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Abstract

Adaptive collection of data is commonplace in applications throughout science and engineer-
ing. From the point of view of statistical inference however, adaptive data collection induces
memory and correlation in the samples, and poses significant challenge.

We consider the high-dimensional linear regression, where the samples are collected adap-
tively, and the sample size n can be smaller than p, the number of covariates. In this setting,
there are two distinct sources of bias: the first due to regularization imposed for consistent
estimation, e.g. using the LASSO, and the second due to adaptivity in collecting the sam-
ples. We propose ‘online debiasing’, a general procedure for estimators such as the LASSO,
which addresses both sources of bias. In two concrete contexts (i) time series analysis and (i7)
batched data collection, we demonstrate that online debiasing optimally debiases the LASSO
estimate when the underlying parameter 6y has sparsity of order o(y/n/logp). In this regime,
the debiased estimator can be used to compute p-values and confidence intervals of optimal size.

1 Introduction

Modern data collection, experimentation and modeling are often adaptive in nature. For example,
clinical trials are run in phases, wherein the data from a previous phase inform and influence the
design of future phases. In commercial recommendation engines, algorithms collect data by eliciting
feedback from their users; data which is ultimately used to improve the algorithms underlying the
recommendations and so influence the future data. In such applications, adaptive data collection is
often carried out for objectives correlated to, but distinct from statistical inference. In clinical trials,
an ethical experimenter might prefer to assign more patients a treatment that they might benefit
from, instead of the control treatment. In e-commerce, recommendation engines aim to minimize
the revenue loss. In other applications, collecting data is potentially costly, and practitioners may
choose to collect samples that are a priori deemed most informative. Since such objectives are
intimately related to statistical estimation, it is not surprising that adaptively collected data can
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be used to derive statistically consistent estimates, often using standard estimators. The question
of statistical inference however, is more subtle: on the one hand, consistent estimation indicates
that the collected samples are informative enough. On the other hand, adaptive collection induces
endogenous correlation in the samples, resulting in bias in the estimates. In this paper, we address
the following natural question raised by this dichotomy:

Can adaptively collected data be used for ex post statistical inference?

We will focus on the linear model, where the samples (y1, z1), (y2,z2), ..., (Yn, ) satisfy:
yi = (wi,00) +ei, e~ N(0,0%). (1)

Here 6y € R? is an unknown parameter vector relating the covariates x; to the response y;, and the
noise ¢; are i.i.d. N(0,0?) random variables. In vector form, we write Eq.(1) as

y=X90+€, (2)

where y = (y1,%2, - -,Yn), € = (€1,€2, . ..,6p) and the design matrix X € R"*P hasrows z{,...,z,}.

When the samples are adaptively collected, the data point (y;,z;) is obtained after viewing the
previous data points (y1,21), ..., (Yi—1,Ti—1)".

In the ‘sample-rich’ regime when p < n, the standard approach would be to compute the
least squares estimate LS = (XTX)"1XTy, and assess the uncertainty in gLs using a central limit
approximation (X T X)!/ 2(@'5—00) ~ N(0,1I,) [LW&2]. However, while the estimator g% is consistent
under fairly weak conditions, adaptive data collection complicates the task of characterizing its
distribution. One hint for this is the observation that, in stark contrast with the non-adaptive
setting, 'S = 0y + (XTX)"'XT¢ is in general a biased estimate of §y. Adaptive data collection
creates correlation between the responses y; (therefore €;) and covariate vectors 11, Zit2,...,ZTn
observed in the future. In the context of multi-armed bandits, where the estimator LS for model
(1) reduces to sample averages, [XQL13, VBW15] observed such bias empirically, and [NXTZ17,
SRR19] characterized and developed upper bounds on the bias. While bias is an important problem,
estimates may also show higher-order distributional defects that complicate inferential tasks.

This phenomenon is exacerbated in the high-dimensional or ‘feature-rich’ regime when p > n.
Here the design matrix X becomes rank-deficient, and consistent parameter estimation requires ()
additional structural assumptions on 6y and (ii) regularized estimators beyond @-S, such as the
LASSO [Tib96]. Such estimators are non-linear, non-explicit and, consequently it is difficult to
characterize their distribution even with strong random design assumptions [BM12, JM14b]. In
analogy to the low-dimensional regime, it is relatively easier to develop consistency guarantees for
estimation using the LASSO when p > n. Given the sample (y1,21),...(yn,z,) one can compute
the LASSO estimate 6 = §L(y,X; An)

1
oL . _ 2
0 = argmin { o {ly = X015 + M0l }. (3)

If 6y is sparse with at most sy < p non-zero entries and the design X satisfies some technical
conditions, the LASSO estimate, for an appropriate choice of A, has estimation error ||§L —0o]|3 of

1Formally, we assume a filtration (§;)i<» to which the sequence (y;, zi)i<n is adapted, and with respect to which
the sequence (z;):<n is predictable



order o2sg(log p)/n, with high probability [BM15, BB15]. In particular the estimate is consistent
provided the sparsity satisfies s = o(n/logp). This estimator is biased though because of two
distinct reasons. The first is the regularization imposed in Eq.(3), which disposes AL to have small
¢1 norm. The second is the correlation induced between X and ¢ due to adaptive data collection.
To address the first source, [ZZ11, JM14a, VAGBR™14] proposed a so-called “debiased estimate”
of the form

~ 1
0o = o+ + EMXT(y — X6Y), (4)

where M is chosen as an ‘approximate inverse’ of the sample covariance S=XTX /n. The intuition
for this idea is the following decomposition that follows directly from Eqs.(1), (4):?

_ - 1
0°" — 6y = (I, — M) (" — 6p) + EMXTs. (5)

When the data collection is non-adaptive, X and ¢ are independent and therefore, conditional on
the design X, MXTe/n is distributed as N(0,02Q/n) where Q = MSMT. Further, the bias in
6°f is isolated to the first term, which intuitively should be of smaller order than the second term,
provided both o — 0y and M Y- I, are small in an appropriate sense. This intuition suggests
that, if the second term dominates the first term in §°ff, we can produce confidence intervals for 6y
in the usual fashion using the debiased estimate goff [JM14a, JM14b, VAGBR"14]. For instance,
with Q = MEMT, the interval [5‘1’” —1.960+/Q11/n, gf‘cf + 1.9601/Q11/n] forms a standard 95%
confidence interval for the parameter 6 ;. In the so-called ‘random design’ setting ~when the rows
of X are drawn i.i.d. from a broad class of distributions— this approach to inference via the debiased
estimate 6° enjoys several optimality guarantees: the resulting confidence intervals have minimax
optimal size [Jav14, JM14a, CG17], and are semi-parametrically efficient [VAGBR ' 14].

This line of argument breaks down when the samples are adaptively collected, as the debiased
estimate 6°% still suffers the second source of bias. Indeed, this is exactly analogous to g'S in
low dimensions. Since M, X and the noise € are correlated, we can no longer assert that the
term M X "Te/n is unbiased. Indeed, characterizing its distribution can be quite difficult, given the
intricate correlation between M, X and ¢ induced by the data collecting policy and the procedure
for choosing M. We illustrate the failure of offline debiasing in two scenarios of interest in this
paper: (i) batched data collection and (ii) autoregressive time series.

1.1 Why offline debiasing fails?
Batched data collection

Consider a stylized model of adaptive data collection wherein the experimenter (or analyst) collects
data in two phases or batches. In the first phase, the experimenter collects an initial set of samples
(Y1,71)s - - s (Yny» Tny ) Of size n1 < n where the responses follow Eq.(1) and the covariates are i.i.d.
from a distribution P,. Following this, she computes an intermediate estimate 8! of 8y and then
collects additional samples (Yn,+1, Tny+1);- - - (Yn, Tn) of size ng = n — ny, where the covariates z;
are drawn independently from the law of z1, conditional on the event {(z1,0') > ¢}, where < is a

2The notation °" stands for “offline” debiasing. We use this notation/terminology to highlight its main difference
from the “online” debiasing that will be introduced later in this paper.



threshold, that may be data-dependent. This is a typical scenario where the response y; represents
an instantaneous reward that the experimenter wishes to maximize, as in multi-armed bandits
[LR85, BCB'12]. For instance, clinical trials may be designed to be response-adaptive and allocate
patients to treatments that they are likely to benefit from based on prior data [ZLK 08, KHW11].
The multi-armed bandit problem is a standard formalization of this trade-off, and a variety of bandit
algorithms are designed to operate in distinct phases of ‘explore-then exploit’[RT10, DM12, BB15,
PRCT16]. The model we describe above is a close approximation of data collected from one arm in
a run of such an algorithm. With the full samples (y1,21),. .., (yn,z,) at hand, the experimenter
would like to perform inference on a fixed coordinate 6y, of the underlying parameter.

As a numerical example, we consider §y € {0,1}%%0 with exactly sy = 10 non-zero entries. We

obtain the first batch (y1,21),. .., (Y500, Z500) of observations with y; = (z;,00) + &;, ; id N(0, %)

and g; S N(0, 1) where we use the covariance X as below:

1 if a = b,
Yap =101 ifla—bl=1
0 otherwise.

Based on this data, we construct an intermediate estimator 6! on (y™M, X1) using two different
strategies: (i) debiased LASSO and (i) ridge regression with cross-validation. With this estimate
we now sample new covariates xso1, - - ., T1000 independently from the law of x]<x’§1>2<§172§1>1/2 and
the corresponding outcomes yso1,- .., %1000 are generated according to Eq.(1). Unconditionally,
(x, §1> ~ N(0, <§1, E§1>), so this choice of threshold corresponds to sampling covariates that corre-
late with #! at least one standard deviation higher than expected unconditionally. This procedure
yields two batches of data, each of n; = no = 500 data points, combining to a set of 1000 samples.

From the full dataset (y1,x1), .- ., (Y1000, Z1000) We compute the LASSO estimate oL = @'(y, X;A)
with A = 2.5\ nax(X)+/(log p)/n. Offline debiasing yields the following prescription to debias oL

o — gL . %n@wﬂ(y — xdb),

~

where (6) is the population precision matrix:
1 1 ~ —~
0" = JE{waT} + JE {:ch‘@c, gty > \|21/291||} .

We generate the dataset for 100 Monte Carlo iterations and compute the offline debiased estimate
6°ff for each iteration. Figure 1 shows the histogram of the entries 6° on the support of 6 for the
two choices of 81. As we see 6°f still has considerable bias, due to adaptivity in the data collection.

Autoregressive time series

A vector autoregressive (VAR) time series model posits that data points z; evolve according to the
dynamics:

d

2 = Z Az 4+ ¢ (6)

(=1
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Figure 1: Histograms of the offline debiased estimate 6°% restricted to the support of fy. The dashed line
indicates the true coefficient size. Recall that the second batch is chosen based on an intermediate estimator

o~

6! computed on the first batch. (Left) 8" is debiased LASSO on the first batch, (Right) 6" is ridge estimate
on the first batch. As we observe the offline debiasing (even with access to the precision matrix € of the
random designs) has a significant bias and dose not admit a Gaussian distribution.

where AY) € RP*P are time invariant coefficients and ¢; is the noise term satisfying E(¢;) = 0 (zero-
mean), E(G(]) = X¢ (stationary covariance), and E(¢¢f ) = 0 for & > 0 (no serial correlation).
Given the data zi,...,zp, the task of interest is to perform statistical inference on the model
parameters, i.e., coefficient matrices A1), ..., A@_ Clearly, the samples z; are ‘adaptively collected’,
in the sense that there is serial correlation in the samples. Indeed, the data point z; depends on
the previous data points z;_1, zt_2,..., 21.

As in the batched data example, we will carry out a simple illustration. We generate data from
a VAR(d) model with p = 15, d = 5, T = 60, and diagonal A® matrices with value b = 0.15 on

their diagonals. We also generate (; i N(0,%¢). Note that this is a high-dimensional setting as the
number of parameters dp? exceeds the sample size (T' — d)p. We keep the covariance of the noise
terms (; as below:

S¢.ij = 0.5179)

To estimate the parameters, we define the covariate vectors z; = (th d1re s th )T € R%, obtained
by concatenating d consecutive data points and € = ({441, (d+2,i - - -, (7). We focus on the noise
component of the offline debiased estimate, i.e.,

1 n
WOH = —sztét, (7)
v

with M denoting the decorrelating matrix in the debiased estimate as per (4).

In Figure 2, we show the QQ-plot, PP-plot and histogram of Wfﬁ (corresponding to the entry
(1,1) of matrix A;) for 1000 different realizations of the noise (;. As we observe, even the noise
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Figure 2: Empirical behavior of noise term associated with the offline debiased estimate of a fixed coordinate
of Gaussian VAR(d) model. In this example, d = 5,p = 15,7 = 60,p = 0.5, X¢(i,j) = pli=il and A®
matrices are diagonal with value b = 0.15 on their diagonals. Plots 2a, 2b, and 2¢ show the QQ plot, PP plot,
and the histogram of the offline debiased noise terms (red) over 1000 independent experiments, respectively
and black curve/lines denote the ideal standard normal distribution. As we observe, even the noise component
of the offline debiased estimator deviates from the standard normal distribution; This implies the failure of
offline debiasing method for statistical inference purposes when the samples are correlated. The vertical
black line in (c) indicates the mean of the noise component of the offline debiased estimator.

component W is biased because the offline construction of M depends on all features x; and hence
endogenous noise (;. Recall that for the setting with an i.i.d sample, the noise component is zero
mean gaussian for any finite sample size n. This further highlights the challenge of high-dimensional
statistical inference with adaptively collected samples and demonstrate why the classical debiasing
approach will not work in this case.

2 Online debiasing

We propose online debiased estimator gen = gon (y, X5 (M;)i<n, A) that takes the form
~ 1 &
°" = é\L — i \Y; — T§L .
+ ;:1 Mizi(y; — z; 07) (8)

The term ‘online’ comes from the first crucial constraint of predictability imposed on the sequence
(M;)i<n.

Definition 2.1 (Predictability). Without loss of generality, there exists a filtration (§;)i>0 so that,
fori=1,2,...,n, (i) & are adapted to §; and ¢; is independent of §; for j < i. We assume that
the sequences (z;)i>1 and (M;);>1 are predictable with respect to i, i.e. for each i, x; and M; are
measurable with respect to §;_1.

With predictability, the data points (y;, ;) are adapted to the filtration (§;)i<, and, moreover,
the covariates x; are predictable with respect to §;. Intuitively, the o-algebra §; contains all
information in the data, as well as potential external randomness, that is used to query the new
data covariate x;11. Predictability ensures that only this information may be used to construct the



matrix M;+1. Analogous to Eq.(5) we can decompose g°" into two components:

6o = 0o + \/15 (Bn(éL —bp) + Wn) (9)

1
where B,, = \/ﬁ(Ip - Z lezx;r),
K2
1
and Wn = % XZ: MZ[L‘ZEJZ

Predictability of (M;);<, ensures that W, is unbiased and the bias in g°" is contained entirely
in the first term Bn(@' — 6p). Suppose that, analogous to offline debiasing, we prove that the
bias term Bn(él — 6p) is of smaller order than the variance term W,. We are then left with
the problem of characterizing the asymptotic distribution of the sequence W,. As the sequence
VW, = >, Mixie; is a martingale with respect to the filtration §;, one might expect that W, is
asymptotically Gaussian. The following ‘stability’ property, identified first by Lai and Wei [LW&2]
in this context, is crucial to ensure that this intuition is correct.

Definition 2.2 (Stability). Consider a square integrable triangular martingale array {Z; n }i<nn>1
adapted to a filtration §; and its quadratic variation Vi, = > B{(Zin— Zi—11)?|Fi—1}. Note that
V. is non-negative random variable, measurable with respect to Fn_1. We say that the martingale
array {Zin}i>1 s stable if there exists a constant voe > 0 where limy, o Vi, = voo in probability.

An important contribution of our paper is to develop online debiasing estimators °" whose
underlying martingales are stable. The specifics of construction of predictable sequence (M;)i<n
and deriving the distributional characterization of the debiased estimator gon depend on the context
of the problem at hand. In this paper, we instantiate this idea in two concrete contexts: (i) time
series analysis (Section 3) and (ii) batched data collection (Section 4). For both of these settings,

1. We first establish estimation results for the LASSO estimate, showing that even with adap-
tive data collection, the LASSO estimate enjoys good estimation error (Theorems 3.2 and
4.1). These results draw significantly on prior work in high-dimensional estimation [BM15,
BVDG11].

2. Next, we propose constructions for the online debiasing sequence (M;);<n, using an optimiza-
tion program that trades off variance with bias, while ensuring stability. This optimization
program is a novel modification of the approximate inverse construction in [JM14a]. The im-
portant change is the inclusion of an ¢; constraint in the program, which ensures stability of
the underlying martingales, and allows the use of a martingale CLT theorem to characterize
the distribution of the online debiased estimator.

