
HySec-Flow: Privacy-Preserving Genomic
Computing with SGX-based Big-Data Analytics

Framework
Chathura Widanage1 Weijie Liu1 Jiayu Li1 Hongbo Chen1

XiaoFeng Wang2 Haixu Tang2 Judy Fox3

1,2Indiana University
3University of Virginia

1{cdwidana,weijliu,jl145,hc50}@iu.edu
2{xw7,hatang}@indiana.edu
3{ckw9mp}@virginia.edu

Abstract—Trusted execution environments (TEE) such as In-
tel’s Software Guard Extension (SGX) have been widely studied
to boost security and privacy protection for the computation of
sensitive data such as human genomics. However, a performance
hurdle is often generated by SGX, especially from the small
enclave memory. In this paper, we propose a new Hybrid Secured
Flow framework (called ”HySec-Flow”) for large-scale genomic
data analysis using SGX platforms. Here, the data-intensive
computing tasks can be partitioned into independent subtasks
to be deployed into distinct secured and non-secured containers,
therefore allowing for parallel execution while alleviating the
limited size of Page Cache (EPC) memory in each enclave. We
illustrate our contributions using a workflow supporting indexing,
alignment, dispatching, and merging the execution of SGX- en-
abled containers. We provide details regarding the architecture of
the trusted and untrusted components and the underlying Scorn
and Graphene support as generic shielding execution frameworks
to port legacy code. We thoroughly evaluate the performance
of our privacy-preserving reads mapping algorithm using real
human genome sequencing data. The results demonstrate that
the performance is enhanced by partitioning the time-consuming
genomic computation into subtasks compared to the conventional
execution of the data-intensive reads mapping algorithm in an
enclave. The proposed HySec-Flow framework is made available
as an open-source and adapted to the data-parallel computation
of other large-scale genomic tasks requiring security and scalable
computational resources.

Index Terms—Privacy-preserving Computing; Software Guard
Extension (SGX); Reads mapping.

I. INTRODUCTION

Security and privacy issues have received increasing at-

tention in big-data analytics performed on public or com-

mercial clouds. In particular, personal genomic data contain

identifiable information concerning human individuals: it has

been shown that the identity of a participant in a human

genome study could be revealed from her genetic profile

through searching online genealogy databases [1]. As a result,

biomedical researchers are cautious of moving the intensive

computation involving personal human genomic data onto the

commercial cloud.

Cryptographic techniques are available to protect data pri-

vacy on the cloud. Homomorphic encryption (HE) [2] allows

users to perform computation directly on encrypted data.

However, HE introduces several magnitudes of computational

overheads. A promising alternative has recently been presented

by a new generation of hardware supporting a trusted exe-
cution environment (TEE), in which sensitive data are kept

on secure storage and processed in an isolated environment,

called the enclave. A prominent example is the Intel Software

Guard Extension (SGX) [3], which has a set of instructions

for establishment and management of an enclave on Intel’s

mainstream processors, which are available in major cloud

service providers such as Microsoft Azure [4]. Current

benchmark experiments on data-intensive computing tasks [5]

demonstrate that SGX provides data protection against attacks

from the host operating system or even system administrators

while introducing only moderate computation overhead; there-

fore, it is widely considered to be suitable for data-intensive

computation, including the computing tasks involving personal

human genomic data.

Users' Client

Google
Cloud

Container Orchestrator (Kubernetes)

Non SGX Aware Hardware

Shared File
System

Non Secure Containers
Secure Containers

Non Secure Tasks
(e.g. Partitioning)

Hybrid Task Scheduler(Driver)

Secure tasks
(e.g. Alignment)

Scone/Graphene

SGX Aware Hardware

HySec-Flow

Fig. 1: Framework Overview.

