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Abstract

Adaptive collection of data is commonplace in applications throughout science and engineer-
ing. From the point of view of statistical inference however, adaptive data collection induces
memory and correlation in the samples, and poses significant challenge.

We consider the high-dimensional linear regression, where the samples are collected adap-
tively, and the sample size n can be smaller than p, the number of covariates. In this setting,
there are two distinct sources of bias: the first due to regularization imposed for consistent
estimation, e.g. using the LASSO, and the second due to adaptivity in collecting the sam-
ples. We propose ‘online debiasing’, a general procedure for estimators such as the LASSO,
which addresses both sources of bias. In two concrete contexts (i) time series analysis and (ii)
batched data collection, we demonstrate that online debiasing optimally debiases the LASSO
estimate when the underlying parameter θ0 has sparsity of order o(

√
n/ log p). In this regime,

the debiased estimator can be used to compute p-values and confidence intervals of optimal size.

1 Introduction

Modern data collection, experimentation and modeling are often adaptive in nature. For example,
clinical trials are run in phases, wherein the data from a previous phase inform and influence the
design of future phases. In commercial recommendation engines, algorithms collect data by eliciting
feedback from their users; data which is ultimately used to improve the algorithms underlying the
recommendations and so influence the future data. In such applications, adaptive data collection is
often carried out for objectives correlated to, but distinct from statistical inference. In clinical trials,
an ethical experimenter might prefer to assign more patients a treatment that they might benefit
from, instead of the control treatment. In e-commerce, recommendation engines aim to minimize
the revenue loss. In other applications, collecting data is potentially costly, and practitioners may
choose to collect samples that are a priori deemed most informative. Since such objectives are
intimately related to statistical estimation, it is not surprising that adaptively collected data can
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be used to derive statistically consistent estimates, often using standard estimators. The question
of statistical inference however, is more subtle: on the one hand, consistent estimation indicates
that the collected samples are informative enough. On the other hand, adaptive collection induces
endogenous correlation in the samples, resulting in bias in the estimates. In this paper, we address
the following natural question raised by this dichotomy:

Can adaptively collected data be used for ex post statistical inference?

We will focus on the linear model, where the samples (y1, x1), (y2, x2), . . . , (yn, xn) satisfy:

yi = 〈xi, θ0〉+ εi, εi
iid∼ N(0, σ2). (1)

Here θ0 ∈ Rp is an unknown parameter vector relating the covariates xi to the response yi, and the
noise εi are i.i.d. N(0, σ2) random variables. In vector form, we write Eq.(1) as

y = Xθ0 + ε, (2)

where y = (y1, y2, . . . , yn), ε = (ε1, ε2, . . . , εn) and the design matrix X ∈ Rn×p has rows xT
1 , . . . , x

T
n .

When the samples are adaptively collected, the data point (yi, xi) is obtained after viewing the
previous data points (y1, x1), . . . , (yi−1, xi−1)1.

In the ‘sample-rich’ regime when p < n, the standard approach would be to compute the
least squares estimate θ̂LS = (XTX)−1XTy, and assess the uncertainty in θ̂LS using a central limit
approximation (XTX)1/2(θ̂LS−θ0) ≈ N(0, Ip) [LW82]. However, while the estimator θ̂LS is consistent
under fairly weak conditions, adaptive data collection complicates the task of characterizing its
distribution. One hint for this is the observation that, in stark contrast with the non-adaptive
setting, θ̂LS = θ0 + (XTX)−1XTε is in general a biased estimate of θ0. Adaptive data collection
creates correlation between the responses yi (therefore εi) and covariate vectors xi+1, xi+2, . . . , xn
observed in the future. In the context of multi-armed bandits, where the estimator θ̂LS for model
(1) reduces to sample averages, [XQL13, VBW15] observed such bias empirically, and [NXTZ17,
SRR19] characterized and developed upper bounds on the bias. While bias is an important problem,
estimates may also show higher-order distributional defects that complicate inferential tasks.

This phenomenon is exacerbated in the high-dimensional or ‘feature-rich’ regime when p > n.
Here the design matrix X becomes rank-deficient, and consistent parameter estimation requires (i)
additional structural assumptions on θ0 and (ii) regularized estimators beyond θ̂LS, such as the
LASSO [Tib96]. Such estimators are non-linear, non-explicit and, consequently it is difficult to
characterize their distribution even with strong random design assumptions [BM12, JM14b]. In
analogy to the low-dimensional regime, it is relatively easier to develop consistency guarantees for
estimation using the LASSO when p > n. Given the sample (y1, x1), . . . (yn, xn) one can compute
the LASSO estimate θ̂L = θ̂L(y,X;λn)

θ̂L = arg min
θ

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
, (3)

If θ0 is sparse with at most s0 � p non-zero entries and the design X satisfies some technical
conditions, the LASSO estimate, for an appropriate choice of λn has estimation error ‖θ̂L− θ0‖22 of

1Formally, we assume a filtration (Fi)i≤n to which the sequence (yi, xi)i≤n is adapted, and with respect to which
the sequence (xi)i≤n is predictable
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order σ2s0(log p)/n, with high probability [BM15, BB15]. In particular the estimate is consistent
provided the sparsity satisfies s0 = o(n/ log p). This estimator is biased though because of two
distinct reasons. The first is the regularization imposed in Eq.(3), which disposes θ̂L to have small
`1 norm. The second is the correlation induced between X and ε due to adaptive data collection.
To address the first source, [ZZ11, JM14a, VdGBR+14] proposed a so-called “debiased estimate”
of the form

θ̂off = θ̂L +
1

n
MXT(y −Xθ̂L), (4)

where M is chosen as an ‘approximate inverse’ of the sample covariance Σ̂ = XTX/n. The intuition
for this idea is the following decomposition that follows directly from Eqs.(1), (4):2

θ̂off − θ0 = (Ip −M Σ̂)(θ̂L − θ0) +
1

n
MXTε. (5)

When the data collection is non-adaptive, X and ε are independent and therefore, conditional on
the design X, MXTε/n is distributed as N(0, σ2Q/n) where Q = M Σ̂MT. Further, the bias in
θ̂off is isolated to the first term, which intuitively should be of smaller order than the second term,
provided both θ̂L − θ0 and M Σ̂ − Ip are small in an appropriate sense. This intuition suggests

that, if the second term dominates the first term in θ̂off , we can produce confidence intervals for θ0

in the usual fashion using the debiased estimate θ̂off [JM14a, JM14b, VdGBR+14]. For instance,
with Q = M Σ̂MT, the interval

[
θ̂off

1 − 1.96σ
√
Q11/n, θ̂

off
1 + 1.96σ

√
Q11/n

]
forms a standard 95%

confidence interval for the parameter θ0,1. In the so-called ‘random design’ setting –when the rows
of X are drawn i.i.d. from a broad class of distributions– this approach to inference via the debiased
estimate θ̂off enjoys several optimality guarantees: the resulting confidence intervals have minimax
optimal size [Jav14, JM14a, CG17], and are semi-parametrically efficient [VdGBR+14].

This line of argument breaks down when the samples are adaptively collected, as the debiased
estimate θ̂off still suffers the second source of bias. Indeed, this is exactly analogous to θ̂LS in
low dimensions. Since M , X and the noise ε are correlated, we can no longer assert that the
term MXTε/n is unbiased. Indeed, characterizing its distribution can be quite difficult, given the
intricate correlation between M , X and ε induced by the data collecting policy and the procedure
for choosing M . We illustrate the failure of offline debiasing in two scenarios of interest in this
paper: (i) batched data collection and (ii) autoregressive time series.

1.1 Why offline debiasing fails?

Batched data collection

Consider a stylized model of adaptive data collection wherein the experimenter (or analyst) collects
data in two phases or batches. In the first phase, the experimenter collects an initial set of samples
(y1, x1), . . . , (yn1 , xn1) of size n1 < n where the responses follow Eq.(1) and the covariates are i.i.d.
from a distribution Px. Following this, she computes an intermediate estimate θ̂1 of θ0 and then
collects additional samples (yn1+1, xn1+1), . . . , (yn, xn) of size n2 = n− n1, where the covariates xi
are drawn independently from the law of x1, conditional on the event {〈x1, θ̂

1〉 ≥ ς}, where ς is a

2The notation θ̂off stands for “offline” debiasing. We use this notation/terminology to highlight its main difference
from the “online” debiasing that will be introduced later in this paper.
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threshold, that may be data-dependent. This is a typical scenario where the response yi represents
an instantaneous reward that the experimenter wishes to maximize, as in multi-armed bandits
[LR85, BCB+12]. For instance, clinical trials may be designed to be response-adaptive and allocate
patients to treatments that they are likely to benefit from based on prior data [ZLK+08, KHW+11].
The multi-armed bandit problem is a standard formalization of this trade-off, and a variety of bandit
algorithms are designed to operate in distinct phases of ‘explore–then exploit’[RT10, DM12, BB15,
PRC+16]. The model we describe above is a close approximation of data collected from one arm in
a run of such an algorithm. With the full samples (y1, x1), . . . , (yn, xn) at hand, the experimenter
would like to perform inference on a fixed coordinate θ0,a of the underlying parameter.

As a numerical example, we consider θ0 ∈ {0, 1}600 with exactly s0 = 10 non-zero entries. We

obtain the first batch (y1, x1), . . . , (y500, x500) of observations with yi = 〈xi, θ0〉 + εi, xi
iid∼ N(0,Σ)

and εi
iid∼ N(0, 1) where we use the covariance Σ as below:

Σa,b =


1 if a = b,

0.1 if |a− b| = 1

0 otherwise.

Based on this data, we construct an intermediate estimator θ̂1 on (y(1), X1) using two different
strategies: (i) debiased LASSO and (ii) ridge regression with cross-validation. With this estimate
we now sample new covariates x501, . . . , x1000 independently from the law of x|〈x,θ̂1〉≥〈θ̂1,Σθ̂1〉1/2 and

the corresponding outcomes y501, . . . , y1000 are generated according to Eq.(1). Unconditionally,
〈x, θ̂1〉 ∼ N(0, 〈θ̂1,Σθ̂1〉), so this choice of threshold corresponds to sampling covariates that corre-
late with θ̂1 at least one standard deviation higher than expected unconditionally. This procedure
yields two batches of data, each of n1 = n2 = 500 data points, combining to a set of 1000 samples.

From the full dataset (y1, x1), . . . , (y1000, x1000) we compute the LASSO estimate θ̂L = θ̂L(y,X;λ)
with λ = 2.5λmax(Σ)

√
(log p)/n. Offline debiasing yields the following prescription to debias θ̂L:

θ̂off = θ̂L +
1

n
Ω(θ̂1)XT(y −Xθ̂L),

where Ω(θ̂) is the population precision matrix:

Ω(θ̂1)−1 =
1

2
E{xxT}+

1

2
E
{
xxT

∣∣∣〈x, θ̂ 1〉 ≥ ‖Σ1/2θ̂ 1‖
}
.

We generate the dataset for 100 Monte Carlo iterations and compute the offline debiased estimate
θ̂off for each iteration. Figure 1 shows the histogram of the entries θ̂off on the support of θ0 for the
two choices of θ̂1. As we see θ̂off still has considerable bias, due to adaptivity in the data collection.

Autoregressive time series

A vector autoregressive (VAR) time series model posits that data points zt evolve according to the
dynamics:

zt =
d∑
`=1

A(`)zt−` + ζt (6)
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(a) with θ̂1 the debiased LASSO on first
batch

(b) with θ̂1 the ridge estimate on first batch

Figure 1: Histograms of the offline debiased estimate θ̂off restricted to the support of θ0. The dashed line
indicates the true coefficient size. Recall that the second batch is chosen based on an intermediate estimator
θ̂1 computed on the first batch. (Left) θ̂1 is debiased LASSO on the first batch, (Right) θ̂1 is ridge estimate
on the first batch. As we observe the offline debiasing (even with access to the precision matrix Ω of the
random designs) has a significant bias and dose not admit a Gaussian distribution.

where A(`) ∈ Rp×p are time invariant coefficients and ζt is the noise term satisfying E(ζt) = 0 (zero-
mean), E(ζtζ

T
t ) = Σζ (stationary covariance), and E(ζtζ

T
t−k) = 0 for k > 0 (no serial correlation).

Given the data z1, . . . , zT , the task of interest is to perform statistical inference on the model
parameters, i.e., coefficient matrices A(1), . . . , A(d). Clearly, the samples zt are ‘adaptively collected’,
in the sense that there is serial correlation in the samples. Indeed, the data point zt depends on
the previous data points zt−1, zt−2, . . . , z1.

As in the batched data example, we will carry out a simple illustration. We generate data from
a VAR(d) model with p = 15, d = 5, T = 60, and diagonal A(`) matrices with value b = 0.15 on

their diagonals. We also generate ζt
iid∼ N(0,Σζ). Note that this is a high-dimensional setting as the

number of parameters dp2 exceeds the sample size (T − d)p. We keep the covariance of the noise
terms ζt as below:

Σζ,ij = 0.5I(i 6=j)

To estimate the parameters, we define the covariate vectors xt = (zT
t+d−1, . . . , z

T
t )T ∈ Rdp, obtained

by concatenating d consecutive data points and ε = (ζd+1,i, ζd+2,i . . . , ζT,i). We focus on the noise
component of the offline debiased estimate, i.e.,

W off =
1√
n
M

n∑
t=1

xtεt , (7)

with M denoting the decorrelating matrix in the debiased estimate as per (4).

In Figure 2, we show the QQ-plot, PP-plot and histogram of W off
1 (corresponding to the entry

(1, 1) of matrix A1) for 1000 different realizations of the noise ζt. As we observe, even the noise
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Figure 2: Empirical behavior of noise term associated with the offline debiased estimate of a fixed coordinate
of Gaussian VAR(d) model. In this example, d = 5, p = 15, T = 60, ρ = 0.5, Σζ(i, j) = ρ|i−j|, and A(`)

matrices are diagonal with value b = 0.15 on their diagonals. Plots 2a, 2b, and 2c show the QQ plot, PP plot,
and the histogram of the offline debiased noise terms (red) over 1000 independent experiments, respectively
and black curve/lines denote the ideal standard normal distribution. As we observe, even the noise component
of the offline debiased estimator deviates from the standard normal distribution; This implies the failure of
offline debiasing method for statistical inference purposes when the samples are correlated. The vertical
black line in (c) indicates the mean of the noise component of the offline debiased estimator.

component W off is biased because the offline construction of M depends on all features xt and hence
endogenous noise ζt. Recall that for the setting with an i.i.d sample, the noise component is zero
mean gaussian for any finite sample size n. This further highlights the challenge of high-dimensional
statistical inference with adaptively collected samples and demonstrate why the classical debiasing
approach will not work in this case.

2 Online debiasing

We propose online debiased estimator θ̂on = θ̂on(y,X; (Mi)i≤n, λ) that takes the form

θ̂on ≡ θ̂L +
1

n

n∑
i=1

Mixi(yi − xT
i θ̂

L). (8)

The term ‘online’ comes from the first crucial constraint of predictability imposed on the sequence
(Mi)i≤n.

Definition 2.1 (Predictability). Without loss of generality, there exists a filtration (Fi)i≥0 so that,
for i = 1, 2, . . . , n, (i) εi are adapted to Fi and εi is independent of Fj for j < i. We assume that
the sequences (xi)i≥1 and (Mi)i≥1 are predictable with respect to Fi, i.e. for each i, xi and Mi are
measurable with respect to Fi−1.

With predictability, the data points (yi, xi) are adapted to the filtration (Fi)i≤n and, moreover,
the covariates xi are predictable with respect to Fi. Intuitively, the σ-algebra Fi contains all
information in the data, as well as potential external randomness, that is used to query the new
data covariate xi+1. Predictability ensures that only this information may be used to construct the
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matrix Mi+1. Analogous to Eq.(5) we can decompose θ̂on into two components:

θ̂on = θ0 +
1√
n

(
Bn(θ̂L − θ0) +Wn

)
(9)

where Bn ≡
√
n
(
Ip −

1

n

∑
i

Mixix
T
i

)
,

and Wn ≡
1√
n

∑
i

Mixiεi.

Predictability of (Mi)i≤n ensures that Wn is unbiased and the bias in θ̂on is contained entirely

in the first term Bn(θ̂L − θ0). Suppose that, analogous to offline debiasing, we prove that the
bias term Bn(θ̂L − θ0) is of smaller order than the variance term Wn. We are then left with
the problem of characterizing the asymptotic distribution of the sequence Wn. As the sequence√
nWn =

∑
iMixiεi is a martingale with respect to the filtration Fi, one might expect that Wn is

asymptotically Gaussian. The following ‘stability’ property, identified first by Lai and Wei [LW82]
in this context, is crucial to ensure that this intuition is correct.

Definition 2.2 (Stability). Consider a square integrable triangular martingale array {Zi,n}i≤n,n≥1

adapted to a filtration Fi and its quadratic variation Vn =
∑

i≤n E{(Zi,n−Zi−1,n)2|Fi−1}. Note that
Vn is non-negative random variable, measurable with respect to Fn−1. We say that the martingale
array {Zi,n}i≥1 is stable if there exists a constant v∞ > 0 where limn→∞ Vn = v∞ in probability.

An important contribution of our paper is to develop online debiasing estimators θ̂on whose
underlying martingales are stable. The specifics of construction of predictable sequence (Mi)i≤n
and deriving the distributional characterization of the debiased estimator θ̂on depend on the context
of the problem at hand. In this paper, we instantiate this idea in two concrete contexts: (i) time
series analysis (Section 3) and (ii) batched data collection (Section 4). For both of these settings,

1. We first establish estimation results for the LASSO estimate, showing that even with adap-
tive data collection, the LASSO estimate enjoys good estimation error (Theorems 3.2 and
4.1). These results draw significantly on prior work in high-dimensional estimation [BM15,
BVDG11].

2. Next, we propose constructions for the online debiasing sequence (Mi)i≤n, using an optimiza-
tion program that trades off variance with bias, while ensuring stability. This optimization
program is a novel modification of the approximate inverse construction in [JM14a]. The im-
portant change is the inclusion of an `1 constraint in the program, which ensures stability of
the underlying martingales, and allows the use of a martingale CLT theorem to characterize
the distribution of the online debiased estimator.

3. We establish a distributional characterization of the resulting online debiased estimate θ̂on

(Theorems 3.8 and 4.9). Informally, this demonstrates that coordinates of θ̂on are approxi-
mately Gaussian with a covariance computable from data.

In Section 5, we demonstrate how the online debiased estimate θ̂on can be used to compute
standard inferential primitives like confidence intervals and p-values. Section 6 contains numerical
experiments that demonstrate the validity our proposals on both synthetic and real data. In Section
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7 we develop computationally efficient iterative descent methods to construct the online debiasing
sequence (Mi)i≤n. In the interest of reproducibility, we make an R implementation of our algorithm
publicly available at http://faculty.marshall.usc.edu/Adel-Javanmard/OnlineDebiasing.

Our proposal of online debiasing approach builds on the insight in [DMST18], which has studied
a similar problem for low-dimensional settings (p < n). We provide a detailed discussion of this
this work in Section 4.1.1, highlighting the main distinctions and the inefficacy of that method for
high-dimensional setting to further motivate our work and contributions.