3. We establish a distributional characterization of the resulting online debiased estimate gen
(Theorems 3.8 and 4.9). Informally, this demonstrates that coordinates of §°" are approxi-
mately Gaussian with a covariance computable from data.

In Section 5, we demonstrate how the online debiased estimate 6°" can be used to compute
standard inferential primitives like confidence intervals and p-values. Section 6 contains numerical
experiments that demonstrate the validity our proposals on both synthetic and real data. In Section



7 we develop computationally efficient iterative descent methods to construct the online debiasing
sequence (M;);<p. In the interest of reproducibility, we make an R implementation of our algorithm
publicly available at http://faculty.marshall.usc.edu/Adel-Javanmard/OnlineDebiasing.

Our proposal of online debiasing approach builds on the insight in [DMST18], which has studied
a similar problem for low-dimensional settings (p < n). We provide a detailed discussion of this
this work in Section 4.1.1, highlighting the main distinctions and the inefficacy of that method for
high-dimensional setting to further motivate our work and contributions.

Notation Henceforth, we use the shorthand [p] = {1,...,p} for an integer p > 1, and a A
b = min(a,b), a Vb = max(a,b). We also indicate the matrices in upper case letters and use
lower case letters for vectors and scalars. We write ||v||, for the standard ¢, norm of a vector v,
[v]l, = (3, |vilP)Y/P and ||v]|o for the number of nonzero elements of v. We also denote by supp(v),
the support of v that is the positions of its nonzero entries. For a matrix A, ||Al|, represents its
¢, operator norm and ||A||sc = max; j |A;;| denotes the maximum absolute value of its entries. In
particular, |A||; is the ¢; — ¢; norm of matrix A (the maximum ¢; norm of its columns). For two
matrices A, B, we use the shorthand (A, B) = trace(AT B). In addition ¢(x) and ®(z) respectively
represents the probability density function and the cumulative distribution function of standard
normal variable. Also, we use the term with high probability to imply that the probability converges
to one as n — oo.

3 Online debiasing for high-dimensional time series

The Gaussian vector autoregressive model of order d (or VAR(d) for short) [SS06], posits that data
points z; follow the dynamics:

d
Zt = Z A(E)thg + Ct, (10)

(=1
where A € RPXP and ¢, g N(0,3¢). VAR models are extensively used across science and engineer-
ing (see [FSGMT07, SW01, HENR&8, SBB15] for notable examples in macroeconomics, genomics
and neuroscience). Given the data z1,..., 2y, the fundamental task is to estimate the parameters
of the VAR model, viz. the matrices AD ... A@  The estimates of the parameters can be used in
a variety of ways depending on the context: to detect or test for stationarity, forecast future data,
or suggest causal links. Since each matrix is p x p, this forms a putative total of dp? parameters,
which we estimate from a total of (1" — d)p linear equations (Eq.(10) with t =d + 1,...,T). For

the i coordinate of z, Eq.(10) reads

d

Zt; = Z(Zt—e, AZ('[)> + Gt (11)

(=1
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where AZ(»Z) denotes the it" row of the matrix A®). This can be interpreted in the linear regression
form Eq.(1) in dimension dp with 6y € R%?, X € RT=dxdp 4 o ¢ RT=4 identified as:

1 2 d
oo = (A, AP, AT,
T T T
b
2301 % 29
X — d+ d ,
T T T
2p_y Rp_g .- Zp_g
Yy = (Zd+1,i7 Zd+2,’i7 sty zT,i)7
€ = (Cat1,i> Car2,ir - - CTi)- (12)
We omit the dependence on the coordinate i, and also denote the rows of X by z1,...,z, € R%?,

with n =T — d. Given sufficient data, or when 7' is large in comparison with dp, it is possible to
estimate the parameters using least squares [SS06, LW82]. In [BM15], Basu and Michailidis consider
the problem of estimating the parameters when number of time points 71" is small in comparison
with the total number of parameters dp, with the proviso that the matrices A(®) are sparse. Their
estimation results build on similar ideas as [BVDG11, Theorem 6.1], relying on proving a restricted
eigenvalue property for the design X " X /n. This result hinges on stationary properties of the model
(10), which we summarize prior to stating the estimation result.

Definition 3.1 (Stability and invertibility of VAR(d) Process [BM15]). A VAR(d) process with an
associated reverse characteristic polynomial

d
Ay) =T=Y AO, (13)
=1

is called stable and invertible if det(A(vy)) # 0 for ally € C with |y| = 1. Based on this characteristic
polynomial, we also define the following spectral parameters:

i (4) = i M (A ()A)
,U,maX(A) = max )\max(fr‘< (7)“4(7))

[v|=1

Theorem 3.2 (Estimation Bound). Recall the relation y = X6y + ¢, where X,y, 0y are given by
(12) and let O- be the Lasso estimator

1
5“:argmin{*Hy—XHH%—i—)\nHeﬂl}. (14)
eede 2n

Assume that |supp(0y)| < so, and define

d/\max(zﬁ) . Nmax(A)
)\min(EC) Umin(A)
_ Amin(5¢)

MmaX(A) '

w =
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Figure 3: Schematic for constructing the debiasing matices M. We divide time into K episodes
Eo,...,Ex_1; in episode £, M; is held constant at M), which is a function of z; in all prior episodes.

There exists a universal constant C > 0, such that for any n > Caw?sglog(dp) and A\, =

Xov/log(dp)/n, with Ao > 4 Amax(X¢)(1V fimax(A))/ timin (A) the following happens. With probability
at least 1 — (dp) =5, the estimate satisfies:

Ao s3log(dp)
o n

18- — 6olls < C

In short, given the standardized setting where Ag, o are order one, the ¢; estimation error rate
is of order sg4/log(dp)/n, which is the same obtained in data without temporal dependence. Our
proof is similar to that of Basu and Michailidis [BM15], and relies on establishing a now-standard
restricted eigenvalue property for the design X'X/n. The spectral characteristics of the time
series quantified in Definition 3.1 play an important part in establishing this. We refer the reader
to Appendix A for the proof, as well as a discussion of the differences with the proof of [BM15].

3.1 Constructing the online debiased estimator

Our task now is to construct a predictable sequence of debiasing matrices {M;}i<,. One simple
approach is the ‘sample-splitting’ approach: construct a generalized inverse M based on the first
n/2 data points using, for example, the program of [JM14a] and let the sequence {M; }i<, be defined
by

0 ifi<n/2
M; =
M ifn/2<i<n.

It is easy to see that this is a valid predictable sequence. However, due to sample-splitting, it does
not make an efficient use of the data and loses power. More importantly, it is not clear that the
underlying martingale (the noise component of the debiased estimator /nW, = >, M;x;e;) will
be stable in the sense of Definition 2.2. Our proposal generalizes sample-splitting via an episodic
structure and, importantly, regularizes to ensure stability.

We partition the time indices [n] into K episodes Ey, ..., Fx_1, with E; of length 74, so that
Zf: 61 r¢ = n. Over an episode ¢, we keep the debiasing matrix M; = M to be fixed over time
points in the episode. Moreover, M® is constructed using all the time points in previous episodes
Ey, ..., Ey_q in the following way. Let ny = rqg+...4+7r¢_1, for £ =1,..., K; hence, ng = n. Define

10



the sample covariance of the features in the first ¢ episodes.

a 1
s0-L oy

n
£ teEoU..UE,_;

The matrix M©® has rows (mg)ae[dp} as the solution of the optimization:

minimize mTi(@m
o (15)
subject to ||E( )m — €alloo < pre,  |mlli < L,

for appropriate values of uy, L > 0. We then construct the online debiased estimator for coordinate
a of 8y as follows:

K-1
~ 1
0 =08+ =3 > MOy, — (x40, 6Y)). (16)

n
(=1 tek,

In Section 3.2, we show that the constructed online debiased estimator 0on is asymptotically
unbiased and admits a normal distribution. To do that we provide a high probability bound on the
bias of §°" (See Lemma A.5). This bound is in terms of the batch sizes 74, from which we propose
the following guideline for choosing them: 79 ~ y/n and 7, ~ 3%, for a constant 8 > 1, and £ > 1.

Before proceeding into the distributional characterization of the online debiased estimator for 6y
(entries of coefficient matrices A(¥)), we revisit the numerical example from Section 1.1 in which the
(offline) debiased estimator of [JM14a] does not display an unbiased normal distribution. However,
as we will observe the constructed online debiased estimator empirically admits an unbiased normal
distribution.

Revisiting the numerical example from Section 1.1 In Section 1.1, we considered a VAR(d)
model with p = 15, d = 5, T = 60, and diagonal A® matrices with value b = 0.15 on their
diagonals. The covariance matrix 3¢ of the noise terms (; is chosen as ¥¢(i,j) = PM#9) with
p = 0.5 and i,j € [p]. The population covariance matrix of vector z; = (z;'—+d_1, cen z;r)T is a dp
by dp matrix ¥ consisting of d? blocks of size p x p with I',(r — s) as block (r,s). The analytical
formula to compute I',(¢) is given by [BM15]:

L) = 5 [ AT ISAT ) e s,

where A(7y) is given in equation (13). Figure 4 shows the heat maps of magnitudes of the elements
of 3 and the precision matrix 2 = $! for the on hand VAR(5) process. As evident from Figure 2,
the noise component of offline debiased estimator is biased. Here, we look into the noise component
of the online debiased estimator given by

1
wen = 7 Z M(Z) Z TE¢t, (17)
/=1 teEy
with M® constructed from the solutions to optimization (15) for £ =1,..., K — 1. Also, recall

that € = (Cg41,i5 Cat2,i - - - » G7,3) by equation (12).
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In Figure 5, we show the QQ-plot, PP-plot and histogram of W™ and Wfﬂ (corresponding to
the entry (1,1) of matrix A;) for 1000 different realizations of the noise (;. As we observe, even
the noise component W is biased because the offline construction of M depends on all features
x; and hence on endogenous noise (;. However, the online construction of decorrelating matrices
M® | makes the noise term a martingale and hence W converges in distribution to a zero mean
normal vector, allowing for a distributional characterization of the online debiased estimator.

(a) Heat map of ¥ (b) Heat map of §2

Figure 4: Heat maps of magnitudes of elements of covariance matrix ¥ = E(z;z7) (left plot), and precision
matrix Q = ¥~! (right plot). In this example. x;’s are generated from a VAR(d) model with covariance
matrix of noise 3¢ (4, j) = p"‘_j| with values d =5, p =15, T = 60, p = 0.5, and diagonal AU matrices with
b = 0.15 on diagonals.

3.2 Distributional characterization of online debiasing

We start our analysis of the online debiased estimator gen by considering a bias-variance decompo-
sition. Using y; = (4, 00) + &; in the definition (16):

gen — 00—0 — 0y + — ZZM xtxt 90— ZZM“:}:tst

f 1 teE, f 1 teky
= =
< E Z M(e)flftl'z—) - 9() + E Z Z M(é).flité‘t. (18)
(=1 tek, (=1 tek,
With the shorthand R = (1/r)) 3, B xyx] for the sample covariance of features in episode ¢ and

the bias B, and variance term W,, below

1
B, = ﬁ([ i rgM“)R“)) , (19)
n
(=1
=
Wo=—= > MO(Y we), (20)
" (=1 teEy
we arrive at the following decomposition
~ 1
6°" = 6y + —= (Bu (8" — o) + Wy) . (21)

NG
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(a) (b) ()

Figure 5: Plots 5a, 5b, and 5c¢ show the QQ plots, PP plots, and the histogram of online debiased noise
terms (blue) and offline debiased noise terms (red) over 1000 independent experiments, respectively and
black curve/lines denote the ideal standard normal distribution. The solid and dash vertical lines in plot (c)
indicate the location of the mean of offline and online debiased noise terms, respectively.

Our first set of results concern the bias of 67°”, establishing that this is asymptotically smaller
than that of the LASSO estimate. The analysis of the bias focuses mostly on the term B,,, which
in turn, is controlled by the parameter p, in the optimization (15). We would like to choose
small enough to reduce the bias, but large enough so that the optimization (15) is still feasible.
The following lemma shows that, with high probability, uy of order w+/log(dp)/n; is sufficient to
make the optimization feasible.

Lemma 3.3. Let Q = %71 = (E{xyx]})~! be the precision matriz of the time series. There exists
universal constants C,C" such that the following happens. Suppose that ny > Cw?log(dp) where w
is defined in Theorem 3.2. Then with probability 1 — (dp)~5:

maX|Q§(5) —1(i = j)| < C'w log(dp).

i, ny

The proof of Lemma 3.3 is given in Appendix A.3. The following theorem uses Lemma 3.3 to
control the bias of the online debiased estimator.

Theorem 3.4. (Bias control) Consider the VAR(d) model (10) and let 6°" be the debiased esti-
mator (16) where the decorrelating matrices MY are computed according to Eq.(15), with py =
ciwy/(log(dp)/ne and L > ||Q|1. Further assume that the base estimator is 8- computed with

A = Aoy/log(dp)/n where Ao > 4Amax(E¢) (1 V pimax(A))/ tmin (A).

Then, under the sample size condition n > Cw?sqlog(dp), we have

VR0 = 6y) = Wy, + Ay, (22)
where E{W,,} =0 and
Ao(w + L) solog(dp) 4
> <
P{HAnHoo = Cl o \/ﬁ } = (dp) ) (23)
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The parameters w, o are defined in Theorem 3.2, and v = dAmax(E¢)/tmin(A). Further, the
bias satisfies

~ Ciho(w + L) solog(dp) ~ Ca|bo|1
E{0°" — 0} oo <
IE{ 0} leo < > e (dp)s

We refer to Appendix A.4 for the proof of Theorem 3.4.

Note that he above theorem bounds the bias term A,, for finite sample size n. To study these
bounds in an asymptotic regime, we make the following assumption to simplify our presentation.

Assumption 3.5. Suppose that

1. The parameters Amin(E¢), Amax(2¢), tmin(A) and pimax(A) are bounded away from 0 and oo,
as n,p — oo.

2. With Q = %71 = (E{xyx]})~! the precision matriz of the data points {x;}, and sy the sparsity

of Oy = (Al(l), . ,Al(»d))T, we assume that |21 = o(y/n/log(dp)).

Under Assumption 3.5 the spectral quantities w,, @ and (therefore) )y are order one. We can
also ignore the lower order term ||fp|/1/(dp)® in the high-dimensional regime. Indeed, the denom-
inator (dp)® can be changed to (dp)¢ for arbitrary large ¢ > 0, by adjusting constant C; and the
tail bound in Eq.(23). Therefore, as far as ||fy|/1 grows polynomially at p, then this term van-
ishes asymptotically. The theorem, hence, shows that the bias of the online debiased estimator
is of order Lsg(logp)/n. On the other hand, recall the filtration F; generated by {e1,...,e:} and
rewrite (20) as W,, = 3., ves, where v; = MWz, /\/n (Sample ¢ belongs to episode £). We use
Assumption 3.5 in Lemma 3.6 below, to show that for each coordinate i € [dp], the conditional vari-
ance Y iy E(efvf | Fio1) = (02/n) S (mh, 2)? is of order one. Hence ||A, ||« is asymptotically
dominated by the noise variance when sy = o (%).

Another virtue of Lemma 3.6 is that it shows the martingale sum W), is stable in an appropriate
sense. This is a key technical step that allows us to characterize the distribution of the noise term
W, by applying the martingale CLT (e.g., see [HH14, Corollary 3.2]) and conclude that the
unbiased component W,, admits a Gaussian limiting distribution.

Lemma 3.6. (Stability of martingale W,,) Let 0°" be the debiased estimator (16) with py =

7+/(logp)/ne and L = Lo||Q|1, for an arbitrary constant Ly > 1. Under Assumption 5.5, and
for any fized sequence of integers a(n) € [dp],® we have

-1
ZCz’,'

Vo = - : Z Z (mf, x)? = E¢ii Qaa +op(1). (24)
(=1 tek,
In addition, we have
1
max{%\<m£,xt>et| L lelK—1,ten— 1]} = op(1). (25)

3We index the sequence with the sample size n that is diverging. Since we are in high-dimensional setting p > n
is also diverging.
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We refer to Appendix A.5 for the proof of Lemma 3.6. With Lemma 3.6 in place, we can apply
a martingale central limit theorem [HH14, Corollary 3.2] to obtain the following result.

Corollary 3.7. Consider the VAR(d) model (10) for time series and let 6°" be the debiased esti-
mator (16) with py = Chw+/(logp)/ng and L = Ly||Q||1, for an arbitrary constant Lo > 1. For any
fized sequence of integers a(n) € [dp|, define the conditional variance V,, as

PR

(=1 tekE,

Ecz g

Under Assumption 3.5, for any fized coordinate a € [dp], and for all x € R we have

i P52 < o}

where ® is the standard Gaussian cdf.