Privacy-preserving algorithms have been developed for sev-

eral genomic analysis tasks, including genetic testing and vari-

ant searching using human genomic profiles [6]–[8]. These

tasks are relatively lightweight and do not require extensive

memory that exceeds the limited Page Cache (EPC) available

in an enclave. Hence, the efforts of these implementations

733

2021 IEEE 14th International Conference on Cloud Computing (CLOUD)

2159-6190/21/$31.00 ©2021 IEEE
DOI 10.1109/CLOUD53861.2021.00098

20
21

 IE
EE

 1
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

U
D)

 |
 9

78
-1

-6
65

4-
00

60
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
O

U
D5

38
61

.2
02

1.
00

09
8

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

were focused on the data encryption/decryption and the pro-

tection of the data from side-channel information leaks (e.g.,

using data oblivious algorithms [9]). More recently, privacy-

preserving algorithms [10], [11] were developed for Genome-

wide Association Studies (GWAS), a common computational

approach to identifying the associations between phenotypes

and genetic variants [12]. These methods exploited sketching

algorithms to reduce the memory usage of GWAS computation

to be executed inside the enclave within the limits of EPC

memory. However, the sketching algorithms were customized

for the specific computing task (i.e., GWAS) and cannot be

generalized to other tasks. Furthermore, privacy-preserving

approaches are still lacking for parallel data-intensive com-

putation using multiple enclaves enabled by SGX.

(b) Index

$GATCCT
ATCCT$G
CT$GATC
GATCCT$
T$GATCC
TCCT$GA

Aligner Aligner Aligner

Merger

1 0 11 1101 0 1

k-mer i k-mer j k-mer k

Query1 Query2 Queryn

Query

(a) Distribute

(c) Dispatch

(d) Align
and Merge

6
1
3
4
0
5
2

Suffix
Array

sam-final

alnn.samaln2.samaln1.sam

Bloomfilters

Reference
Genome

Partition1 Partition2 Partitionn

Index1 Index2 Indexn

User Input
(personal
gene
sequence)

Fig. 2: The conventional (Untrusted) workflow: the data with

gray background needs to be encrypted because it involves

private information.

This paper presents a generic privacy-preserving data ana-

lytics framework for developing large-scale genome comput-

ing tasks using SGX. A key challenge here is that only limited

resources are directly accessible by the code running inside

the enclave. Therefore, it is critical to devise a sophisticated

method to partition the target computation task into subtasks so

that each subtask can be executed efficiently using the enclave

when necessary.

It is worth noting that HySec-Flow distinguishes itself

from the current approaches (e.g., Scone [13] and Graphene-

SGX [14]) that provide runtime environments to run existing

programs inside the enclave. As shown in our benchmark

experiments, these approaches do not support either a hy-

brid enclave/non-enclave architecture or the use of parallel

computation with multiple enclaves and so are not scalable

for large data-intensive genome computing tasks. Furthermore,

the efficiency of running specific algorithms is not optimized

inside the enclave in the original applications. As well as

subtasking, other contributions of the paper include:

• We design a hybrid task scheduler to integrate secure and

non-secure containers into HySec-Flow for performing

the subtasks in enclaves to address scaling issues of SGX.

• We demonstrate the design strategy of our analytics

framework using the implementation of the reads map-
ping task (i.e., the alignment of millions of short (≈ 100
bases long) DNA sequences (reads) acquired from a

human individual onto a reference human genome).

Reads mapping serves as a prerequisite step for many down-

stream analyses in human genome computing (e.g., genome

variation calling, genotyping, gene expression analysis), and

thus many software tools (e.g., BWA [15], Bowtie [16])

have been developed for this fundamental task. Notably, the

reads acquired from a human individual contain identifiable

information about the donor and should be protected in a

public cloud environment. Previously, customized algorithms

were proposed for privacy-preserving reads mapping using

cryptography approaches [17], which introduced significant

computing overheads and did not scale well with massive

demands.

To the best of our knowledge, HySec-Flow is the first

SGX-based privacy-preserving solution of reads mapping that

introduced reasonable computing overhead while is highly par-

allelizable and scalable. Our novel hybrid task scheduler with

secure containers enables a workflow for complex analysis

such as a modified reads mapping and alignment algorithm.

The end-to-end secure analysis framework, as shown in Fig.

1 is released as open-source software at [18].