Notation Henceforth, we use the shorthand [p] ≡ {1, . . . , p} for an integer p ≥ 1, and a ∧
b ≡ min(a, b), a ∨ b ≡ max(a, b). We also indicate the matrices in upper case letters and use
lower case letters for vectors and scalars. We write ‖v‖p for the standard `p norm of a vector v,
‖v‖p = (

∑
i |vi|p)1/p and ‖v‖0 for the number of nonzero elements of v. We also denote by supp(v),

the support of v that is the positions of its nonzero entries. For a matrix A, ‖A‖p represents its
`p operator norm and ‖A‖∞ = maxi,j |Aij | denotes the maximum absolute value of its entries. In
particular, ‖A‖1 is the `1 − `1 norm of matrix A (the maximum `1 norm of its columns). For two
matrices A, B, we use the shorthand 〈A,B〉 ≡ trace(ATB). In addition φ(x) and Φ(x) respectively
represents the probability density function and the cumulative distribution function of standard
normal variable. Also, we use the term with high probability to imply that the probability converges
to one as n→∞.

3 Online debiasing for high-dimensional time series

The Gaussian vector autoregressive model of order d (or VAR(d) for short) [SS06], posits that data
points zt follow the dynamics:

zt =
d∑
`=1

A(`)zt−` + ζt, (10)

where A(`) ∈ Rp×p and ζt
iid∼ N(0,Σζ). VAR models are extensively used across science and engineer-

ing (see [FSGM+07, SW01, HENR88, SBB15] for notable examples in macroeconomics, genomics
and neuroscience). Given the data z1, . . . , zT , the fundamental task is to estimate the parameters
of the VAR model, viz. the matrices A(1), . . . A(d). The estimates of the parameters can be used in
a variety of ways depending on the context: to detect or test for stationarity, forecast future data,
or suggest causal links. Since each matrix is p × p, this forms a putative total of dp2 parameters,
which we estimate from a total of (T − d)p linear equations (Eq.(10) with t = d + 1, . . . , T ). For
the ith coordinate of zt, Eq.(10) reads

zt,i =

d∑
`=1

〈zt−`, A
(`)
i 〉+ ζt,i, (11)

8
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where A
(`)
i denotes the ith row of the matrix A(`). This can be interpreted in the linear regression

form Eq.(1) in dimension dp with θ0 ∈ Rdp, X ∈ R(T−d)×dp, y, ε ∈ RT−d identified as:

θ0 = (A
(1)
i , A

(2)
i , . . . , A

(d)
i )T,

X =


zT
d zT

d−1 . . . zT
1

zT
d+1 zT

d . . . zT
2

...
...

. . .
...

zT
T−1 zT

T−2 . . . zT
T−d

 ,
y = (zd+1,i, zd+2,i, . . . , zT,i),

ε = (ζd+1,i, ζd+2,i, . . . , ζT,i). (12)

We omit the dependence on the coordinate i, and also denote the rows of X by x1, . . . , xn ∈ Rdp,
with n = T − d. Given sufficient data, or when T is large in comparison with dp, it is possible to
estimate the parameters using least squares [SS06, LW82]. In [BM15], Basu and Michailidis consider
the problem of estimating the parameters when number of time points T is small in comparison
with the total number of parameters dp, with the proviso that the matrices A(`) are sparse. Their
estimation results build on similar ideas as [BVDG11, Theorem 6.1], relying on proving a restricted
eigenvalue property for the design XTX/n. This result hinges on stationary properties of the model
(10), which we summarize prior to stating the estimation result.

Definition 3.1 (Stability and invertibility of VAR(d) Process [BM15]). A VAR(d) process with an
associated reverse characteristic polynomial

A(γ) = I −
d∑
`=1

A(`)γ` , (13)

is called stable and invertible if det(A(γ)) 6= 0 for all γ ∈ C with |γ| = 1. Based on this characteristic
polynomial, we also define the following spectral parameters:

µmin(A) = min
|γ|=1

λmin(A∗(γ)A(γ))

µmax(A) = max
|γ|=1

λmax(A∗(γ)A(γ))

Theorem 3.2 (Estimation Bound). Recall the relation y = Xθ0 + ε, where X, y, θ0 are given by
(12) and let θ̂L be the Lasso estimator

θ̂L = argmin
θ∈Rdp

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
. (14)

Assume that |supp(θ0)| ≤ s0, and define

ω =
dλmax(Σζ)

λmin(Σζ)
· µmax(A)

µmin(A)

α =
λmin(Σζ)

µmax(A)
.

9
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Figure 3: Schematic for constructing the debiasing matices M (`). We divide time into K episodes
E0, . . . , EK−1; in episode `, Mi is held constant at M (`), which is a function of xt in all prior episodes.

There exists a universal constant C > 0, such that for any n ≥ Cαω2s0 log(dp) and λn =
λ0

√
log(dp)/n, with λ0 ≥ 4λmax(Σζ)(1∨µmax(A))/µmin(A) the following happens. With probability

at least 1− (dp)−6, the estimate satisfies:

‖θ̂L − θ0‖1 ≤ C
λ0

α

√
s2

0 log(dp)

n
.

In short, given the standardized setting where λ0, α are order one, the `1 estimation error rate
is of order s0

√
log(dp)/n, which is the same obtained in data without temporal dependence. Our

proof is similar to that of Basu and Michailidis [BM15], and relies on establishing a now-standard
restricted eigenvalue property for the design XTX/n. The spectral characteristics of the time
series quantified in Definition 3.1 play an important part in establishing this. We refer the reader
to Appendix A for the proof, as well as a discussion of the differences with the proof of [BM15].

3.1 Constructing the online debiased estimator

Our task now is to construct a predictable sequence of debiasing matrices {Mi}i≤n. One simple
approach is the ‘sample-splitting’ approach: construct a generalized inverse M based on the first
n/2 data points using, for example, the program of [JM14a] and let the sequence {Mi}i≤n be defined
by

Mi =

{
0 if i ≤ n/2
M if n/2 < i ≤ n.

It is easy to see that this is a valid predictable sequence. However, due to sample-splitting, it does
not make an efficient use of the data and loses power. More importantly, it is not clear that the
underlying martingale (the noise component of the debiased estimator

√
nWn =

∑
iMixiεi) will

be stable in the sense of Definition 2.2. Our proposal generalizes sample-splitting via an episodic
structure and, importantly, regularizes to ensure stability.

We partition the time indices [n] into K episodes E0, . . . , EK−1, with E` of length r`, so that∑K−1
`=0 r` = n. Over an episode `, we keep the debiasing matrix Mi = M (`) to be fixed over time

points in the episode. Moreover, M (`) is constructed using all the time points in previous episodes
E0, . . . , E`−1 in the following way. Let n` = r0 + . . .+ r`−1, for ` = 1, . . . ,K; hence, nK = n. Define

10



the sample covariance of the features in the first ` episodes.

Σ̂(`) =
1

n`

∑
t∈E0∪...∪E`−1

xtx
T
t ,

The matrix M (`) has rows (m`
a)a∈[dp] as the solution of the optimization:

minimize mTΣ̂(`)m

subject to ‖Σ̂(`)m− ea‖∞ ≤ µ`, ‖m‖1 ≤ L ,
(15)

for appropriate values of µ`, L > 0. We then construct the online debiased estimator for coordinate
a of θ0 as follows:

θ̂on = θ̂L +
1

n

K−1∑
`=1

∑
t∈E`

M (`)xt(yt − 〈xt, θ̂L〉) . (16)

In Section 3.2, we show that the constructed online debiased estimator θ̂on is asymptotically
unbiased and admits a normal distribution. To do that we provide a high probability bound on the
bias of θ̂on (See Lemma A.5). This bound is in terms of the batch sizes r`, from which we propose
the following guideline for choosing them: r0 ∼

√
n and r` ∼ β`, for a constant β > 1, and ` ≥ 1.

Before proceeding into the distributional characterization of the online debiased estimator for θ0

(entries of coefficient matrices A(`)), we revisit the numerical example from Section 1.1 in which the
(offline) debiased estimator of [JM14a] does not display an unbiased normal distribution. However,
as we will observe the constructed online debiased estimator empirically admits an unbiased normal
distribution.

Revisiting the numerical example from Section 1.1 In Section 1.1, we considered a VAR(d)
model with p = 15, d = 5, T = 60, and diagonal A(`) matrices with value b = 0.15 on their
diagonals. The covariance matrix Σζ of the noise terms ζt is chosen as Σζ(i, j) = ρI(i 6=j) with
ρ = 0.5 and i, j ∈ [p]. The population covariance matrix of vector xt = (zT

t+d−1, . . . , z
T
t )T is a dp

by dp matrix Σ consisting of d2 blocks of size p × p with Γz(r − s) as block (r, s). The analytical
formula to compute Γz(`) is given by [BM15]:

Γz(`) =
1

2π

π∫
−π

A−1(e−jθ)Σζ(A−1(e−jθ))∗ej`θdθ ,

where A(γ) is given in equation (13). Figure 4 shows the heat maps of magnitudes of the elements
of Σ and the precision matrix Ω = Σ−1 for the on hand VAR(5) process. As evident from Figure 2,
the noise component of offline debiased estimator is biased. Here, we look into the noise component
of the online debiased estimator given by

W on =
1√
n

K−1∑
`=1

M (`)
∑
t∈E`

xtεt , (17)

with M (`) constructed from the solutions to optimization (15) for ` = 1, . . . ,K − 1. Also, recall
that ε = (ζd+1,i, ζd+2,i . . . , ζT,i) by equation (12).

11



In Figure 5, we show the QQ-plot, PP-plot and histogram of W on
1 and W off

1 (corresponding to
the entry (1, 1) of matrix A1) for 1000 different realizations of the noise ζt. As we observe, even
the noise component W off is biased because the offline construction of M depends on all features
xt and hence on endogenous noise ζt. However, the online construction of decorrelating matrices
M (`), makes the noise term a martingale and hence W on converges in distribution to a zero mean
normal vector, allowing for a distributional characterization of the online debiased estimator.

0.4

0.6

0.8

1.0

1.2

1.4

(a) Heat map of Σ

0.5

1.0

1.5

(b) Heat map of Ω

Figure 4: Heat maps of magnitudes of elements of covariance matrix Σ ≡ E(xix
T
i ) (left plot), and precision

matrix Ω = Σ−1 (right plot). In this example. xi’s are generated from a VAR(d) model with covariance
matrix of noise Σζ(i, j) = ρ|i−j| with values d = 5, p = 15, T = 60, ρ = 0.5, and diagonal A(i) matrices with
b = 0.15 on diagonals.

3.2 Distributional characterization of online debiasing

We start our analysis of the online debiased estimator θ̂on by considering a bias-variance decompo-
sition. Using yt = 〈xt, θ0〉+ εt in the definition (16):

θ̂on − θ0 = θ̂L − θ0 +
1

n

K−1∑
`=1

∑
t∈E`

M (`)xtx
T
t (θ0 − θ̂L) +

1

n

K−1∑
`=1

∑
t∈E`

M (`)xtεt

=
(
I − 1

n

K−1∑
`=1

∑
t∈E`

M (`)xtx
T
t

)
(θ̂L − θ0) +

1

n

K−1∑
`=1

∑
t∈E`

M (`)xtεt . (18)

With the shorthand R(`) = (1/r`)
∑

t∈E`
xtx

T
t for the sample covariance of features in episode ` and

the bias Bn and variance term Wn below

Bn ≡
√
n
(
I − 1

n

K−1∑
`=1

r`M
(`)R(`)

)
, (19)

Wn ≡
1√
n

K−1∑
`=1

M (`)
(∑
t∈E`

xtεt

)
, (20)

we arrive at the following decomposition

θ̂on = θ0 +
1√
n

(
Bn(θ̂L − θ0) +Wn

)
. (21)

12
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Figure 5: Plots 5a, 5b, and 5c show the QQ plots, PP plots, and the histogram of online debiased noise
terms (blue) and offline debiased noise terms (red) over 1000 independent experiments, respectively and
black curve/lines denote the ideal standard normal distribution. The solid and dash vertical lines in plot (c)
indicate the location of the mean of offline and online debiased noise terms, respectively.

Our first set of results concern the bias of θ̂on, establishing that this is asymptotically smaller
than that of the LASSO estimate. The analysis of the bias focuses mostly on the term Bn, which
in turn, is controlled by the parameter µ` in the optimization (15). We would like to choose µ`
small enough to reduce the bias, but large enough so that the optimization (15) is still feasible.
The following lemma shows that, with high probability, µ` of order ω

√
log(dp)/n` is sufficient to

make the optimization feasible.

Lemma 3.3. Let Ω = Σ−1 = (E{xtxT
t })−1 be the precision matrix of the time series. There exists

universal constants C,C ′ such that the following happens. Suppose that n` ≥ Cω2 log(dp) where ω
is defined in Theorem 3.2. Then with probability 1− (dp)−6:

max
i,j
|ΩΣ̂(`) − I(i = j)| ≤ C ′ω

√
log(dp)

n`
.

The proof of Lemma 3.3 is given in Appendix A.3. The following theorem uses Lemma 3.3 to
control the bias of the online debiased estimator.

Theorem 3.4. (Bias control) Consider the VAR(d) model (10) and let θ̂on be the debiased esti-
mator (16) where the decorrelating matrices M (`) are computed according to Eq.(15), with µ` =
c1ω
√

(log(dp)/n` and L ≥ ‖Ω‖1. Further assume that the base estimator is θ̂L computed with
λ = λ0

√
log(dp)/n where λ0 ≥ 4λmax(Σζ)(1 ∨ µmax(A))/µmin(A).

Then, under the sample size condition n ≥ Cω2s0 log(dp), we have

√
n(θ̂on − θ0) = Wn + ∆n, (22)

where E{Wn} = 0 and

P
{
‖∆n‖∞ ≥ C1

λ0(ω + Lγ)

α

s0 log(dp)√
n

}
≤ (dp)−4, (23)
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The parameters ω, α are defined in Theorem 3.2, and γ = dλmax(Σζ)/µmin(A). Further, the
bias satisfies

‖E{θ̂on − θ0}‖∞ ≤
C1λ0(ω + Lγ)

α

s0 log(dp)

n
+
C2‖θ0‖1

(dp)6

We refer to Appendix A.4 for the proof of Theorem 3.4.

Note that he above theorem bounds the bias term ∆n for finite sample size n. To study these
bounds in an asymptotic regime, we make the following assumption to simplify our presentation.

Assumption 3.5. Suppose that

1. The parameters λmin(Σζ), λmax(Σζ), µmin(A) and µmax(A) are bounded away from 0 and ∞,
as n, p→∞.

2. With Ω = Σ−1 = (E{xtxT
t })−1 the precision matrix of the data points {xt}, and s0 the sparsity

of θ0 = (A
(1)
i , . . . , A

(d)
i )T, we assume that ‖Ω‖1 = o(

√
n/ log(dp)).

Under Assumption 3.5 the spectral quantities ω, γ, α and (therefore) λ0 are order one. We can
also ignore the lower order term ‖θ0‖1/(dp)6 in the high-dimensional regime. Indeed, the denom-
inator (dp)6 can be changed to (dp)c for arbitrary large c > 0, by adjusting constant C1 and the
tail bound in Eq.(23). Therefore, as far as ‖θ0‖1 grows polynomially at p, then this term van-
ishes asymptotically. The theorem, hence, shows that the bias of the online debiased estimator
is of order Ls0(log p)/n. On the other hand, recall the filtration Ft generated by {ε1, . . . , εt} and
rewrite (20) as Wn =

∑
t vtεt, where vt = M (`)xt/

√
n (Sample t belongs to episode `). We use

Assumption 3.5 in Lemma 3.6 below, to show that for each coordinate i ∈ [dp], the conditional vari-
ance

∑n
t=1 E(ε2

t v
2
t,i|Ft−1) = (σ2/n)

∑n
t=1〈m`

a, zt〉2 is of order one. Hence ‖∆n‖∞ is asymptotically

dominated by the noise variance when s0 = o
( √

n
L log(dp)

)
.

Another virtue of Lemma 3.6 is that it shows the martingale sum Wn is stable in an appropriate
sense. This is a key technical step that allows us to characterize the distribution of the noise term
Wn by applying the martingale CLT (e.g., see [HH14, Corollary 3.2]) and conclude that the
unbiased component Wn admits a Gaussian limiting distribution.

Lemma 3.6. (Stability of martingale Wn) Let θ̂on be the debiased estimator (16) with µ` =
τ
√

(log p)/n` and L = L0‖Ω‖1, for an arbitrary constant L0 ≥ 1. Under Assumption 3.5, and
for any fixed sequence of integers a(n) ∈ [dp],3 we have

Vn,a ≡
Σζ i,i

n

K−1∑
`=1

∑
t∈E`

〈m`
a, xt〉2 = Σζ i,i · Ωa,a + oP (1). (24)

In addition, we have

max
{ 1√

n
|〈m`

a, xt〉εt| : ` ∈ [K − 1], t ∈ [n− 1]
}

= oP (1). (25)

3We index the sequence with the sample size n that is diverging. Since we are in high-dimensional setting p ≥ n
is also diverging.
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We refer to Appendix A.5 for the proof of Lemma 3.6. With Lemma 3.6 in place, we can apply
a martingale central limit theorem [HH14, Corollary 3.2] to obtain the following result.

Corollary 3.7. Consider the VAR(d) model (10) for time series and let θ̂on be the debiased esti-
mator (16) with µ` = C1ω

√
(log p)/n` and L = L0‖Ω‖1, for an arbitrary constant L0 ≥ 1. For any

fixed sequence of integers a(n) ∈ [dp], define the conditional variance Vn as

Vn,a ≡
Σζ i,i

n

K−1∑
`=1

∑
t∈E`

〈m`
a, xt〉2 .

Under Assumption 3.5, for any fixed coordinate a ∈ [dp], and for all x ∈ R we have

lim
n→∞

P
{ Wn,a√

Vn,a
≤ x

}
= Φ(x) , (26)

where Φ is the standard Gaussian cdf.

For the task of statistical inference, Theorem 3.4 and Corollary 3.7 suggest to consider the
scaled residual

√
n(θ̂on

a − θ0,a)/
√
Vn,a as the test statistics. Our next proposition characterizes its

distribution. The proof is straightforward given the result of Theorem 3.4 and Corollary 3.7 and is
deferred to Appendix A.6. In its statement we omit explicit constants that can be easily derived
from Theorem 3.4.

Theorem 3.8. Consider the VAR(d) model (10) for time series and let θ̂on be the debiased estimator
(16) with µ` = C1ω

√
(log p)/n`, λ = λ0

√
log(dp)/n, and L = L0‖Ω‖1, for an arbitrary constant

L0 ≥ 1. Suppose that Assumption 3.5 holds and s0 = o
( √

n
‖Ω‖1 log(dp)

)
, then the following holds true

for any fixed sequence of integers a(n) ∈ [dp]. For all x ∈ R, we have

lim
n→∞

∣∣∣∣P{√n(θ̂on
a − θ0,a)√
Vn,a

≤ x
}
− Φ(x)

∣∣∣∣ = 0 . (27)

4 Batched data collection

Recall the stylized setting of adaptive data collection in batches from Section 1.1, where the samples
naturally separate into two batches: the first n1 data points where the covariates are i.i.d from
a distribution Px, and the second batch of n2 data points, where the covariates xi are drawn
independently from the law of x1, conditional on the event {〈x1, θ̂

1〉 ≥ ς}, where ς is a potentially
data-dependent threshold. The following theorem is a version of Theorem 6.1 in [BVDG11] and is
proved in an analogous manner. It demonstrates that even with adaptive data collection consistent
estimation using the LASSO is possible.