= ®(x), (26)

For the task of statistical inference, Theorem 3.4 and Corollary 3.7 suggest to consider the
scaled residual \/n(05" — 6p.q)/+/Vn,a as the test statistics. Our next proposition characterizes its
distribution. The proof is straightforward given the result of Theorem 3.4 and Corollary 3.7 and is
deferred to Appendix A.6. In its statement we omit explicit constants that can be easily derived
from Theorem 3.4.

Theorem 3.8. Consider the VAR(d) model (10) for time series and let 6°" be the debiased estimator
(16) with py = Crw/(logp)/ne, X = Xoy/log(dp)/n, and L = Lo||Q2||1, for an arbitrary constant

Lo > 1. Suppose that Assumption 3.5 holds and sy = o (m), then the following holds true
for any fized sequence of integers a(n) € [dp]. For all x € R, we have

lim ‘P{\/ﬁ@n_eo’“) < x} — O(x)

n—o0 Vn a -

)

~0. (27)

4 Batched data collection

Recall the stylized setting of adaptive data collection in batches from Section 1.1, where the samples
naturally separate into two batches: the first n; data points where the covariates are i.i.d from
a distribution P,, and the second batch of ny data points, where the covariates x; are drawn
independently from the law of x1, conditional on the event {(z1, §1> > ¢}, where < is a potentially
data-dependent threshold. The following theorem is a version of Theorem 6.1 in [BVDG11] and is
proved in an analogous manner. It demonstrates that even with adaptive data collection consistent
estimation using the LASSO is possible.

Theorem 4.1 ([BVDGI11, Theorem 6.1]). Suppose that the true parameter 0y is so-sparse and the
distribution Py is such that with probability one the following two conditions hold: (2) the covariance
E{zz"} and E{zzT|(z,0') > <} are (¢o,supp(by))-compatible and (ii) = as well as 9:|<x Gly>c 0Te

k-subgaussian. Suppose that n > C1(k*/¢2)sdlogp. Then, the LASSO estimate §L(y,X;An) with
An = Coroy/(log p)/n satisfies, with probability exceeding 1 — p~3,

C'soNp,  Cko log p
_ %0

- — 6o||; < -
0= ol = =5~ =5, n
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Remark 4.2. (Estimating the noise variance) For the correct estimation rate using the LASSO,
Theorem 4.1 requires knowledge of the noise level o, which is used to calibrate the reqularization
An. Other estimators like the scaled LASSO [SZ12] or the square-root LASSO [BCW11] allow to
estimate o consistently when it is unknown. This can be incorporated into the present setting, as
done in [JM1/a]. For simplicity, we focus on the case when the noise level is known. However, the
results hold as far as a consistent estimate of o is used. Formally, a consistent estimator refers to
an estimate o = o (y, X ) of the noise level satisfying, for any e > 0,

lim sup P<’0—1’25):0. (28)
o

160 l0<so

Remark 4.3. At the expense of increasing the absolute constants in Theorem /.1, the probability
1 —p=3 can be made 1 — p=C for any arbitrary constant C' > 1.

Let X; and X5 denote the design matrices of the two batches and, similarly, y*) and y® the
two responses vectors. In this setting, we use an online debiased estimator as follows:

. 1 1
gon — g + 5M(1)X1T(y(1) — X16%) + 5M(2)X2T(y(2) — Xp0Y), (29)

where we will construct M) as a function of X; and M2 as a function of X; as well as Xo. The
proposal in Eq.(29) follows from the general recipe in Eq.(8) by setting

o M; =MW for i = [n1] and M;=M® fori=ny+1,...,n.

e Filtrations §; constructed as follows. For i < mi, y1,...,%:, Z1,...Tp, and €1,...,&; are
measurable with respect to §;. For i > ny, y1,...,%, 1,...,T, and €1,...€; are measurable
with respect to §;.

By construction, this choice satisfies the predictability condition, given by Definition 2.1.

Note that Eq.(29) nests an intuitive ‘sample splitting’ approach. Indeed, debiasing oL using
exactly one of the two batches is equivalent to setting one of MM or M@ to 0. While sample
splitting can be shown to work under appropriate conditions, our approach is more efficient with
use of the data and gains power in comparison. We construct M M and M@ using a modification
of the program used in [JM14a]. Let S0 = (1/n1)X{ X1 and 5@ = (1/n2)XJ X2 be the sample
covariances of each batch; let M) have rows (ma1 )i<a<p and similarly for M (2), Using parameters

e, L > 0 that we set later, we choose mg), the a't row of M, as a solution to the program

minimize  (m, %Om)

subject to  [|Sm — eqlloo < e, 1 < L. (30)

Here e, is the a'!" basis vector: a vector which is one at the a'" coordinate and zero everywhere
else.

The intuition for the program (30) is simple. The first constraint ensures that SOm is close,
in /. sense to the eq, the a' basis vector and as we will see in Theorem 4.6 it controls the bias
term A of §°". The objective is a multiple of the variance of the martingale term W in gen (cf.
Eq. (34)). We wish to minimize this as it directly affects the power of the test statistic or the
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length of valid confidence intervals constructed based on °". The l1 constraint on m, which is
missing in [JM14a], is crucial for our adaptive data setting. This constraint ensures that the value
of the program (mg), gamfﬁ) is stable, and does not fluctuate much from sample to sample (this
is formalized as the ‘stability condition’ in Lemmas C.8 and 3.6). It is this stability that ensures
that the martingale part of the residual displays a central limit behavior.

Note that in the non-adaptive setting, inference can be performed conditional on design X,
and fluctuation in <m¢(f), E(e)mg)> is conditioned out. In the adaptive setting, this is not possible:
one effectively cannot condition on the design without conditioning on the noise realization e, and

therefore we perform inference unconditionally on X.

4.1 Online debiasing: a distributional characterization

We begin the analysis of the online debiased estimator gen by a decomposition that mimics the
classical debiasing.

~ 1
0°" = 6o + %(Bn(@ — o) + W), (31)
B, = ﬁl(jp _ M msa) @M@)g(z)) (32)
n n
1 1
W, = — M(l)xiei + — M(Q)J}ié‘i. 33
\/ﬁ zgznl n n1<zz'§n ( )

Assumption 4.4. (Requirements of design) Suppose that the distribution P, and the intermediate
estimate 0%, that is used in collecting the second batch, satisfy the following:

1. There exists a constant Ao > 0 so that the eigenvalues of E{zx"} and E{.%.%T‘(l',é\l) >} are
bounded below by Ag.

2. The laws of x and x|<x frysc are k-subgaussian for a constant k > 0.

3. The precision matrices §} = E{zx"}~! and Q(z)(é\l) = E{me|<x,§1> > ¢}t satisfy || Vv
19C)@)]; < L.

4. The conditional covariance ¥?(0) = E{zzT|(x,0) > ¢} is K-Lipschitz in its argument 6, i.e.
I=2(0) = 2P (0) ]l < K10 —0]|1-

The first two conditions of Assumption 4.4 are for ensuring that the base LASSO estimator o
has small estimation error. In addition, our debiasing makes use of the third and fourth constraints
on the precision matrices of the sampling distributions. In the above, we will typically allow L = L,
to diverge with n.

In the following Example we show that Gaussian random designs satisfy all the conditions of
Assumption 4.4. We refer to Section C.4 for its proof.

Example 4.5. Let P, = N(0,%) and 8 be any vector such that ||9A||1H§||09\§ LE)\min(E)Hgﬂ/Q and

YY1 € Ly /2. Then the distributions of x and x|, A , with ¢ = ¢(H, %0 1/2 for a constant < > 0
<:1: (9)>§
satisfy the conditions of Assumption 4.4 with -
., _ )\max(z)3/2
A() :Amin(z», :‘i:?))\%n/a?x(z)(§\/§ l), K:\/§(1+§2)m, L:LE

17



Under Assumption 4.4 we provide a non-asymptotic bound on the bias of the online debiased
estimator 6°".

Theorem 4.6. (Non-asymptotic bound on bias) Under Assumption 4./, there exists universal
constants C1,Csy, C3 so that, when n > Cm‘lsg log p/@3 and ny Ang > C1(Ao/Kk* + k2 /Ag) log p, we
have that

\/ﬁ(é\on - 90) =W, + Ana (34)
where E{W,} =0 and
Car? osplogp _3
P{HAnHoo > A03/2\/ﬁ} <p". (35)
Further we have
~ 2 1 0
HE{QOH _QO}HOO < Cak* 059 ogp 4 C3H 0”1 . (36)

- A03/2 n p2

The proof of Theorem 4.6 is given in Appendix C.2. Note that, in the high-dimensional setting
of n < p, the term ||6||1/p? will be of lower order as compared to sglogp/n. Therefore, when
the parameters Ag, o, k are of order one, the theorem shows that the bias of the online debiased
estimator is of order splogp/n, This may be compared with the LASSO estimator B whose bias

is typically of order A\ < o4/logp/n. In particular, in the regime when sy = o(y/n/logp), this bias
is asymptotically dominated by the variance, which is of order o /\/n.

In order to establish asymptotic Gaussian behavior of the online debiased estimate §°”, we

consider a specific asymptotic regime for the problem instances.

Assumption 4.7. (Asymptotic regime) We consider problem instances indezed by the sample size
n, where n,p, sg satisfy the following:

1. liminf, s % > ¢, for a positive universal constant ¢ € (0,1]. In other words, both batches
contain at least a fized fraction of data points.

: 1 logp [ o log p
lim — LK =0.
Jim e so\/ — < v/ e 0 (37)

The following proposition establishes that in the asymptotic regime, the unbiased component
W, has a Gaussian limiting distribution. The key underlying technical idea is to ensure that the
martingale sum in W,, is stable in an appropriate sense.

2. The parameters satisfy:

Proposition 4.8. Suppose that Assumption 4.4 holds and consider the asymptotic regime of As-
sumption 4.7. Let a = a(n) € [p] be a fized sequence of coordinates. Define the conditional variance
Vi,a of the ath coordinate as

(2), g@)m(m)) ‘ (38)



Then, for any bounded continuous ¢ : R — R

n@gﬁ{s@(%)} =E{0(¢)},

where & ~ N(0,1). The same holds for ¢ being a step function p(z) =1(z < z) for any z € R. In
particular,

lim IP{ Wi < 1:} = P(x),

n—oo

where @ is the standard Gaussian cdf.

The proof of Proposition 4.8 is deferred to Appendix C.3. The combination of Theorem 4.6 and
Proposition 4.8 immediately yields the following distributional characterization for 6°".

Theorem 4.9. Under Assumptions 4./ and /.7, the conclusion of Proposition /.8 holds with
V/n(68" — 6y) in place of W,,. In particular,

lim IP’{ V” (" — By.4) < x} = &(z), (39)

n—00 n,a

where V, o is defined as in Proposition 4.S.

To compare the sample size requirements made for ¢1-consistent estimation and those in As-
sumption 4.7, it is instructive to simplify to the case when k, ¢g, Ag are of order one. Then /;-
consistency (Theorem 4.1 in Appendix C) requires that ny V na = Q(s?logp), i.e. at least one of
the batches is larger than s% log p. However, Theorem 4.9 makes the same assumption on n; A ng,
or both batches exceed s3logp in size. For online debiasing, this is the case of interest. Indeed if
ny > ngy (or vice versa), we can apply offline debiasing to the larger batch to obtain a debiased
estimate. Conversely, when n; and no are comparable as in Assumption 4.7, this ‘sample-splitting’
approach leads to loss of power corresponding to a constant factor reduction in the sample size.
This is the setting addressed in Theorem 4.9 via online debiasing.

4.1.1 Revisiting the numerical example from Section 1.1.

In the batched data example discussed in Section 1.1, we observed that the classical offline debi-
asing fails in providing unbiased estimate of the true parameters. Here, we will repeat the same
experiment and numerically characterize the distribution of the proposed online debiased estimator.

Figure 6 (left panel) shows the histogram of the entries of online debiased estimator 6°" on the
support of 6y (blue) along with the corresponding histogram of entries of the debiased estimator
goft (red). As we see for both choices of o' (debiased LASSO and ridge estimate on the first batch),
the online debiased estimator #°" is appropriately centered around the true coefficients.

One can also split samples in the following way. Since the second batch of data was adaptively
collected while the first batch was not, we can compute a debiased estimate using only the first,
non-adaptive batch:

~ 1
geff.l — §L(y(1)’ X1) + EQXI(y(l) - X1§L(y(1)7X1))- (40)
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Figure 6 (right panel) shows the histogram of the entries of 9°ff ! restricted to the support of 6y, and

the comparison with °". As can be expected, both 9°f1 and 6°" are appropriately centered around
the true coefficient 1. However, as is common with sample-splitting, goff.1 displays a larger variance
and correspondingly loses power in comparison with 6°" since it uses only half of the data. The
power loss becomes even more pronounced when there are more than two phases of data collection,
or if the phases are particularly imbalanced.

Comparison with ridge-type debiasing approach of [DMST18]. This work studies a
similar problem, namely performing statistical inference using adaptively collected data using a
debiasing approach. To compare with our setting, there are two important points to note:

1. The method of [DMST18] is tailored to low-dimensional setting where the number of co-
variates p is less than the sample size (p < n). More specifically, denoting by Apin(n) the
minimum eigenvalue of XTX, [DMST18] considers a setting where Amin(n) — 0o almost
surely. Note that for the batched data example, this amounts to /n — \/p — oc.

2. The work [DMST18] proposes a different method of debiasing which albeit being valid in
low-dimensional setting it comes with fundamental challenges to be generalized to high-
dimensional setting. Letting fOLS the least square estimator, [DMST18] constructs a debiased
estimator 69 as follows:

04 = 6°1S + W, (y — X0°1), (41)
where the matrix W, is constructed recursively as W,, = [W,,_1|wy] and X,, = [X,,—1|x,] with
wy, = arg min ||[[ — W, 1X,,_1 — w:L‘ZHQF + /\Hw||§ (42)

weRP

Therefore, the decorrelating matrix W, is constructed in an online way as it is a predictable
sequence according to Definition 2.1. Note that w; corresponds to M;z; in our notation.

One can potentially think of using the ridge-type debiased estimator (42) in high-dimensional
setting with using gL instead of AOLS. In Figure 6, we include the histogram of such estimate (gray
histogram under the name “ridgeOnline”). As we see the corresponding histogram is biased and
deviates from a normal distribution which implies that this approach does not extend to high-
dimensional setting.

Some intuition for this may be seen by following the argument of [DMST18]. Considering the
bias-variance decomposition of 89 — fy = b + v with b = (I - WX )(90'-5 —6p) and v = Wpey,
the above optimization aims at minimizing a weighted sum of the bias and the variance of 69 in an
online manner. The analysis of [DMST18] controls bias as follows

bl < |17 = Wy Xallop 6P = oll2 < |11 — Wy Xal|r 18O — bo]l2.-

However, in high-dimension this bound is vacuous. Since W, X,, € RP*? is of rank at most n < p,
I — W, X, has eigenvalue 1 with multiplicity at least p —n. Therefore || — W, X,||lFr >p—n — oo
and || — Wy, Xy|lop > 1. Thus, even a refinement of [DMST18] would only yield an insufficient bias

bound of the type
1
[bll2 < 18" = Bollz = o/ 2-5F,
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which dominants the variance component Var(v) = O(1/y/n). Our scheme of online debiasing
overcomes this obstacle by adapting to the geometry of the high-dimensional regime. In particular,
it yields the bias bound of order |[E{6°" — 6 }||sc = O(so(log p)/n) which is dominated by the noise
term, provided that sg = o(y/n/logp).

5 Statistical inference

An immediate use of distributional characterizations (27) or (39) is to construct confidence intervals
and also provide valid p-values for hypothesis testing regarding the model coefficients. Throughout,
we make the sparsity assumption sp = o(y/n/logpog), with pg the number of model parameters (for
the batched data collection setting py = p, and for the VAR(d) model py = dp).

Confidence intervals: For fixed coordinate a € [pp] and significance level a € (0,1), we let

Ja(@) = 02" — §(cv, n), 6" + 6(cv, n)] (43)

§(a,n) = @11 — a/2)\/Via/1,

where V,, 4 is defined by Equation (24) for the VAR(d) model and by Equation (38) for the
batched data collection setting.

As a result of Proposition 3.8, the confidence interval J,(«) is asymptotically valid because

lim P(fg, € Jo(a)) = lim P{M <o (1 - a/2)}

n—r00 n—r00 /Via
K

i B { NG <o l1-a /2)} (44)

n—00 /Vn,a

=3 1(1-0/2) (-2 (1 -0a/2)=1-a.

Further, note that the length of confidence interval J, () is of order O(o/+/n) (using Lemma C.8
for the batched data collection setting and Lemma 3.6 for the time series). It is worth noting
that this is the minimax optimal rate [JM14b, Jav14] and is of the same order of the length
of confidence intervals obtained by the least-square estimator for the classical regime n > p
with i.i.d samples.