II. BACKGROUND

A. Intel SGX

Intel SGX is a set of x86 instruction extensions that offer

hardware-based memory encryption and isolation for applica-

tion code and data. The protected memory area (called an

enclave) resides in an application’s address space, provid-

ing confidentiality and integrity protection. SGX is a user-

space TEE characterized by flexible process-level isolation:

a program component can get into an enclave mode and

be protected by execution isolation, memory encryption, and

data sealing against the threats from the untrusted OS and

processes running in other enclaves. More specifically, the

memory of an enclave is mapped to a special physical memory

area called Enclave Page Cache (EPC). It is encrypted by

Memory Encryption Engine (MEE) and cannot be directly

accessed by other system software. Such protection, however,

comes with in-enclave resource constraints. Particularly, only

128 MB (256 MB for some new processors) encryption-

protected memory (called Enclave Page Cache or EPC) is

reserved. Although virtual memory support is available, it

incurs significant overheads in paging.

B. SGX-based Data Sealing

SGX remote attestation allows a remote user to verify that

the enclave is correctly constructed and runs on a genuine

SGX platform. In Intel’s attestation model, three parties are

involved: (1) The Independent Software Vendor (ISV) who

734

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

is registered to Intel as the enclave developer; (2) The Intel

Attestation Service (IAS) hosted by Intel which verifies the

enclave; and (3) The SGX platform, which operates the SGX

enclaves. The attestation begins with the ISV sending an attes-

tation request challenge, which can be generated by an enclave

user who wants to perform the attestation of the enclave. The

attested enclave then generates a verification report including

the enclave measurement, which can be verified by an Intel-

signed quoting enclave (QE) through local attestation. The QE

signs the report using the attestation key, and the generated

quote is forwarded to the Intel Attestation Service (IAS). The

IAS verifies the quote and signs the verification result using the

Intel private key. The verification result can convince the ISV

or the enclave user by verifying the signature and comparing

the enclave measurement. When an enclave is instantiated, it

protects the data by keeping it within the enclave boundary.

In general, the secrets provisioned to an enclave are lost when

the enclave is closed. However, if the private data must be

preserved during one of these events for future use within

an enclave, it must be stored outside the enclave boundary

before closing the enclave. To protect and preserve the data,

a mechanism is in place which allows enclave software to

retrieve a key unique to that enclave that the enclave can

only generate on that particular platform. Using that key, the

enclave software can encrypt data, store them on the platform,

or decrypt the encrypted data are stored on the platform. SGX

refers to these encryption and decryption operations as sealing
and unsealing, respectively. When data needs to be encrypted

and stored outside the enclave, sealing and unsealing are

needed. Using sealing, the data within the enclave is encrypted

using an encryption key derived from the CPU hardware.

Intel SGX provides two policies for encryption keys:

MRENCLAVE (enclave identity) and MRSIGNER (signing

identity). These policies affect the derivation of the encryption

key and are described in the documentation of Intel SGX [19].

Developers can take advantage of sealing based on the Signing

Identity policy to share sensitive data via a sealed data blob

between multiple enclaves initiated by a single application

and/or those by different applications. To utilize Intel SGX’s

data sealing feature, we use the set of keys generated and

stored in the processor’s fuse array. There are two identities

associated with an enclave. The first is the Enclave Identity

and is represented by the value of MRENCLAVE, which is

a cryptographic hash of the enclave log (measurement) as it

goes through every step of the build and initialization process.

MRENCLAVE uniquely identifies any particular enclave, so

using the Enclave Identity will restrict access to the sealed

data only to instances of that enclave. Therefore, we use the

other key policy provided by SGX - MRSIGNER, which gen-

erates a key based on the value of the enclave’s MRSIGNER

and the enclave’s version. Specifically, we encapsulate the

sgx_seal_data() function, to better leverage the key

derived from the instruction EGETKEY. We also implement

utility codes for encrypting the initial genome data.