Theorem 4.1 ([BVDG11, Theorem 6.1]). Suppose that the true parameter θ0 is s0-sparse and the
distribution Px is such that with probability one the following two conditions hold: (i) the covariance
E{xxT} and E{xxT|〈x, θ̂1〉 ≥ ς} are (φ0, supp(θ0))-compatible and (ii) x as well as x|〈x,θ̂1〉≥ς are

κ-subgaussian. Suppose that n ≥ C1(κ4/φ2
0)s2

0 log p. Then, the LASSO estimate θ̂L(y,X;λn) with
λn = C2κσ

√
(log p)/n satisfies, with probability exceeding 1− p−3,

‖θ̂L − θ0‖1 ≤
C ′s0λn
φ0

=
Cκσ

φ0
s0

√
log p

n
.
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Remark 4.2. (Estimating the noise variance) For the correct estimation rate using the LASSO,
Theorem 4.1 requires knowledge of the noise level σ, which is used to calibrate the regularization
λn. Other estimators like the scaled LASSO [SZ12] or the square-root LASSO [BCW11] allow to
estimate σ consistently when it is unknown. This can be incorporated into the present setting, as
done in [JM14a]. For simplicity, we focus on the case when the noise level is known. However, the
results hold as far as a consistent estimate of σ is used. Formally, a consistent estimator refers to
an estimate σ̂ = σ̂(y,X) of the noise level satisfying, for any ε > 0,

lim
n→∞

sup
‖θ0‖0≤s0

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) = 0 . (28)

Remark 4.3. At the expense of increasing the absolute constants in Theorem 4.1, the probability
1− p−3 can be made 1− p−C for any arbitrary constant C > 1.

Let X1 and X2 denote the design matrices of the two batches and, similarly, y(1) and y(2) the
two responses vectors. In this setting, we use an online debiased estimator as follows:

θ̂on = θ̂L +
1

n
M (1)XT

1 (y(1) −X1θ̂
L) +

1

n
M (2)XT

2 (y(2) −X2θ̂
L), (29)

where we will construct M (1) as a function of X1 and M (2) as a function of X1 as well as X2. The
proposal in Eq.(29) follows from the general recipe in Eq.(8) by setting

• Mi = M (1) for i = [n1] and Mi = M (2) for i = n1 + 1, . . . , n.

• Filtrations Fi constructed as follows. For i < n1, y1, . . . , yi, x1, . . . xn1 and ε1, . . . , εi are
measurable with respect to Fi. For i ≥ n1, y1, . . . , yi, x1, . . . , xn and ε1, . . . εi are measurable
with respect to Fi.

By construction, this choice satisfies the predictability condition, given by Definition 2.1.

Note that Eq.(29) nests an intuitive ‘sample splitting’ approach. Indeed, debiasing θ̂L using
exactly one of the two batches is equivalent to setting one of M (1) or M (2) to 0. While sample
splitting can be shown to work under appropriate conditions, our approach is more efficient with
use of the data and gains power in comparison. We construct M (1) and M (2) using a modification
of the program used in [JM14a]. Let Σ̂(1) = (1/n1)XT

1 X1 and Σ̂(2) = (1/n2)XT
2 X2 be the sample

covariances of each batch; let M (1) have rows (m
(1)
a )1≤a≤p and similarly for M (2). Using parameters

µ`, L > 0 that we set later, we choose m
(`)
a , the ath row of M (`), as a solution to the program

minimize 〈m, Σ̂(`)m〉

subject to ‖Σ̂(`)m− ea‖∞ ≤ µ`, ‖m‖1 ≤ L. (30)

Here ea is the ath basis vector: a vector which is one at the ath coordinate and zero everywhere
else.

The intuition for the program (30) is simple. The first constraint ensures that Σ̂(`)m is close,
in `∞ sense to the ea, the ath basis vector and as we will see in Theorem 4.6 it controls the bias
term ∆ of θ̂on. The objective is a multiple of the variance of the martingale term W in θ̂on (cf.
Eq. (34)). We wish to minimize this as it directly affects the power of the test statistic or the
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length of valid confidence intervals constructed based on θ̂on. The `1 constraint on m, which is
missing in [JM14a], is crucial for our adaptive data setting. This constraint ensures that the value

of the program 〈m(`)
a , Σ̂(`)m

(`)
a 〉 is stable, and does not fluctuate much from sample to sample (this

is formalized as the ‘stability condition’ in Lemmas C.8 and 3.6). It is this stability that ensures
that the martingale part of the residual displays a central limit behavior.

Note that in the non-adaptive setting, inference can be performed conditional on design X,

and fluctuation in 〈m(`)
a , Σ̂(`)m

(`)
a 〉 is conditioned out. In the adaptive setting, this is not possible:

one effectively cannot condition on the design without conditioning on the noise realization ε, and
therefore we perform inference unconditionally on X.

4.1 Online debiasing: a distributional characterization

We begin the analysis of the online debiased estimator θ̂on by a decomposition that mimics the
classical debiasing.

θ̂on = θ0 +
1√
n

(
Bn(θ̂L − θ0) +Wn

)
, (31)

Bn =
√
n
(
Ip −

n1

n
M (1)Σ̂(1) − n2

n
M (2)Σ̂(2)

)
(32)

Wn =
1√
n

∑
i≤n1

M (1)xiεi +
1√
n

∑
n1<i≤n

M (2)xiεi. (33)

Assumption 4.4. (Requirements of design) Suppose that the distribution Px and the intermediate
estimate θ̂1, that is used in collecting the second batch, satisfy the following:

1. There exists a constant Λ0 > 0 so that the eigenvalues of E{xxT} and E{xxT|〈x, θ̂1〉 ≥ ς} are
bounded below by Λ0.

2. The laws of x and x|〈x,θ̂1〉≥ς are κ-subgaussian for a constant κ > 0.

3. The precision matrices Ω = E{xxT}−1 and Ω(2)(θ̂1) = E{xxT|〈x, θ̂1〉 ≥ ς}−1 satisfy ‖Ω‖1 ∨
‖Ω(2)(θ̂1)‖1 ≤ L.

4. The conditional covariance Σ(2)(θ) = E{xxT|〈x, θ〉 ≥ ς} is K-Lipschitz in its argument θ, i.e.
‖Σ(2)(θ′)− Σ(2)(θ)‖∞ ≤ K‖θ − θ′‖1.

The first two conditions of Assumption 4.4 are for ensuring that the base LASSO estimator θ̂L

has small estimation error. In addition, our debiasing makes use of the third and fourth constraints
on the precision matrices of the sampling distributions. In the above, we will typically allow L = Ln
to diverge with n.

In the following Example we show that Gaussian random designs satisfy all the conditions of
Assumption 4.4. We refer to Section C.4 for its proof.

Example 4.5. Let Px = N(0,Σ) and θ̂ be any vector such that ‖θ̂‖1‖θ̂‖∞ ≤ LΣλmin(Σ)‖θ̂‖/2 and
‖Σ−1‖1 ≤ LΣ/2. Then the distributions of x and x|〈x,θ̂〉≥ς , with ς = ς̄〈θ̂,Σθ̂〉1/2 for a constant ς̄ ≥ 0

satisfy the conditions of Assumption 4.4 with

Λ0 = λmin(Σ), κ = 3λ1/2
max(Σ)(ς̄ ∨ ς̄−1), K =

√
8(1 + ς̄2)

λmax(Σ)3/2

λmin(Σ)1/2
, L = LΣ.
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Under Assumption 4.4 we provide a non-asymptotic bound on the bias of the online debiased
estimator θ̂on.

Theorem 4.6. (Non-asymptotic bound on bias) Under Assumption 4.4, there exists universal
constants C1, C2, C3 so that, when n ≥ C1κ

4s2
0 log p/φ2

0 and n1 ∧ n2 ≥ C1(Λ0/κ
2 + κ2/Λ0) log p, we

have that

√
n(θ̂on − θ0) = Wn + ∆n, (34)

where E{Wn} = 0 and

P
{
‖∆n‖∞ ≥

C2κ
2

Λ0
3/2

σs0 log p√
n

}
≤ p−3. (35)

Further we have

‖E{θ̂on − θ0}‖∞ ≤
C2κ

2

Λ0
3/2

σs0 log p

n
+
C3‖θ0‖1
p2

. (36)

The proof of Theorem 4.6 is given in Appendix C.2. Note that, in the high-dimensional setting
of n � p, the term ‖θ0‖1/p2 will be of lower order as compared to s0 log p/n. Therefore, when
the parameters Λ0, σ, κ are of order one, the theorem shows that the bias of the online debiased
estimator is of order s0 log p/n, This may be compared with the LASSO estimator θ̂L whose bias
is typically of order λ � σ

√
log p/n. In particular, in the regime when s0 = o(

√
n/ log p), this bias

is asymptotically dominated by the variance, which is of order σ/
√
n.

In order to establish asymptotic Gaussian behavior of the online debiased estimate θ̂on, we
consider a specific asymptotic regime for the problem instances.

Assumption 4.7. (Asymptotic regime) We consider problem instances indexed by the sample size
n, where n, p, s0 satisfy the following:

1. lim infn→∞
n1∧n2
n ≥ c, for a positive universal constant c ∈ (0, 1]. In other words, both batches

contain at least a fixed fraction of data points.

2. The parameters satisfy:

lim
n→∞

1

Λ0
s0

√
log p

n

(
L2K ∨

√
log p

Λ0

)
= 0 . (37)

The following proposition establishes that in the asymptotic regime, the unbiased component
Wn has a Gaussian limiting distribution. The key underlying technical idea is to ensure that the
martingale sum in Wn is stable in an appropriate sense.

Proposition 4.8. Suppose that Assumption 4.4 holds and consider the asymptotic regime of As-
sumption 4.7. Let a = a(n) ∈ [p] be a fixed sequence of coordinates. Define the conditional variance
Vn,a of the ath coordinate as

Vn,a = σ2
(n1

n
〈m(1)

a , Σ̂(1)m(1)
a 〉+

n2

n
〈m(2)

a , Σ̂(2)m(2)
a 〉
)
. (38)
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Then, for any bounded continuous ϕ : R→ R

lim
n→∞

E
{
ϕ
( Wn,a√

Vn,a

)}
= E{ϕ(ξ)},

where ξ ∼ N(0, 1). The same holds for ϕ being a step function ϕ(z) = I(z ≤ x) for any x ∈ R. In
particular,

lim
n→∞

P
{ Wn,a√

Vn,a
≤ x

}
= Φ(x),

where Φ is the standard Gaussian cdf.

The proof of Proposition 4.8 is deferred to Appendix C.3. The combination of Theorem 4.6 and
Proposition 4.8 immediately yields the following distributional characterization for θ̂on.

Theorem 4.9. Under Assumptions 4.4 and 4.7, the conclusion of Proposition 4.8 holds with√
n(θ̂on

a − θ0) in place of Wn. In particular,

lim
n→∞

P
{√ n

Vn,a
(θ̂on
a − θ0,a) ≤ x

}
= Φ(x), (39)

where Vn,a is defined as in Proposition 4.8.

To compare the sample size requirements made for `1-consistent estimation and those in As-
sumption 4.7, it is instructive to simplify to the case when κ, φ0,Λ0 are of order one. Then `1-
consistency (Theorem 4.1 in Appendix C) requires that n1 ∨ n2 = Ω(s2

0 log p), i.e. at least one of
the batches is larger than s2

0 log p. However, Theorem 4.9 makes the same assumption on n1 ∧ n2,
or both batches exceed s2

0 log p in size. For online debiasing, this is the case of interest. Indeed if
n1 � n2 (or vice versa), we can apply offline debiasing to the larger batch to obtain a debiased
estimate. Conversely, when n1 and n2 are comparable as in Assumption 4.7, this ‘sample-splitting’
approach leads to loss of power corresponding to a constant factor reduction in the sample size.
This is the setting addressed in Theorem 4.9 via online debiasing.

4.1.1 Revisiting the numerical example from Section 1.1.

In the batched data example discussed in Section 1.1, we observed that the classical offline debi-
asing fails in providing unbiased estimate of the true parameters. Here, we will repeat the same
experiment and numerically characterize the distribution of the proposed online debiased estimator.

Figure 6 (left panel) shows the histogram of the entries of online debiased estimator θ̂on on the
support of θ0 (blue) along with the corresponding histogram of entries of the debiased estimator
θ̂off (red). As we see for both choices of θ̂1 (debiased LASSO and ridge estimate on the first batch),
the online debiased estimator θ̂on is appropriately centered around the true coefficients.

One can also split samples in the following way. Since the second batch of data was adaptively
collected while the first batch was not, we can compute a debiased estimate using only the first,
non-adaptive batch:

θ̂off,1 ≡ θ̂L(y(1), X1) +
1

n
ΩXT

1 (y(1) −X1θ̂
L(y(1), X1)). (40)
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Figure 6 (right panel) shows the histogram of the entries of θ̂off,1 restricted to the support of θ0, and
the comparison with θ̂on. As can be expected, both θ̂off,1 and θ̂on are appropriately centered around
the true coefficient 1. However, as is common with sample-splitting, θ̂off,1 displays a larger variance
and correspondingly loses power in comparison with θ̂on since it uses only half of the data. The
power loss becomes even more pronounced when there are more than two phases of data collection,
or if the phases are particularly imbalanced.

Comparison with ridge-type debiasing approach of [DMST18]. This work studies a
similar problem, namely performing statistical inference using adaptively collected data using a
debiasing approach. To compare with our setting, there are two important points to note:

1. The method of [DMST18] is tailored to low-dimensional setting where the number of co-
variates p is less than the sample size (p < n). More specifically, denoting by λmin(n) the
minimum eigenvalue of XTX, [DMST18] considers a setting where λmin(n) → ∞ almost
surely. Note that for the batched data example, this amounts to

√
n−√p→∞.

2. The work [DMST18] proposes a different method of debiasing which albeit being valid in
low-dimensional setting it comes with fundamental challenges to be generalized to high-
dimensional setting. Letting θ̂OLS the least square estimator, [DMST18] constructs a debiased
estimator θ̂d as follows:

θ̂d = θ̂OLS +Wn(y −Xθ̂OLS) , (41)

where the matrix Wn is constructed recursively as Wn = [Wn−1|wn] and Xn = [Xn−1|xn] with

wn = arg min
w∈Rp

‖I −Wn−1Xn−1 − wxT
n‖2F + λ‖w‖22 . (42)

Therefore, the decorrelating matrix Wn is constructed in an online way as it is a predictable
sequence according to Definition 2.1. Note that wi corresponds to Mixi in our notation.

One can potentially think of using the ridge-type debiased estimator (42) in high-dimensional
setting with using θ̂L instead of θ̂OLS. In Figure 6, we include the histogram of such estimate (gray
histogram under the name “ridgeOnline”). As we see the corresponding histogram is biased and
deviates from a normal distribution which implies that this approach does not extend to high-
dimensional setting.

Some intuition for this may be seen by following the argument of [DMST18]. Considering the
bias-variance decomposition of θ̂d − θ0 = b + v with b = (I −WnXn)(θ̂OLS − θ0) and v = Wnεn,
the above optimization aims at minimizing a weighted sum of the bias and the variance of θ̂d in an
online manner. The analysis of [DMST18] controls bias as follows

‖b‖ ≤ ‖I −WnXn‖op ‖θ̂OLS − θ0‖2 ≤ ‖I −WnXn‖F ‖θ̂OLS − θ0‖2 .

However, in high-dimension this bound is vacuous. Since WnXn ∈ Rp×p is of rank at most n < p,
I −WnXn has eigenvalue 1 with multiplicity at least p−n. Therefore ‖I −WnXn‖F ≥ p−n→∞
and ‖I −WnXn‖op ≥ 1. Thus, even a refinement of [DMST18] would only yield an insufficient bias
bound of the type

‖b‖2 ≤ ‖θ̂L − θ0‖2 ≈ σ
√
s0 log p

n
,
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which dominants the variance component Var(v) = O(1/
√
n). Our scheme of online debiasing

overcomes this obstacle by adapting to the geometry of the high-dimensional regime. In particular,
it yields the bias bound of order ‖E{θ̂on− θ0}‖∞ = O(s0(log p)/n) which is dominated by the noise
term, provided that s0 = o(

√
n/ log p).

5 Statistical inference

An immediate use of distributional characterizations (27) or (39) is to construct confidence intervals
and also provide valid p-values for hypothesis testing regarding the model coefficients. Throughout,
we make the sparsity assumption s0 = o(

√
n/ log p0), with p0 the number of model parameters (for

the batched data collection setting p0 = p, and for the VAR(d) model p0 = dp).

Confidence intervals: For fixed coordinate a ∈ [p0] and significance level α ∈ (0, 1), we let

Ja(α) ≡ [θ̂on
a − δ(α, n), θ̂on

a + δ(α, n)] , (43)

δ(α, n) ≡ Φ−1(1− α/2)
√
Vn,a/n ,

where Vn,a is defined by Equation (24) for the VAR(d) model and by Equation (38) for the
batched data collection setting.

As a result of Proposition 3.8, the confidence interval Ja(α) is asymptotically valid because

lim
n→∞

P(θ0,a ∈ Ja(α)) = lim
n→∞

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ Φ−1(1− α/2)
}

− lim
n→∞

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ Φ−1(1− α/2)
}

= Φ(Φ−1(1− α/2))− Φ(−Φ−1(1− α/2)) = 1− α .

(44)

Further, note that the length of confidence interval Ja(α) is of orderO(σ/
√
n) (using Lemma C.8

for the batched data collection setting and Lemma 3.6 for the time series). It is worth noting
that this is the minimax optimal rate [JM14b, Jav14] and is of the same order of the length
of confidence intervals obtained by the least-square estimator for the classical regime n > p
with i.i.d samples.

Hypothesis testing: Another consequence of Proposition 3.8 is that it allows for testing hypoth-
esis of form H0 : θ0,a = 0 versus the alternative HA : θ0,a 6= 0 and provide valid p-values.
Recall that θ0 denotes the model parameters, either for the batched data collection setting

or the VAR(d) model (which encodes the entries A
(`)
i,j in model (10)). Such testing mecha-

nism is of crucial importance in practice as it allows to diagnose the significantly relevant
covariates to the outcome. In case of time series, it translates to understanding the effect of
a covariate zt−`,j on a covariate zt,i, and to provide valid statistical measures (p-values) for
such associations. We construct two-sided p-values for testing H0, using our test statistic as
follows:

Pa = 2

(
1− Φ

(√
n|θ̂on

a |√
Vn,a

))
. (45)
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(a) with θ̂1 the debiased LASSO on first batch

(b) with θ̂1 the ridge estimate on first batch

Figure 6: (Left) Histograms of the online debiased estimate θ̂on and the ridge debiased estimator [DMST18],
restricted to the support of θ0. (Right) Histograms of the offline debiased estimate only using the first batch,

θ̂off,1 given by (40) and the online debiased estimate θ̂on. The dashed line indicates the true coefficient size.