Hypothesis testing: Another consequence of Proposition 3.8 is that it allows for testing hypoth-
esis of form Hy : 6y, = 0 versus the alternative H4 : 6y, # 0 and provide valid p-values.
Recall that 8y denotes the model parameters, either for the batched data collection setting
or the VAR(d) model (which encodes the entries Ag? in model (10)). Such testing mecha-
nism is of crucial importance in practice as it allows to diagnose the significantly relevant
covariates to the outcome. In case of time series, it translates to understanding the effect of
a covariate z;_g; on a covariate z;;, and to provide valid statistical measures (p-values) for
such associations. We construct two-sided p-values for testing Hy, using our test statistic as

follows:
p—of1-a Y0 (45)
vV Vn,a
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Figure 6: (Left) Histograms of the online debiased estimate 8°" and the ridge debiased estimator [DMST18],
restricted to the support of 6. (Right) Histograms of the offline debiased estimate only using the first batch,
6°f:1 given by (40) and the online debiased estimate #°". The dashed line indicates the true coefficient size.

Offline debiasing

gofr, 1

using only the first batch works well (green histograms called offlineFirstBatch), but

then loses power in comparison. Online debiasing is cognizant of the adaptivity and debiases without losing
power even in the presence of adaptivity.
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Our testing (rejection) rule given the p-value P, is:
1 if P, < ject H
R(a)= ) M Ta=a et o), (46)
0 otherwise (fail to reject Hp).

Employing the distributional characterizations (39) or (27), it is easy to verify that the con-
structed p-value P, is valid in the sense that under the null hypothesis it admits a uniform
distribution: Pg, ,—o(Py < u) = u for all u € [0,1].

Group inference In many applications, one may want to do inference for a group of model pa-
rameters, 0o, = (0o,a)acc simultaneously, rather than the individual inference. This is the
case particularly, when the model covariates are highly correlated with each other or they are
likely to affect the outcome (in time series application, the future covariate vectors) jointly.

To address group inference, we focus on the time series setting. The setting of batched
data collection can be handled in a similar way. We first state a simple generalization of
Proposition 3.8 to a group of coordinates with finite size as n,p — oo. The proof is very
similar to the proof of Proposition 3.8 and is omitted.

Lemma 5.1. Let G = G(n) be a sequence of sets G(n) C [dp] with |G(n)| = k fized as
n,p — 0co. Also, let the conditional variance V,, € R¥®X® be defined by (24) for the VAR(d)
model, that is:

S
N

=7 Z (MO z)(MOz)T . (47)
"3 ieE
Under the assumptions of Proposition 3.8, for all u = (u1,...,u;) € R¥ we have

i [P {V(Vh,0) 2@ — o) <}~ 0u(w)| =0. (48)

n—oo

where V, ¢ € R¥*F s the submatriz obtained by restricting V,, to the rows and columns in G.

Here (ay,...,a;) < (b1,...,bx) indicates that a; < b; for i € [k] and Pr(u) = ®(uq) ... Px(u).

Much in the same way as individual inference, we can use Lemma 5.1 for simultaneous infer-
ence on a group of parameters. Concretely, let S, o C R* be any Borel set with k-dimensional
Gaussian measure at least 1 — . Then for a group G C [dp|, with size |G| = k, we construct
the confidence set Jg (o) € R¥ as follows

1
%<V”7R)1/28k,a . <49)

Then, using Lemma 5.1 (along the same lines in deriving (44)), we conclude that Jg(a) is a
valid confidence region, namely

Jolo) = 62 +

li_>m P(Ooc € Jag(a)) =1 —a. (50)
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6 Numerical experiments

In this section, we evaluate the performance of online debiasing framework on synthetic data. In
the interest of reproducibility, an R implementation of our algorithm is available at http://faculty.
marshall.usc.edu/Adel-Javanmard/OnlineDebiasing.

Consider the VAR(d) time series model (10). In the first setting, we let p = 20, d = 3, T' = 50
and construct the covariance matrix of noise terms Y by putting 1 on its diagonal and p = 0.3
on its off-diagonal. To make it closer to the practice, instead of considering sparse coefficient
matrices, we work with approzimately sparse matrices. Specifically, the entries of A(®) are generated
independently from a Bernoulli distribution with success probability ¢ = 0.1, multiplied by b -
Unif({+1, —1}) with b = 0.1, and then added to a Gaussian matrix with mean 0 and standard error
1/p. In formula, each entry is generated independently from

b-Bern(q) - Unif({+1, —1}) + N(0,1/p*).

We used rg = 6 (length of first episode Fy) and § = 1.3 for lengths of other episodes E; ~ BE. For
each i € [p] we do the following. Let 6y = (Agl), Al@), el Agd))T € R% encode the i*" rows of the

~

matrices A® and compute the noise component of 6°" as

1I§M(£)<Zx€> (51)
\/ﬁgzo tEt | »

teEy

Wn

the rescaled residual T), € R with Tha =, /ﬁ(é\g” —00,0), and V,, , given by Equation (24) and

o = 1. Left and right plots of Figure 7 denote the QQ-plot, PP-plot and histogram of noise terms
W, and rescaled residuals T), of all coordinates (across all ¢ € [p] and a € [dp]) stacked together,
respectively.

True and False Positive Rates. Consider the linear time-series model (10) with A®) matrices
having entries drawn independently from the distribution b - Bern(g) - Unif({4+1, —1}) and noise
terms be gaussian with covariance matrix X¢. In this example, we evaluate the performance of our
proposed online debiasing method for constructing confidence intervals and hypothesis testing as
discussed in Section 5. We consider four metrics: True Positive Rate (TPR), False Positive Rate
(FPR), Average length of confidence intervals (Avg CI length), and coverage rate of confidence
intervals. Tables 1 and 2 summarize the results for various configurations of the Var(d) processes
and significance level o = 0.05. Table 1 corresponds to the cases where noise covariance has the
structure ¢ (4, j) = 0.1777! and Table 2 corresponds to the case of 3¢ (i, j) = 0.11077). The reported
measures for each configuration (each row of the table) are average over 20 different realizations of
the VAR(d) model.
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Figure 7: A simple example of an online debiased Var(3) process with dimension p = 20 and 7' = 50 sample
data points. Plots 7a, 7c, 7e demonstrate respectively the histogram, QQ-plot, and PP plot of noise values of
all dp? = 1200 entries of A; matrices in linear time series model (10). Plots 7b, 7d, 7f are histogram, QQ-plot,
and PP-plot of rescaled residuals of all coordinates as well. Alignment of data points in these plots with
their corresponding standard normal (0, 1) line corroborates our theoretical results on the asymptotic normal
behavior of noise terms and rescaled residuals discussed in corollary 3.7 and proposition 3.8, respectively.
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Table 1: Evaluation of the online debiasing approach for statistical inference on the coefficients of a VAR(d)
model under different configurations. Here the noise terms (; are gaussian with covariance matrix 3¢ (4, j) =
0.1"=J1. The results are reported in terms of four metrics: FPR (False Positive Rate), TPR (True Positive
Rate), Coverage rate and Average length of confidence intervals (Avg CI length) at significance level a = 0.05

d Parameters P T q b FPR TPR | Avg CI length | Coverage rate
40 | 30 | 0.01 2 0.0276 1 3.56 0.9725
d=1 351 30 | 0.01 2 0.0354 | 0.9166 3.7090 0.9648
60 | 55 | 0.01 0.9 0.0314 | 0.7058 2.5933 0.9686
55 | 100 | 0.01 0.8 0.0424 | 0.8000 1.9822 0.9572
d=2 40 | 75 | 0.01 0.9 0.0343 | 0.9166 2.5166 0.9656
50 | 95 | 0.01 0.7 0.0368 | 0.6182 2.4694 0.963
45 | 130 | 0.005 0.9 0.0370 | 0.6858 2.070 0.9632
d=3 40 | 110 | 0.01 0.7 0.0374 | 0.6512 2.1481 0.9623
50 | 145 | 0.005 0.85 0.0369 | 0.6327 2.2028 0.9631

Table 2: Evaluation of the online debiasing approach for statistical inference on the coefficients of a VAR(d)
model under different configurations. Here the noise terms (; are gaussian with covariance matrix ¥¢ (7, j) =
0.1'G#7) | The results are reported in terms of four metrics: FPR (False Positive Rate), TPR (True Positive
Rate), Coverage rate and Average length of confidence intervals (Avg CI length) at significance level o = 0.05

d Parameters P T q b FPR TPR | Avg CI length | Coverage rate

40 | 30 | 0.01 2 0.0402 1 3.5835 0.96
d=1 40 | 35 | 0.02 1.2 0.0414 | 0.8125 2.6081 0.9575

50 | 40 | 0.015 0.9 0.0365 | 0.7435 2.0404 0.9632

35| 65 | 0.01 0.9 0.0420 | 0.8077 2.4386 0.9580
d=2 45 | 85 | 0.01 0.9 0.0336 | 0.7298 2.5358 0.9655

50 | 70 | 0.01 0.95 0.0220 | 0.8333 2.4504 0.9775

40 | 115 | 0.01 0.9 0.0395 | 0.7906 1.6978 0.9598
d=3 45 | 130 | 0.005 0.95 0.0359 | 0.7714 2.1548 0.9641

50 | 145 | 0.005 0.85 0.0371 | 0.5918 2.1303 0.9624

6.1 Real data experiments: a marketing application

Retailers often offer sales of various categories of products and for an effective management of the
business, they need to understand the cross-category effect of products on each other, e.g., how the
price, promotion or sale of category A will effect the sales of category B after some time.

We used data of sales, prices and promotions of Chicago-area grocery store chain Dominick’s that
is publicly available at https://research.chicagobooth.edu/kilts/marketing-databases/dominicks.
The same data set has been used in [GWC16] where a sparse VAR model is fit to data and also
in [WBBM17] where a VARX model is employed to estimate the demand effects (VARX models
incorporate the effect of unmodeled exogenous variables (X) into the VAR). In this experiment, we
use the proposed online debiasing approach to provide p-values for the category effects.

We consider 11 categories of products® over 71 weeks, so for each week t, we have information

4Bottled Juices, Cereals, Cheeses, Cookies, Crackers, Canned Soup, Front-end-Candies, Frozen Juices, Soft Drinks,
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x; € R33 for sales, prices and promotions of the 11 categories. For thorough explanation on
calculating sales, prices and promotions, we refer to [SPHD04] and [GWC16]. We posit VAR(2)
model as the generating process for covariates x; and then apply our proposed online debiasing
method to calculate two-sided p-values for the null hypothesis of form Hy : 6y, = 0 with 6y, an
entry in the VAR model, as discussed earlier in Section 5 (See Eq. (45)). We refer to Appendix E
for the reports of the p-values. By running the Benjamini—Yekutieli procedure [BY01] (with log
factor correction to account for dependence among p-values), we obtain the following statistically
significant cross category associations at level 0.05: sales of canned tuna on sales of front-end-
candies after one week with p-val= 5.8e-05, and price of crackers on sales of canned tuna after
one week with p-val= 5.5e-04. In [GWC16], sparse VAR models are used to construct networks
of interlinked product categories, but they are not accompanied by statistical measures such as
p-values. Our online debiasing method here provides p-values for individual possible cross-category
associations.

7 Implementation and extensions

7.1 Iterative schemes to implement online debiasing

The online debiased estimator (16) involves the decorrelating matrices M), whose rows (mﬁ)ae[dp]
are constructed by the optimization (15). For the sake of computational efficiently, it is useful to
work with a Lagrangian equivalent version of this optimization. Consider the following optimization

o 1 15
minimize |, |, <z, imTE(@’m — (m,eq) + pellm|l1, (52)

with uy and L taking the same values as in Optimization (15).

The next result, from [Javl4, Chapter 5] is on the connection between the solutions of the
unconstrained problem (52) and (15). For the reader’s convenience, the proof is also given in
Appendix B.1.

Lemma 7.1. A solution of optimization (52) is also a solution of the optimization problem (15).
Also, if problem (15) is feasible then problem (52) has bounded solution.

Using the above lemma, we can instead work with the Lagrangian version (52) for constructing

the decorrelating vector m.

Here, we propose to solve optimization problem (52) using iterative method. Note the objective
function evolves slightly at each episode and hence we expect the solutions m’ and m.+! to be close
to each other. An appealing property of iterative methods is that we can leverage this observation
by setting m? as the initialization for the iterations that compute m‘*!, yielding shorter convergence

a
time. In the sequel we discuss two of such iterative schemes.

7.1.1 Coordinate descent algorithms

In this method, at each iteration we update one of the coordinates of m, say m;, while fixing
the other coordinates. We write the objective function of (52) by separating m; from the other

Snack Crackers and Canned Tuna
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coordinates:

1o BN
S92+ 57 SO memg — ma + pellme; |y + pelmyl, (53)

where E( ) ; denotes the §™ row (column) of SO with E(])- removed. Likewise, m. ; represents the
restrlctlon of m to coordinates other than j. Minimizing (53) with respect to m; gives

I rae . :

mj + 5O (Eg,)wijj —I(a = j) + e 81gn(mj)> =0.
753

It is easy to verify that the solution of the above is given by

1 ¢
mziw% S e+ M= )i (54)

V]

with 7(+; -) : R x R4 — R denoting the soft-thresholding function defined as

z—p if z>p,
n(z,p) =40 f —p<z<uy, (55)

z+ @ otherwise.

For a vector u, n(u; 1) is perceived entry-wise.

This brings us to the following update rule to compute m’ € R (solution of (52)). Th
notation Iy, in line 5 below, denotes the Euclidean projection onto the ¢; ball of radius L and can
be computed in O(dp) times using the procedure of [DSSSCO8].

(initialization): m(0) < m{

for iteration h=1,..., H do
for j=1,2,...,dp do
={{ .
my(h) < n( = S ma(h = 1) + a = j)s e
253
m(h) < Iz (m(h))
6: return m’ « m(H)

o

In our experiments we implemented the same coordinate descent iterations explained above to

solve for the decorrelating vectors m/.

7.1.2 Gradient descent algorithms

Letting £(m) = (1/2)mT§3(£)m — (m, eq), we can write the objective of (52) as L(m) + ug|m|1.
Projected gradient descent, applied to this constrained objective, results in a sequence of iterates
m(h), with h =0,1,2,... the iteration number, as follows:

m(h+1) = arg ||an,1ﬁigL {E(m(h)) + (VL(m(h)),m —m(h))

n
+ Ll = m(B) 3 + pellml]y (56)

28



In words, the next iterate m(h+ 1) is obtained by constrained minimization of a first order approx-
imation to £(m), combined with a smoothing term that keeps the next iterate close to the current
one. Since the objective function is convex (X() = 0), iterates (56) are guaranteed to converge to
the global minimum of (52).

Plugging for £(m) and dropping the constant term L£(m(h)), update (56) reads as

m(h+1) = arg min {@(f)m(h) — eq,m —m(h)) + gHm — m(h)| + ,ugHmHl}

[lml1<L
_ LN 150 oY
—arg”ﬂ&{Q(m m(h) + (S Om(h) ea)) +nellml}. (57)

To compute the update (57), we first solve the unconstrained problem which has a closed form
solution given by n(m(h) - %(i(z)m(h) — €q); %), with 7 the soft thresholding function given by
(55). The solution is then projected onto the ball of radius L.

In the following box, we summarize the projected gradient descent update rule for constructing
the decorrelating vectors m

~

a*

1: (initialization): m(0) mi™

2: for iteration h=1,..., H do

3. m(h) « n(m(h) — LEOm(h) - ea); %)
4: m(h) < Il (m(h))

5. return m’ < m(H)

7.2 Sparse inverse covariance

In Section 3.1 (Figure 2) we provided a numerical example wherein the offline debiasing does not
admit an asymptotically normal distribution. As we see from the heat map in Figure 4b, the
precision matrix Q has ~ 20% non-negligible entries per row. The goal of this section is to show
that when €2 is sufficiently sparse, the offline debiased estimator has an asymptotically normal
distribution and can be used for valid inference on model parameters.

The idea is to show that the decorrelating matrix M is sufficiently close to the precision matrix
Q. Since 2 is deterministic, this helps with controlling the statistical dependence between M and
e. Formally, starting from the decomposition (5) we write

~ - 1
0 = 6y + (I — ME)(O- — 6p) + —MX e
n
~ 1 1
=0+ (I — M) (B —0p) + —(M — Q)X Te+ -QX e, (58)
n n
where we recall that 3 is the empirical covariance of all the covariate vectors (episodes Ey, ..., Fx_1).
Therefore, we can write
~ 1
V(0" — o) = AL+ Ao + WQXTE,
Ar =/l = ME)(0" ~by), (59)
1

Ay = %(M ~)Xe.
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The term QX Te/\/n is gaussian with O(1) variance at each coordinate. For bias term Ay, we show
that Ay = O(so(logp)/+/n) by controlling |I — MX|. To bound the bias term Ay we write

L
vn
where [|[M — QJ|; denotes the ¢; — ¢1 norm of M — Q (the maximum ¢; norm of its columns). By
using [BM15, Proposition 3.2], we have || X T¢||oo/v/n = Op(y/log(dp)). Therefore, to bound Ay

we need to control |[M — Q1. We provide such bound in our next lemma, under the sparsity
assumption on the rows of €.

