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Abstract

Contemporary autoregressive language mod-

els (LMs) trained purely on corpus data have

been shown to capture numerous features of

human incremental processing. However, past

work has also suggested dissociations between

corpus probabilities and human next-word pre-

dictions. Here we evaluate several state-of-the-

art language models for their match to human

next-word predictions and to reading time be-

havior from eye movements. We then propose

a novel method for distilling the linguistic in-

formation implicit in human linguistic predic-

tions into pre-trained LMs: Cloze Distillation.

We apply this method to a baseline neural LM

and show potential improvement in reading

time prediction and generalization to held-out

human cloze data.

1 Introduction

Modern language models (LMs) demonstrate out-

standing general-purpose command over language.

The majority of these models acquire language by

maximizing the in-context probability of each word

in their training corpus (Figure 1), typically with

a self-supervised objective. This simple corpus

probability matching has resulted in models that

learn impressive powers of both psychometric pre-

diction (Frank and Bod, 2011; Fossum and Levy,

2012; Frank et al., 2015; Goodkind and Bicknell,

2018; Hale et al., 2018; van Schijndel and Linzen,

2018; Warstadt and Bowman, 2020; Wilcox et al.,

2020) and language more generally (Devlin et al.,

2019; Radford et al., 2019).

In humans, prediction may underlie both learn-

ing (Kuhl, 2004; Huang and Snedeker, 2013) and

processing (Ryskin et al., 2020; Levy, 2008; Clark,

2013). Human linguistic prediction can be under-

stood as not only lexical but also as taking place

both above and below the word level (Federmeier

and Kutas, 1999; Federmeier et al., 2002); parallel,

i.e., predictive commitments are maintained over

several linguistic units at once (Levy, 2008); and

graded, i.e., commitment is licensed to varying de-

grees based on features of the linguistic unit being

predicted. Rather than placing bets (Jackendoff,

1987) on which single word will come next, hu-

mans make many diffuse bets at multiple linguistic

levels (e.g., syntactic, orthographic, lexical, etc.).

Surprisal theory (Hale, 2001; Levy, 2008) de-

scribes the utility of the approach taken by the

human language processor, as lexical prediction

is often an ill-constrained classification problem

— for agents with very large vocabularies (LMs,

humans), context is often not sufficiently constrain-

ing for high accuracy multiple, thousand-way clas-

sification decisions, but is typically constraining

enough to accurately infer next-word features (such

as part of speech, and semantic category). A large

body of evidence demonstrates that these graded

next-word predictions are reflected in human pro-

cessing times (Ehrlich and Rayner, 1981; Demberg

and Keller, 2008; Smith and Levy, 2013; Luke and

Christianson, 2016) as well as neural responses

(Kutas and Hillyard, 1980; Frank et al., 2015).

Corpus data are (imperfect) samples from the

linguistic environment of a native speaker, and psy-

cholinguistic data indicate that accurate prediction

is important to efficient language comprehension.

Under the principle of rational analysis (Ander-

son, 1990), it is thus to be expected that artificial

language models trained on corpus data would cor-

relate with human linguistic predictions and thus

have good psychometric predictive accuracy. Nev-

ertheless, past work (Smith and Levy, 2011) has

suggested dissociations between corpus probabil-

ities and human next-word estimates. Here, we

further investigate this relationship using artificial

language models and the most extensive corpus

of sequential cloze completions that we are aware

of: the Provo Corpus (Provo henceforth; Luke and
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Christianson, 2018).

First, we use Provo to test the psychometric

performance of three state-of-the-art Transformer-

based (Vaswani et al., 2017) LMs — XLNet (Yang

et al., 2019), Transformer-XL (Dai et al., 2019),

and GPT-2 (Radford et al., 2019) — alongside a

smaller 2-layer LSTM (Hochreiter and Schmidhu-

ber, 1997) trained on wikitext-103 (Merity et al.,

2016), and a 5-gram LM baseline (Stolcke, 2002).

We find that, while the Transformer models achieve

the lowest perplexity on Provo and the best fit to the

cloze data, the LSTM model provides the best ac-

count of reading times in terms of raw correlation.