Offline debiasing θ̂off,1 using only the first batch works well (green histograms called offlineFirstBatch), but
then loses power in comparison. Online debiasing is cognizant of the adaptivity and debiases without losing
power even in the presence of adaptivity.
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Our testing (rejection) rule given the p-value Pa is:

R(a) =

{
1 if Pa ≤ α (reject H0) ,

0 otherwise (fail to reject H0) .
(46)

Employing the distributional characterizations (39) or (27), it is easy to verify that the con-
structed p-value Pa is valid in the sense that under the null hypothesis it admits a uniform
distribution: Pθ0,a=0(Pa ≤ u) = u for all u ∈ [0, 1].

Group inference In many applications, one may want to do inference for a group of model pa-
rameters, θ0,G ≡ (θ0,a)a∈G simultaneously, rather than the individual inference. This is the
case particularly, when the model covariates are highly correlated with each other or they are
likely to affect the outcome (in time series application, the future covariate vectors) jointly.

To address group inference, we focus on the time series setting. The setting of batched
data collection can be handled in a similar way. We first state a simple generalization of
Proposition 3.8 to a group of coordinates with finite size as n, p → ∞. The proof is very
similar to the proof of Proposition 3.8 and is omitted.

Lemma 5.1. Let G = G(n) be a sequence of sets G(n) ⊂ [dp] with |G(n)| = k fixed as
n, p → ∞. Also, let the conditional variance Vn ∈ Rdp×dp be defined by (24) for the VAR(d)
model, that is:

Vn ≡
σ2

n

K−1∑
`=1

∑
t∈E`

(M (`)xt)(M
(`)xt)

T . (47)

Under the assumptions of Proposition 3.8, for all u = (u1, . . . , uk) ∈ Rk we have

lim
n→∞

∣∣∣∣P{√n(Vn,G)−1/2(θ̂on
G − θ0,G) ≤ u

}
− Φk(u)

∣∣∣∣ = 0 , (48)

where Vn,G ∈ Rk×k is the submatrix obtained by restricting Vn to the rows and columns in G.
Here (a1, . . . , ak) ≤ (b1, . . . , bk) indicates that ai ≤ bi for i ∈ [k] and Φk(u) = Φ(u1) . . .Φk(u).

Much in the same way as individual inference, we can use Lemma 5.1 for simultaneous infer-
ence on a group of parameters. Concretely, let Sk,α ⊆ Rk be any Borel set with k-dimensional
Gaussian measure at least 1− α. Then for a group G ⊂ [dp], with size |G| = k, we construct
the confidence set JG(α) ⊆ Rk as follows

JG(α) ≡ θ̂on
G +

1√
n

(Vn,R)1/2Sk,α . (49)

Then, using Lemma 5.1 (along the same lines in deriving (44)), we conclude that JG(α) is a
valid confidence region, namely

lim
n→∞

P(θ0,G ∈ JG(α)) = 1− α . (50)
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6 Numerical experiments

In this section, we evaluate the performance of online debiasing framework on synthetic data. In
the interest of reproducibility, an R implementation of our algorithm is available at http://faculty.
marshall.usc.edu/Adel-Javanmard/OnlineDebiasing.

Consider the VAR(d) time series model (10). In the first setting, we let p = 20, d = 3, T = 50
and construct the covariance matrix of noise terms Σζ by putting 1 on its diagonal and ρ = 0.3
on its off-diagonal. To make it closer to the practice, instead of considering sparse coefficient
matrices, we work with approximately sparse matrices. Specifically, the entries of A(i) are generated
independently from a Bernoulli distribution with success probability q = 0.1, multiplied by b ·
Unif({+1,−1}) with b = 0.1, and then added to a Gaussian matrix with mean 0 and standard error
1/p. In formula, each entry is generated independently from

b · Bern(q) ·Unif({+1,−1}) +N (0, 1/p2) .

We used r0 = 6 (length of first episode E0) and β = 1.3 for lengths of other episodes E` ∼ β`. For

each i ∈ [p] we do the following. Let θ0 = (A
(1)
i , A

(2)
i , . . . , A

(d)
i )T ∈ Rdp encode the ith rows of the

matrices A(`) and compute the noise component of θ̂on as

Wn ≡
1√
n

K−1∑
`=0

M (`)
(∑
t∈E`

xtεt

)
, (51)

the rescaled residual Tn ∈ Rdp with Tn,a =
√

n
Vn,a

(θ̂on
a − θ0,a), and Vn,a given by Equation (24) and

σ = 1. Left and right plots of Figure 7 denote the QQ-plot, PP-plot and histogram of noise terms
Wn and rescaled residuals Tn of all coordinates (across all i ∈ [p] and a ∈ [dp]) stacked together,
respectively.

True and False Positive Rates. Consider the linear time-series model (10) with A(i) matrices
having entries drawn independently from the distribution b · Bern(q) · Unif({+1,−1}) and noise
terms be gaussian with covariance matrix Σζ . In this example, we evaluate the performance of our
proposed online debiasing method for constructing confidence intervals and hypothesis testing as
discussed in Section 5. We consider four metrics: True Positive Rate (TPR), False Positive Rate
(FPR), Average length of confidence intervals (Avg CI length), and coverage rate of confidence
intervals. Tables 1 and 2 summarize the results for various configurations of the Var(d) processes
and significance level α = 0.05. Table 1 corresponds to the cases where noise covariance has the
structure Σζ(i, j) = 0.1|i−j| and Table 2 corresponds to the case of Σζ(i, j) = 0.1I(i 6=j). The reported
measures for each configuration (each row of the table) are average over 20 different realizations of
the VAR(d) model.
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Figure 7: A simple example of an online debiased Var(3) process with dimension p = 20 and T = 50 sample
data points. Plots 7a, 7c, 7e demonstrate respectively the histogram, QQ-plot, and PP plot of noise values of
all dp2 = 1200 entries of Ai matrices in linear time series model (10). Plots 7b, 7d, 7f are histogram, QQ-plot,
and PP-plot of rescaled residuals of all coordinates as well. Alignment of data points in these plots with
their corresponding standard normal (0, 1) line corroborates our theoretical results on the asymptotic normal
behavior of noise terms and rescaled residuals discussed in corollary 3.7 and proposition 3.8, respectively.
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Table 1: Evaluation of the online debiasing approach for statistical inference on the coefficients of a VAR(d)
model under different configurations. Here the noise terms ζi are gaussian with covariance matrix Σζ(i, j) =
0.1|i−j|. The results are reported in terms of four metrics: FPR (False Positive Rate), TPR (True Positive
Rate), Coverage rate and Average length of confidence intervals (Avg CI length) at significance level α = 0.05

XXXXXXXXXXd
Parameters

p T q b FPR TPR Avg CI length Coverage rate

d = 1
40 30 0.01 2 0.0276 1 3.56 0.9725
35 30 0.01 2 0.0354 0.9166 3.7090 0.9648
60 55 0.01 0.9 0.0314 0.7058 2.5933 0.9686

d = 2
55 100 0.01 0.8 0.0424 0.8000 1.9822 0.9572
40 75 0.01 0.9 0.0343 0.9166 2.5166 0.9656
50 95 0.01 0.7 0.0368 0.6182 2.4694 0.963

d = 3
45 130 0.005 0.9 0.0370 0.6858 2.070 0.9632
40 110 0.01 0.7 0.0374 0.6512 2.1481 0.9623
50 145 0.005 0.85 0.0369 0.6327 2.2028 0.9631

Table 2: Evaluation of the online debiasing approach for statistical inference on the coefficients of a VAR(d)
model under different configurations. Here the noise terms ζi are gaussian with covariance matrix Σζ(i, j) =
0.1I(i 6=j). The results are reported in terms of four metrics: FPR (False Positive Rate), TPR (True Positive
Rate), Coverage rate and Average length of confidence intervals (Avg CI length) at significance level α = 0.05

XXXXXXXXXXd
Parameters

p T q b FPR TPR Avg CI length Coverage rate

d = 1
40 30 0.01 2 0.0402 1 3.5835 0.96
40 35 0.02 1.2 0.0414 0.8125 2.6081 0.9575
50 40 0.015 0.9 0.0365 0.7435 2.0404 0.9632

d = 2
35 65 0.01 0.9 0.0420 0.8077 2.4386 0.9580
45 85 0.01 0.9 0.0336 0.7298 2.5358 0.9655
50 70 0.01 0.95 0.0220 0.8333 2.4504 0.9775

d = 3
40 115 0.01 0.9 0.0395 0.7906 1.6978 0.9598
45 130 0.005 0.95 0.0359 0.7714 2.1548 0.9641
50 145 0.005 0.85 0.0371 0.5918 2.1303 0.9624

6.1 Real data experiments: a marketing application

Retailers often offer sales of various categories of products and for an effective management of the
business, they need to understand the cross-category effect of products on each other, e.g., how the
price, promotion or sale of category A will effect the sales of category B after some time.

We used data of sales, prices and promotions of Chicago-area grocery store chain Dominick’s that
is publicly available at https://research.chicagobooth.edu/kilts/marketing-databases/dominicks.
The same data set has been used in [GWC16] where a sparse VAR model is fit to data and also
in [WBBM17] where a VARX model is employed to estimate the demand effects (VARX models
incorporate the effect of unmodeled exogenous variables (X) into the VAR). In this experiment, we
use the proposed online debiasing approach to provide p-values for the category effects.

We consider 11 categories of products4 over 71 weeks, so for each week t, we have information

4Bottled Juices, Cereals, Cheeses, Cookies, Crackers, Canned Soup, Front-end-Candies, Frozen Juices, Soft Drinks,
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xt ∈ R33 for sales, prices and promotions of the 11 categories. For thorough explanation on
calculating sales, prices and promotions, we refer to [SPHD04] and [GWC16]. We posit VAR(2)
model as the generating process for covariates xi and then apply our proposed online debiasing
method to calculate two-sided p-values for the null hypothesis of form H0 : θ0,a = 0 with θ0,a an
entry in the VAR model, as discussed earlier in Section 5 (See Eq. (45)). We refer to Appendix E
for the reports of the p-values. By running the Benjamini–Yekutieli procedure [BY01] (with log
factor correction to account for dependence among p-values), we obtain the following statistically
significant cross category associations at level 0.05: sales of canned tuna on sales of front-end-
candies after one week with p-val= 5.8e-05, and price of crackers on sales of canned tuna after
one week with p-val= 5.5e-04. In [GWC16], sparse VAR models are used to construct networks
of interlinked product categories, but they are not accompanied by statistical measures such as
p-values. Our online debiasing method here provides p-values for individual possible cross-category
associations.

7 Implementation and extensions

7.1 Iterative schemes to implement online debiasing

The online debiased estimator (16) involves the decorrelating matrices M (`), whose rows (m`
a)a∈[dp]

are constructed by the optimization (15). For the sake of computational efficiently, it is useful to
work with a Lagrangian equivalent version of this optimization. Consider the following optimization

minimize‖m‖1≤L
1

2
mTΣ̂(`)m− 〈m, ea〉+ µ`‖m‖1 , (52)

with µ` and L taking the same values as in Optimization (15).

The next result, from [Jav14, Chapter 5] is on the connection between the solutions of the
unconstrained problem (52) and (15). For the reader’s convenience, the proof is also given in
Appendix B.1.

Lemma 7.1. A solution of optimization (52) is also a solution of the optimization problem (15).
Also, if problem (15) is feasible then problem (52) has bounded solution.

Using the above lemma, we can instead work with the Lagrangian version (52) for constructing
the decorrelating vector m`

a.

Here, we propose to solve optimization problem (52) using iterative method. Note the objective
function evolves slightly at each episode and hence we expect the solutions m`

a and m`+1
a to be close

to each other. An appealing property of iterative methods is that we can leverage this observation
by setting m`

a as the initialization for the iterations that compute m`+1
a , yielding shorter convergence

time. In the sequel we discuss two of such iterative schemes.

7.1.1 Coordinate descent algorithms

In this method, at each iteration we update one of the coordinates of m, say mj , while fixing
the other coordinates. We write the objective function of (52) by separating mj from the other

Snack Crackers and Canned Tuna
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coordinates:

1

2
Σ̂

(`)
j,jm

2
j +

∑
r,s 6=j

Σ̂(`)
r,s mrms −ma + µ`‖m∼j‖1 + µ`|mj | , (53)

where Σ̂
(`)
j,∼j denotes the jth row (column) of Σ̂(`) with Σ̂

(`)
j,j removed. Likewise, m∼j represents the

restriction of m to coordinates other than j. Minimizing (53) with respect to mj gives

mj +
1

Σ̂
(`)
j,j

(
Σ̂

(`)
j,∼jm∼j − I(a = j) + µ` sign(mj)

)
= 0 .

It is easy to verify that the solution of the above is given by

mj =
1

Σ̂
(`)
j,j

η
(
− Σ̂

(`)
j,∼jm∼j + I(a = j);µ`

)
, (54)

with η(·; ·) : R× R+ → R denoting the soft-thresholding function defined as

η(z, µ) =


z − µ if z > µ ,

0 if − µ ≤ z ≤ µ ,
z + µ otherwise .

(55)

For a vector u, η(u;µ) is perceived entry-wise.

This brings us to the following update rule to compute m`
a ∈ Rdp (solution of (52)). Th

notation ΠL, in line 5 below, denotes the Euclidean projection onto the `1 ball of radius L and can
be computed in O(dp) times using the procedure of [DSSSC08].

1: (initialization): m(0)← m
(`−1)
a

2: for iteration h = 1, . . . ,H do
3: for j = 1, 2, . . . , dp do

4: mj(h)← 1

Σ̂
(`)
j,j

η
(
− Σ̂

(`)
j,∼jm∼j(h− 1) + I(a = j);µ`

)
5: m(h)← ΠL(m(h))
6: return m`

a ← m(H)

In our experiments we implemented the same coordinate descent iterations explained above to
solve for the decorrelating vectors m`

a.

7.1.2 Gradient descent algorithms

Letting L(m) = (1/2)mTΣ̂(`)m − 〈m, ea〉, we can write the objective of (52) as L(m) + µ`‖m‖1.
Projected gradient descent, applied to this constrained objective, results in a sequence of iterates
m(h), with h = 0, 1, 2, . . . the iteration number, as follows:

m(h+ 1) = arg min
‖m‖1≤L

{
L(m(h)) + 〈∇L(m(h)),m−m(h)〉

+
η

2
‖m−m(h)‖22 + µ`‖m‖1

}
. (56)
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In words, the next iterate m(h+1) is obtained by constrained minimization of a first order approx-
imation to L(m), combined with a smoothing term that keeps the next iterate close to the current
one. Since the objective function is convex (Σ̂(`) � 0), iterates (56) are guaranteed to converge to
the global minimum of (52).

Plugging for L(m) and dropping the constant term L(m(h)), update (56) reads as

m(h+ 1) = arg min
‖m‖1≤L

{
〈Σ̂(`)m(h)− ea,m−m(h)〉+

η

2
‖m−m(h)‖22 + µ`‖m‖1

}
= arg min

‖m‖1≤L

{η
2

(
m−m(h) +

1

η
(Σ̂(`)m(h)− ea)

)2
+ µ`‖m‖1

}
. (57)

To compute the update (57), we first solve the unconstrained problem which has a closed form

solution given by η
(
m(h) − 1

η (Σ̂(`)m(h) − ea); µ`η
)

, with η the soft thresholding function given by

(55). The solution is then projected onto the ball of radius L.

In the following box, we summarize the projected gradient descent update rule for constructing
the decorrelating vectors m`

a.

1: (initialization): m(0)← m
(`−1)
a

2: for iteration h = 1, . . . ,H do

3: m(h)← η
(
m(h)− 1

η (Σ̂(`)m(h)− ea); µ`η
)

4: m(h)← ΠL(m(h))
5: return m`

a ← m(H)

7.2 Sparse inverse covariance

In Section 3.1 (Figure 2) we provided a numerical example wherein the offline debiasing does not
admit an asymptotically normal distribution. As we see from the heat map in Figure 4b, the
precision matrix Ω has ∼ 20% non-negligible entries per row. The goal of this section is to show
that when Ω is sufficiently sparse, the offline debiased estimator has an asymptotically normal
distribution and can be used for valid inference on model parameters.

The idea is to show that the decorrelating matrix M is sufficiently close to the precision matrix
Ω. Since Ω is deterministic, this helps with controlling the statistical dependence between M and
ε. Formally, starting from the decomposition (5) we write

θ̂off = θ0 + (I −M Σ̂)(θ̂L − θ0) +
1

n
MXTε

= θ0 + (I −M Σ̂)(θ̂L − θ0) +
1

n
(M − Ω)XTε+

1

n
ΩXTε , (58)

where we recall that Σ̂ is the empirical covariance of all the covariate vectors (episodes E0, . . . , EK−1).
Therefore, we can write

√
n(θ̂off − θ0) = ∆1 + ∆2 +

1√
n

ΩXTε ,

∆1 =
√
n(I −M Σ̂)(θ̂L − θ0) ,

∆2 =
1√
n

(M − Ω)XTε .

(59)
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The term ΩXTε/
√
n is gaussian with O(1) variance at each coordinate. For bias term ∆1, we show

that ∆1 = O(s0(log p)/
√
n) by controlling |I −M Σ̂|. To bound the bias term ∆2 we write

‖∆2‖∞ ≤
1√
n
‖M − Ω‖1‖XTε‖∞ , (60)

where ‖M − Ω‖1 denotes the `1 − `1 norm of M − Ω (the maximum `1 norm of its columns). By
using [BM15, Proposition 3.2], we have ‖XTε‖∞/

√
n = OP (

√
log(dp)). Therefore, to bound ∆2

we need to control ‖M − Ω‖1. We provide such bound in our next lemma, under the sparsity
assumption on the rows of Ω.

Define
sΩ ≡ max

i∈[dp]

∣∣∣j ∈ [dp] : Ωi,j 6= 0
∣∣∣ ,

the maximum sparsity of rows of Ω. In addition, let the (offline) decorrelating vectors ma be defined
as follows, for a ∈ [dp]:

ma ∈ arg min
m∈Rdp

1

2
mTΣ̂m− 〈m, ea〉+ µ‖m‖1 . (61)

Lemma 7.2. Consider the decorrelating vectors ma, a ∈ [dp], given by optimization (61) with

µ = 2τ

√
log(dp)
n . Then, for some proper constant c > 0 and the sample size condition n ≥ 32α(ω2∨

1)sΩ log(dp), the following happens with probability at least 1−exp(−c log(dp2))−exp(−cn(1∧ω−2)):

max
i∈[dp]

‖ma − Ωea‖1 ≤
192τ

α
sΩ

√
log(dp)

n
,

where αand ω are defined in Proposition A.4.

The proof of Lemma 7.2 is deferred to Section B.2.