C. Bloom filter

A Bloom filter is a space-efficient probabilistic data struc-

ture. It provides membership queries over dynamic sets with an

allowable false positive rate. An ordinary Bloom filter consists

1 1

ACTGT TGTCG

Query ACTGT Query AATGT

1 0 1 1 1 0 0 1

TCGGA
murmur
hasher

Insert Insert Insert

h1 h2 h3 h1 h2 h3 h1 h2 h3

True Positive False Positive

murmur
hasher

h1 h2 h3 h1 h2 h3

Fig. 3: Conventional Bloom filter with k = 3 that illustrates

the true positive, and false positive.

of a bit array B of m bits, which are initially set to 0, and k
hash functions, h1, h2, ..., hk, mapping keys from a universe

U to the bit array range {1, 2, ...,m}. In order to insert an

element x from a set S = {x1, x2, ..., xn}into the filter, the

bits at positions h1(x), h2(x), ..., hk(x) are set to 1. To query

if an element q is in the filter, all of the bits at positions

h1(q), h2(q), ..., hk(q) are examined. If at least one bit is

equal to 0, then q is not in S. Otherwise, q likely belongs

to the set. The false positive rate F = (1 − (1 − 1
m)kn)k ≈

(1− exp (−k/r))k, where r = m/n is the number of bits per

element.

D. Threat Model

For HySec-Flow, we follow the classical SGX threat model.

Denial-of-Service (DoS), side-channel attacks, and physical

attacks against the CPU are out of scope [20], [21] and can

be tackled by different techniques (e.g., mitigating the negative

effect of Hyper-threading [22], [23]). Similarly, enclaves are

trusted and free of vulnerabilities.

III. ARCHITECTURE

In the framework shown in Fig. 1, the driver (task sched-

uler) runs on the central control node where a computing

task first splits into subtasks, and the subtasks are then

deployed to worker nodes for execution. Subtasks are de-

ployed with APIs of existing orchestration tools on their dis-

tributed platforms (e.g., Kubernetes and Docker Swarm) and

the framework-specific communication mechanism between

the workers (secure/non-secure containers). In this paper, we

implement the reads mapping algorithm using the proposed

framework.

We’ve devised a workflow-based approach to address the

privacy issues in the existing read mapping software tools

while adding the capability to parallelize the computation

workload across a cluster of Intel SGX-enabled nodes. The

DIDA framework [24] for parallel execution inspires our im-

plementation of reads mapping on high-performance comput-

ing platforms while designing the SGX-based implementation

for the subtasks involving sensitive data (i.e., input reads). It

first partitions the reference genome into multiple segments

and then uses bloom filters to partition the input set of reads

735

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

Encrypted FS

Decrypt

Encrypt

Secure
Containers

Reference
Genome Encrypted

DNA Seq.

Merge
Alignment

Partitioner Bloomfilter
Building

Non
Encrypted
File System

Non Secure
Containers

Intermediate
SAM

User OutputDispatcher

QueriesPartitions

User Input
(personal gene sequence)

Args

Bloomfilters

1

2

5

6

7

8

8
9 10

10

11 12

13
14

3

Indexing

Index

4

5

Fig. 4: The Workflow of Privacy-Preserving Genomic Computing Framework with Hybrid Containers and Resources.

Algorithm 1: Distributed Pipeline

input : G = {g1, g2, . . . , gp} : Reference genome partitions;
I: Input DNA Sequence;
args: Program arguments

output: Q = {q1, q2, . . . , qp} : Partitioned user input;
M = {m1,m2, . . . ,mp} : Reads mapping per

partition;
S : Final output

1 Function PIPLINE(G, I, args):
2 B = GenerateBloomFilters(G, args)
3 Q = [] // protected fs
4 for p in {1 . . . G.length} distributed do
5 Q[p] = DISPATCH(B[i], I, args)

// protected

6 M = [] // protected fs
7 for p in {1 . . . G.length} distributed do
8 M[p] = ALIGNMENT(G[p], Q[p])

// protected

9 S = MERGE(M) // protected

into subsets, which is assigned to a segment that the reads

are likely mapped onto. In the next step, multiple subtasks

are deployed and each substask involves a segment mapping

to a subset of reads. Notably, although Intel SGX provides

hardware-assisted encryption and protection of sensitive data,

it comes with a performance cost due to the limited size of

the EPC (Enclave Page Cache) available for the computation

inside the enclave. Hence, we have to be careful only to move

data that needs to be protected into the SGX enclaves and

perform only the computations involving sensitive data inside

the SGX enclaves. This clear separation helps to minimize

the data that needs to be moved into the protected space and

minimize the computation overhead introduced by EPC swaps.