These findings show a dissociation between recapit-

ulating corpus statistics and mimicking human lan-

guage processing, operationalized here with read-

ing times. That is, models that minimize perplexity

on next-word prediction do not necessarily pro-

vide the best account of reading times. Second,

based on these findings, we propose Cloze Dis-

tillation: a novel method for distilling linguistic

information implicit in human cloze completions

into pre-trained LMs. We apply this method to the

LSTM model and show substantial improvement

in reading time prediction and word frequency es-

timation, in addition to generalization to held-out

human cloze data.

2 Human Cloze Predictions

The objective for most modern LMs is to compute

a probability distribution over the model’s vocabu-

lary V for the likely next-word x ∈ V at position i

given the context x<i consisting of the sequence

of preceding words in the document. Similarly, as

humans process language, they make constant and

implicit linguistic predictions.

One commonly used measure of these predic-

tions in humans is the Cloze task. In its original

form (Taylor, 1953), the task involved masking a

word or words in a source text passage and asking

participants to provide words for the masked ele-

ments that would make the passage “whole again”,

a task structure adopted by contemporary masked

language models (Devlin et al., 2019). In experi-

mental psycholinguistics, however, the most com-

mon version of the Cloze task has involved pre-

senting the beginning, or prefix, of a passage and

having participants either complete it or provide

the word that they think comes next (Figure 1), a

task more closely matching that of autoregressive

language models (Radford et al., 2019). In this

paper, we focus on this latter type of Cloze task,

which elicits samples from comprehenders’ subjec-

tive next-word probability distributions (DeLong

et al., 2005; Staub et al., 2015). For any given

prefix, we can estimate the cloze distribution of a

typical native speaker from pooled cloze responses

across a large number of participants (Luke and

Christianson, 2018), similar to how the fundamen-

tal output of an autoregressive language model is a

vector of next-word probabilities.

2.1 The Provo Corpus

We use the Provo Corpus (Luke and Christianson,

2018) as our source of paired cloze completion

and reading time data. The Provo Corpus derives

from 55 paragraphs of text taken from sources in-

cluding online news articles, popular science, and

fiction. For each paragraph p, next-word cloze

completions were elicited for each prefix x<i for

i = 2, . . . |p| (2,689 sentence prefixes total). Pre-

fixes were presented to participants (N = 470) as a

continuous multi-line text (Figure 1). This resulted

in an average of 40 cloze responses with 15 unique

continuations per prefix.

Additionally, Luke and Christianson (2018) col-

lected eye movement data from eighty-four native

speakers of American English as they read these 55

text passages, using a high-resolution SR Research

EyeLink 1000 eye tracker.

The Provo cloze data, eye movement data, and

the relationship between them are analyzed in de-

tail in (Luke and Christianson, 2016). Luke and

Christianson (2016) point out that while context

is rarely constraining enough to facilitate exact

next-word prediction, modal cloze responses of-

ten constitute partial matches to the target words.

For example, given the prefix With schools still

closed, cars still buried and streets still ..., the

true continuation, blocked, has a cloze probability

of only 0.07. But the overwhelming majority of

cloze responses are partial fits to the correct word:

79% of the responses are verbs, and 72% are in-

flectional matches (ended with -ed), with the two

most frequent responses being closed and covered

(example from Luke and Christianson, 2018). In

addition, they showed that cloze probabilities are

highly predictive of reading times, adding to prior

work showing a word’s reading time is a function of

its predictability in context (e.g., Smith and Levy,

2013).
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Figure 1: Illustration of the Cloze task and the Cloze Distillation objective. Given one of Provo’s prefixes — in

this example, one that ends in . . . science’s best current models, where the true next word (ground truth) is predict

— human subjects were prompted, as shown in the Cloze task box, to predict the word they thought was likely

to follow. The Cloze Distillation loss is constructed by combining (1) the KL divergence Di between the human

cloze distribution and the LM’s next-word distribution, and (2) the LM’s predicted surprisal Si of the true next

word given the prefix.