By employing this lemma, if Ω is sufficiently sparse, that is sΩ = o(
√
n/ log(dp)), then the

bias term ‖∆2‖∞ also vanishes asymptotically and the (offline) debiased estimator θ̂off admits
an unbiased normal distribution. We formalize such distributional characterization in the next
theorem.

Theorem 7.3. Consider the VAR(d) model (10) for time series and let θ̂off be the (offline) debiased
estimator (4), with the decorrelating matrix M = (m1, . . . ,mdp)

T ∈ Rdp×dp constructed as in (61),
with µ = 2τ

√
log(dp)/n. Also, let λ = λ0

√
log(dp)/n be the regularization parameter in the Lasso

estimator θ̂L, with τ, λ0 large enough constants.

Suppose that s0 = o(
√
n/ log(dp)) and sΩ = o(

√
n/ log(dp)), then the following holds true for

any fixed sequence of integers a(n) ∈ [dp]: For all x ∈ R, we have

lim
n→∞

sup
‖θ0‖0≤s0

∣∣∣∣P
{√

n(θ̂off
a − θ0,a)√
Vn,a

≤ x

}
− Φ(x)

∣∣∣∣ = 0 , (62)

where Vn,a ≡ σ2(M Σ̂MT)a,a.
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We refer to Section B.3 for the proof of Theorem 7.3.

Numerical example. Consider a VAR(d) model with parameters p = 25, d = 3, T = 70,
and Gaussian noise terms with covariance matrix Σζ satisfying Σζ(i, j) = ρ|i−j| for ρ = 0.1. Let
Ai matrices have entries generated independently from b · Bern(q) · Unif({+1,−1}) formula with
parameters b = 0.15, q = 0.05. Figure 8a shows the magnitudes of the entries of the precision
matrix Ω = E(xix

T
i )−1; as we see Ω is sparse. Figures 8b, 8c, and 8d demonstrate normality of

the rescaled residuals of the offline debiased estimator built by decorrelating matrix M with rows
coming from optimization described in (61).

After this paper was posted, we learned of simultaneous work (an updated version of [BDMP17])
that also studies the performance of the (offline) debiased estimator for time series with sparse preci-
sion matrix. We would like to highlight some of the differences between our discussion in Section 7.2
and that paper: 1) [BDMP17] considers decorrelating matrix M constructed by an optimization
of form (15), using the entire sample covariance Σ̂(K), while we work with the Lagrangian equiva-
lent (61). 2) [BDMP17] considers VAR(1) model, while we work with VAR(d) models. 3) [BDMP17]
assumes a stronger notion of sparsity, viz. the sparsity of the entire precision matrix as well as the
transition matrix to scale as o(

√
n/ log p). Our results only require the row-wise sparsity of the

precision matrix to scale as o(
√
n/ log p), cf. Theorem 7.3.

7.3 Concluding remarks

In this work we devised the ‘online debiasing’ approach for the high-dimensional regression and
showed that it asymptotically admits an unbiased Gaussian distribution, even when the samples
are collected adaptively. Also through numerical examples we demonstrated that the (offline)
debiased estimator suffers from the bias induced by the correlation in the samples and cannot
be used for valid statistical inference in these settings (unless the precision matrix is sufficiently
sparse).

Since its proposal, the (offline) debiasing approach has been used as a tool to address a
variety of problems such as estimating average treatment effect and casual inference in high-
dimension [AIW16], precision matrix estimation [JvdG17], distributed multitask learning, and
studying neuronal functional network dynamics [SML+18], hierarchical testing [GRBC19], to name
a few. It has also been used for different statistical aims such as controlling FDR in high-
dimensions [JJ+19], estimation of the prediction risk [JM18], inference on predictions [CG17, JL17]
and explained variance [CG18, JL17], and testing more general hypotheses regarding the model
parameters, like testing membership in a convex cone, testing the parameter strength, and testing
arbitrary functions of the parameters [JL17]. We anticipate that the online debiasing approach and
analysis can be used to tackle similar problems under adaptive data collection. We leave this for
future work.
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Figure 8: A Simple example of a VAR(d) process with parameters p = 25, d = 3, T = 70, and noise term
covariance matrix Σζ s.t Σζ(i, j) = ρ|i−j| with ρ = 0.1. Ai matrices have independent elements coming from
b · Bern(q).Unif({+1,−1}) formula with b = 0.15, q = 0.05. Normality of rescaled residuals (figures 8b, 8c,
and 8d) validates the successful performance of offline debiasing estimator under sparsity of precision matrix
Ω ( figure 8a) as we discussed in theorem 7.3.
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A Proofs of Section 3

A.1 Technical preliminaries

Recall the definition of the regression design from Eqs.(12) in the time series case:

θ0 = (A
(1)
i , A

(2)
i , . . . , A

(d)
i )T,

X =


zT
d zT

d−1 . . . zT
1

zT
d+1 zT

d . . . zT
2

...
...

. . .
...

zT
T−1 zT

T−2 . . . zT
T−d

 ,
y = (zd+1,i, zd+2,i, . . . , zT,i),

ε = (ζd+1,i, ζd+2,i, . . . , ζT,i).

We first establish some preliminary results for stable time series. For the stationary process
xt = (zT

t+d−1, . . . , z
T
t )T (rows of X), let Γx(s) = Cov(xt, xt+s), for t, s ∈ Z and define the spectral

density fx(r) ≡ 1/(2π)
∑∞

`=−∞ ΓX(`)e−j`r, for r ∈ [−π, π] . The measure of stability of the process
is defined as the maximum eigenvalue of the density

M(fx) ≡ sup
r∈[−π,π]

σmax(fx(r)) . (63)

Likewise, the minimum eigenvalue of the spectrum is defined as m(fx) ≡ inf
r∈[−π,π]

σmin(fx(r)), which

captures the dependence among the covariates. (Note that for the case of i.i.d. samples, M(fx)
and m(fx) reduce to the maximum and minimum eigenvalue of the population covariance.)

The p-dimensional VAR(d) model (10) can be represented as a dp-dimensional VAR(1) model.
Recall our notation xt = (zT

t+d−1, . . . , z
T
t )T (rows of X in (12)). Then (10) can be written as

xt = Ãxt−1 + ζ̃t , (64)

with

Ã =

(
A1 A2 . . . Ad−1 Ad

I(d−1)p 0

)
, ζ̃t =

(
ζt+d−1

0

)
. (65)

The reverse characteristic polynomial for the VAR(1) model reads as Ã = I − Ãz.
The following lemma controls M(fx),m(fx) in terms of the spectral properties of the noise Σζ

and the characteristic polynomials A, Ã.

Lemma A.1 ([BM15]). We have:

1

2π
λmax(Σ) ≤M(fx) ≤

λmax(Σζ)

µmin(Ã)
,

λmin(Σ) ≥
λmin(Σζ)

µmax(A)
. (66)
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We also use the following bound on M(fx) in terms of characteristic polynomial A of the time
series zt.

Lemma A.2. The following holds:

1

2π
λmax(Σ) ≤M(fx) ≤ dM(fz) ≤

dλmax(Σζ)

µmin(A)
.

Proof. Let Γx(`) = E[xtx
T
t+`] to refer the autocovariance of the dp-dimensional process xt. Therefore

Σ = Γx(0). Likewise, the autocovariance Γz(`) is defined for the p-dimensional process zt. We
represent Γx(`) in terms of d2 blocks, each of which is a p× p matrix. The block in position (r, s)
is Γz(` + r − s). Now, for a vector v ∈ Rdp with unit `2 norm, decompose it as d blocks of p
dimensional vectors v = (vT

1 , v
T
2 , . . . , v

T
d )T, by which we have

vTΓz(`)v =
∑

1≤r,s≤d
vT
r Γx(`+ r − s)vs . (67)

Since the spectral density fz(θ) is the Fourier transform of the autocorrelation function, we have
by Equation (67),

〈v, fz(θ)v〉 =
1

2π

∞∑
`=−∞

〈v,Γz(`)e−j`θv〉

=
1

2π

∞∑
`=−∞

∑
1≤r,s≤d

〈vr,Γz(`+ r − s)e−j`θvs〉

=
∑

1≤r,s≤d
〈vr,

( 1

2π

∞∑
`=−∞

Γx(`+ r − s)e−j(`+r−s)θ
)
vse

j(r−s)θ〉

=
∑

1≤r,s≤d
〈vr, fx(θ)ej(r−s)θvs〉

= V (θ)∗fx(θ)V (θ),

with V (θ) =
d∑
r=1

e−jrθvr. Now, we have:

‖V (θ)‖2 ≤
d∑
r=1

‖vr‖2 ≤
(
d

d∑
r=1

‖vr‖22
)1/2

≤
√
d.

Combining this with the Rayleigh quotient calculation above, yields M(fx) ≤ dM(fz). Now, by
using [BM15, Equation (4.1)] for the process zt, with reverse characteristic polynomial A, we obtain

λmax(Σ) ≤ 2πM(fx) ≤ 2πdM(fz) ≤
dλmax(Σζ)

µmin(A)
. (68)

The following proposition is a straightforward consequence of the spectral bounds above and
[BM15, Proposition 2.4].
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Proposition A.3. There exists a constant c > 0, such that for any vectors u, v ∈ Rdp with ‖u‖ ≤ 1,
‖v‖ ≤ 1, and any η ≥ 0,

P
(
|uT(Σ̂(`) − Σ)v| >

dλmax(Σζ)

µmin(A)
η

)
≤ 6 exp

(
−cn` min{η2, η}

)
. (69)

A.2 Remarks on proof of Theorem 3.2

The key part of establishing Theorem 3.2 is to establish an appropriate ‘restricted eigenvalue’
condition as follows:

Proposition A.4. Let {z1, . . . , zT } be generated according to the (stable) VAR(d) process (10) and
let n = T − d. Then there exist constants c ∈ (0, 1) and C > 1 such that for all n ≥ Cω2 log(dp),
with probability at least 1− exp(−cn/ω2), satisfies

〈v, (XTX/n)v〉 ≥ α‖v‖2 − ατ‖v‖21.

Here, α, ω and τ are given by:

ω =
dλmax(Σζ)µmax(A)

λmin(Σζ)µmin(A)
,

α =
λmin(Σζ)

2µmax(A)
,

τ = ω2

√
log(dp)

n
.

(70)

Given Proposition A.4, the estimation result of Theorem 3.2 is standard (see [BVDG11]). Propo-
sition A.4 can be proved analogous to [BM15, Proposition 4.2], with the following considerations
and minor modifications:

1. [BM15] writes the VAR(d) model as a VAR(1) model and then vectorize the obtained equation
to get a linear regression form (cf. Section 4.1 of [BM15]). This way, they prove I⊗ (XTX/n)
satisfies a restricted eigenvalue property. Towards this, the first step in their proof is to show
that XTX/n satisfies a restricted eigenvalue property, i.e. Proposition A.4.

2. [BM15, Proposition 4.2] assumes n ≥ Ckmax{ω2, 1} log(dp), with k =
∑d

`=1 ‖vec(A(`))‖0, the
total number of nonzero entries of matrices A` and then it is later used to get τ ≤ 1/(Ck).
However, as the restricted eigenvalue condition is independent of the sparsity of matrices A(`),
we can use their result with k = 1.

3. The proof involves upper bounding M(fx), for which we use Lemma A.2 in lieu of Lemma
A.1.
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A.3 Proof of Lemma 3.3

The idea is to use Proposition A.3 along with the union bound. Fix i, j ∈ [dp] and let u = Ωei
‖Ωei‖

and v = ej . Then:

|(ΩΣ̂(`) − I)ij | = |〈Ωei, (Σ̂(`) − Σ)ej〉|

= ‖Ωei‖|〈u, (Σ̂(`) − Σ)v〉|

≤ λmax(Ω)|〈u, (Σ̂(`) − Σ)v〉|

≤ µmax(A)

λmin(Σζ)
|〈u, (Σ̂(`) − Σ)v〉|,

where the last line uses Lemma A.1 to bound λmin(Σ) from below. Combining this with Proposition
A.3, for η ≤ 1:

P
{
|(ΩΣ̂(`) − I)ij | ≥ dλmax(Σζ)η/µmin(A)

}
≤ P

{
|〈u, (Σ̂(`) − Σ)v〉| ≥ ωη

}
≤ 6 exp(−cn`η2).

Setting η = C
√

log(dp)/n` for a large enough constant C, the probability bound above is smaller
than (dp)−8. With a union bound over i, j ∈ [dp]:

P
{
‖ΩΣ̂(`) − I‖∞ ≥ Cω

√
log(dp)

n`

}
≤ (dp)2 sup

i,j
P
{
|(ΩΣ̂(`) − I)ij | ≥ Cω

√
log(dp)

n`

}
≤ (dp)−6.

This completes the proof.

A.4 Proof of Theorem 3.4

Starting from the decomposition (21), we have
√
n(θ̂on − θ0) = ∆n +Wn ,

with ∆n = Bn(θ̂L − θ0). As explained below (21), Wn is a martingale with respect to filtration
Fj = {ε1, . . . , εj}, j ∈ N and hence E(Wn) = 0.

We also note that ‖∆n‖∞ ≤ ‖Bn‖∞‖θ̂L − θ0‖1. Our next lemma bounds ‖Bn‖∞.

Lemma A.5. Suppose that the Optimization problem (15) is feasible for all i ∈ [dp]. Let ω and γ
be:

ω =
dµmax(A)λmax(Σζ)

µmin(A)λmin(Σζ)
,

γ =
dλmax(Σζ)

µmin(A)
.

Then, with probability at least 1− (dp)−8

‖Bn‖∞ ≤
r0√
n

+ C(ω + Lγ)

√
log(dp)

n

K−1∑
`=1

( r`√
n`

+
√
r`

)
. (71)
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The bound provided in Lemma A.5 holds for general batch sizes r0, . . . , rK−1. We choose the
batch lengths as r` = β` for some β > 1 and ` = 1, . . . ,K − 1. We also let r0 =

√
n and choose

rK−1 so that the total lengths of batches add up to n (that is r0 + r1 + . . .+ rK−1 = n). Therefore,
K = O(logβ(n)). Following this choice, bound (71) simplifies to:

‖Bn‖∞ ≤ Cβ(ω + γL)
√

log(dp) , (72)

for some constant Cβ > 0 that depends on the constant β.

Next by combining Theorem 3.2 and Lemma A.5 we obtain that, with probability at least
1− 2(dp)−6

‖∆n‖∞ ≤ Cβ(ω + Lγ)
√

log(dp) ·
(s0λn

α

)
≤ Cβ

λ0(ω + Lγ)

α

s0 log(dp)√
n

. (73)

This implies the claim by selecting a β bounded away from 1, say β = 1.3.

It remains to prove the claim on the bias E{θ̂on − θ0}. For this, define G to be the event where
∆n satisfies the upper bound in Eq.(73). Therefore:

‖E{θ̂on − θ0}‖∞ =
‖E{∆n}‖∞√

n

≤ ‖E{∆nI(G)}‖∞√
n

+ E{‖θ̂L − θ0‖1I(Gc)}.

For the first term we use the bound Eq.(73). For the second, we use Lemma D.7:

‖E{θ̂on − θ0}‖∞ ≤
Cλ0(ω + Lγ)

α

s0 log p

n
+

E{‖ε‖2I(Gc)}
nλn

+ 2‖θ0‖1P(Gc).

It suffices, therefore, to show that the final two terms are at most C‖θ0‖1/(dp)6. By Holder
inequality and P(Gc) ≤ 2(dp)−6:

E{‖ε‖2I(Gc)}
nλn

+ 2‖θ0‖1P(Gc) ≤ E{‖ε‖4}1/2P(Gc)1/2

nλn
+ 2‖θ0‖1P(Gc)

≤ C
λmax(Σζ)

2

(dp)3λ0

√
n log(dp)

+ C
‖θ0‖1
(dp)6

.

In the high-dimensional regime, the first term is negligible in comparison to s0 log(dp)/n, which
yields, after adjusting C appropriately:

‖E{θ̂on − θ0}‖∞ ≤
C1λ0(ω + Lγ)

α

s0 log p

n
+ C2

‖θ0‖1
(dp)6

,

as required.

It remains to prove Lemma A.5:
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Proof of Lemma A.5. For each episode `, let

R(`) :=
1

r`

∑
t∈E`

xtx
T
t

be the sample covariance in episode `. Fix a ∈ [dp] and define Bn,a ≡
√
nea − 1√

n

∑K−1
`=1 r`R

(`)m`
a.

We then have

Bn,a =
√
nea −

1√
n

K−1∑
`=1

r`R
(`)m`

a =
r0√
n
ea +

K−1∑
`=1

r`√
n

(
ea −R(`)m`

a

)
, (74)

where we used that
∑K−1

`=0 r` = n. By triangle inequality, followed by Holder inequality:

‖Bn,a‖∞ ≤
r0√
n

+
1√
n

K−1∑
`=1

r`‖ea −R(`)m`
a‖∞

≤ r0√
n

+
K−1∑
`=1

r`√
n

(
‖ea − Σ̂(`)m`

a‖∞ + ‖(Σ̂(`) − Σ)m`
a‖∞ + ‖(Σ−R(`))m`

a‖∞
)

≤ r0√
n

+

K−1∑
`=1

r`√
n

(
‖ea − Σ̂(`)m`

a‖∞ + ‖Σ̂(`) − Σ‖∞‖m`
a‖1 + ‖Σ−R(`)‖∞‖m`

a‖1
)

We now bound each of the three terms appearing in the sum above:

1. By the construction of decorrelating vectors m`
a as in optimization (15), we have

‖Σ̂(`)m`
a − ea‖∞ ≤ µ` , ` = 0, . . . ,K − 1 . (75)

2. Also by construction, ‖m`
a‖1 ≤ L. From an argument similar to that of Lemma 3.3, ‖Σ̂(`) − Σ‖∞ ≤

Cγ
√

log(dp)/n` with probability at least 1−K(dp)−9, where γ = dλmax(Σζ)/µmin(A). There-
fore, with the same probability, the third term is at most CLγ

√
log(dp)/n`.

3. Again, by construction ‖m`
a‖1 ≤ L. Similar to Lemma 3.3, ‖R(`) − Σ‖∞ is at most Cγ

√
log(dp)/r`

with probability at least 1−K(dp)−9.

Combining these and the fact that we set µ` = Cω
√

log(dp)/n we have that, with probability
at least 1− 2K(dp)−9,

‖Bn,a‖∞ ≤
r0√
n

+
C√
n

K−2∑
`=0

r`

(
ω

√
log(dp)

n`
+ Lγ

√
log(dp)

n`
+ Lγ

√
log(dp)

r`

)

≤ r0√
n

+ C(ω + Lγ)

√
log(dp)

n

K−2∑
`=0

( r`√
n`

+
√
r`

)
.