Define

1A2]loc < —=I1M — Q|1 X "el|oo , (60)

)

= jeldpl: Q;;#0
so = max |j [dp] g7

the maximum sparsity of rows of 2. In addition, let the (offline) decorrelating vectors m, be defined
as follows, for a € [dp]:

1 =

me € arg min  —m! Sm — (m, e,) + pllml| . (61)
meRdr 2

Lemma 7.2. Consider the decorrelating vectors mg, a € [dp|, given by optimization (61) with

o log(dp)

w= —===. Then, for some proper constant ¢ > 0 and the sample size condition n > 32a(w? Vv

1)sq log(dp), the following happens with probability at least 1—exp(—clog(dp?))—exp(—cn(1Aw™2)):

i

192 log(d;
max ||mg — Qegll1 < 9 TSQ og(dp)
1€[dp] « n

where cand w are defined in Proposition A.J.

The proof of Lemma 7.2 is deferred to Section B.2.
By employing this lemma, if Q is sufficiently sparse, that is sq = o(y/n/log(dp)), then the

I~

bias term ||As| s also vanishes asymptotically and the (offline) debiased estimator #°% admits
an unbiased normal distribution. We formalize such distributional characterization in the next
theorem.

Theorem 7.3. Consider the VAR(d) model (10) for time series and let 6° be the (offline) debiased
estimator (4), with the decorrelating matriz M = (mq, ..., mg,)" € R¥P*® constructed as in (61),
with p = 27+/log(dp)/n. Also, let X = \g+/log(dp)/n be the regularization parameter in the Lasso
estimator 5", with T, \g large enough constants.

Suppose that sy = o(y/n/log(dp)) and sq = o(y/n/log(dp)), then the following holds true for
any fized sequence of integers a(n) € [dp]: For all x € R, we have

. { V(0" — 0o.0)

n,a

lim sup
"% 1600 <s0

=0, (62)

< a:} — O(x)

where V;, 4 = 02(M§MT)a’a.
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We refer to Section B.3 for the proof of Theorem 7.3.

Numerical example. Consider a VAR(d) model with parameters p = 25,d = 3,7 = 70,
and Gaussian noise terms with covariance matrix ¥ satisfying ¥¢(4, j) = pl=il for p = 0.1. Let
A; matrices have entries generated independently from b - Bern(q) - Unif({+1, —1}) formula with
parameters b = 0.15, ¢ = 0.05. Figure 8a shows the magnitudes of the entries of the precision
matrix ) = E(xim?)*l; as we see () is sparse. Figures 8b, 8c, and 8d demonstrate normality of
the rescaled residuals of the offline debiased estimator built by decorrelating matrix M with rows
coming from optimization described in (61).

After this paper was posted, we learned of simultaneous work (an updated version of [BDMP17])
that also studies the performance of the (offline) debiased estimator for time series with sparse preci-
sion matrix. We would like to highlight some of the differences between our discussion in Section 7.2
and that paper: 1) [BDMP17] considers decorrelating matrix M constructed by an optimization
of form (15), using the entire sample covariance S(K ), while we work with the Lagrangian equiva-
lent (61). 2) [BDMP17] considers VAR(1) model, while we work with VAR(d) models. 3) [BDMP17]
assumes a stronger notion of sparsity, viz. the sparsity of the entire precision matrix as well as the
transition matrix to scale as o(y/n/logp). Our results only require the row-wise sparsity of the
precision matrix to scale as o(y/n/logp), cf. Theorem 7.3.

7.3 Concluding remarks

In this work we devised the ‘online debiasing’ approach for the high-dimensional regression and
showed that it asymptotically admits an unbiased Gaussian distribution, even when the samples
are collected adaptively. Also through numerical examples we demonstrated that the (offline)
debiased estimator suffers from the bias induced by the correlation in the samples and cannot
be used for valid statistical inference in these settings (unless the precision matrix is sufficiently
sparse).

Since its proposal, the (offline) debiasing approach has been used as a tool to address a
variety of problems such as estimating average treatment effect and casual inference in high-
dimension [AIW16], precision matrix estimation [JvdG17], distributed multitask learning, and
studying neuronal functional network dynamics [SML 18], hierarchical testing [GRBC19], to name
a few. It has also been used for different statistical aims such as controlling FDR in high-
dimensions [JJ"19], estimation of the prediction risk [JM18], inference on predictions [CG17, JL17]
and explained variance [CG18, JL17], and testing more general hypotheses regarding the model
parameters, like testing membership in a convex cone, testing the parameter strength, and testing
arbitrary functions of the parameters [JL.17]. We anticipate that the online debiasing approach and
analysis can be used to tackle similar problems under adaptive data collection. We leave this for
future work.
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Figure 8: A Simple example of a VAR(d) process with parameters p = 25,d = 3,7 = 70, and noise term
covariance matrix X¢ s.t 3¢ (4,7) = pli=l with p = 0.1. A, matrices have independent elements coming from

b - Bern(q).Unif({+1, —1}) formula with b = 0.15,¢ = 0.05. Normality of rescaled residuals (figures 8b, 8c,
and 8d) validates the successful performance of offline debiasing estimator under sparsity of precision matrix

Q) ( figure 8a) as we discussed in theorem 7.3.

32



References

[ATW16]

[BB15]

[BCB*12]

[BCW11]

[BDMP17]

[BM12]

[BM15]

[BVDG11]

[BYO01]

[CG17]

[CG1S]

[DM12]

[DMST18]

Susan Athey, Guido W Imbens, and Stefan Wager, Approximate residual balancing:
De-biased inference of average treatment effects in high dimensions, arXiv preprint
arXiv:1604.07125 (2016). 31

Hamsa Bastani and Mohsen Bayati, Online decision-making with high-dimensional
covariates, Available at SSRN 2661896 (2015). 3, 4

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al., Regret analysis of stochastic and non-
stochastic multi-armed bandit problems, Foundations and Trends®) in Machine Learn-
ing 5 (2012), no. 1, 1-122. 4

Alexandre Belloni, Victor Chernozhukov, and Lie Wang, Square-root lasso: pivotal
recovery of sparse signals via conic programming, Biometrika 98 (2011), no. 4, 791—
806. 16

Sumanta Basu, Sreyoshi Das, George Michailidis, and Amiyatosh K Purnanandam,
A system-wide approach to measure connectivity in the financial sector, Available at

SSRN 2816137 (2017). 31

M. Bayati and A. Montanari, The LASSO risk for gaussian matrices, IEEE Trans.
on Inform. Theory 58 (2012), 1997-2017. 2

Sumanta Basu and George Michailidis, Regularized estimation in sparse high-
dimensional time series models, The Annals of Statistics 43 (2015), no. 4, 1535-1567.
3,7,9, 10, 11, 30, 37, 38, 39, 48

Peter Biihlmann and Sara Van De Geer, Statistics for high-dimensional data: meth-
ods, theory and applications, Springer Science & Business Media, 2011. 7, 9, 15, 39,
51

Yoav Benjamini and Daniel Yekutieli, The control of the false discovery rate in mul-
tiple testing under dependency, Annals of statistics (2001), 1165-1188. 27

T Tony Cai and Zijian Guo, Confidence intervals for high-dimensional linear re-
gression: Minimaz rates and adaptivity, The Annals of statistics 45 (2017), no. 2,
615-646. 3, 31

, Semi-supervised inference for erplained variance in high-dimensional linear
regression and its applications, arXiv preprint arXiv:1806.06179 (2018). 31

Yash Deshpande and Andrea Montanari, Linear bandits in high dimension and rec-
ommendation systems, Communication, Control, and Computing (Allerton), 2012
50th Annual Allerton Conference on, IEEE, 2012, pp. 1750-1754. 4

Yash Deshpande, Lester Mackey, Vasilis Syrgkanis, and Matt Taddy, Accurate in-
ference for adaptive linear models, International Conference on Machine Learning,
2018, pp. 1202-1211. 8, 20, 22

33



[DSSSCO8]

[FSGM+07]

[GRBC19)]

[GWC16]

[HENRSS]

[HH14]

[HTW15]

[Jav1d]

[1J+19]

[JL17]

[JM14a]

[TM14D)

[TM18]

[JvdG17]

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra, Efficient
projections onto the | 1-ball for learning in high dimensions, Proceedings of the 25th
international conference on Machine learning, ACM, 2008, pp. 272-279. 28

André Fujita, Joao R Sato, Humberto M Garay-Malpartida, Rui Yamaguchi, Satoru
Miyano, Mari C Sogayar, and Carlos E Ferreira, Modeling gene expression regulatory
networks with the sparse vector autoregressive model, BMC systems biology 1 (2007),
no. 1, 39. 8

Zijian Guo, Claude Renaux, Peter Bithlmann, and T Tony Cai, Group infer-
ence in high dimensions with applications to hierarchical testing, arXiv preprint
arXiv:1909.01503 (2019). 31

Sarah Gelper, Ines Wilms, and Christophe Croux, Identifying demand effects in a
large network of product categories, Journal of Retailing 92 (2016), no. 1, 25-39. 26,
27

Douglas Holtz-Eakin, Whitney Newey, and Harvey S Rosen, Estimating vector au-
toregressions with panel data, Econometrica: Journal of the Econometric Society
(1988), 1371-1395. 8

Peter Hall and Christopher C Heyde, Martingale limit theory and its application,
Academic press, 2014. 14, 15, 48, 57

Trevor Hastie, Robert Tibshirani, and Martin Wainwright, Statistical learning with
sparsity: the lasso and generalizations, Chapman and Hall/CRC, 2015. 51

Adel Javanmard, Inference and estimation in high-dimensional data analysis, Ph.D.
thesis, PhD Thesis, Stanford University, 2014. 3, 21, 27

Adel Javanmard, Hamid Javadi, et al., False discovery rate control via debiased lasso,
Electronic Journal of Statistics 13 (2019), no. 1, 1212-1253. 31

Adel Javanmard and Jason D Lee, A flexible framework for hypothesis testing in
high-dimensions, arXiv preprint arXiv:1704.07971 (2017). 31

Adel Javanmard and Andrea Montanari, Confidence intervals and hypothesis testing
for high-dimensional regression., Journal of Machine Learning Research 15 (2014),
no. 1, 2869-2909. 3, 7, 10, 11, 16, 17

, Hypothesis testing in high-dimensional regression under the gaussian random
design model: Asymptotic theory, IEEE Transactions on Information Theory 60
(2014), no. 10, 6522-6554. 2, 3, 21

, Debiasing the lasso: Optimal sample size for gaussian designs, The Annals
of Statistics 46 (2018), no. 6A, 2593-2622. 31

Jana Jankova and Sara van de Geer, Honest confidence regions and optimality in
high-dimensional precision matriz estimation, Test 26 (2017), no. 1, 143-162. 31

34



[KHW*11]

[LR85]

[LW82]

[NXTZ17]

[PRCT16]

[RT10]

[SBB15]

[SML*+18]

[SPHDO04]

[SRR19]

[SS06]

[SWO1]

[SZ12]

[Tib6]

Edward S Kim, Roy S Herbst, Ignacio I Wistuba, J Jack Lee, George R Blumenschein,
Anne Tsao, David J Stewart, Marshall E Hicks, Jeremy Erasmus, Sanjay Gupta,

et al., The battle trial: personalizing therapy for lung cancer, Cancer discovery 1
(2011), no. 1, 44-53. 4

Tze Leung Lai and Herbert Robbins, Asymptotically efficient adaptive allocation
rules, Advances in applied mathematics 6 (1985), no. 1, 4-22. 4

Tze Leung Lai and Ching Zong Wei, Least squares estimates in stochastic regression
models with applications to identification and control of dynamic systems, The Annals
of Statistics (1982), 154-166. 2, 7, 9

Xinkun Nie, Tian Xiaoying, Jonathan Taylor, and James Zou, Why adaptively col-
lected data have negative bias and how to correct for it. 2

Vianney Perchet, Philippe Rigollet, Sylvain Chassang, Erik Snowberg, et al., Batched
bandit problems, The Annals of Statistics 44 (2016), no. 2, 660—-681. 4

Paat Rusmevichientong and John N Tsitsiklis, Linearly parameterized bandits, Math-
ematics of Operations Research 35 (2010), no. 2, 395-411. 4

Anil K Seth, Adam B Barrett, and Lionel Barnett, Granger causality analysis in
neuroscience and neuroimaging, Journal of Neuroscience 35 (2015), no. 8, 3293—
3297. 8

Alireza Sheikhattar, Sina Miran, Ji Liu, Jonathan B Fritz, Shihab A Shamma,
Patrick O Kanold, and Behtash Babadi, Extracting neuronal functional network dy-

namics via adaptive granger causality analysis, Proceedings of the National Academy
of Sciences 115 (2018), no. 17, E3869-E3878. 31

Shuba Srinivasan, Koen Pauwels, Dominique M Hanssens, and Marnik G Dekimpe,

Do promotions benefit manufacturers, retailers, or both?, Management Science 50
(2004), no. 5, 617-629. 27

Jaehyeok Shin, Aaditya Ramdas, and Alessandro Rinaldo, On the bias, risk and
consistency of sample means in multi-armed bandits, arXiv preprint arXiv:1902.00746
(2019). 2

Robert H Shumway and David S Stoffer, Time series analysis and its applications:
with r examples, Springer Science & Business Media, 2006. 8, 9

James H Stock and Mark W Watson, Vector autoregressions, Journal of Economic
perspectives 15 (2001), no. 4, 101-115. 8

Tingni Sun and Cun-Hui Zhang, Scaled sparse linear regression, Biometrika 99
(2012), no. 4, 879-898. 16

R. Tibshirani, Regression shrinkage and selection with the Lasso, J. Royal. Statist.
Soc B 58 (1996), 267-288. 2

35



[VBW15]

[VAGBR*14]

[Verl2]

[WBBM17]

[XQL13]

[ZLK108]

[ZZ11]

Sofia Villar, Jack Bowden, and James Wason, Multi-armed bandit models for the
optimal design of clinical trials: benefits and challenges, Statistical science: a review
journal of the Institute of Mathematical Statistics 30 (2015), no. 2, 199. 2

Sara Van de Geer, Peter Biihlmann, Ya’acov Ritov, Ruben Dezeure, et al., On asymp-
totically optimal confidence regions and tests for high-dimensional models, The An-
nals of Statistics 42 (2014), no. 3, 1166-1202. 3

R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, Com-
pressed Sensing: Theory and Applications (Y.C. Eldar and G. Kutyniok, eds.), Cam-
bridge University Press, 2012, pp. 210-268. 61, 62

Ines Wilms, Sumanta Basu, Jacob Bien, and David S Matteson, Interpretable vector
autoregressions with exogenous time series, arXiv preprint arXiv:1711.03623 (2017).
26

Min Xu, Tao Qin, and Tie-Yan Liu, Estimation bias in multi-armed bandit algorithms

for search advertising, Advances in Neural Information Processing Systems, 2013,
pp. 2400-2408. 2

Xian Zhou, Suyu Liu, Edward S Kim, Roy S Herbst, and J Jack Lee, Bayesian
adaptive design for targeted therapy development in lung cancer—a step toward per-
sonalized medicine, Clinical Trials 5 (2008), no. 3, 181-193. 4

C.-H. Zhang and S.S. Zhang, Confidence Intervals for Low-Dimensional Parameters
in High-Dimensional Linear Models, arXiv:1110.2563, 2011. 3

36



A Proofs of Section 3

A.1 Technical preliminaries

Recall the definition of the regression design from Eqgs.(12) in the time series case:

6y = (AN, AP AT,
AT
o Zd:l»l Zf:l 22 ,
Z;—l Z;—Q “T—d
Y = (Zd41,4> Zd42,r - - - > 2T00),
€ = (Car1,i>Cdv2,ir - - - CTi)-

We first establish some preliminary results for stable time series. For the stationary process
Ty = (z;r+d_1, o 2))T (rows of X), let T'y(s) = Cov(zy, o¢ys), for t,s € Z and define the spectral
density f,(r) =1/(2m) Y52 Tx(£)e 3 for r € [-m, 7] . The measure of stability of the process
is defined as the maximum eigenvalue of the density

M(f:c) = Sup O'max(fx(r)) . (63)
re[—m,m]
Likewise, the minimum eigenvalue of the spectrum is defined as m(f;) = [inf Omin(fz(r)), which
re|—m,m

captures the dependence among the covariates. (Note that for the case of i.i.d. samples, M (f;)
and m(f,) reduce to the maximum and minimum eigenvalue of the population covariance.)

The p-dimensional VAR(d) model (10) can be represented as a dp-dimensional VAR(1) model.