3 Testing Language Models on Provo

The findings of Luke and Christianson (2016) high-

light cloze as a useful test-bed for LMs. Specif-

ically, a LM that employs predictions similar to

those that underlie human language processing is

expected to be a good model of human cloze re-

sponses. Therefore, we evaluate here a suite of

LMs on their ability to match human cloze distri-

butions. Additionally, we use the LMs’ ability to

predict reading times as a second measure of fit

to human expectations, extending past work us-

ing LMs to predict reading times (Frank and Bod,

2011; Wilcox et al., 2020).

3.1 Models

We consider in our analysis the following LMs:

1. 5-gram: N-gram model using a window size

of 5 with Kneser-Ney smoothing, obtained via

the SRILM language modeling toolkit (Stol-

cke, 2002).

2. LSTM: A standard 2-layer LSTM RNN im-

plemented in PyTorch (Paszke et al., 2017),

used here with 256 hidden units and word

embedding size of 256, and trained on the

wikitext-103 corpus (Merity et al., 2016) via

a next-word prediction task (40 epochs, batch

size = 40, learning rate = 20).

3. GPT-2: A Transformer-based LM trained on

the WebText corpus (Radford et al., 2019).

4. Transformer-XL (TXL; Dai et al., 2019): A

Transformer-based LM with a segment level

recurrence mechanism and relative positional

embeddings trained on wikitext-103.

5. XLNet (Yang et al., 2019): A Transformer-

based LM trained with a permutation lan-

guage modeling objective as well as a segment

level recurrence mechanism and relative posi-

tional embeddings. Training data consists of

∼30 billion tokens across 6 different copora.

We use the LMzoo python package (Gauthier

et al., 2020) to access the 5-gram model, and

the HuggingFace transformers python pack-

age (Wolf et al., 2019) for accessing Transformer

models (gpt2-large, transfo-xl-wt103,

and xlnet-large-cased respectively). These

Transformer models use subword tokens (Sennrich

et al., 2016); we defined word probabilities for

these models as the joint probability of the subword

tokens comprising the word given the context.
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Model 〈Di〉 〈τi〉 〈Si〉 Fintr Fbase ρgaze ρfreq

Cloze NA NA 3.99± 2.60 198.10 30.90 0.36 −0.43

GPT-2 2.30± 1.57 −0.57± 0.004 6.11± 5.00 252.70 46.11 0.40 −0.46
XLNet 2.39± 1.68 −0.58± 0.005 6.39± 5.70 260.50 46.08 0.41 −0.48
TXL 3.27± 1.92 −0.47± 0.005 8.09± 5.50 238.30 30.54 0.39 −0.50
LSTM 3.74± 1.86 −0.39± 0.006 8.58± 4.90 361.20 41.47 0.47 −0.63
5-gram 3.89± 1.84 −0.20± 0.007 12.48± 7.00 161.00 16.72 0.31 −0.41

Table 1: Evaluation of LMs on Provo reveals a dissociation between performance on next-word prediction and

psychometric measures that reflect human language processing. Fintr and Fbase show the F-test statistics (Section

3.2.2) against various baseline predictors. ρgaze and ρfreq show correlation with gaze and frequency respectively

(Pearson’s ρ). 〈Di〉 is average KL-divergence between the empirical cloze distribution and the LM’s distributions;

〈τi〉 is rank correlation between down-sampled model surprisals and surprisal values based on the empirical cloze

probabilities; 〈Si〉 is average surprisal over the text in Provo; all standard deviations are computed by paragraph.

3.2 Metrics

We use several metrics to evaluate the fit of our

models to human reading times and cloze re-

sponses. We discuss and motivate them in the

following section.

3.2.1 Cloze Responses

We use two measures to evaluate the performance

of each model on human cloze data. First, we

measure the deviation between the empirically es-

timated cloze distribution, Pcloze(x|x<i), where

x is a potential next-word at position i in a doc-

ument1 and the model’s next-word distribution,

Pmodel(x|x<i), using the Kullback-Leibler (KL) di-

vergence:

Di ≡ D [Pcloze(x|x<i)‖Pmodel(x|x<i)] (1)

=
∑

x∈V

Pcloze(x|x<i) log
Pcloze(x|x<i)

Pmodel(x|x<i)
.

While the KL divergence is a natural measure for

comparing distributions, it is potentially limited for

our purposes due to the sparsity of the cloze data.