Fig. 4 shows the detailed workflow of our implementation

for SGX-based secure reads mapping. We have adapted four

significant tasks from the DIDA framework that will be

executed to perform genome sequencing. The driver node

accepts the job, while the worker nodes are used for the data

pre-processing and read alignment. The partitioning of the

reference genome into segments and their indexing is a one-

time process. Furthermore, the reference genome is public and

Algorithm 2: Internal operations within the framework

input : G = {g1, g2, . . . , gp} : Reference genome partitions;
I: Input DNA Sequence

1 Function DISPATCH(b, I, args):
2 q = []

// reading sequences of the input
3 for seq in I do
4 for bmer in seq do
5 if b.test(bmer) then
6 q.append(i)

7 return q

8 Function ALIGNMENT(g, q):
9 return bwa(g, q)

10 Function MERGE(M):
11 S = merge(M) // call DIDA merge
12 return S

such a step can be performed without using SGX.

However, the input reads need to be protected. Together

with the partitioned reference genome, inputs are fed into the

dispatch process to get the same number of dispatched reads

as the partitioned reference genome. The partitioned reference

genome and the dispatched reads are then distributed to a

cluster of nodes for the parallel running of the actual alignment

(or run sequentially on one node). The partial results are then

merged to form the final output, which will also be encrypted.

In Figs. 4-7, all the processes running within SGX are

depicted in blue boxes. The alignment process in the worker

nodes uses Scone to minimize the source code revision, which

is required to handle sensitive data securely. The input and

output SAM files are stored in a protected folder. They are

handled transparently by the Scone file protection feature [25].

All nodes are from the same cluster and have access to a

common shared file system where the intermediate results

between processes are all encrypted. Each process within an

SGX is undergoing the unsealing/sealing process to securely

read the data and write the output to the file system.

A. Trust Establishment

When the data owner wants to delegate a job to HySec-

Flow, the owner needs to know that the service provider

truly provides the service on a trusted platform. Therefore,

736

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

the owner can initiate remote attestation to establish mutual

trust. Since the source code of HySec-Flow is public, the data

owner can easily know whether the remote service is running

in a trusted control node enclave or not through verifying the

measurement, which can be derived from the enclave source

code. The RA-TLS protocol can be integrated into our work

for trust establishment and key exchange. After mutual trust

between the data owner and service provider is established

via remote attestation, a key KD can be generated by ECDH

key exchange to securely communicate and transfer data. It

should be noted that the key agreement step can be done

using the attestation feature of Scone’s premium version or

using Graphene-SGX’s remote attestation plan, so we don’t

implement it by ourselves.

The data owner can then transfer data files encrypted using

this key, and these files can then be decrypted in the work

nodes’ enclaves at the server-side. Notice that the enclaves

between the control node and work nodes also need to estab-

lish mutual trust, and the key KD to decrypt data files should

also be passed through a secure channel. Yet intermediate data

files can be securely stored in untrusted storage, such as in a

shared file system, and be transferred via an untrusted channel

since they are encrypted. Finally, the framework can encrypt

and return the result to the data owner.

B. Partition

This stage is performed to split the reference genome

sequence into multiple partitions such that each partition can

be individually indexed and searched on different nodes of

the cluster. The partitioner takes the reference genome as the

input and outputs p number of partitions as shown in steps

1 and 2 of Fig. 4. The partition task works only on non-

sensitive data and can run on a single node for a simple pass

through the reference genome sequence. For the same p and

same reference genome, partitioning will only execute once.

C. Indexing

The partitions generated are indexed using a popular read

alignment tool like BWA. This operation can be performed

parallelly on each partition utilizing the available computing

resources of the cluster. Furthermore, this operation does not

require to be running in a secure environment. Hence this step

reads and writes to the non-secure shared file system as shown

in steps 3 and 4 of Fig. 4.

D. Dispatch

The dispatch stage is performed to reduce the search
space of an input DNA sequence within each partition. This

can be performed by utilizing many application-dependent

techniques. We adapt an approach based on the bloom filters

from DIDA. We compute a bloom filter for each partition by

inserting sub-sequences of length ’b’ of the reference genome

partition with overlaps of length ’l’. Bloom filter generation

works only on non-sensitive data. We perform this part of the

dispatch process entirely outside Intel SGX (step 5 of Fig. 4).