Recall our notation z; = (z;r+d_1, oy 20)T (rows of X in (12)). Then (10) can be written as
o= Az + (64)
with
~ Al Ay L Ay | Ad) x <Ct+d—1>
A= : - : 65
( a1y ‘ 0 Ct 0 (69)

The reverse characteristic polynomial for the VAR(1) model reads as A = I — Az.

The following lemma controls M ( fm~), m(f;) in terms of the spectral properties of the noise X
and the characteristic polynomials A, A.

Lemma A.1 ([BM15]). We have:

1 Amax (¢)
7)\max E S M x S —_——
5 Amax(2) (f2) i (A)

) )\min (ZC)
A2 &)

)

(66)
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We also use the following bound on M (f;) in terms of characteristic polynomial A of the time
series z.

Lemma A.2. The following holds:

%Amax@) < M(fz) <dM(f:) < df;ifif)

Proof. Let T'y(0) = E[xtac; o] to refer the autocovariance of the dp-dimensional process ;. Therefore
¥ = TI'4(0). Likewise, the autocovariance I',(¢) is defined for the p-dimensional process z;. We
represent I';(¢) in terms of d? blocks, each of which is a p x p matrix. The block in position (r, s)
is T,({ + r — s). Now, for a vector v € R% with unit o norm, decompose it as d blocks of p

dimensional vectors v = (v{,vq ... ,v;{)T, by which we have
v, (0 = Z oI T (0 + 7 — 5)vs. (67)
1<r,s<d

Since the spectral density f,(0) is the Fourier transform of the autocorrelation function, we have
by Equation (67),

o

(0, £-000) = 5= D (. TL(0)e ")

f=—00

1« :
=5- D D (nTu(l+r—s)e )
g {=—00 1<r,s<d
o0

- Z (or, <% Z Lol +r— s)e*j(“T*S)@) 0yed (=9

1<r,s<d l=—00

= Z <Urafx(9)ej(r_s)evs>

1<r,s<d

=VI(0)" f(0)V (0),

d )
with V(0) = > e 7"%,.. Now, we have:

d d
/
VOl <Y lvrlla < (a3l l2) " < Va
r=1 r=1

Combining this with the Rayleigh quotient calculation above, yields M(f,) < dM(f,). Now, by
using [BM 15, Equation (4.1)] for the process z;, with reverse characteristic polynomial A, we obtain

< AAmax(X¢)

/\max(z) < QWM(fx) < 27rdM(fz) > ,Umin(A) (68)

O]

The following proposition is a straightforward consequence of the spectral bounds above and
[BM15, Proposition 2.4].
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Proposition A.3. There exists a constant ¢ > 0, such that for any vectors u,v € R%? with |ul| < 1,
lvll <1, and any n >0,

dAmax(X¢)

P(lu" (2O - )| >
<|u ( )U| Nmin(A) 7

> < 6exp (*CTLZ min{n2,77}) . (69)

A.2 Remarks on proof of Theorem 3.2

The key part of establishing Theorem 3.2 is to establish an appropriate ‘restricted eigenvalue’
condition as follows:

Proposition A.4. Let {z1,...,2r} be generated according to the (stable) VAR(d) process (10) and
let n =T —d. Then there exist constants c € (0,1) and C > 1 such that for all n > Cw?log(dp),
with probability at least 1 — exp(—cn/w?), satisfies

(v, (XTX/n)v) > ajvl* — ar|v]|7.

Here, a, w and 7 are given by:

_ d)\maX(EC)Nmax(A)
)‘min(zé)ﬂmin<~'4) ’
_ )\min(EC)
2fimax (A)

/1
= 2 og(dp) ‘
n

Given Proposition A.4, the estimation result of Theorem 3.2 is standard (see [BVDG11]). Propo-
sition A.4 can be proved analogous to [BM15, Proposition 4.2], with the following considerations

(70)

and minor modifications:

1. [BM15] writes the VAR(d) model as a VAR(1) model and then vectorize the obtained equation
to get a linear regression form (cf. Section 4.1 of [BM15]). This way, they prove I ® (X T X/n)
satisfies a restricted eigenvalue property. Towards this, the first step in their proof is to show
that X T X/n satisfies a restricted eigenvalue property, i.e. Proposition A.4.

2. [BM15, Proposition 4.2] assumes n > Ck max{w?, 1} log(dp), with k = Zgzl [vec(A©) |0, the
total number of nonzero entries of matrices Ay and then it is later used to get 7 < 1/(Ck).
However, as the restricted eigenvalue condition is independent of the sparsity of matrices A,
we can use their result with k = 1.

3. The proof involves upper bounding M (f,), for which we use Lemma A.2 in lieu of Lemma
Al
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A.3 Proof of Lemma 3.3

The idea is to use Proposition A.3 along with the union bound. Fix i,j € [dp] and let u = |I8:ZH
and v = e¢;. Then:

|(Q§](6) — I)ij’ = [(Qe;, (E(Z) - E)ej>|
— 96l [(u, (5O = £y0)]
< Amax(Q)|(u, (£ = Z)o)|

fimax (A) S
< m“u? (E(Z) - E)’U>|,

where the last line uses Lemma A.1 to bound Apin(X) from below. Combining this with Proposition
A3, forn < 1:

P{|(O5O — 15| > dhmax (51 timin(A) } < B{ (1, (£O = S)0)] > wn}
< 6 exp(—cnem?).

Setting n = Cy/log(dp)/ne for a large enough constant C, the probability bound above is smaller
than (dp)~8. With a union bound over i, j € [dp]:

~ 1 N 1
IP’{HQZ(K) —1I||oo > Cw Ogédp)} < (dp)2 SupP{|(QZ(£) ~ D)yl = Cw ogédp)}
¢ ij y

< (dp)~°.

This completes the proof.

A.4 Proof of Theorem 3.4

Starting from the decomposition (21), we have
V(@ — 0g) = Ay + W,

with A, = Bn@' — 0p). As explained below (21), W, is a martingale with respect to filtration
Fj ={e1,...,¢;}, j € N and hence E(W,) = 0.

We also note that ||Ap|lec < ||Bn|]00||@- — 0pl|1. Our next lemma bounds || By, ||co-

Lemma A.5. Suppose that the Optimization problem (15) is feasible for all i € [dp|. Let w and ~y
be:

_ dﬂmax('A))‘max(zC)
fomin (A) Amin (X¢)
dAmax(2¢)
T min(A)
Then, with probability at least 1 — (dp)~8
o log(dp) N~ (1
IBulle < 2+ Ol L)y =55 3 (J+vi). (71)
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The bound provided in Lemma A.5 holds for general batch sizes rg,...,7x_1. We choose the
batch lengths as 7, = 8¢ for some § > 1 and ¢ = 1,...,K — 1. We also let 1y = \/n and choose
rx—1 so that the total lengths of batches add up to n (that is ro+71+...+7rx_1 = n). Therefore,
K = O(logg(n)). Following this choice, bound (71) simplifies to:

HBnHoo < Cﬁ(w + /VL) V log(dp) ) (72)

for some constant C'z > 0 that depends on the constant f3.

Next by combining Theorem 3.2 and Lemma A.5 we obtain that, with probability at least
1 —2(dp)~©

1An]lee < Cp(w + Lv)+/log(dp) - (soO:\n>
No(e + L) solog(dp)
« \/ﬁ :

This implies the claim by selecting a 5 bounded away from 1, say § = 1.3.

<Cjg

(73)

It remains to prove the claim on the bias E{@\O” —0o}. For this, define G to be the event where
A, satisfies the upper bound in Eq.(73). Therefore:

[E46*" — b0} o0 = “E{A\/ﬁ}”w

IE{ALI(G)} oo
=T /m

For the first term we use the bound Eq.(73). For the second, we use Lemma D.7:

+E{]|6" — 601 1(G)}.

Chow + Ly) sologp E{]le||*1(G°)}

« n nAn

IE{6°" — 6o} l0 < + 2||6o [ B(G).

It suffices, therefore, to show that the final two terms are at most C||6p||1/(dp)®. By Holder
inequality and P(G*) < 2(dp)~5:

E{|le]|’L(G)}
nAp

E{[le]*}'/?P(Ge)" /2
nAp
N (50° ol
(dp)3Xo+/nlog(dp) (dp)

+2[|6o]1P(G°) < + 2[|60[[,P(G°)

In the high-dimensional regime, the first term is negligible in comparison to sglog(dp)/n, which
yields, after adjusting C' appropriately:

Ci + L | 6
1o(w + L) so ng+02H oll1

E pon o <
[ — oo} < D20 0l08 ol

as required.

It remains to prove Lemma A.5:
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Proof of Lemma A.5. For each episode ¢, let

tEEe

be the sample covariance in episode ¢. Fix a € [dp] and define B, , = /ne, — \F Z TzR ©Om
We then have

K—
Bn,a = \/ﬁea - Z TZR(Z 76(1 Z ( )m§> ) (74)
Z

/=1

where we used that Zf: 61 r¢ = n. By triangle inequality, followed by Holder inequality:

HBn,a”oo § 7“_7 ZTKHE _R( 2“00

=

T a a
(llea = =Omgloo + 1ED = Z)mloe + |(Z = BO)m o)

IN

=SE
_|._

N

=

0

(llea = EOmiglloc + 129 = Slloollmigll + I1£ — B loc|lmg 1)

IN

Sis
~
ﬂ.
SIs

We now bound each of the three terms appearing in the sum above:

l

1. By the construction of decorrelating vectors m,, as in optimization (15), we have

1SOmé —eqlloo < e, £=0,...,K—1. (75)

2. Also by construction, ||m’||; < L. From an argument similar to that of Lemma 3.3, || S — $||o <

C~+/log(dp)/ne with probability at least 1— K (dp)~?, where v = dAmax(X¢)/tmin(A). There-
fore, with the same probability, the third term is at most CLvy+/log(dp)/n,.

3. Again, by construction ||m{|; < L. Similar to Lemma 3.3, ||[R(Y) — || is at most Cy+/log(dp)/r
with probability at least 1 — K (dp)~?

Combining these and the fact that we set puy = Cw+/log(dp)/n we have that, with probability
at least 1 — 2K (dp)~?,

Lo C & log(dp) log(dp) log(dp)
|Brallos < 2=+ = ;:: (w\/TEJFLV\/TjLLW/ ” )
K-2
<70 o 1Y (T )

(=

o

This bound holds uniformly over a € [dp], and since ||By||oc = sup,||Bn,allc, the same bound
holds for || By ||oo- This completes the proof. O
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A.5 Proof of Lemma 3.6

We start by proving Claim (24). Let m, = Qe, be the first column of the inverse (stationary)
covariance. Using the fact that E{z;z]/} = X we have (mq, E{ziz] }m,) = Qq4, which is to be
the dominant term in the conditional variance V,, ,. Using the shorthand 0% = EC Therefore, we
decompose the difference as follows:

Vna_Qaa =

) )

n—1 2

T00
(myg, (xt:ct E{aztxt Hma) — On Qo - (76)

+

We treat each of these three terms separately. Write

1
‘ Z Z mb, )2 — (Mg, 24)?)| = - Z Z ma,mt)<mﬁ+ma,xt>]‘
(=1 teky, (=1 teky,
K-1
S (b — ma, )| [lmf + mall1
{=1 teky 0
K-
< Z m —ma,mt Tt (77)
(=1 tcE, 00
To bound the last quantity, note that
K-1
1 ¢
Z Z — Mg, z)x|| < |leq — o (Mg, T¢) T4
(=1 tek, o (=1 teky oo
K-1
1
+ |leq — o <maa~75t>$t
(=1 teEy o
| K-l R
= |leq — — reROME|| +|leq — =)
"= S 00
= L||B oo + [|€a — =) m
\/ﬁ n,a || oo a a .
og(d log(d log(d
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for some constant C. The last inequality follows from the positive events of Lemma A.5 and Lemma
3.3. Combining Equations (77) and (78), we obtain

K-1

1 log(d
S S b m)? — ()| < OL(w + Ly 22, (79)
(=1 tek,
For the second term in (76), we can use Proposition A.3 with v = u = my/||mal,n =
C'y/log(dp)/n to obtain
1 n—1 N
> (ma, (o] = Efwea] Pma)| = |(ma, (S50 = Z)m)|
=0
CdAmax(2¢) log(dp)
< T fma
fmin (A) n
CdAmax(Z log(d
Nmin(-A))\min(E)2 n
1
< G, floetdn), (81)
« n
where we used that ||m,] = Q€] < Amax () = Amin(X)™! < 1/a. For the third term, we have

ro = /1. Also, Qg4 < Amax(2) < 1/a. Therefore, this term is O(1/ay/n). Combining this bound
with (79) and (81) in Equation (76) we get the Claim (24).

We next prove Claim (25). Note that |e;] = |(;4q4,| is bounded with o1/21log(n), with high proba-
bility for ¢ € [n], by tail bound for Gaussian variables. In addition, max,|(m&, z;)| < [|m&|1]|2¢]le <
L||zt]|oo < L|| X||so. Note that variance of each entry x;; is bounded by X;; < Amax(2). Hence, by
tail bound for Gaussian variables and union bounding we have

P (| X oo < V2Amax () Tog(dpn) ) = 1 = (pdn)~2, (82)

Putting these bounds together we get

max{;ﬁumf;,mgt\ e[k -2t i)

< \}ﬁL\/%\max(Z) log(dpn)a\/Q log(n)

< 20 nl®) ")

27 d A max (3¢) ) 2 10g(dpn)
Hmin (A) \/ﬁ

where in the last inequality we used Lemma A.2 to upper bound Ayax(X¢). The conclusion that
the final expression is o(1) follows from Assumption 3.5.

< 2Loo||1 ( =o(1),

44



A.6 Proof of Proposition 3.8

We prove that for all x € R,
62" — 6
lim  sup P{M < a;} < P(x). (83)
2 gl <0 Via
We can obtain a matching lower bound by a similar argument which implies the result.

Invoking the decomposition (22) we have

NG W, A,
& = = +
VVa  VVea VVaa

By Corollary 3.7, we have that Wn = Wy/v/Vaa — N(0,1) in distribution. Fix an arbitrary ¢ > 0
and write

P{ﬁ@—ﬂo) <o} =p{+ A, <o)

Vn,a N vV Vn,a

SP{”W“ngHs}w{ 2] 25}

By taking the limit and using Equation (22), we get

{\/ﬁ@gn_%:“) gx} <P(x+e)+ lim sup IP’{ [Aal ZE} (84)

AV Vn,a n—00 [60]l0<so \/ Vn,a

We show that the limit on the right hand side vanishes for any € > 0. By virtue of Lemma 3.6
(Equation (24)), we have

lim sup P

790 16ol0<s0

lim IP’{ [Aal 25} < lim IP’{ [Aal 25}
n—00 Vn,a n—»00 o /Qa,a
< lim P{]Aa] > 50\/Qa7a}
n—oo
< lim (dp)™ =0. (85)

Here, in the last inequality we used that so(Ly + w) = o(y/n/log(dp)) and therefore, for large
enough n, €04/, exceeds the bound (23) of Theorem 3.4.

Using (85) in bound (84) and then taking the limit ¢ — 0, we obtain (83).

B Proofs of Section 7

B.1 Proof of Lemma 7.1

Rewrite the optimization problem (15) as follows:
minimize m'%@m

o (86)
subject to  (2,50m —eq) < g, |ml1 <L, |2]1 =1,
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The Lagrangian is given by
L(m, z,\) :mTi(e)m+)‘(<Zvi(£)m_ea> =)zl =1, [m|h <L, (87)
If A < 2L, minimizing Lagrangian over m is equivalent to g—ﬁ = 0 and we get m, = —Az,/2. The
dual problem is then given by
PRI
maximize — =—2zT2®0z — Xz, eq) — Mg
Ll (88)
subject to 3 <L, |z|L1=1,
As ||z|l1 = 1, by introducing 8 = —%z, we get ||8]|1 = 3. Rewrite the dual optimization problem
in terms of 3 to get
(89)

. 1 .1a
minimize iﬁTZ@)ﬂ — (B, eq) + el B2

subject to  ||8]1 < L,

Given (B, as the minimizer of the above optimization problem, from the relation of 5 and z we
realize that m, = [s.
Also note that since optimization (89) is the dual to problem (86), we have that if (86) is feasible

then the problem (89) is bounded.