To address this, we also consider Kendall’s Tau

correlation coefficient, which may be more robust

to estimation errors resulting from small sample

effects. Specifically, we consider Kendall’s Tau

correlation between LM surprisals and surprisals

estimated form human cloze data, denoted here by

τi ≡ τ [Pcloze(x|x<i), Pmodel(x|x<i)].

To further evaluate the models’ ability to mimic

cloze responses and to control for the sparsity of

the human cloze data, we simulated a cloze task

1As participants in Luke and Christianson (2018) were
given only within-paragraph context when prompted for each
cloze response, each paragraph constitutes a unique document
in our analysis.

experiment with our LMs. For each LM, we gener-

ated 40 cloze responses2 per prefix x<i in Provo by

sampling from Pmodel(x|x<i). We repeated this ex-

periment 50 times for each model. The results were

similar in both the down-sampling and without-

down-sampling conditions, and we report only the

down-sampling condition in Table 1.

3.2.2 Reading Times

We use gaze duration during first-pass reading as

our measure of reading times, which is the amount

of time a reader’s eyes spend on a word the first

time they fixate it (Rayner, 1998; if a reader fixates

a word to the right before fixating the word in ques-

tion, the word has been “skipped” and there is no

valid gaze duration). It is well established that gaze

duration captures a wide variety of cognitive pro-

cesses during real-time language-comprehension,

including the relationship between a word and the

context in which it appears (Staub, 2011).

We evaluate the ability of a LM to account for

human reading times based on their predicted sur-

prisal values,

Si ≡ − log2 Pmodel(xi|x<i) , (2)

as it has been previously shown to capture sev-

eral characteristics of human language compre-

hension and pattern with reading times (Smith

and Levy, 2013; Wilcox et al., 2020). Similarly,

we define cloze surprisals by taking the nega-

tive log of the empirical cloze probabilities3, i.e.,

2We generated 40 responses because most prefixes in
Provo had at least 40 responses provided by participants.

3We use the cloze probability estimates from Luke and
Christianson (2018)’s ‘Orthographic Match Model’ – a logit
mixed-effects model including only random by-word inter-
cepts. These estimates are nearly perfectly correlated with the
relative frequency estimate of cloze (ρ = .999), but crucially
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− log2 Pcloze(xi|x<i). We then measure Pearson’s

correlation ρ between reading times and surprisal

values. In addition, we use ANOVA tests to mea-

sure the models’ predictive capacities beyond stan-

dard baseline predictors of reading time (Howes

and Solomon, 1951; Kliegl et al., 2006; Leyland

et al., 2013) — log word frequency and word length.

That is, for each model (either an LM or the cloze

distribution), we enter its surprisal values into a

linear mixed-effects model (LME) along with the

baseline predictors, and measure their contribution

by computing the F-test statistic between the full

LME and an LME where model surprisals are ab-

lated out. In the case of Fbase the baseline predic-

tors were frequency, length, and their interaction.

In the case of Fintr the baseline predictors were

simply random by-word intercepts. We use both

word frequencies estimated from the Corpus of

Contemporary American English (COCA; Davies,

2010) and from wikitext-103 (Merity et al., 2016)

in our analysis. As the results of our analyses were

qualitatively the same in both conditions we report

only results from COCA in the analyses to follow.

3.3 Results

The main results of evaluating the LMs on Provo

are summarized in Table 1. First, averaging the

KL divergence and suprisals values over word po-

sitions i in Provo (that is, 〈Di〉 and 〈Si〉 respec-

tively), shows that the ability of LMs to predict

human cloze responses tracks with their language

modeling performance. This pattern is also re-

flected in Kendall’s τ correlation between model

surprisals and surprisals constructed from the hu-

man cloze distribution. At the same time, Table 1

reveals a dissociation between next-word predic-

tion, reflected by 〈Si〉, and human language pro-

cessing, as reflected in reading times. Specifically,

the LSTM model, which does not perform as well

as the Transformer-based LMs in next-word pre-

diction on Provo, as reflected in its higher 〈Si〉, ex-

hibits superior ability in predicting reading times,

as measured in ρgaze and Fintr. This result is simi-

lar to that of Merkx and Frank (2020), who found

that Gated Recurrent Unit networks outperformed

Transformer models with lower perplexity in pre-

dicting gaze duration.

