. We val-
idate that such an unmap operation is directly followed by
a barrier and a TLB invalidation. For SMMU page tables, the
proofs for set_spt and clear_spt primitives are similar to the
set_s2pt and clear_s2pt primitives except that an SMMU
TLB invalidation instead of a TLB invalidation is used. For
KCore’s EL2 page table, no TLB invalidation is needed as
only empty entries can be updated due to the WRITE-ONCE-
KERNEL-MAPPING condition.

5.6 Verifying Multiple KVM Versions

By proving that SeKVM satisfies the weakened wDRF con-
ditions, using Theorem 4 we know that SeKVM’s security
guarantees originally proved on an SC model also hold for
ArmRM hardware. No changes to the original verified SeKVM
implementation or proofs were required. However, the origi-
nal verified SeKVM implementation was for a retrofitted KVM
in the Linux 4.18 kernel that used 4-level stage 2 page tables,
and we have since added support for 3-level stage 2 page tables,
useful for improving performance on Arm CPUs with smaller
TLBs because less intermediate page table entries will need
to be cached in the TLB. We have verified the updated imple-
mentation in Coq with modest additional proof effort because
it was only necessary to verify the page table changes rather
than reverify all of the retrofitted KVM, thanks to the modular
layered verification approach used by the proof. Furthermore,
we have verified that the weakened wDRF conditions is sat-
isfied for both 3-level and 4-level stage 2 page tables.

Taking advantage of this additional verified stage 2 page
table support, we have further ported SeKVM across multi-
ple hardware platforms and Linux kernel versions, which in-
volved modest changes to KServ. Specifically, we have verified
eight KVM versions in Linux 4.18, 4.20,5.0,5.1,5.2,5.3,5.4,and
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Proof Coq LOC
VRM sufficiency of wDRF conditions 3.4K
SeKVM satisfies wDRF conditions 3.8K
SeKVM'’s security guarantees on SC 34.2K

Table 1. LOC breakdown of the Coq proofs.

5.5 running across multiple Armv8 multiprocessor hardware
configurations. This is the first proof of a commodity multipro-
cessor hypervisor on Arm RM hardware, and the first proof of
multiple versions of a KVM hypervisor on Arm RM hardware.

We formulate all proofs in the Coq proof assistant [55]. Ta-
ble 1 lists the lines of code (LOC) in Coq required for proving:
(1) the theorems used by VRM that the weakened wDRF con-
ditions are sufficient to propagate systems’ guarantees from
SC to Arm RM hardware, (2) the whole SeKVM implemen-
tation indeed satisfies the weakened wDRF conditions, and
(3) the original SeKVM guarantees of VM confidentiality and
integrity on an SC model [36] with the additional proofs for 3-
level page tables. The proof effort for VRM itself is modest and
aone-time cost that can be reused to extend proofs of other sys-
tems on SC to Arm RM hardware. The proof effort that SeKVM
satisfies the wDRF conditions is almost an order of magnitude
less than the original proof for SeKVM on an SC model, demon-
strating that only modest additional proof effort is required to
extend the proofs to Arm RM hardware. Not only is VRM use-
ful because it makes it possible to verify systems on Arm RM
hardware for the first time, but also because the proof effort for
VRM to reuse SC proofs for RM hardware is quite manageable.

6 Evaluation

Since SeKVM requires modest changes to KVM to make it
possible to verify its security guarantees, we compared its per-
formance against unmodified KVM across different software
and hardware configurations to quantify the performance
impact of the changes. We ran SeKVM and unmodified KVM
in both Linux 4.18 and 5.4 on two different Armv8 hardware
configurations: (1) an HP Moonshot m400 server with an
8-core 64-bit ARMv8-A 2.4 GHz Applied Micro Atlas SoC,
64 GB of RAM, a 120 GB SATA3 SSD, and a Dual-port Mel-
lanox ConnectX-3 10GbE NIC, and (2) an AMD Seattle Rev.B0O
server with an 8-core 64-bit ARMv8-A 2 GHz AMD Opteron
A1100 SoC, 16 GB of RAM, a 512 GB SATA3 HDD for storage,
and an AMD XGBE 10 GbE NIC. For client-server workloads,
clients ran on another m400 machine when using the m400
server, and ran on an x86 machine with 24 Intel Xeon CPU
2.20 GHz cores and 96 GB RAM when using the Seattle server,
in all cases connected via 10 GbE.

We used different software configurations across the servers
to measure performance across multiple software and VM con-
figurations. We used Ubuntu 18.04 and QEMU 3.0 for the m400
server and its VMs, and Ubuntu 16.04 and QEMU 2.3.50 for the
Seattle server and its VMs. We used different SMP VM config-
urations, 2 CPUs and 256 MB RAM on the m400 server and 4
CPUs and 12 GB of RAM on the Seattle server. The smaller VM
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Name Description

Name Description

Hypercall Transition from a VM to the hypervisor and return to the VM
without doing any work in the hypervisor. Measures bidirec
tional base transition cost of hypervisor operations.