B.2 Proof of Lemma 7.2
By virtue of Proposition A.4, the sample covariance S satisfies RE condition, S~ RE(a, ), where

n )

‘= 2NmaX(A) ’

and by the sample size condition we have sq < 1/327.
Hereafter, we use the shorthand m} = Qe, and let £(m) be the objective function in the
*) < L(mg). Defining the error vector

optimization (61). By optimality of m,, we have L(m
v =mg —m, and after some simple algebraic calculation we obtain the equivalent inequality

1 S S,k * *
VTS < (voeq — Smy) + pa((lmg |l — [lmg + vl (91)
In the following we first upper bound the right hand side. By Lemma 3.3 (for { = K and ng = n),

we have that with high probability
log(d
B _ (sl + ose ) 22

(vea — Emf) < |v]ia

where S = supp(Qe,) and hence |S| < sq. On the other hand,

lma + vl = lImgllt = (Img sl = llvsll) + [lvselly = [lmalln = llvselln = llvsll -
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Combining these pieces we get that the right-hand side of (91) is upper bounded by

3

I 1
(sl + sl 22 + pn (sl = vsell) = Spllvsls = Sanlvsely (92)

Given that & = 0, the left hand side of (91) is non-negative, which implies that ||vge||; < 3||lvs]|1
and hence

[Vl < 4llwslly < 4v/sallvslle < 4v/salv]l2- (93)

Next by using the restricted eigenvalue condition for S we write
VIS > allv]5 — arllv|} > a(l - 16so7)|v]|3 > %HVH%, (94)
where we used 7 < 1/(32sq) in the final step.
Putting (91), (92) and (94) together, we obtain
B < Summllvsihy < 65>
Simplifying the bound and using equation 93, we get

24
V2 =~ —vVSQkn ,
vl < 25

96
[Vl < —sapn,
o

which completes the proof.

B.3 Proof of Theorem 7.3

Continuing from the decomposition (59) we have
VAT —6y) = AL+ Ay + Z, (95)

with Z = QX Te/\/n. By using Lemma 3.3 (for £ = K) and recalling the choice of 1 = 7+/log(dp)/n
we have that the following optimization is feasible, with high probability:

minimize mTim
subject to [|Sm — eqllos < -

Therefore, optimization (61) (which is shown to be its dual in Lemma (7.1)) has bounded solution.
Hence, its solution should satisfy the KKT condition which reads as

Sa — eq + psign(mg) =0, (96)

which implies Hf}ma — ealloo < p. Invoking the estimation error bound of Lasso for time series
(Proposition 3.2), we bound A; as

1A ]loo < C\/ﬁusm/k’% - op(solog\ﬁgp)) . (97)
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We next bound the bias term Ag. By virtue of [BM15, Proposition 3.2] we have the deviation
bound || X Tel|oo/v/1 = Op(+/log(dp)), which in combination with Lemma 7.2 gives us the following

bound
[8all < (sma [ = e (Xl ) = O (50 2022 (99

Therefore, letting A = A; 4+ Ag, we have ||A|loc = op(1), by recalling our assumption sy =
o(y/n/log(dp)) and sq = o(y/n/log(dp)).

Our next lemma is analogous to Lemma 3.6 for the covariance of the noise component in the
offline debiased estimator, and its proof is deferred to Section B.1.

Lemma B.1. Assume that sq = o(y/n/log(dp)) and Amin(Ee)/pimax(A) > cmin > 0 for some
constant cmin > 0. For p = 7+/log(dp)/n and the decorrelating vectors m; constructed by (61), the
following holds. For any fized sequence of integers a(n) € [dp|, we have

mISme = Qa.q + op(1/+/log(dp)) . (99)
We are now ready to prove the theorem statement. We show that

V(0" — 0o.4)
vV Vn,a
)

A similar lower bound can be proved analogously. By the decomposition (95) we have

V@ —6.) A, Za

Se Ve Ve

lim sup P

70 16g [0 < s0

< u} < O(u). (100)

Define
~ Z,

1
A
04/ Qaa 04/ nQa,a

Since ¢; is independent of z;, the summand >

(QXTe), =

U\/Tm Ze Qx;e; .

» el Qu;e; is a martingale. Furthermore, E|(e TQgiEi)2} =

02Qq.q. Hence, by a martingale central limit theorem [HH14, Corollary 3.2], we have that Z, —
N(0,1) in distribution. In other words,

lim P{Z,u} = ®(u). (101)

n—oo

Next, fix 0 € (0,1) and write

N AR VO | A
pd Ve = %a) U _p Z, <
{ N P " fa

P VQ“’“Eagu+5 +P Ba >4
n,a \/Vn,a

sﬂ%mmwam}w{]ﬁ—q 25}

A
P 2>
+ { VTL,G, ; }
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Now by taking the limit of both sides and using (101) and Lemma B.1, we obtain

i
Ve fna) u} -

®(u+ 20+ 6lul) + lim sup  sup ]P’{ B 25}. (102)

n—00 |6 lo<so

lim sup sup ]P’{

n— [ollo<so | v/ Vna

Since § € (0,1) was chosen arbitrarily, it suffices to show that the limit on the right hand side
vanishes. To do that, we use Lemma B.1 again to write

lim sup ]P’{ Al zé}g lim sup ]P’{J|Aa’25}

n=0 16410 <50 Via n= 164110 <50 (Qaa

< lim sup ]P’{|Aa|2(5a Qa,a}zo,

0 16g [0 <s0

where the last step follows since we showed ||Alloc = op(1). The proof is complete.

B.3.1 Proof of Lemma B.1

By invoking bound (66) on minimum eigenvalue of the population covariance, we have

)\min (2()
)\min % Z AT
&) fimax (A)

bounded away from 0 by our assumption. Therefore, Apax(2) = )\min(E)*l is bounded away from
oo. Since © = 0, we have [Qqp| < /a2 for any two indices a,b € [dp]. Hence, || <
1/Amin(X). This implies that ||[Qe,||1 < sq/Amin(X). Using this observation along with the bound
established in Lemma 7.2, we obtain

(103)

192 log(d
malli < |Qea]] + [ma — Qeall < Amisj(z) + ang ngl ) _ 0(sq). (104)
We also have
log(d,
1ma — Qealloo < |Ima — Qealls = o(sQ Ogr(lp)) . (105)
In addition, by the KKT condition (96) we have
”ima —eqlloo < p- (106)

Combining bounds (104), (105) and (106), we have

Mg Smg — Qaal < [0S — el )ma| + e ma — Qudl

< ngi - ezeroonmaHl + [[ma — Qeallo

= 0s0 B — o1/ iog(ap).

which completes the proof.
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C Proofs of Section 4

C.1 Consistency results for LASSO under adaptively collected samples

Theorem 4.1 shows that, under an appropriate compatibility condition, the LASSO estimate ad-
mits /1 error at a rate of sgy/logp/n. Importantly, despite the adaptivity introduced by the
sampling of data, the error of LASSO estimate has the same asymptotic rate as expected without
adaptivity. With slightly stronger restricted-eigenvalue conditions on the covariances E{zx"} and
E{z2T|(z,0') > ¢}, it is also possible to extend Theorem 4.1 to show f5 error of order sqlogp/n,
analogous to the non-adaptive setting. However, since the ¢ error rate will not be used for our
analysis of online debiasing, we do not pursue this direction here.

C.1.1 Proof of Theorem 4.1

The important technical step is to prove that, under the conditions specified in Theorem 4.1, the
sample covariance ¥ = (1/n) Y, z;x] is (¢o/4,supp(fp)) compatible.

Proposition C.1. With probability exceeding 1 — p~* the sample covariance S s (¢o/4,supp (b))
compatible when ny V ny > C(k*/¢2)s3logp, for an absolute constant C' > 0.

T
i<ny Ti; and

Let £ and £ denote the sample covariances of each batch, i.e. (1) = (1/n1) ¥

similarly £ = (1/ny) D isny z;z] . We also let ©(2) be the conditional covariance ¥(2) = 2(2)(51) =
E{zzT|{(z, §1> > ¢}. We first prove that at least one of the sample covariances () and S(2)
closely approximate their population counterparts, and that this implies they are (¢g/2,supp(6p))-

compatible.

Lemma C.2. With probability at least 1 — p—*

A~ [ 1
IE = Bl A ISP - £l < 1267/ 222,
n

Proof. Since n = nj + ny < 2max(ny,n2), at least one of ny; and ny exceeds n/2. We assume that
ng > n/2, and prove that ||§(2) — %?)||, satisfies the bound in the claim. The case ny > n/2 is
similar. Since we are proving the case ny > n/2, for notational convenience, we assume probabilities
and expectations in the rest of the proof are conditional on the first batch (y1,x1),... (Yny, Tn,),
and omit this in the notation.

For a fixed pair (a,b) € [p] x [p]:
1
a,l)) - 22213 = > wiawip — E{wiawip}
1>n1

Using Lemma D.4 we have that ||z; o2y, < QH%HiQ < 2x? almost surely. Then using the tail
inequality Lemma D.5 we have for any ¢ < 2ex?

P{ISE) - 50 > ) < 2o { - 125)

Ger?
With e = e(p, na, k) = 12k24/log p/na < 20k2/log p/n we have that P{|§)((122 - 2221))| > e(p,ng, k)} <
p~8, whence the claim follows by union bound over pairs (a, b). O
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Lemma C.3 ([BVDGI11, Corollary 6.8]). Suppose that ¥ is (¢o,S)-compatible. Then any matric
Y such that ||X' — Xl < ¢0/(32]S]) is (¢po/2, S)-compatible.

We can now prove Proposition C.1.

Proof of Proposition C.1. Combining Lemmas C.2 and C.3 yields that, with probability 1 — p~4,
at least one of (V) and X2 are (¢o/2,supp(fp))-compatible provided

1952 [logp _ o 7
n — 32sg

400x> 2
which is implied by n > ( (: %0 v/log p) .
0

Since S = (n1/n)EW + (ny/n)E®@ and at least one of ny/n and ny/n exceed 1/2, this implies that
Y is (¢o/4,supp(fp))-compatible with probability exceeding 1 — p~4. O

The following lemma shows that X Te is small entrywise.
Lemma C.4. For any \, > 40ka+/(logp)/n, with probability at least 1 —p~, | X Te|loo < nA,/2.
Proof. The a'™ coordinate of the vector XTe is > i Tia€i- As the rows of X are uniformly -

subgaussian and ||&;||y, = o, Lemma D.4 implies that the sequence (z;.€i)1<i<n is uniformly 2ko-
subexponential. Applying the Bernstein-type martingale tail bound Lemma D.6, for ¢ < 12eko:

IP)H zi:xmsi

Set e = e(p,n, k,0) = 20ko+/(log p) /n, the exponent on the right hand side above is at least 5 log p,
which implies after union bound over a that

2

ne
> enf < 2exp{ - 5050 )

P{|| X Tellos > en} = P{ max } Zaﬂm& > f-:n}
a .
1
< ZP{’ mesi > 5n}
a i
< 2pS.
This implies the claim for p large enough. 0

The rest of the proof is standard, cf. [HTW15] and is given below for the reader’s convenience.
Proof of Theorem /.1. Throughout we condition on the intersection of good events in Proposition

C.1 and Lemma C.4, which happens with probability at least 1 — 2p~4. On this good event, the
sample covariance ¥ is (¢g/4,supp(fp))-compatible and || X Te||s < 20k0v/nlogp < n, /2.

By optimality of oL

1 1
51y = X0+ 21011 < 5 lly = XO0ll” + Aall6o].
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Using y = X6y + ¢, the shorthand v = oL — 09 and expanding the squares leads to

50 Sv) < —(XTe,v) + Aa(llfo]l = 18411)

— 3|~

< X Telloo + Aa(l1foll2 — [165]12)
1
< Aa{ 5l + 160lls = 181 }- (107)

First we show that the error vector v satisfies ||vse||1 < 3||vs,[l1, where Sy = supp(f). Note that
10411 = (160 + v[1 = (|60 + vsolli + [[vsglli. By triangle inequality, therefore:

A
10ollr — [107][1 = l|00ll1 — (|00 + vsell1 — llvsslla
< |lws,llt — llvsgll-

Combining this with the basic lasso inequality Eq.(107) we obtain

1, 4 1
5 Z0) < MG+ lzsoll = sl §

A
F{3lvsall = lvsgll- §

As S is positive-semidefinite, the LHS above is non-negative, which implies [vselln < 3[[vs,|l1. Now,
we can use the fact that 3 is (¢0/4, Sp)-compatible to lower bound the LHS by ||v||2¢0/2s0. This
leads to

dollv 12 _ Bhallvsolli _ 3Anlvls
2sg 2 - 2 '

Simplifying this results in ||v|; = ||§L —6oll1 < 3spAn/¢o as required.

O
C.2 Bias control: Proof of Theorem 4.6
Recall the decomposition (31) from which we obtain:
An - Bn(AL - 90)7
B, = ﬁ(; _ My msa) @M@)g(z))
L n ’
1 1
- Do = (2) .o
W, = \/EZM ;€ + — Z M\ x;e;.
i<ni n1<i<n
By construction M (@) is a function of X; and hence is independent of €1, ...,ep,. In addition, M @)

is independent of €, 11, ...,&,. Therefore E{W,,} = 0 as required. The key is to show the bound
on [|A,]leo. We start by using Holder inequality

1An o < | Ballooll8" — bol|1-
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Since the ¢y error of 6L is bounded in Theorem 4.1, we need only to show the bound on B,,. For this,

we use triangle inequality and that M) and M®) are feasible for the online debiasing program:

Bullso = V10 MOS0y L "2 @%@
n P n P

oo

n a n S
< V(2 - MOSO o + 21, - MOT ()]0

n n

The following lemma shows that, with high probability, we can take p1, puo so that the resulting
bound on B, is of order +/log p.

Lemma C.5. Denote by Q = (E{zz"})! and Q@ (0) = (E{zaT|(z,0) > ¢})~! be the population
precision matrices for the first and second batches. Suppose that ny Ang > 2Ag/k?*logp. Then,

with probability at least 1 — p~*
a 1
1, — Q50| < 15kAg 12222
n1

11, — Q@S |, < 15k00~ 12 | B2,
na

In particular, with the same probability, the online debiasing program (29) is feasible with py =

1552A0 7/ (log p) /ny < 1/2.

It follows from the lemma, Theorem 4.1 and the previous display that, with probability at least
1—2p3

1A lso < | Ballooll8" — ol

. I I 1
< 15kA, ”%/ﬁ(%,/%glp + %,/ (;ip) - 120k0 ¢ 501/ Osp,

k20 sologp

< 2000
=200 YV
k20 sologp

VAopo

This implies the first claim that, with probability rapidly converging to one, A, /y/n is of order
sologp/n.

We should also expect HE{@”’ — 6p}||co to be of the same order. To prove this, however, we
need some control (if only rough) on 6°" in the exceptional case when the LASSO error is large or
the online debiasing program is infeasible. Let G denote the good event of Lemma C.4 and Gs
denote the good event of Theorem 4.1 as below:

< 4000

(108)

S 1
@ { For £=1,2: [, = 2950 oo < 155A0 ™"/ ng}

L
3s0An,  120ko logp
Gy = 16 — 1, < - e
2 = {10~ ol < =7 = =5 Fooy =)
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On the intersection G = G1 N Gy, A, satisfies the bound (108). For the complement: we will use
the following rough bound on the LASSO error:

Now, since W), is unbiased:

E@ a0}l = |~ 7
- HE{%?) R
< 4000120 _201BP L pea g nGey.
B Voo

For the second term, we can use Lemma D.7, Cauchy Schwarz and that P{G°} < 4p~3 to obtain:

Je]*I(G) .
Tonn, + 2|61 (G )}
< E{|le||*}\/?P(G*)1/2
- 2n\,

30 solo
= ﬁfpm +86o]1p~? < 10e2028F,
n

for n, p large enough . This implies the claim on the bias.

E{ 0" — 0o 1(G°)} < E

+ 2[00 1P{G“}

It remains only to prove the intermediate Lemma C.5.

Proof of Lemma C.5. We prove the claim for the second batch, and in the rest of the proof, we
assume that all probabilities and expectations are conditional on the first batch (in particular, the
intermediate estimate é\l) The (a,b) entry of I, — Q%) reads

(I, — Q(2)§(2))a7b =1I(a=b) — <Q(2)ea7 S@e)

[(a
= i Z ea,Q(2)$i>LL‘ib.
2 >n

Now, E{{eq, Q@ z;)2; )} = I(a = b) and (e,, QP ;) is (|| ||ax)-subgaussian. Since X3 = AgI,,
we have that HQ(Q)HQ < Ap~!. This observation, coupled with Lemma D.4, yields (e, Q(Q)xi)mi,b is
2k% / Ag-subexponential. Then we may apply Lemma D.5 for ¢ < 12x%/Aq as below:

P{(I, — QPTD) ;> £} < ex (—”252>
g b =8 =P UT 5620, 1)

Keeping € = &(p, na, £, Ag) = 15kA¢~ /21 /(log p) /ng we obtain:

P{(Ip — oz ))ab > 15k A _1/2\/ (;ngp} <pC

Union bounding over the pairs (a, b) yields the claim. The requirement ny > 2(Ag/x?) log p ensures
that the choice ¢ above satisfies ¢ < 12k2/Ay.