We note that when predicting reading times not

only from the model’s surprisal values, but also

using the baseline predictors (word frequency and

do not include cloze probabilities of zero (which would yield
infinite surprisal).

length), the LSTM model no longer outperforms

the Transformer-based models (Table 1, Fbase).

Nonetheless, it is striking that the LSTM model,

which is much smaller than the Transformer-based

models and was trained on much less data, achieves

the best performance in predicting reading times

without the baseline predictors.

3.4 Intermediate Conclusions

Past work shows that human predictions systemati-

cally diverge from corpus probabilities (Smith and

Levy, 2011). Our analysis extends these findings

by testing current state-of-the-art LMs trained on

much larger datasets, and showing that, while better

estimates of corpus probabilities may yield better

models of human next-word predictions, there does

not seem to be a strict positive correlation between

the ability to approximate corpus probabilities and

the ability to predict human reading times, as ev-

idenced by models with higher 〈Si〉 being on-par

and even better at predicting reading times com-

pared to models with lower 〈Si〉.

Recent studies (Ettinger, 2020; Hao et al., 2020;

Jacobs and McCarthy, 2020) have found similar

trends when comparing LMs to cloze data. Hu

et al. (2020) also found only a loose relationship

between perplexity (a monotonic function of 〈Si〉)
and syntactic generalization, adding to a grow-

ing body of evidence suggesting that while opti-

mizing for corpus probabilities can create some-

what psycholinguistically-enabled language mod-

els (Linzen et al., 2016; Futrell et al., 2019; Hu

et al., 2020), there may be a dissociation between

corpus probabilities and human expectations.

4 Cloze Distillation

Here, we show how to leverage these findings to

improve the ability of LMs to match human expec-

tations, providing more appealing neural language

models for human language processing. To this end,

we propose Cloze Distillation: a method for using

human next-word predictions as learning targets

together with corpus statistics within a knowledge

distillation framework.

4.1 Knowledge Distillation

Knowledge distillation (Buciluundefined et al.,

2006; Ba and Caruana, 2014; Hinton et al., 2015) is

a technique of imbuing knowledge from a teacher

model into a student model by training the student

to make the same predictions as the teacher. Typ-
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ically deployed as a form of model compression,

knowledge distillation is useful for those looking to

deploy insights from one or more complicated mod-

els into a single smaller model. Recently, knowl-

edge distillation has also proven useful to cogni-

tive scientists in creating low-dimensional neural

network cognitive models (Schaeffer et al., 2020).

When humans are used as the ‘teacher’ this can be

seen as a specific case of a more general cognitive

modeling strategy, task-based modeling.

4.2 The Cloze Distillation Objective

Knowledge distillation has proven its usefulness

in NLP where researchers have distilled knowl-

edge from very large and/or syntactically aware

language models into naive models showing it is

possible to transfer even subtle linguistic prefer-

ences from teacher to student (Kim and Rush, 2016;

Kuncoro et al., 2019; Sanh et al., 2020; Kuncoro

et al., 2020).

We take inspiration from this work and lever-

age the general framework both as a method for

distilling knowledge from a ‘teacher’ with desir-

able linguistic biases (humans in our case) and as

a tool for cognitive modeling by using empirical

cloze distributions Pcloze as target distributions in a

knowledge distillation framework.

We follow this approach to arrive at the follow-

ing loss function for Cloze Distillation (CD):

Li = αDi − (1− α)Si . (3)

That is, for each context x<i we compute the CD

loss by linearly interpolating Di, the KL divergence

between the distributions of the human teacher and

the student model as defined in equation (1), with

an autoregressive language modeling objective that

places unit probability mass on the true next-word,

formally defined by Si in equation (2). Thus, CD

fine-tunes LMs to predict the next word in the docu-

ment while simultaneously producing a distribution

over next-words that mirrors the empirical human

cloze distribution for that context. This process is

illustrated in Figure 1.

To evaluate the utility of the human cloze data,

we vary the values of α from α = 0, which cor-

responds to pure next-word prediction driven fine-

tuning, to α = 1, which corresponds to pure cloze-

prediction based fine-tuning.