Hackbench hackbench [49] using Unix domain sockets and process groups
running in 500 loops; m400 used 20 groups, Seattle used 100
groups.

1/0 Kernel Trap from a VM to the emulated interrupt controller in the hy-|
pervisor OS kernel, then return to the VM. Measures base cost
of operations that access I/O devices supported in kernel space.

Kernbench Compilation of the Linux kernel using allnoconfig for Arm;
m400 compiled v4.18 with GCC 7.5.0, Seattle compiled v4.9 with
GCC5.4.0.

I/OUser Trap froma VM to the emulated UART in QEMU and then return

to the VM. Measures base cost of operations that access I/O

devices emulated in user space.

Virtual IPI Issue virtual IPI from a VCPU to another VCPU running on a
different CPU, both CPUs executing VM code. Measures time

from sending virtual IPI until receiving VCPU handles it.
Table 2. Microbenchmarks.

Benchmark m400 Seattle
KVM SeKVM|KVM SeKVM
Hypercall 2,275 4,695| 2,896 3,720
1/0 Kernel 3,144 7,235| 3,831 4,864
1/O User 7,864 15,501| 9,288 10,903
Virtual IPI 7,915 13,900| 8,816 10,699

Table 3. Microbenchmark performance (cycles).

configuration was also used to show results for running many
SMP VM instances given the RAM limits of the m400 server.
We also measured performance natively on the servers with
the host OS capped at using the same number of CPUs and
amount of RAM as the respective VM configuration. Full disk
encryption (FDE) was enabled for Seattle VMs but not m400
VMs given the limited memory assigned to m400 VMs. VMs
were configured to use paravirtualized I/O, typical of cloud in-
frastructure deployments, with standard VHOST networking
and cache=none for block storage devices [13, 14, 38].

Microbenchmarks. We firstran KVM unit tests [26] to mea-
sure the cost of common micro-level hypervisor operations
listed in Table 2. Table 3 shows the microbenchmarks mea-
sured in cycles for unmodified KVM and SeKVM in Linux
4.18 for each hardware configuration. SeKVM overhead com-
pared to unmodified KVM is much higher on the m400 server
versus the Seattle server because the m400 CPUs have a tiny
TLB [46] compared to Seattle CPUs. Although KCore sup-
ports huge pages for stage 2 page tables for VMs, the current
implementation maps regular 4 KB pages in KServ’s stage 2
page table so microbenchmark workloads that spend most
of their time running in KServ require more TLB entries to
cache address translations, increasing TLB capacity misses.
Newer Arm CPUs have more reasonable TLB sizes similar to
or greater than the Seattle CPUs, so the Seattle measurements
are more reflective of typical Arm server performance. For
Seattle, SeKVM only incurs 17% to 28% overhead over KVM,
with the added benefit of verified VM protection.

Application benchmarks. We next ran application bench-
marks listed in Table 4 to measure performance on more
realistic workloads. Figure 8 compares the performance for
running the workloads in a VM on unmodified KVM versus
SeKVM, with performance normalized to native execution
on the respective hardware configuration without full disk
encryption. Results are shown for both KVM and SeKVM in
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Apache server handling concurrent requests via TLS/SSL from
remote ApacheBench [54] v2.3 client, serving the index.html
of the GCC manual; m400 used v2.4.29 serving 7.5.0 manual,
Seattle used v2.4.18 serving 5.4.0 manual.

MongoDB server handling requests from a remote YCSB [11]
v0.17.0 client running workload A with 16 concurrent
threads; m400 used v3.6.3 with readcount=10000 and opera-
tioncount=50000, Seattle used v4.0.20 with readcount=500000
and operationcount=100000.

Redis v4.0.9 server handling requests from a remote YCSB
v0.17.0 client running workload A; m400 used v4.0.9, Seattle
used v3.0.6.

Table 4. Application benchmarks.

Apache

Mongodb

Redis

Linux 4.18 and 5.4 on both m400 and Seattle hardware. In
all cases, SeKVM performance on real application workloads
is comparable to unmodified KVM, yet provides the added
benefit of verified VM protection. Worst case overhead for
SeKVM is less than 10% versus unmodified KVM, even when
running on the m400 server with its small TLBs. There is no
substantial change in relative performance when running 2
CPU VMs versus 4 CPU VMs.