O]
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C.3 Central limit asymptotics: proofs of Proposition 4.8 and Theorem 4.9

Our approach is to apply a martingale central limit theorem to show that W, , is approximately
normal. An important first step is to show that the conditional covariance V,,, is stable, or
approximately constant. Recall that V,, , is defined as

ni

Via = 02 (“H im0, SOmD) + 22 () S m@)).

n n @

We define its deterministic equivalent as follows. Consider the function f : S™ — R by:

f(3) = A{min (m,Xm) : [Em — eallcc <, [Iml1 < L}.

We begin with two lemmas about the stability of the optimization program used to obtain the
online debiasing matrices.

Lemma C.6. On its domain (and uniformly in p,e,), f is L?-Lipschitz with respect to the ||| oo
norm.

Proof. For two matrices ¥, in the domain, let m, m’ be the respective optimizers (which exist
by compactness of the set {m : ||[Zm —v|lec < p,||m|1 < L}. We prove that |f(X) — f(X)] <
L?||Z — Y| o

F(E) = f(5) = (Z,mmT) — (&', m/(m")T)
< (S, m/(m))T) — (&, m/(m")T)
={(Z-X"Ym/,m’)
<IE =2 |l [1
<Z = ool 17 < L21Z = %loo-

Here the first inequality follows from optimality of m and the last two inequalities are Holder
inequality. The reverse inequality f(X) — f(X') > —L?||X — ¥/|| is proved in the same way. [

Lemma C.7. We have the following lower bound on the optimization value reached to compute

f(®):

Proof. We first prove the lower bound for f(X). Suppose m is an optimizer for the program. Then
[Emll2 = [[Emlloc = ll€alloc —p=1— p.
On the other hand, the value is given by
(m, £m) = (Sm, £7H(Em)) 2 Auwin(E7)[SmI[3 = 1Zm]3 Amax()

Combining these gives the lower bound.

For the upper bound, it suffices to consider any feasible point; we choose m = Y~ le,, which
is feasible since ||[X7!||; < L. The value is then {e,, ¥ 'ey) < Apax(X71) which gives the upper
bound. 0
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Lemma C.8. (Stability of Wy, o) Define 32 (0) = B{zxT|(x1,60) > ¢}. Then, under Assumptions
4.4 and 4.7

lim
n—oo

Vi — 02<n1f(2) . nzf(22(90))>‘

n n

=0, in probability.

Proof. Using Lemma C.6:

Vaa = o* (SH1(D) + 221 (2(00))|

o’ny S(1) a’ny $(2)
= T (FED) — F©) + T2 EED — F(E00))
< D278 - SO+ L2250 (0) — 89

n
2 R 2 N
< L2222 = B0l + L2222 (2P (6) — B @)oo + 5P @) - £l
<2122 — 0| + 0L (K|0" — 6ol + 2P (0Y) — £P)|) .

Using Lemma C.2 the first and third term vanish in probability. It is straightforward to apply The-
orem 4.1 to the intermediate estimate é\l; indeed Assumption 4.7 guarantees that ny > cn for a uni-
versal c. Therefore the intermediate estimate has an error Hé\l — Ool|1 of order kogy'\/(s3logp)/n
with probability converging to one. In particular, the second term is, with probability converging

to one, of order K L?03kpy*+/s¢(logp)/n = o(1) by Assumption 4.7. O

Lemma C.9. Under Assumptions 4./ and /.7, with probability at least 1 — p—2
mzax](ma,xiﬂ < 10Lk+/log p,
In particular im,,_, o max; [(mg, x;)| = 0 in probability.
Proof. By Holder inequality, max;(|(mg,x;)| < max; ||mq|1]|%illoc < L max; ||zi||co- Therefore, it

suffices to prove that, with the required probability max; |z; | < 10k+/Iogp. Let u = 10k+/log p.
Since x; are uniformly k-subgaussian, we obtain for ¢ > 0:

P{laial > u} <u™B{|zial"} < (Var/u)?
2 2
_ q u u -5
—exp<—§logm2q>SeXp<—2H2>§p ’

where the last line follows by choosing ¢ = u?/ex?. By union bound over i € [n],a € [p], we obtain:

P{max|zia| > u} <> P{lwial > u} <p~?,
1,a

i,a
which implies the claim (note that p > n as we are focusing on the high-dimensional regime). [

With these in hand we can prove Proposition 4.8 and Theorem 4.9.

Proof of Proposition 4.8. Consider the minimal filtration §; so that
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1. Fori <nyi, y1,...,%, T1,...2Tp, and €1, ...,€&; are measurable with respect to Fj.

2. Fori>nq1 y1,...,¥i, x1,...,%, and £1,...¢&; are measurable with respect to 3§;.

The martingale W, (and therefore, its a'" coordinate Wh.a) is adapted to the filtration §;. We
can now apply the martingale central limit theorem [HH14, Corollary 3.1] to W), , to obtain the
result. From Lemmas C.7 and C.8 we know that V, , is bounded away from 0, asymptotically. The
stability and conditional Lindeberg conditions of [HH14, Corollary 3.1] are verified by Lemmas C.8
and C.9. O

Proof of Theorem 4.9. This is a straightforward corollary of the bias bound of 4.6 and Proposition
4.8. We will show that:

lim IP{ V” (0" — 0p.0) < :1:} < ®(z).

n—00 n,a

The reverse inequality follows using the same argument.

Fix a § > 0. We decompose the difference above as:

~ W, A
) : :

Vi T e e

Therefore,

IP’{ U@ — 64) < :c} < ]P’{ Woa <44 5} +P{|Anal > /Viad}.

Vn,a \ Vn7a

By Proposition 4.8 the first term converges to ®(z+4). To see that the second term vanishes, observe
first that Lemma C.7 and Lemma C.8, imply that V}, , is bounded away from 0 in probability. Using
this:

lim P{|Anal > /Viad} < lim P{|An]loc > v/Viad}

n—oo

K20 sologp}_o
VAopo Vn

by applying Theorem 4.6 and that for n large enough, /V;, 40 exceeds the bound on ||A,,|ls used.
Since § is arbitrary, the claim follows. O

< lim P{||An||oo > 4000
n—oo

C.4 Proofs for Gaussian designs
In this Section we prove that Gaussian designs of Example 4.5 satisfy the requirements of Theorem
4.1 and Theorem 4.6.

The following distributional identity will be important.

~ ~1/2
Lemma C.10. Consider the parametrization s = ¢(6,%6) 2 Then

d Eé\

x’(:p,@Z( = gl + <Z -

00T 1/2
(9, %9)1/2 ) e

(6,56)
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where &1, & are independent, & ~ N(0, I,) and & has the density:

dPe¢,
3 = o

—u2/2)I(u > 9.

Proof. This follows from the distribution of z|(z, ) being N(i/, ¥') with

R > 5 TADY
(0,%0) (6,36)

The following lemma shows that they satisfy compatibility.

Lemma C.11. Let P, = N(0,) for a positive definite covariance ¥. Then, for any vector 6 and
subset S C [p], the second moments E{zz"} and E{zz"|(z,0) > <} are (¢o, S)-compatible with
0 = Amin(2)/16.

Proof. Fix an S C [p]. We prove that ¥ = E{z1z]} is (¢, S)-compatible with ¢¢ = Amin(X)/16.
Note that, for any v satisfying |vge|1 < 3|jvg||, its ¢1 norm satisfies |[v||1 < 4||vg|l1. Further
Y = Amin(2)I, implies:

[51(v, 3v)

2 2 )
i ISHl® S [Slllos]l” o Amin(X)
Ul

> Amin E -~ Amin =
2 Amin(X) T 2 ) TeloslZ = 16

For E{z2T|(z,0) > ¢}, we use Lemma C.10 to obtain

A \200TS
E{zz'|(z,0) > ¢} = X + (B{¢7} )7@2@,

where ] is as in Lemma C.10. Since E{&3} = 1+ Sp(S)/®(—¢) > 1 + ¢? whenever ¢ > 0:

oaT
E{z2T|(z,0) > ¢} > % +<2299 =
(6, $6)

= Amin(z)lp .

The rest of the proof is as for 3.
O

Lemma C.12. Let P, = N(0,X) for a positive definite covariance .. Then, for any vector 6 and
subset S C [p|, the random vectors x and x| are k-subgaussian with k = 3\max(2)V2(SVEY),

where ¢ = /{6, $6)1/2.

(2,0)>¢

Proof. By definition, (x,v) ~ N(0,vT%v) is Vv TXv-subGaussian. Optimizing over all unit vectors
v, T 18 Ai{fx(E)—subgaussian.

For a:\ (2,0)>¢r We use the decomposition of Lemma C.10:
i X0 200TE N 1/2
l"<$§>><:ﬁfl+<z— = A>
= (0,%0)1/2 (0,%0)
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1/2

Clearly, & is 1-subgaussian, which means the second term is Apmax(2)-subgaussian. For the first
term, we claim that & is 1-subgaussian and therefore the first term is /\Iln/a?x(Z)—subgaussian. To

show this, we start with the moment generating function of &;. Recall that ¢ = ¢/ <§, Z§>1/ 2,
E{e)\ﬁl} — /OO ekue—u2/2L _ €>\2/2M.
: V2 (=) (<)

Here ¢ and ® are the density and c.d.f. of the standard normal distribution. It follows that:
LA 9eA =9 p(A =)

d? M1
e losEle b=3 2 T T30 =9 (X —¢)?
1 (A=A =29)
< =
=2 TR0 9
L e
— 4+ su <1.
=235 (N

Now, consider the centered version ¢ = & —E{&;}. The above bound also holds for d2/d\?(log E{e*¢1}).
Therefore, by integration, dlog E{eA&} JdX < A+ C, for some constant C independent of A\. Now

dlog E{e 1} o
d)\ A=0 - ]E{gl} - 0

Therefore, we can take the constant C' to be 0. Repeating this integration argument, we obtain
log E{e*1} < \2/2, which implies that &1 =& — E{& } is 1-subgaussian.

It follows, by triangle inequality, that & is (1 + E{&;})-subgaussian. It only remains to bound
E{&1} as below:

p(6) _1+¢
d(—5) = <
is at most Amax(2)1/2(2§\/§_1+1) < 3)\max(2)1/2(5v

E{¢)} = <2(5veh).

Therefore, the subgaussian constant of a:\
.

>

O

For Example 4.5, it remains only to show the constraint on the approximate sparsity of the
inverse covariance. We show this in the following

Lemma C.13. Let P, = N(0,X) and 0 be any vector such that H9|| HGHOO < LAmin(E )H§||2/2 and
IS4y < L/2. Then, with Q = E{zzT}~! and Q@ (0) = E{zz"|(z,0) > ¢}L:

J20 v IR@]]; < L.

Proof. By assumption ||[|; < L/2, so we only require to prove the claim for Q@ = E{z2T|(z,8) >
¢}~!. Using Lemma C.10, we can compute the precision matrix:

Q® = E{zz"|(2,0) > ¢}

= (24 &) - 1><E;NQTE)‘1

+ () - 1)
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where the last step follows by an application of Sherman—Morrison formula. Since E{¢} = 1 +
$p()/®(—3), where T = ¢/(0, £0)'/2 this yields:

@ _o_ Sp(S)
Q Q T(—c

By triangle inequality, for any ¢ > 0:
1607
(0,%0)
_L 1000l
20 (D)0

12®]

IN

19211

Next we show that the conditional covariance of x is appropriately Lipschitz.

Lemma C.14. Suppose ¢ = (0, 20)1/2 for a constant ¢ > 0. Then The conditional covariance
function 3 () = B{zz|(x,0) > ¢} satisfies:

1= (') = =2(0) 0 < K6 - 6,
where K = v/8(1 4 &) Amax(2)%/%/ Amin (2) /2.

Proof. Using Lemma C.10,

DNLADY

2@ 0) =2+ (B{} - 1) (0,%6)

Let v = S1/20/[1/20] and o' = S1/20'/|[S1/20"). With this,
HE(Q)(Q’) . E@)(@)noo _ (E{ff} _ 1)”21/2(va _ UIUIT)21/2HOO
< (E{ﬁ} -1) AmaX(E)HUUT - UIU’THZ
< (B{€1} = DAmax(D)loo" =0T

—~
N

a

< V2(E{&} — 1) Amax(D) v — /||

® VBAmax(2)*/?

< e B{eh) — Dl |
(©) \/g)\max X 3/2 _

< P @+ Dl 0.

Here, (a) follows by noting that for two unit vectors v, v’, we have

looT =02 =2 —2(0T0)2 =201 — 0T ) (1 +0T0') < 2/lv — ).
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Also, (b) holds using the following chain of triangle inequalities

21/29 21/29/

— ! — —
o == | vy~ e |
1/2(n9 _ pt
B o S B
=177 1720 570
1520 -0 _ ) Pas®
- ||El/29|| <2 )\min(z) ||9 -0 ||

Finally (¢) holds since
E{¢1} —1=3p(c)/(—¢) <* +1,

using standard tail bound gp(g_)ﬁ < P(—3). O

D Technical preliminaries

Definition D.1. (Subgaussian norm) The subgaussian norm of a random variable X, denoted by
| X ||y, s defined as

1X ||y, = sup g~ /2E{|X |1}/,
q>1

For a random vector X the subgaussian norm is defined as

[ X[l = Hshlplll<X, ) lly,-
vl|=

Definition D.2. (Subexponential norm) The subexponential norm of a random variable X is de-
fined as

X ||, = supq "Ef| X[}
q>1

For a random vector X the subexponential norm is defined by

[ X1y, = sup [[{X,0)|y, -

[[of=1

Definition D.3. (Uniformly subgaussian/subexponential sequences) We say a sequence of random
variables {X;}i>1 adapted to a filtration {F;}i>o is uniformly K-subgaussian if, almost surely:

sup sup qil/QE{|Xi\q|]-"i_1}1/q < K.
i>1 g>1

A sequence of random vectors {X;}i>1 is uniformly K -subgaussian if, almost surely,

sup sup sup E{|(X;,v)|9|Fi_1}"/7 < K.
i>1 [|o]=1 ¢>1

Subexponential sequences are defined analogously, replacing the factor g Y2 with ¢~ above.
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Lemma D.4. For a pair of random variables X, Y, | XY ||y < 2[| X ||po [|Y || ess -

Proof. By Cauchy Schwarz:
IXY [l = sup g™ 'B{|XY|?}/9
q=1

< sup g~ 'E{|X P}/ HE{|Y [P0}/
g1
< 2(sup(2) " B{|X[P}/2) - (sup(2q) "V 2E{Y1}1/2)
q= q>

< 2||X||¢2HY”¢2'
O

The following lemma from [Ver12] is a Bernstein-type tail inequality for sub-exponential random
variables.

Lemma D.5 ([Ver12, Proposition 5.16]). Let X1, Xa,..., X, be a sequence of independent random
variables with max; || Xy, < K. Then for any e > 0:

IP’{‘;:I 25} §2exp{—67;—Km1n (%,1)} (109)

We also use a martingale generalization of [Verl2, Proposition 5.16], whose proof is we omit.

Lemma D.6. Suppose (F;)i>o is a filtration, X1, Xo, ..., X, is a uniformly K -subexponential se-
quence of random variables adapted to (F;)i>0 such that almost surely E{X;|F;_1} = 0. Then for

any € > 0:
]P’{‘l = x| s }<2 { ne (5 1)} (110)
— 1 & exX —711'1111 —
n e D=5 = TP Gk K’

The following is a rough bound on the LASSO error.

Lemma D.7 (Rough bound on LASSO error). For LASSO estimate g- with regularization A, the
following bound holds:

le]|?
21\,

16~ — G0l < +2[|6o]lx -

Proof of Lemma D.7. We first bound the size of oL. By optimality of oL
oL 1 1 oL
MllBl < 5l + Anlloll — o 1y — X013
1 2
< — Anll0o]|1-
< ol + Aol
We now use triangle inequality and the bound above to get the claim:
18"~ Bollx < \FL||1 + 160l

<

1+ 21601
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E Simulation results for the Dominick’s data set

In this section we report the p-values obtained by the online debiasing for the cross-category effects.
Figures 9, 10, 11 provide the p-values corresponding to the effect of price, sale, and promotions of
different categories on the other categories, after one week (d = 1) and two weeks (d = 2). The
darker cells indicate smaller p-values and hence higher statistical significance.
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(b) 1-Week effect of prices of z—axis categories on sales of y—axis categories

Figure 9: Figures 9a, and 9b respectively show the p-values for cross-category effects of sales and prices of
r—axis categories on sales of y—axis categories after one week.
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(b) 2-Week effect of promotions of xz—axis categories on sales of y—axis categories

Figure 10: Figures 10a, and 10b show p—values for cross-category effects of promotions of x—axis categories
on sales of y—axis categories, after one week and two weeks.
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(b) 2-Week effect of prices of z—axis categories on sales of y—axis categories

Figure 11: Figures 11a, and 11b respectively show p-values for cross-category effects of sales and prices of
r-axis categories on sales of y—axis categories after two weeks.
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