4.3 Cloze-Distilled LSTM

To begin to evaluate the CD paradigm, we apply

it to the LSTM from Section 3 by fine-tuning this

model using the CD objective over Provo. To test

generalization and utilize the full corpus, we use

a k-fold cross-validation scheme with k = 55, the

number of paragraphs in Provo where humans are

provided the full preceding paragraph as context.

That is, each fold consists of data from one para-

graph in the Provo dataset. We use 100 epochs for

training. We provide our LM with the same con-

text as humans, up to the beginning of the current

paragraph.

Additionally, we vary α to test the utility of our

cloze data and cross-validated separately for each

value of α in the range [0, 1], sampled at intervals

of 0.05. This resulted in 1,155 unique models for

testing. We wish to emphasize that even utilizing

the entire Provo corpus via cross-validation, we

are left with only 2685 training samples, which is

minuscule with respect to the model’s pre-training

data (roughly 100 million samples). We refer to

the resultant model as cloze-distilled LSTM (CD-

LSTM).

4.4 Results

After fine-tuning on the CD objective, we note sev-

eral interesting adaptions in model behavior. These

mainly include significant improvement over the

standard LSTM baseline in predicting human read-

ing times and cloze distributions (Figure 2). We

also discuss improvements in next-word prediction

performance over Provo (Figure 3).

4.4.1 Reading times

Psychometric predictive capacity is starkly im-

proved with Cloze Distillation, and the strength

of the effect scales with α. This can be seen in

Figure 2, which shows the statistical comparison

of the CD-LSTM for varying levels of α. We add

another model comparison designed to isolate the

ability of CD-LSTM to predict reading times above

the standard LSTM (Figure 2a). Specifically, we

enter CD-LSTM’s surprisals into an LME along

with baseline predictors and surprisals from the

standard LSTM and compute the F-test statistic

against a LME with CD-LSTM surprisal ablated

out.

CD-LSTM exhibits a significant improvement

with α in its ability to predict reading times above

the non-fine-tuned model (Figure 2a), as well as
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Figure 2: Results for CD-LSTM and the LSTM model (without any fine tuning) show that Cloze Distillation yields

substantial improvement across several psychometric measures. Panels (a)-(c) show changes in F statistics as a

function of α for three LME comparisons, and panels (d)-(f) show changes in three correlational measures. Dashed

lines in panels (b)-(f) show the performance of the LSTM model. (a) LME based on CD-LSTM’s surprisals outper-

forms the LME based on the LSTM’s surprisals for most values of α (not significant for α < 0.65). (b) LME based

on CD-LSTM’s surprisals outperforms the null (intercept only) model, and this performance generally improves

with α. (c) LME based on CD-LSTM’s surprisals with the baseline factors (word frequency and length) outper-

forms the baseline-only LME for several values of α. (d) Pearson’s correlation between CD-LSTM’s surprisals

and reading times. (e) Pearson’s correlation between CD-LSTM’s surprisals and word frequencies. (f) Kendall’s τ

correlation between CD-LSTM’s surprisals and human cloze surprisals.

improvements over an intercept-only model (Fig-

ure 2b) and baseline-only (Figure 2c). Correlation

with reading time and CD-LSTM’s surprisal also

steadily increases with α (Figure 2d). These find-

ings suggest that, as we postulate, Cloze Distilla-

tion is a useful paradigm for extracting the infor-

mation about human linguistic expectations that is

implicit in human cloze predictions and incorporat-

ing it into LMs.

4.4.2 Cloze

We report improvements in predicting held out

cloze data, where 〈Di〉 is decreased from 3.8 (at

α = 0) to 3.6 (at α = 0.65) (Figure 3). τ corre-

lation also exceeds that of the baseline model for

several values of α (though there does not seem to

be a consistent trend across α-s).

This result is intriguing as it implies that the req-

uisite information for computing cloze distributions

is learned over fine-tuning. Furthermore, we see a

peak at α = 0.65 and not at α = 1, which suggests

that in training LMs to predict cloze data, some

signal from next-word prediction remains vital.