We evaluated the performance scalability of KVM versus
SeKVM by running the application benchmarks in Table 4
with multiple concurrent VMs running on the m400 server.
Figure 9 shows the measurements for Linux 4.18 from 1 to 32
VMs normalized to native execution of one instance of the
workload running; the maximum number of VMs was only
limited by the number of VM images we could store on the
server’s SSD. The measurements for 1 VM in Figure 9 are the
same as the m400 results in Figure 8. As expected, running
more concurrent VM instances of the application benchmark
results in slower performance as the number of instances
increases, but the results show a similar slowdown for both
KVM and SeKVM for all application benchmarks. In all cases,
even when running 32 concurrent VMs, SeKVM has no worse
than 10% overhead compared to unmodified KVM, demon-
strating that SeKVM has similar performance scalability as
unmodified KVM.

These results indicate that the use of locks in SeKVM to pro-
tect shared memory accesses and make its proofs tractable and,
more generally, the fact that SeKVM satisfies the weakened
wDREF conditions so that its proofs hold on RM hardware do
not adversely affect SeKVM’s performance scalability in run-
ning multiple multiprocessor VMs on Arm RM hardware. The
results show that VRM can be used to verify real systems on
RM hardware without adversely affecting their performance.

7 Related Work

RM models. Every modern multiprocessor architecture em-
ploys an RM model, allowing some effects of out-of-order and
speculative execution to be programmer-visible, including
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Figure 8. Single-VM application benchmark performance.

x86 [45, 52], RISC-V [5], IBM Power [2, 20, 41, 50, 51], and
Arm (2,4, 19,47, 48]. For Arm specifically, the Flowing model
was proposed to precisely specify the architecturally allow-
able behavior of Armv8 [19]. The Armv8 axiomatic model
was formalized after Armv8 was revised to be multicopy-
atomic [47], and a Flat operational model was also formalized,
which was mostly equivalent to the axiomatic model. The
Promising Arm operational model [48], which we build upon,
is simpler than the Flat model in that instructions are executed
in atomic steps and mostly in order, yet has been shown to be
equivalent to the Armv8 axiomatic model. All of these models
only handle user-level code; they exclude system features
such as MMU hardware that have been modeled by our VRM
framework. Until now, the only use cases of these models
were to exhaustively test programs with less than 500 lines of
assembly code after compilation [48]. In contrast, by verifying
SeKVM, we are the first to show the feasibility of formal ver-
ification of concurrent systems software on Arm RM models.
Previous work has also explored formally specifying con-
currency behaviors at the C/C++ [6, 27, 32] or Linux [3] level.
They cannot handle hardware-specific assembly code. For
C/C++, there is no verified compiler that preserves Arm RM
semantics, leaving no guarantee on the final machine code.

Verification of concurrent systems. Concurrent OS ker-
nels and file systems have been verified on multiprocessor
hardware, including CertiKOS [22-24, 28], AtomFS [56], and
Perennial/Mailboat [8]. All these works assume an SC hard-
ware model. Their verification results do not extend to any
RM hardware except, in some cases, x86-TSO. We believe that
VRM could be applied to these systems to propagate their
SC-only proofs to RM hardware.

Recent progress has been made on verifying small concur-
rent programs directly on RM models [31, 40, 42]. Armada can
verify user code on the x86-TSO memory model using a TSO-
elimination technique [40]. Vsync [44] uses model checking
to automatically verify the correctness of many synchroniza-
tion primitives in RM models including Armv8. None of these
approaches have been shown to scale to verify real systems
such as KVM.
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Figure 9. Multi-VM application benchmark performance.
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8 Conclusions

VRM is the first framework for formally verifying systems
software on Arm relaxed memory hardware. VRM introduces
the wDRF conditions, a set of synchronization and memory
access conditions which ensure that kernel code, as used in
operating systems and hypervisors, will have the same behav-
ior on sequentially consistent and relaxed memory hardware.
These conditions account for data races in lock implementa-
tions, read/write races in page table implementations due to
MMU hardware, as well as arbitrary relaxed memory behav-
ior in user programs. By proving that kernel code satisfies
the wDRF conditions, we can extend verification results on
sequentially consistent models to relaxed memory hardware
without doing proofs directly on relaxed memory hardware.

We have implemented VRM in Coq and used it to extend
the verified security guarantees of a retrofitted KVM hyper-
visor to hold on Arm relaxed memory hardware without any
modifications to the original implementation or proofs. The
only additional proofs required were to show that the wDRF
conditions hold for the verified KVM implementation. Those
proofs were only a few thousand lines of Coq code, roughly
an order of magnitude less than the original KVM proofs. This
is the first proof of commodity systems software on relaxed
memory hardware. We further prove that the security guar-
antees hold for multiple versions of verified KVM on multiple
Armhardware configurations. Experimental results show that
verified KVM performs similar to unmodified KVM on Arm
multiprocessor hardware when concurrently running dozens
of multiprocessor VMs with real application workloads.
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