Furthermore, generated bloomfilters can be reused for future

1 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Query

Query2 Query1 Queryn

Reference
Genome

Shared
File System

Bloomfilters

Shared File System
(Encypted)

Dispatcher DispatcherDispatcher

Enclave

Bloomfilter1 Bloomfilter2 Bloomfiltern

Partition1 Partition2 Partitionn

Fig. 5: Dispatch

executions as long as ’b’ and ’l’ remain the same. Hence we

persist generated bloom-filters to the disk as a binary file(6

of Fig. 4). Bloom-filters generated per each partition will be

assigned with a uniquely identifiable name generated based on

the reference genome and the ’b’ and ’l’ arguments. Having

a separate binary file for each bloomfilter makes running

dispatch inside the limited enclave memory efficient.

We assume input DNA sequences are in the encrypted

form when we receive them into the framework. The next

stage of the dispatch task is looking up the bloom-filters to

determine the membership of the subsequences of the input

DNA sequence within each partition. Since dispatch involves

sensitive data, we have modified the DIDA framework to

execute the bloom filter lookup logic inside the SGX enclaves.

Input partitioning is performed by first loading the encrypted

DNA sequence into the SGX enclave and then decrypting

internally to extract the unencrypted data. Then we create

empty string builders within the enclave (Line 6 of algorithm

2) to hold the input sequence for each partition. Finally, bloom

filter lookups are performed to determine the membership.

In case of a positive lookup in the bloom filter, we append

the input subsequence to the corresponding string builder. As

shown in Fig. 3 and explained in section II-C, we expect

false positive responses for some of the lookups. But overall,

this approach reduces the search space for the alignment

step significantly. Furthermore, the false-positive rate can be

controlled by configuring the size of the bloom-filter. We then

persist input partitions into the disk by encrypting the files

transparently using the file protection features provided by

Scone or Graphene.

The dispatch step can be parallelly run for each reference

genome partition as depicted in line 4-5 of Algorithm 2. The

output will be saved back to the protected file system as shown

in step 9 of Fig. 4.

E. Alignment

Together with the corresponding index of the partitioned

reference genome, the dispatched reads file is assigned to the

cluster’s worker nodes for the alignment process (Step 10 of

Fig. 4). This step could run sequentially on a single node or

distribute over multiple nodes. As a proof-of-concept, we use

BWA for the actual alignment of the reads with the Scone

framework to leverage the SGX capability. Minor changes on

737

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

the BWA code are needed so it works with the Scone file

protection [25] setup. It provides transparent file decryption

and encryption of the input and output files for the alignment

setup. The code is compiled within a docker image from Scone

that provides a cross compiler toolset and run in a docker

container. This approach is generally applicable to other legacy

applications, like BWA, to run within SGX. While using the

BWA tool for this step, other alternative tools could be used, or

even customized programs developed totally with SGX SDK,

in which case Scone would not be needed anymore. The results

Index2 Indexn

Index1 Query1 Queryn Query2

Aligner Aligner Aligner

aln1.sam aln2.sam alnn.sam

Shared File System
(Encypted)

Enclave

Queryn Query2

Fig. 6: Alignment

of this step are the partial SAM output (Step 11 of Fig. 4)

from each dispatched reads and partitioned reference. Once

all the results are ready, they will be merged in the following

step to form the final results. In the evaluation experiment, we

considered the input reads files containing either the paired-

end reads, in which two reads were sequenced from a short

distance (i.e., 300-500 base pairs apart) in the genome, or

the single-end reads each read was sequenced independently.

Thus, the reads alignment task for these two types of input

is referred to as the paired-end alignment and the single-end

alignment respectively.

F. Merge

This task expects multiple encrypted SAM files (Step 12

of Fig. 4) as the input and performs merging techniques in

the DIDA framework inside the SGX enclaves. The encrypted

input SAM files will be decrypted only within the SGX

enclave. Once the merging is done, the output will be sealed

(Step 13 of Fig. 4) using the user’s shared key since this

is the final output expected by the user. Besides sealing the

final output and unsealing the initial input, we have delegated

encryption and decryption of the intermediate inputs and

outputs to the transparent file system’s encryption mechanisms

provided by Scone or Graphene.