This bound holds uniformly over a ∈ [dp], and since ‖Bn‖∞ = supa‖Bn,a‖∞, the same bound
holds for ‖Bn‖∞. This completes the proof.
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A.5 Proof of Lemma 3.6

We start by proving Claim (24). Let ma = Ωea be the first column of the inverse (stationary)
covariance. Using the fact that E{xtxT

t } = Σ we have 〈ma,E{xtxT
t }ma〉 = Ωa,a, which is to be

the dominant term in the conditional variance Vn,a. Using the shorthand σ2 = Σζ i,i Therefore, we
decompose the difference as follows:

Vn,a − Ωa,a =
σ2

n

K−1∑
`=1

∑
t∈E`

[
〈m`

a, xt〉2 − Ωa,a

]
− r0σ

2

n
Ωa,a

=
σ2

n

K−1∑
`=1

∑
t∈E`

[
〈m`

a, xt〉2 − 〈ma,E{xtxT
t }ma〉

]
− r0σ

2

n
Ωa,a

=
σ2

n

K−1∑
`=1

∑
t∈E`

[〈m`
a, xt〉2 − 〈ma, xt〉2]

+
1

n

n−1∑
t=0

〈ma, (xtx
T
t − E{xtxT

t })ma〉 −
r0σ

2

n
Ωa,a . (76)

We treat each of these three terms separately. Write∣∣∣∣ 1n
K−1∑
`=1

∑
t∈E`

[〈m`
a, xt〉2 − 〈ma, xt〉2]

∣∣∣∣ =
1

n

∣∣∣∣K−1∑
`=1

∑
t∈E`

[〈m`
a −ma, xt〉〈m`

a +ma, xt〉]
∣∣∣∣

≤ 1

n

∥∥∥∥K−1∑
`=1

∑
t∈E`

〈m`
a −ma, xt〉xt

∥∥∥∥
∞
‖m`

a +ma‖1

≤ 2L

n

∥∥∥∥K−1∑
`=1

∑
t∈E`

〈m`
a −ma, xt〉xt

∥∥∥∥
∞
. (77)

To bound the last quantity, note that

1

n

∥∥∥∥K−1∑
`=1

∑
t∈E`

〈m`
a −ma, xt〉xt

∥∥∥∥
∞
≤
∥∥∥∥ea − 1

n

K−1∑
`=1

∑
t∈E`

〈m`
a, xt〉xt

∥∥∥∥
∞

+

∥∥∥∥ea − 1

n

K−1∑
`=1

∑
t∈E`

〈ma, xt〉xt
∥∥∥∥
∞

=

∥∥∥∥ea − 1

n

K−1∑
`=1

r`R
(`)m`

a

∥∥∥∥
∞

+

∥∥∥∥ea − Σ̂(K)ma

∥∥∥∥
∞

=
1√
n
‖Bn,a‖∞ +

∥∥∥∥ea − Σ̂(K)ma

∥∥∥∥
∞

≤ CLγ
√

log(dp)

n
+ Cω

√
log(dp)

n
≤ C(Lγ + ω)

√
log(dp)

n
, (78)
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for some constant C. The last inequality follows from the positive events of Lemma A.5 and Lemma
3.3. Combining Equations (77) and (78), we obtain∣∣∣∣ 1n

K−1∑
`=1

∑
t∈E`

[〈m`
a, xt〉2 − 〈ma, xt〉2]

∣∣∣∣ ≤ CL(ω + Lγ)

√
log(dp)

n
. (79)

For the second term in (76), we can use Proposition A.3 with v = u = ma/‖ma‖, η =
C
√

log(dp)/n to obtain

∣∣∣ 1
n

n−1∑
t=0

〈ma, (xtx
T
t − E{xtxT

t })ma〉
∣∣∣ =

∣∣〈ma, (Σ̂
(K−1) − Σ)ma〉

∣∣
≤
Cdλmax(Σζ)

µmin(A)
‖ma‖2

√
log(dp)

n

≤
Cdλmax(Σζ)

µmin(A)λmin(Σ)2

√
log(dp)

n
(80)

≤ Cω

α

√
log(dp)

n
, (81)

where we used that ‖ma‖ = ‖Ωea‖ ≤ λmax(Ω) = λmin(Σ)−1 ≤ 1/α. For the third term, we have
r0 =

√
n. Also, Ωa,a ≤ λmax(Ω) ≤ 1/α. Therefore, this term is O(1/α

√
n). Combining this bound

with (79) and (81) in Equation (76) we get the Claim (24).

We next prove Claim (25). Note that |εt| = |ζt+d,i| is bounded with σ
√

2 log(n), with high proba-
bility for t ∈ [n], by tail bound for Gaussian variables. In addition, max`|〈m`

a, xt〉| ≤ ‖m`
a‖1‖xt‖∞ ≤

L‖xt‖∞ ≤ L‖X‖∞. Note that variance of each entry xt,i is bounded by Σii ≤ λmax(Σ). Hence, by
tail bound for Gaussian variables and union bounding we have

P
(
‖X‖∞ <

√
2λmax(Σ) log(dpn)

)
≥ 1− (pdn)−2 , (82)

Putting these bounds together we get

max
{ 1√

n
|〈m`

a, xt〉εt| : ` ∈ [K − 2], t ∈ [n]
}

≤ 1√
n
L
√

2λmax(Σ) log(dpn)σ
√

2 log(n)

≤ 2Lσ
√
λmax(Σ)

log(dpn)√
n

≤ 2L0σ‖Ω‖1
(

2πdλmax(Σζ)

µmin(A)

)1/2 log(dpn)√
n

= o(1) ,

where in the last inequality we used Lemma A.2 to upper bound λmax(Σζ). The conclusion that
the final expression is o(1) follows from Assumption 3.5.
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A.6 Proof of Proposition 3.8

We prove that for all x ∈ R,

lim
n→∞

sup
‖θ0‖0≤s0

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ x
}
≤ Φ(x) . (83)

We can obtain a matching lower bound by a similar argument which implies the result.

Invoking the decomposition (22) we have

√
n(θ̂on

a − θ0,a)√
Vn,a

=
Wn√
Vn,a

+
∆n√
Vn,a

.

By Corollary 3.7, we have that W̃n ≡Wn/
√
Vn,a → N(0, 1) in distribution. Fix an arbitrary ε > 0

and write

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ x
}

= P
{
W̃n +

∆n√
Vn,a

≤ x
}

≤ P{W̃n ≤ x+ ε}+ P
{ |∆a|√

Vn,a
≥ ε
}

By taking the limit and using Equation (22), we get

lim
n→∞

sup
‖θ0‖0≤s0

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ x
}
≤ Φ(x+ ε) + lim

n→∞
sup

‖θ0‖0≤s0
P
{ |∆a|√

Vn,a
≥ ε
}

(84)

We show that the limit on the right hand side vanishes for any ε > 0. By virtue of Lemma 3.6
(Equation (24)), we have

lim
n→∞

P
{ |∆a|√

Vn,a
≥ ε
}
≤ lim

n→∞
P
{ |∆a|
σ
√

Ωa,a

≥ ε
}

≤ lim
n→∞

P
{
|∆a| ≥ εσ

√
Ωa,a

}
≤ lim

n→∞
(dp)−4 = 0 . (85)

Here, in the last inequality we used that s0(Lγ + ω) = o(
√
n/ log(dp)) and therefore, for large

enough n, εσ
√

Ωa,a exceeds the bound (23) of Theorem 3.4.

Using (85) in bound (84) and then taking the limit ε→ 0, we obtain (83).

B Proofs of Section 7

B.1 Proof of Lemma 7.1

Rewrite the optimization problem (15) as follows:

minimize mTΣ̂(`)m

subject to 〈z, Σ̂(`)m− ea〉 ≤ µ`, ‖m‖1 ≤ L, ‖z‖1 = 1 ,
(86)
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The Lagrangian is given by

L(m, z, λ) = mTΣ̂(`)m+ λ(〈z, Σ̂(`)m− ea〉 − µ`), ‖z‖1 = 1, ‖m‖1 ≤ L , (87)

If λ ≤ 2L, minimizing Lagrangian over m is equivalent to ∂L
∂m = 0 and we get m∗ = −λz∗/2. The

dual problem is then given by

maximize − λ2

4
zTΣ̂(`)z − λ〈z, ea〉 − λµ`

subject to
λ

2
≤ L, ‖z‖1 = 1 ,

(88)

As ‖z‖1 = 1, by introducing β = −λ
2 z, we get ‖β‖1 = λ

2 . Rewrite the dual optimization problem
in terms of β to get

minimize
1

2
βTΣ̂(`)β − 〈β, ea〉+ µ`‖β‖1

subject to ‖β‖1 ≤ L ,
(89)

Given β∗ as the minimizer of the above optimization problem, from the relation of β and z we
realize that m∗ = β∗.

Also note that since optimization (89) is the dual to problem (86), we have that if (86) is feasible
then the problem (89) is bounded.

B.2 Proof of Lemma 7.2

By virtue of Proposition A.4, the sample covariance Σ̂ satisfies RE condition, Σ̂ ∼ RE(α, τ), where

α =
λmin(Σζ)

2µmax(A)
, τ = Cω2

√
log(dp)

n
, (90)

and by the sample size condition we have sΩ < 1/32τ .

Hereafter, we use the shorthand m∗a = Ωea and let L(m) be the objective function in the
optimization (61). By optimality of ma, we have L(m∗a) ≤ L(ma). Defining the error vector
ν ≡ ma −m∗a and after some simple algebraic calculation we obtain the equivalent inequality

1

2
νTΣ̂ν ≤ 〈ν, ea − Σ̂m∗a〉+ µn(‖m∗a‖1 − ‖m∗a + ν‖1) . (91)

In the following we first upper bound the right hand side. By Lemma 3.3 (for ` = K and nK = n),
we have that with high probability

〈ν, ea − Σ̂m∗a〉 ≤ ‖ν‖1a
√

log(dp)

n
= (‖νS‖1 + ‖νSc‖1)

µn
2
,

where S = supp(Ωea) and hence |S| ≤ sΩ. On the other hand,

‖ma + ν‖1 − ‖m∗a‖1 ≥ (‖m∗a,S‖1 − ‖νS‖1) + ‖νSc‖1 − ‖m∗a‖1 = ‖νSc‖1 − ‖νS‖1 .
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Combining these pieces we get that the right-hand side of (91) is upper bounded by

(‖νS‖1 + ‖νSc‖1)
µn
2

+ µn (‖νS‖1 − ‖νSc‖1) =
3

2
µn‖νS‖1 −

1

2
µn‖νSc‖1 , (92)

Given that Σ̂ � 0, the left hand side of (91) is non-negative, which implies that ‖νSc‖1 ≤ 3‖νS‖1
and hence

‖ν‖1 ≤ 4‖νS‖1 ≤ 4
√
sΩ‖νS‖2 ≤ 4

√
sΩ‖ν‖2 . (93)

Next by using the restricted eigenvalue condition for Σ̂ we write

νTΣ̂ν ≥ α‖ν‖22 − ατ‖ν‖21 ≥ α(1− 16sΩτ)‖ν‖22 ≥
α

2
‖ν‖22 , (94)

where we used τ ≤ 1/(32sΩ) in the final step.

Putting (91), (92) and (94) together, we obtain

α

4
‖ν‖22 ≤

3

2
µn‖νS‖1 ≤ 6

√
sΩµn‖ν‖2 .

Simplifying the bound and using equation 93, we get

‖ν‖2 ≤
24

α

√
sΩµn ,

‖ν‖1 ≤
96

α
sΩµn ,

which completes the proof.

B.3 Proof of Theorem 7.3

Continuing from the decomposition (59) we have

√
n(θ̂off − θ0) = ∆1 + ∆2 + Z , (95)

with Z = ΩXTε/
√
n. By using Lemma 3.3 (for ` = K) and recalling the choice of µ = τ

√
log(dp)/n

we have that the following optimization is feasible, with high probability:

minimize mTΣ̂m

subject to ‖Σ̂m− ea‖∞ ≤ µ .

Therefore, optimization (61) (which is shown to be its dual in Lemma (7.1)) has bounded solution.
Hence, its solution should satisfy the KKT condition which reads as

Σ̂ma − ea + µsign(ma) = 0 , (96)

which implies ‖Σ̂ma − ea‖∞ ≤ µ. Invoking the estimation error bound of Lasso for time series
(Proposition 3.2), we bound ∆1 as

‖∆1‖∞ ≤ C
√
nµs0

√
log p

n
= OP

(
s0

log(dp)√
n

)
. (97)
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We next bound the bias term ∆2. By virtue of [BM15, Proposition 3.2] we have the deviation
bound ‖XTε‖∞/

√
n = OP (

√
log(dp)), which in combination with Lemma 7.2 gives us the following

bound

‖∆2‖∞ ≤
(

max
i∈[dp]

‖(M − Ω)ei)‖
)(

1√
n
‖XTε‖∞

)
= OP

(
sΩ

log(dp)√
n

)
. (98)

Therefore, letting ∆ = ∆1 + ∆2, we have ‖∆‖∞ = oP (1), by recalling our assumption s0 =
o(
√
n/ log(dp)) and sΩ = o(

√
n/ log(dp)).

Our next lemma is analogous to Lemma 3.6 for the covariance of the noise component in the
offline debiased estimator, and its proof is deferred to Section B.1.

Lemma B.1. Assume that sΩ = o(
√
n/ log(dp)) and Λmin(Σε)/µmax(A) > cmin > 0 for some

constant cmin > 0. For µ = τ
√

log(dp)/n and the decorrelating vectors mi constructed by (61), the
following holds. For any fixed sequence of integers a(n) ∈ [dp], we have

mT
a Σ̂ma = Ωa,a + oP (1/

√
log(dp)) . (99)

We are now ready to prove the theorem statement. We show that

lim
n→∞

sup
‖θ0‖0≤s0

P

{√
n(θ̂off

a − θ0,a)√
Vn,a

≤ u

}
≤ Φ(u) . (100)

A similar lower bound can be proved analogously. By the decomposition (95) we have

√
n(θ̂off

a − θ0,a)√
Vn,a

=
∆a√
Vn,a

+
Za√
Vn,a

.

Define

Z̃a ≡
Za

σ
√

Ωa,a

=
1

σ
√
nΩa,a

(ΩXTε)a =
1

σ
√
nΩa,a

n∑
i=1

eT
aΩxiεi .

Since εi is independent of xi, the summand
∑n

i=1 e
T
aΩxiεi is a martingale. Furthermore, E[(eT

aΩxiεi)
2] =

σ2Ωa,a. Hence, by a martingale central limit theorem [HH14, Corollary 3.2], we have that Z̃a →
N(0, 1) in distribution. In other words,

lim
n→∞

P{Z̃au} = Φ(u) . (101)

Next, fix δ ∈ (0, 1) and write

P

{√
n(θ̂off

a − θ0,a)√
Vn,a

≤ u

}
= P

{√
Ωa,a√
Vn,a

Z̃a +
∆a√
Vn,a

≤ u

}

≤ P

{√
Ωa,a√
Vn,a

Z̃a ≤ u+ δ

}
+ P

{
∆a√
Vn,a

≥ δ

}

≤ P
{
Z̃a ≤ u+ 2δ + δ|u|

}
+ P

{∣∣∣√Ωa,a√
Vn,a

− 1
∣∣∣ ≥ δ}

+ P

{
∆a√
Vn,a

≥ δ

}
.
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Now by taking the limit of both sides and using (101) and Lemma B.1, we obtain

lim sup
n→∞

sup
‖θ0‖0≤s0

P

{√
n(θ̂off

a − θ0,a)√
Vn,a

≤ u

}
≤

Φ(u+ 2δ + δ|u|) + lim sup
n→∞

sup
‖θ0‖0≤s0

P

{
∆a√
Vn,a

≥ δ

}
. (102)

Since δ ∈ (0, 1) was chosen arbitrarily, it suffices to show that the limit on the right hand side
vanishes. To do that, we use Lemma B.1 again to write

lim
n→∞

sup
‖θ0‖0≤s0

P
{ |∆a|√

Vn,a
≥ δ
}
≤ lim

n→∞
sup

‖θ0‖0≤s0
P
{ |∆a|
σ
√

(Ωa,a

≥ δ
}

≤ lim
n→∞

sup
‖θ0‖0≤s0

P
{
|∆a| ≥ δσ

√
Ωa,a

}
= 0 ,

where the last step follows since we showed ‖∆‖∞ = oP (1). The proof is complete.

B.3.1 Proof of Lemma B.1

By invoking bound (66) on minimum eigenvalue of the population covariance, we have

λmin(Σ) ≥
λmin(Σζ)

µmax(A)
, (103)

bounded away from 0 by our assumption. Therefore, λmax(Ω) = λmin(Σ)−1 is bounded away from
∞. Since Ω < 0, we have |Ωa,b| ≤

√
Ωa,aΩb,b for any two indices a, b ∈ [dp]. Hence, |Ω|∞ ≤

1/λmin(Σ). This implies that ‖Ωea‖1 ≤ sΩ/λmin(Σ). Using this observation along with the bound
established in Lemma 7.2, we obtain

‖ma‖1 ≤ ‖Ωea‖+ ‖ma − Ωea‖1 ≤
sΩ

λmin(Σ)
+

192τ

α
sΩ

√
log(dp)

n
= O(sΩ) . (104)

We also have

‖ma − Ωea‖∞ ≤ ‖ma − Ωea‖1 = O
(
sΩ

√
log(dp)

n

)
. (105)

In addition, by the KKT condition (96) we have

‖Σ̂ma − ea‖∞ ≤ µ . (106)

Combining bounds (104), (105) and (106), we have

|mT
a Σ̂ma − Ωa,a| ≤ |(mT

a Σ̂− eT
a )ma|+ |eT

ama − Ωa,a|

≤ ‖mT
a Σ̂− eT

a ‖∞‖ma‖1 + ‖ma − Ωea‖∞

= O
(
sΩ

√
log(dp)

n

)
= o(1/

√
log(dp)) ,

which completes the proof.
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C Proofs of Section 4

C.1 Consistency results for LASSO under adaptively collected samples

Theorem 4.1 shows that, under an appropriate compatibility condition, the LASSO estimate ad-
mits `1 error at a rate of s0

√
log p/n. Importantly, despite the adaptivity introduced by the

sampling of data, the error of LASSO estimate has the same asymptotic rate as expected without
adaptivity. With slightly stronger restricted-eigenvalue conditions on the covariances E{xxT} and
E{xxT|〈x, θ̂1〉 ≥ ς}, it is also possible to extend Theorem 4.1 to show `2 error of order s0 log p/n,
analogous to the non-adaptive setting. However, since the `2 error rate will not be used for our
analysis of online debiasing, we do not pursue this direction here.

C.1.1 Proof of Theorem 4.1

The important technical step is to prove that, under the conditions specified in Theorem 4.1, the
sample covariance Σ̂ = (1/n)

∑
i xix

T
i is (φ0/4, supp(θ0)) compatible.

Proposition C.1. With probability exceeding 1− p−4 the sample covariance Σ̂ is (φ0/4, supp(θ0))
compatible when n1 ∨ n2 ≥ C(κ4/φ2

0)s2
0 log p, for an absolute constant C > 0.

Let Σ̂(1) and Σ̂(2) denote the sample covariances of each batch, i.e. Σ̂(1) = (1/n1)
∑

i≤n1
xix

T
i and

similarly Σ̂(2) = (1/n2)
∑

i>n1
xix

T
i . We also let Σ(2) be the conditional covariance Σ(2) = Σ(2)(θ̂1) =

E{xxT|〈x, θ̂1〉 ≥ ς}. We first prove that at least one of the sample covariances Σ̂(1) and Σ̂(2)

closely approximate their population counterparts, and that this implies they are (φ0/2, supp(θ0))-
compatible.