4.4.3 Language modeling

In addition to improved performance on our hu-

man language processing benchmarks, we see a

robust increase in language modeling performance

for most values of α, as evidenced by average sur-

prisal over Provo (Figure 3). We note, the standard

deviation in 〈Si〉 for our LSTM over Provo was

1.86 bits (Table 1). The improvements we see are

less than this deviation, and are thusly below the

level of significance, though we do see a consistent

trend in α. This effect is most substantial for inter-

mediate values of α, suggesting that a combination

of human knowledge and next-word prediction im-

proves relative to either one of these factors on

its own. This indicates that both parts of the loss

function (ground truth next-words, human cloze)

provide useful information for predicting text that

is not entirely overlapping.

This is interesting given the low 〈Si〉 of human

cloze data. The fact that humans can contend with

large language models trained explicitly on next-

word prediction even on subsets of text, together

with our Cloze Distillation results suggests there

is linguistic information in human cloze that can

be harnessed by LMs to subserve general language
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Figure 3: Average Surprisal (left) and KL divergence

(right) over Provo as a function of the distillation inter-

polation coefficient α. Dashed lines show LSTM per-

formance before fine-tuning.

modeling and is disjoint from the information ac-

cessible in corpus probability (Smith and Levy,

2011).

4.4.4 Frequency

We also note that as α increases, the CD-LSTM

next-word predictions exhibit increased correlation

with frequency (Figure 2e), suggesting that cloze

distilled LMs may learn to better predict frequent

words. This is interesting as a proof of concept

that Cloze Distillation distills information implicit

in cloze into language models as previous work

(Smith and Levy, 2011) has shown human cloze

is skewed toward more frequent words, relative to

corpus probability.

5 Conclusion

Our analyses provide further evidence of a mis-

alignment between language model estimates and

human expectations. The method we provide:

Cloze Distillation, demonstrates that shifting train-

ing incentives away from corpus probability toward

psycholinguistic task-based modeling can result in

better cognitive models and better language models.

Still, given several of our models predict reading

times beyond the cloze data collected in Provo (Ta-

ble 1) there are several possible explanations for

the effect Cloze Distillation has on language model

performance.

One is that the Cloze task produces data that

are a more faithful reflection of the expectations

deployed in human reading and are thus able to

guide the models toward a fundamentally more

human-like set of expectations – despite being

under-sampled. If this is true and human subjec-

tive next-word estimates also provide signal about

next-word probabilities across corpora (reflecting

the implicit knowledge speakers have learned about

the statistics of their language), this would explain

why Cloze Distillation improves next-word predic-

tion accuracy on a new corpus (Provo).

Another possibility is that the models we sur-

vey are fundamentally better than the cloze data

at capturing the human expectations deployed in

reading. Though this would not explain the boost

in performance we see in reading time prediction

with Cloze Distillation, because several of our mod-

els predict reading times better than the cloze data

itself, this can not yet be ruled out. We leave the

further exploration of this to future work as larger-

scale collection of human cloze data allows.

That said, the fact that we were able to induce ap-

preciable adaptions in model behavior with such lit-

tle data highlights the richly orienting information

available in even noisy human predictions. Though

it is unclear how language users learn to make such

sophisticated predictions (we provided this infor-

mation to our model with direct supervision), our

model’s ability to learn from such small scale data

highlights the potential utility of such predictions

in a language acquisition setting — it seems that hu-

man predictions are strong enough to significantly

bolster the signal in raw linguistic input abetting

extensive adaption from relatively little data.

As of now, the current dataset’s scale restricts

Cloze Distillation to use as a fine-tuning method.

Furthermore, we use simple LSTMs to perform a

detailed analysis of Cloze Distillation with dense

sampling in α and thorough cross-validation. It is

possible that deploying Cloze Distillation during

pre-training in large models (e.g., Transformers)

could result in models better able to learn the word

features humans demonstrate knowledge of in their

cloze responses and we leave the exploration of

this to future work as well.

Methods such as Cloze Distillation provide an

avenue forward for psycholinguists interested in

taking LMs seriously as candidate models of hu-

man language processing and to natural language

processing researchers interested in reverse engi-

neering and deploying insights from human sen-

tence processing. Cloze Distillation highlights

these goals as potentially mutually-reinforcing.
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