Lemma C.2. With probability at least 1− p−4

‖Σ̂(1) − Σ‖∞ ∧ ‖Σ̂(2) − Σ(2)‖∞ ≤ 12κ2

√
log p

n
,

Proof. Since n = n1 + n2 ≤ 2 max(n1, n2), at least one of n1 and n2 exceeds n/2. We assume that
n2 ≥ n/2, and prove that ‖Σ̂(2) − Σ(2)‖∞ satisfies the bound in the claim. The case n1 ≥ n/2 is
similar. Since we are proving the case n2 ≥ n/2, for notational convenience, we assume probabilities
and expectations in the rest of the proof are conditional on the first batch (y1, x1), . . . (yn1 , xn1),
and omit this in the notation.

For a fixed pair (a, b) ∈ [p]× [p]:

Σ̂
(2)
a,b − Σ

(2)
a,b =

1

n2

∑
i>n1

xi,axi,b − E{xi,axi,b}

Using Lemma D.4 we have that ‖xi,axi,b‖ψ1 ≤ 2‖xi‖2ψ2
≤ 2κ2 almost surely. Then using the tail

inequality Lemma D.5 we have for any ε ≤ 2eκ2

P
{
|Σ̂(2)
a,b − Σ

(2)
a,b| ≥ ε

}
≤ 2 exp

{
− n2ε

2

6eκ4

}
With ε = ε(p, n2, κ) = 12κ2

√
log p/n2 ≤ 20κ2

√
log p/n we have that P{|Σ̂(2)

a,b − Σ
(2)
a,b| ≥ ε(p, n2, κ)} ≤

p−8, whence the claim follows by union bound over pairs (a, b).
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Lemma C.3 ([BVDG11, Corollary 6.8]). Suppose that Σ is (φ0, S)-compatible. Then any matrix
Σ′ such that ‖Σ′ − Σ‖∞ ≤ φ0/(32|S|) is (φ0/2, S)-compatible.

We can now prove Proposition C.1.

Proof of Proposition C.1. Combining Lemmas C.2 and C.3 yields that, with probability 1 − p−4,
at least one of Σ̂(1) and Σ̂(2) are (φ0/2, supp(θ0))-compatible provided

12κ2

√
log p

n
≤ φ0

32s0
,

which is implied by n ≥
(400κ2s0

φ0

√
log p

)2
.

Since Σ̂ = (n1/n)Σ̂(1) + (n2/n)Σ̂(2) and at least one of n1/n and n2/n exceed 1/2, this implies that
Σ̂ is (φ0/4, supp(θ0))-compatible with probability exceeding 1− p−4.

The following lemma shows that XTε is small entrywise.

Lemma C.4. For any λn ≥ 40κσ
√

(log p)/n, with probability at least 1− p−4, ‖XTε‖∞ ≤ nλn/2.

Proof. The ath coordinate of the vector XTε is
∑

i xiaεi. As the rows of X are uniformly κ-
subgaussian and ‖εi‖ψ2 = σ, Lemma D.4 implies that the sequence (xiaεi)1≤i≤n is uniformly 2κσ-
subexponential. Applying the Bernstein-type martingale tail bound Lemma D.6, for ε ≤ 12eκσ:

P
{∣∣∣∑

i

xiaεi

∣∣∣ ≥ εn} ≤ 2 exp
{
− nε2

24eκ2σ2

}
Set ε = ε(p, n, κ, σ) = 20κσ

√
(log p)/n, the exponent on the right hand side above is at least 5 log p,

which implies after union bound over a that

P{‖XTε‖∞ ≥ εn} = P
{

max
a

∣∣∣∑
i

xiaεi

∣∣∣ ≥ εn}
≤
∑
a

P
{∣∣∣∑

i

xiaεi

∣∣∣ ≥ εn}
≤ 2p−6.

This implies the claim for p large enough.

The rest of the proof is standard, cf. [HTW15] and is given below for the reader’s convenience.

Proof of Theorem 4.1. Throughout we condition on the intersection of good events in Proposition
C.1 and Lemma C.4, which happens with probability at least 1 − 2p−4. On this good event, the
sample covariance Σ̂ is (φ0/4, supp(θ0))-compatible and ‖XTε‖∞ ≤ 20κσ

√
n log p ≤ nλn/2.

By optimality of θ̂L:

1

2
‖y −Xθ̂L‖2 + λn‖θ̂L‖1 ≤

1

2
‖y −Xθ0‖2 + λn‖θ0‖1.
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Using y = Xθ0 + ε, the shorthand ν = θ̂L − θ0 and expanding the squares leads to

1

2
〈ν, Σ̂ν〉 ≤ 1

n
〈XTε, ν〉+ λn(‖θ0‖1 − ‖θ̂L‖1)

≤ 1

n
‖ν‖1‖XTε‖∞ + λn(‖θ0‖1 − ‖θ̂L‖1)

≤ λn
{1

2
‖ν‖1 + ‖θ0‖1 − ‖θ̂L‖1

}
. (107)

First we show that the error vector ν satisfies ‖νSc
0
‖1 ≤ 3‖νS0‖1, where S0 ≡ supp(θ0). Note that

‖θ̂L‖1 = ‖θ0 + ν‖1 = ‖θ0 + νS0‖1 + ‖νSc
0
‖1. By triangle inequality, therefore:

‖θ0‖1 − ‖θ̂L‖1 = ‖θ0‖1 − ‖θ0 + νS0‖1 − ‖νSc
0
‖1

≤ ‖νS0‖1 − ‖νSc
0
‖1.

Combining this with the basic lasso inequality Eq.(107) we obtain

1

2
〈ν, Σ̂ν〉 ≤ λn

{1

2
‖ν‖1 + ‖νS0‖1 − ‖νSc

0
‖1
}

=
λn
2

{
3‖νS0‖1 − ‖νSc

0
‖.
}

As Σ̂ is positive-semidefinite, the LHS above is non-negative, which implies ‖νSc
0
‖1 ≤ 3‖νS0‖1. Now,

we can use the fact that Σ̂ is (φ0/4, S0)-compatible to lower bound the LHS by ‖ν‖21φ0/2s0. This
leads to

φ0‖ν‖21
2s0

≤ 3λn‖νS0‖1
2

≤ 3λn‖ν‖1
2

.

Simplifying this results in ‖ν‖1 = ‖θ̂L − θ0‖1 ≤ 3s0λn/φ0 as required.

C.2 Bias control: Proof of Theorem 4.6

Recall the decomposition (31) from which we obtain:

∆n = Bn(θ̂L − θ0),

Bn =
√
n
(
Ip −

n1

n
M (1)Σ̂(1) − n2

n
M (2)Σ̂(2)

)
,

Wn =
1√
n

∑
i≤n1

M (1)xiεi +
1√
n

∑
n1<i≤n

M (2)xiεi.

By construction M (1) is a function of X1 and hence is independent of ε1, . . . , εn1 . In addition, M (2)

is independent of εn1+1, . . . , εn. Therefore E{Wn} = 0 as required. The key is to show the bound
on ‖∆n‖∞. We start by using Hölder inequality

‖∆n‖∞ ≤ ‖Bn‖∞‖θ̂L − θ0‖1.
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Since the `1 error of θ̂L is bounded in Theorem 4.1, we need only to show the bound on Bn. For this,
we use triangle inequality and that M (1) and M (2) are feasible for the online debiasing program:

‖Bn‖∞ =
√
n
∥∥∥n1

n
(Ip −M (1)Σ̂(1)) +

n2

n
(Ip −M (2)Σ̂(2))

∥∥∥
∞

≤
√
n
(n1

n
‖Ip −M (1)Σ̂(1)‖∞ +

n2

n
‖Ip −M (2)Σ̂(2)‖∞

)
≤
√
n
(n1µ1

n
+
n2µ2

n

)
.

The following lemma shows that, with high probability, we can take µ1, µ2 so that the resulting
bound on Bn is of order

√
log p.

Lemma C.5. Denote by Ω = (E{xxT})−1 and Ω(2)(θ̂) = (E{xxT|〈x, θ̂〉 ≥ ς})−1 be the population
precision matrices for the first and second batches. Suppose that n1 ∧ n2 ≥ 2Λ0/κ

2 log p. Then,
with probability at least 1− p−4

‖Ip − ΩΣ̂(1)‖∞ ≤ 15κΛ0
−1/2

√
log p

n1
,

‖Ip − Ω(2)Σ̂(2)‖∞ ≤ 15κΛ0
−1/2

√
log p

n2
.

In particular, with the same probability, the online debiasing program (29) is feasible with µ` =
15κ2Λ0

−1
√

(log p)/n` < 1/2.

It follows from the lemma, Theorem 4.1 and the previous display that, with probability at least
1− 2p−3

‖∆n‖∞ ≤ ‖Bn‖∞‖θ̂L − θ0‖1

≤ 15κΛ
−1/2
0

√
n
(n1

n

√
log p

n1
+
n2

n

√
log p

n2

)
· 120κσφ−1

0 s0

√
log p

n
,

≤ 2000
κ2σ√
Λ0φ0

s0 log p

n
(
√
n1 +

√
n2)

≤ 4000
κ2σ√
Λ0φ0

s0 log p√
n

. (108)

This implies the first claim that, with probability rapidly converging to one, ∆n/
√
n is of order

s0 log p/n.

We should also expect ‖E{θ̂on − θ0}‖∞ to be of the same order. To prove this, however, we
need some control (if only rough) on θ̂on in the exceptional case when the LASSO error is large or
the online debiasing program is infeasible. Let G1 denote the good event of Lemma C.4 and G2

denote the good event of Theorem 4.1 as below:

G1 =

{
For ` = 1, 2 : ‖Ip − Ω(`)Σ̂(`)‖∞ ≤ 15κΛ0

−1/2

√
log p

n`

}
,

G2 =
{
‖θ̂L − θ0‖1 ≤

3s0λn
φ0

=
120κσ

φ0
s0

√
log p

n
.
}
.
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On the intersection G = G1 ∩G2, ∆n satisfies the bound (108). For the complement: we will use
the following rough bound on the LASSO error:

Now, since Wn is unbiased:

‖E{θ̂on − θ0}‖∞ =
∥∥∥E{∆n}√

n

∥∥∥
∞

=
∥∥∥E{∆nI(G)}√

n

∥∥∥
∞

+
∥∥∥E{∆nI(Gc)}√

n

∥∥∥
∞

≤ 4000
κ2σ√
Λ0φ0

s0 log p

n
+ E{‖θ̂L − θ0‖1I(Gc)}.

For the second term, we can use Lemma D.7, Cauchy Schwarz and that P{Gc} ≤ 4p−3 to obtain:

E{‖θ̂L − θ0‖1I(Gc)} ≤ E
{‖ε‖2I(Gc)

2nλn
+ 2‖θ0‖1I(Gc)

}
≤ E{‖ε‖4}1/2P(Gc)1/2

2nλn
+ 2‖θ0‖1P{Gc}

≤
√

3σ2

√
np1.5λn

+ 8‖θ0‖1p−3 ≤ 10c
s0 log p

n
,

for n, p large enough . This implies the claim on the bias.

It remains only to prove the intermediate Lemma C.5.

Proof of Lemma C.5. We prove the claim for the second batch, and in the rest of the proof, we
assume that all probabilities and expectations are conditional on the first batch (in particular, the
intermediate estimate θ̂1). The (a, b) entry of Ip − Ω(2)Σ̂(2) reads

(Ip − Ω(2)Σ̂(2))a,b = I(a = b)− 〈Ω(2)ea, Σ̂
(2)eb〉

=
1

n2

∑
i>n1

I(a = b)− 〈ea,Ω(2)xi〉xib.

Now, E{〈ea,Ω(2)xi〉xi,b〉} = I(a = b) and 〈ea,Ω(2)xi〉 is (‖Ω(2)‖2κ)-subgaussian. Since Σ(2) < Λ0Ip,
we have that ‖Ω(2)‖2 ≤ Λ0

−1. This observation, coupled with Lemma D.4, yields 〈ea,Ω(2)xi〉xi,b is
2κ2/Λ0-subexponential. Then we may apply Lemma D.5 for ε ≤ 12κ2/Λ0 as below:

P{(Ip − Ω(2)Σ̂(2))a,b ≥ ε} ≤ exp
(
− n2ε

2

36κ2Λ0
−1

)
.

Keeping ε = ε(p, n2, κ,Λ0) = 15κΛ0
−1/2

√
(log p)/n2 we obtain:

P
{

(Ip − Ω(2)Σ̂(2))a,b ≥ 15κΛ0
−1/2

√
log p

n2

}
≤ p−6.

Union bounding over the pairs (a, b) yields the claim. The requirement n2 ≥ 2(Λ0/κ
2) log p ensures

that the choice ε above satisfies ε ≤ 12κ2/Λ0.
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C.3 Central limit asymptotics: proofs of Proposition 4.8 and Theorem 4.9

Our approach is to apply a martingale central limit theorem to show that Wn,a is approximately
normal. An important first step is to show that the conditional covariance Vn,a is stable, or
approximately constant. Recall that Vn,a is defined as

Vn,a = σ2
(n1

n
〈m(1)

a , Σ̂(1)m(1)
a 〉+

n2

n
〈m(2)

a , Σ̂(2)m(2)
a 〉
)
.

We define its deterministic equivalent as follows. Consider the function f : Sn → R by:

f(Σ) = {min 〈m,Σm〉 : ‖Σm− ea‖∞ ≤ µ , ‖m‖1 ≤ L}.

We begin with two lemmas about the stability of the optimization program used to obtain the
online debiasing matrices.

Lemma C.6. On its domain (and uniformly in µ, ea), f is L2-Lipschitz with respect to the ‖·‖∞
norm.

Proof. For two matrices Σ,Σ′ in the domain, let m,m′ be the respective optimizers (which exist
by compactness of the set {m : ‖Σm− v‖∞ ≤ µ, ‖m‖1 ≤ L}. We prove that |f(Σ)− f(Σ′)| ≤
L2‖Σ− Σ′‖∞.

f(Σ)− f(Σ′) = 〈Σ,mmT〉 − 〈Σ′,m′(m′)T〉
≤ 〈Σ,m′(m′)T〉 − 〈Σ′,m′(m′)T〉
= 〈(Σ− Σ′)m′,m′〉
≤ ‖(Σ− Σ′)m′‖∞‖m′‖1
≤ ‖Σ− Σ′‖∞‖m′‖21 ≤ L2‖Σ− Σ′‖∞.

Here the first inequality follows from optimality of m and the last two inequalities are Hölder
inequality. The reverse inequality f(Σ)− f(Σ′) ≥ −L2‖Σ− Σ′‖∞ is proved in the same way.

Lemma C.7. We have the following lower bound on the optimization value reached to compute
f(Σ):

(1− µ)2

λmax(Σ)
≤ f(Σ) ≤ 1

λmin(Σ)
.

Proof. We first prove the lower bound for f(Σ). Suppose m is an optimizer for the program. Then

‖Σm‖2 ≥ ‖Σm‖∞ ≥ ‖ea‖∞ − µ = 1− µ.

On the other hand, the value is given by

〈m,Σm〉 = 〈Σm,Σ−1(Σm)〉 ≥ λmin(Σ−1)‖Σm‖22 = ‖Σm‖22 λmax(Σ)−1.

Combining these gives the lower bound.

For the upper bound, it suffices to consider any feasible point; we choose m = Σ−1ea, which
is feasible since ‖Σ−1‖1 ≤ L. The value is then 〈ea,Σ−1ea〉 ≤ λmax(Σ−1) which gives the upper
bound.
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Lemma C.8. (Stability of Wn,a) Define Σ(2)(θ) = E{xxT|〈x1, θ〉 ≥ ς}. Then, under Assumptions
4.4 and 4.7

lim
n→∞

∣∣∣Vn,a − σ2
(n1f(Σ)

n
+
n2f(Σ2(θ0))

n

)∣∣∣ = 0, in probability.

Proof. Using Lemma C.6:∣∣∣Vn,a − σ2
(n1

n
f(Σ) +

n2

n
f(Σ(θ0)

)∣∣∣
=
σ2n1

n
(f(Σ̂(1))− f(Σ)) +

σ2n2

n
(f(Σ̂(2) − f(Σ(θ0))))

≤ L2σ
2n1

n
‖Σ− Σ̂(1)‖∞ + L2σ

2n2

n
‖Σ(2)(θ0)− Σ̂(2)‖∞

≤ L2σ
2n1

n
‖Σ− Σ̂(1)‖∞ + L2σ

2n2

n

(
‖Σ(2)(θ0)− Σ(2)(θ̂1)‖∞ + ‖Σ(2)(θ̂1)− Σ̂(2)‖∞

)
≤ σ2L2‖Σ− Σ̂(1)‖∞ + σ2L2

(
K‖θ̂1 − θ0‖1 + ‖Σ(2)(θ̂1)− Σ̂(2)‖∞

)
.

Using Lemma C.2 the first and third term vanish in probability. It is straightforward to apply The-
orem 4.1 to the intermediate estimate θ̂1; indeed Assumption 4.7 guarantees that n1 ≥ cn for a uni-
versal c. Therefore the intermediate estimate has an error ‖θ̂1 − θ0‖1 of order κσφ−1

0

√
(s2

0 log p)/n
with probability converging to one. In particular, the second term is, with probability converging
to one, of order KL2σ3κφ−1

0

√
s2

0(log p)/n = o(1) by Assumption 4.7.

Lemma C.9. Under Assumptions 4.4 and 4.7, with probability at least 1− p−2

max
i
|〈ma, xi〉| ≤ 10Lκ

√
log p,

In particular limn→∞maxi |〈ma, xi〉| = 0 in probability.

Proof. By Hölder inequality, maxi〈|〈ma, xi〉| ≤ maxi ‖ma‖1‖xi‖∞ ≤ Lmaxi ‖xi‖∞. Therefore, it
suffices to prove that, with the required probability maxi,a|xi,a| ≤ 10κ

√
log p. Let u = 10κ

√
log p.

Since xi are uniformly κ-subgaussian, we obtain for q > 0:

P{|xi,a| ≥ u} ≤ u−qE{|xi,a|q} ≤ (
√
qκ/u)q

= exp
(
− q

2
log

u2

κ2q

)
≤ exp

(
− u2

2κ2

)
≤ p−5 ,

where the last line follows by choosing q = u2/eκ2. By union bound over i ∈ [n], a ∈ [p], we obtain:

P{max
i,a
|xi,a| ≥ u} ≤

∑
i,a

P{|xi,a| ≥ u} ≤ p−3,

which implies the claim (note that p ≥ n as we are focusing on the high-dimensional regime).

With these in hand we can prove Proposition 4.8 and Theorem 4.9.

Proof of Proposition 4.8. Consider the minimal filtration Fi so that
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1. For i < n1, y1, . . . , yi, x1, . . . xn1 and ε1, . . . , εi are measurable with respect to Fi.

2. For i ≥ n1 y1, . . . , yi, x1, . . . , xn and ε1, . . . εi are measurable with respect to Fi.

The martingale Wn (and therefore, its ath coordinate Wn,a) is adapted to the filtration Fi. We
can now apply the martingale central limit theorem [HH14, Corollary 3.1] to Wn,a to obtain the
result. From Lemmas C.7 and C.8 we know that Vn,a is bounded away from 0, asymptotically. The
stability and conditional Lindeberg conditions of [HH14, Corollary 3.1] are verified by Lemmas C.8
and C.9.

Proof of Theorem 4.9. This is a straightforward corollary of the bias bound of 4.6 and Proposition
4.8. We will show that:

lim
n→∞

P
{√ n

Vn,a
(θ̂on
a − θ0,a) ≤ x

}
≤ Φ(x).

The reverse inequality follows using the same argument.

Fix a δ > 0. We decompose the difference above as:√
n

Vn,a
(θ̂on
a − θ0,a) =

Wn,a√
Vn,a

+
∆n,a√
Vn,a

.

Therefore,

P
{√ n

Vn,a
(θ̂on
a − θ0,a) ≤ x

}
≤ P

{ Wn,a√
Vn,a

≤ x+ δ
}

+ P{|∆n,a| ≥
√
Vn,aδ}.

By Proposition 4.8 the first term converges to Φ(x+δ). To see that the second term vanishes, observe
first that Lemma C.7 and Lemma C.8, imply that Vn,a is bounded away from 0 in probability. Using
this:

lim
n→∞

P{|∆n,a| ≥
√
Vn,aδ} ≤ lim

n→∞
P{‖∆n‖∞ ≥

√
Vn,aδ}

≤ lim
n→∞

P
{
‖∆n‖∞ ≥ 4000

κ2σ√
Λ0φ0

s0 log p√
n

}
= 0

by applying Theorem 4.6 and that for n large enough,
√
Vn,aδ exceeds the bound on ‖∆n‖∞ used.

Since δ is arbitrary, the claim follows.

C.4 Proofs for Gaussian designs

In this Section we prove that Gaussian designs of Example 4.5 satisfy the requirements of Theorem
4.1 and Theorem 4.6.

The following distributional identity will be important.

Lemma C.10. Consider the parametrization ς = ς̄〈θ̂,Σθ̂〉
1/2

. Then

x|〈x,θ̂〉≥ς
d
=

Σθ̂

〈θ̂,Σθ̂〉1/2
ξ1 +

(
Σ− Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉

)1/2
ξ2,
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where ξ1, ξ2 are independent, ξ2 ∼ N(0, Ip) and ξ1 has the density:

dPξ1
du

(u) =
1√

2πΦ(−ς̄)
exp(−u2/2)I(u ≥ ς̄).

Proof. This follows from the distribution of x|〈x, θ̂〉 being N(µ′,Σ′) with

µ′ =
Σθ̂

〈θ̂,Σθ̂〉
〈x, θ̂〉, Σ′ = Σ− Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉
.

The following lemma shows that they satisfy compatibility.

Lemma C.11. Let Px = N(0,Σ) for a positive definite covariance Σ. Then, for any vector θ̂ and
subset S ⊆ [p], the second moments E{xxT} and E{xxT|〈x, θ̂〉 ≥ ς} are (φ0, S)-compatible with
φ0 = λmin(Σ)/16.

Proof. Fix an S ⊆ [p]. We prove that Σ = E{x1x
T
1 } is (φ0, S)-compatible with φ0 = λmin(Σ)/16.

Note that, for any v satisfying ‖vSc‖1 ≤ 3‖vS‖, its `1 norm satisfies ‖v‖1 ≤ 4‖vS‖1. Further
Σ < λmin(Σ)Ip implies:

|S|〈v,Σv〉
‖v‖21

≥ λmin(Σ)
|S|‖v‖2

‖v‖21
≥ λmin(Σ)

|S|‖vS‖2

16‖vS‖21
≥ λmin(Σ)

16
.

For E{xxT|〈x, θ̂〉 ≥ ς}, we use Lemma C.10 to obtain

E{xxT|〈x, θ̂〉 ≥ ς} = Σ + (E{ξ2
1} − 1)

Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉
,

where ξ1 is as in Lemma C.10. Since E{ξ2
1} = 1 + ς̄ϕ(ς̄)/Φ(−ς̄) ≥ 1 + ς̄2 whenever ς̄ ≥ 0:

E{xxT|〈x, θ̂〉 ≥ ς} ≥ Σ + ς̄2 Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉
< λmin(Σ)Ip .

The rest of the proof is as for Σ.

Lemma C.12. Let Px = N(0,Σ) for a positive definite covariance Σ. Then, for any vector θ̂ and
subset S ⊆ [p], the random vectors x and x|〈x,θ̂〉≥ς are κ-subgaussian with κ = 3λmax(Σ)1/2(ς̄ ∨ ς̄−1),

where ς̄ = ς/〈θ̂,Σθ̂〉1/2.

Proof. By definition, 〈x, v〉 ∼ N(0, vTΣv) is
√
vTΣv-subGaussian. Optimizing over all unit vectors

v, x is λ
1/2
max(Σ)-subgaussian.

For x|〈x,θ̂〉≥ς , we use the decomposition of Lemma C.10:

x|〈x,θ̂〉≥ς
d
=

Σθ̂

〈θ̂,Σθ̂〉1/2
ξ1 +

(
Σ− Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉

)1/2
ξ2.
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Clearly, ξ2 is 1-subgaussian, which means the second term is λ
1/2
max(Σ)-subgaussian. For the first

term, we claim that ξ1 is 1-subgaussian and therefore the first term is λ
1/2
max(Σ)-subgaussian. To

show this, we start with the moment generating function of ξ1. Recall that ς̄ = ς/〈θ̂,Σθ̂〉1/2:

E{eλξ1} =

∫ ∞
ς̄

eλue−u
2/2 du√

2πΦ(−ς̄)
= eλ

2/2 Φ(λ− ς̄)
Φ(−ς̄)

.

Here ϕ and Φ are the density and c.d.f. of the standard normal distribution. It follows that:

d2

dλ2
logE{eλξ1} =

1

2
+

(λ− ς̄)ϕ(λ− ς̄)
Φ(λ− ς̄)

− ϕ(λ− ς̄)2

Φ(λ− ς̄)2

≤ 1

2
+ sup

λ≥ς̄

(λ− ς̄)ϕ(λ− ς̄)
Φ(λ− ς̄)

≤ 1

2
+ sup

λ≥0

λϕ(λ)

Φ(λ)
< 1 .

Now, consider the centered version ξ′1 = ξ1−E{ξ1}. The above bound also holds for d2/dλ2(logE{eλξ′1}).
Therefore, by integration, d logE{eλξ′1}/dλ ≤ λ+ C, for some constant C independent of λ. Now

d logE{eλξ′1}
dλ

∣∣∣
λ=0

= E{ξ′1} = 0.

Therefore, we can take the constant C to be 0. Repeating this integration argument, we obtain
logE{eλξ′1} ≤ λ2/2, which implies that ξ′1 = ξ1 − E{ξ1} is 1-subgaussian.

It follows, by triangle inequality, that ξ1 is (1 + E{ξ1})-subgaussian. It only remains to bound
E{ξ1} as below:

E{ξ1} =
ϕ(ς̄)

Φ(−ς̄)
≤ 1 + ς̄2

ς̄
≤ 2(ς̄ ∨ ς̄−1).

Therefore, the subgaussian constant of x|〈x,θ̂〉≥ς is at most λmax(Σ)1/2(2ς̄∨ς̄−1+1) ≤ 3λmax(Σ)1/2(ς̄∨
ς̄−1).

For Example 4.5, it remains only to show the constraint on the approximate sparsity of the
inverse covariance. We show this in the following

Lemma C.13. Let Px = N(0,Σ) and θ̂ be any vector such that ‖θ̂‖1‖θ̂‖∞ ≤ Lλmin(Σ)‖θ̂‖2/2 and
‖Σ−1‖1 ≤ L/2. Then, with Ω = E{xxT}−1 and Ω(2)(θ̂) = E{xxT|〈x, θ̂〉 ≥ ς}−1:

‖Ω‖1 ∨ ‖Ω(2)‖1 ≤ L.

Proof. By assumption ‖Ω‖1 ≤ L/2, so we only require to prove the claim for Ω(2) = E{xxT|〈x, θ̂〉 ≥
ς}−1. Using Lemma C.10, we can compute the precision matrix:

Ω(2) = E{xxT|〈x, θ̂〉 ≥ ς}−1

=
(

Σ + (E{ξ2
1} − 1)

Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉

)−1

= Ω + (E{ξ2
1}−1 − 1)

θ̂θ̂T

〈θ̂,Σθ̂〉
,
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where the last step follows by an application of Sherman–Morrison formula. Since E{ξ2
1} = 1 +

ς̄ϕ(ς̄)/Φ(−ς̄), where ς̄ = ς/〈θ̂,Σθ̂〉1/2 this yields:

Ω(2) = Ω− ς̄ϕ(ς̄)

Φ(−ς̄) + ς̄ϕ(ς̄)

θ̂θ̂T

〈θ̂,Σθ̂〉
.

By triangle inequality, for any ς̄ ≥ 0:

‖Ω(2)‖1 ≤ ‖Ω‖1 +
‖θ̂θ̂T‖1
〈θ̂,Σθ̂〉

≤ L

2
+
‖θ̂‖1‖θ̂‖∞
λmin(Σ)‖θ̂‖2

≤ L.

Next we show that the conditional covariance of x is appropriately Lipschitz.

Lemma C.14. Suppose ς = ς̄〈θ,Σθ〉1/2 for a constant ς̄ ≥ 0. Then The conditional covariance
function Σ(2)(θ) = E{xxT|〈x, θ〉 ≥ ς} satisfies:

‖Σ(2)(θ′)− Σ(2)(θ)‖∞ ≤ K‖θ′ − θ‖,

where K =
√

8(1 + ς̄2)λmax(Σ)3/2/λmin(Σ)1/2.

Proof. Using Lemma C.10,

Σ(2)(θ) = Σ + (E{ξ2
1} − 1)

ΣθθTΣ

〈θ,Σθ〉
.

Let v = Σ1/2θ/‖Σ1/2θ‖ and v′ = Σ1/2θ′/‖Σ1/2θ′‖. With this,

‖Σ(2)(θ′)− Σ(2)(θ)‖∞ = (E{ξ2
1} − 1)‖Σ1/2(vvT − v′v′T)Σ1/2‖∞

≤ (E{ξ2
1} − 1)λmax(Σ)‖vvT − v′v′T‖2

≤ (E{ξ2
1} − 1)λmax(Σ)‖vvT − v′v′T‖F

(a)

≤
√

2(E{ξ2
1} − 1)λmax(Σ)‖v − v′‖

(b)

≤
√

8λmax(Σ)3/2

λmin(Σ)1/2
(E{ξ2

1} − 1)‖θ − θ′‖

(c)

≤
√

8λmax(Σ)3/2

λmin(Σ)1/2
(ς̄2 + 1)‖θ − θ′‖ .

Here, (a) follows by noting that for two unit vectors v, v′, we have

‖vvT − v′v′T‖2F = 2− 2(vTv′)2 = 2(1− vTv′)(1 + vTv′) ≤ 2‖v − v′‖2 .
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Also, (b) holds using the following chain of triangle inequalities

‖v − v′‖ =
∥∥∥ Σ1/2θ

‖Σ1/2θ‖
− Σ1/2θ′

‖Σ1/2θ′‖

∥∥∥
≤ ‖Σ

1/2(θ − θ′)‖
‖Σ1/2θ‖

+ ‖Σ1/2θ′‖
∣∣∣ 1

‖Σ1/2θ‖
− 1

‖Σ1/2θ′‖

∣∣∣
≤ 2
‖Σ1/2(θ − θ′)‖
‖Σ1/2θ‖

≤ 2

√
λmax(Σ)

λmin(Σ)
‖θ − θ′‖

Finally (c) holds since
E{ξ1

1} − 1 = ς̄ϕ(ς̄)/Φ(−ς̄) ≤ ς̄2 + 1 ,

using standard tail bound ϕ(ς̄) ς̄
ς̄2+1

≤ Φ(−ς̄).

D Technical preliminaries

Definition D.1. (Subgaussian norm) The subgaussian norm of a random variable X, denoted by
‖X‖ψ2, is defined as

‖X‖ψ2 ≡ sup
q≥1

q−1/2E{|X|q}1/q.

For a random vector X the subgaussian norm is defined as

‖X‖ψ2 ≡ sup
‖v‖=1

‖〈X, v〉‖ψ2 .

Definition D.2. (Subexponential norm) The subexponential norm of a random variable X is de-
fined as

‖X‖ψ1 ≡ sup
q≥1

q−1E{|X|q}1/q.

For a random vector X the subexponential norm is defined by

‖X‖ψ1 ≡ sup
‖v‖=1

‖〈X, v〉‖ψ1 .

Definition D.3. (Uniformly subgaussian/subexponential sequences) We say a sequence of random
variables {Xi}i≥1 adapted to a filtration {Fi}i≥0 is uniformly K-subgaussian if, almost surely:

sup
i≥1

sup
q≥1

q−1/2E{|Xi|q|Fi−1}1/q ≤ K.

A sequence of random vectors {Xi}i≥1 is uniformly K-subgaussian if, almost surely,

sup
i≥1

sup
‖v‖=1

sup
q≥1

E{|〈Xi, v〉|q|Fi−1}1/q ≤ K.

Subexponential sequences are defined analogously, replacing the factor q−1/2 with q−1 above.
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Lemma D.4. For a pair of random variables X,Y , ‖XY ‖ψ1 ≤ 2‖X‖ψ2‖Y ‖ψ2.

Proof. By Cauchy Schwarz:

‖XY ‖ψ1 = sup
q≥1

q−1E{|XY |q}1/q

≤ sup
q≥1

q−1E{|X|2q}1/2qE{|Y |2q}1/2q

≤ 2
(

sup
q≥2

(2q)−1/2E{|X|2q}1/2q
)
·
(

sup
q≥2

(2q)−1/2E{|Y |2q}1/2q
)

≤ 2‖X‖ψ2‖Y ‖ψ2 .

The following lemma from [Ver12] is a Bernstein-type tail inequality for sub-exponential random
variables.

Lemma D.5 ([Ver12, Proposition 5.16]). Let X1, X2, . . . , Xn be a sequence of independent random
variables with maxi‖Xi‖ψ1 ≤ K. Then for any ε ≥ 0:

P
{∣∣∣ 1
n

n∑
i=1

Xi − E{Xi}
∣∣∣ ≥ ε} ≤ 2 exp

{
− nε

6eK
min

( ε

eK
, 1
)}

(109)

We also use a martingale generalization of [Ver12, Proposition 5.16], whose proof is we omit.

Lemma D.6. Suppose (Fi)i≥0 is a filtration, X1, X2, . . . , Xn is a uniformly K-subexponential se-
quence of random variables adapted to (Fi)i≥0 such that almost surely E{Xi|Fi−1} = 0. Then for
any ε ≥ 0:

P
{∣∣∣ 1
n

n∑
i=1

Xi

∣∣∣ ≥ ε} ≤ 2 exp
{
− nε

6eK
min

( ε

eK
, 1
)}

(110)

The following is a rough bound on the LASSO error.

Lemma D.7 (Rough bound on LASSO error). For LASSO estimate θ̂L with regularization λn the
following bound holds:

‖θ̂L − θ0‖1 ≤
‖ε‖2

2nλn
+ 2‖θ0‖1 .

Proof of Lemma D.7. We first bound the size of θ̂L. By optimality of θ̂L:

λn‖θ̂L‖1 ≤
1

2n
‖ε‖22 + λn‖θ0‖1 −

1

2n
‖y −Xθ̂L‖22

≤ 1

2n
‖ε‖22 + λn‖θ0‖1.

We now use triangle inequality and the bound above to get the claim:

‖θ̂L − θ0‖1 ≤ ‖θ̂L‖1 + ‖θ0‖1

≤ 1

2nλn
‖ε‖2 + 2‖θ0‖1 .
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E Simulation results for the Dominick’s data set

In this section we report the p-values obtained by the online debiasing for the cross-category effects.
Figures 9, 10, 11 provide the p-values corresponding to the effect of price, sale, and promotions of
different categories on the other categories, after one week (d = 1) and two weeks (d = 2). The
darker cells indicate smaller p-values and hence higher statistical significance.
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(a) 1-Week effect of sales of x−axis categories on sales of y−axis categories

0.24

0.51

0.44

0.18

0.17

0.96

0.59

0.97

0.78

0.16

0.35

0.01

0.56

0.05

0.64

0.44

0.43

0.02

0.75

0.13

0.84

0.96

0.39

0.34

0.39

0.28

0.49

0.85

0.16

0.6

0.99

0.88

0.15

0.97

0.42

0.86

0.22

0.96

0.01

0.1

0.88

0.37

0.81

0.85

0.25

0.47

0.43

0.97

0.11

0.17

0.15

0.94

0.61

0.5

0

0.54

0.78

0.46

0.91

0.32

0.07

0.15

0.95

0.14

0.4

0.01

0.03

0.74

0.3

0.43

0.01

0.34

0.02

0.98

0.48

0.93

0.02

0.71

0.67

0.58

0.7

0.09

0.44

0.69

0.82

0.14

0.37

0.89

0.13

0.44

0.62

0.84

0.02

0.44

0.63

0.83

0.8

0.9

0.6

0.97

0.2

0.16

0.25

0.63

0.17

0.13

0.64

0.36

0.93

0.01

0.09

0.71

0.61

0.24

0.35

0.99

0.12

0.92

0.14

0.11

0.69

Bottled Juices

Cereals

Cheeses

Cookies

Crackers

Canned Soup

Front−end−Candies

Frozen Juices

Soft Drinks

Snack Crackers

Canned Tuna

B
o

tt
le

d
 J

u
ic

es

C
er

ea
ls

C
h

ee
se

s

C
o

o
ki

es

C
ra

ck
er

s

C
an

n
ed

 S
o

u
p

F
ro

n
t−

en
d

−C
an

d
ie

s

F
ro

ze
n

 J
u

ic
es

S
o

ft
 D

ri
n

ks

S
n

ac
k 

C
ra

ck
er

s

C
an

n
ed

 T
u

n
a

0.25

0.50

0.75

p−values

(b) 1-Week effect of prices of x−axis categories on sales of y−axis categories

Figure 9: Figures 9a, and 9b respectively show the p-values for cross-category effects of sales and prices of
x−axis categories on sales of y−axis categories after one week.
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(a) 1-Week effect of promotions of x−axis categories on sales of y−axis categories
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(b) 2-Week effect of promotions of x−axis categories on sales of y−axis categories

Figure 10: Figures 10a, and 10b show p−values for cross-category effects of promotions of x−axis categories
on sales of y−axis categories, after one week and two weeks.
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(a) 2-Week effect of sales of x−axis categories on sales of y−axis categories
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(b) 2-Week effect of prices of x−axis categories on sales of y−axis categories

Figure 11: Figures 11a, and 11b respectively show p-values for cross-category effects of sales and prices of
x-axis categories on sales of y−axis categories after two weeks.
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