Merger

aln1.sam aln2.sam alnn.sam

sam-final

Fig. 7: Merge encrypted SAM files

G. Pipeline

Algorithm 1 shows how we can run the above stages

in a distributed pipeline to leverage the resources available

across the cluster. For a given user query, the first task

scheduled will generate the bloomfilters. If the bloomfilters

are already available in the disk for the provided arguments,

this stage completes immediately. The next task is to run the

dispatch in a secure environment. So the resource scheduler is

configured to schedule dispatch tasks into nodes having SGX

hardware capabilities. Once the dispatched task is completed,

the alignment tasks can be parallelly scheduled on multiple

SGX nodes as shown in Algorithm 1, lines 7-8. Once all the

dispatch tasks are completed, the merge can be scheduled on

a secure node to generate the final output.

H. Data Sealing

All information that lies outside the trusted parts (enclave)

in the workflow should be in ciphertext state. Therefore

we propose sealing/unsealing modules inside the enclave to

encrypt/decrypt intermediate data across nodes.

Assuming the remote attestation has been done before the

data owner’s input is uploaded to the framework, a session

key can be retrieved to establish a secure channel between

the genomic data owner and the framework. HySec-Flow can

accept file input in plaintext and can do the initial encryption

for the user. Besides, to protect the data transferring between

enclaves from the outside attacker, we seal the output data and

unseal the input data with the same key. To this end, secure

channels can be built.

IV. EVALUATION

A. Security Analysis

SGX Enclave can protect the code/data integrity even when

the executable is loaded into a library OS (e.g., Graphene-

SGX can provide a measurement hash against the loaded

code/library for checking). Moreover, disk I/O has been

safeguarded by Scone/Graphene’s protected filesystem, which

utilizes AES-GCM to encrypt user data and immediate data

during the computation. Under our threat model, the only

security risk is key delivery, which is protected by the secure

channels we built after trust establishment. Therefore, file

tampering attacks can be defeated.

Side channels have been considered to be a threat to trusted

execution environments, including SGX. There is a line of

research that identifies such security risks [20], [21], [26], [27].

In the meantime, prior research also shows that most of the

side channel risks can be detected or mitigated using certain

defense strategies [22], [23], [28]–[30]. Most prior studies on

SGX-based computing systems consider side channels to be

outside their threat models [13], [14], [31] with the continuous

interest in the topic, as Intel assumes when developing the

TEE [32]. Our research follows this threat model and has

not implemented known protection (including those against

a set of micro-architectural threats) in our prototype. In future

research, we will evaluate the impacts of side-channel leaks

on our computing frameworks and genomic data analysis tasks

and build into our system a proper protection when necessary.

738

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

B. Experimental setup & data sets

Our experiments are conducted on a 10-nodes SGX-enabled

cluster, with each node has an Intel(R) Xeon(R) CPU E3-

1280 v5 @ 3.70GHz CPU and 64G RAM. The SGX enclaves

are initialized with 8GB heap space with both Scone and

Graphene. The libraries are ported into Graphene include ld.so,

libc.so, libm.so, libdl.so, libutil.so, and librt.so. We also port

libpthread.so for multi-threading support. Scone containers

are based on Scone’s alpine linux images running Scone

version 1. We use datasets from the 1000 Genome project

[33] for the testing. Without loss of generality, for single-end

alignment, we use the SRR062634.filt.fastq, which has ∼309K

reads, with 100bp per read. For paired-end alignment, we use

SRR062634 1 and SRR062634 2. These files are arbitrarily

selected as a personal genome. The detailed data set and

specification are shown in Table I.

TABLE I: Dataset specification.

Data Set Source # Reads bp/read

SRR062634.filt.fastq 1000 Genomes [33] 309K 100
SRR062634 1 1000 Genomes [33] 24M 100
SRR062634 2 1000 Genomes [33] 24M 100

C. Accuracy

Although the bloomfilter-based dispatch step narrows down

the search space for subsequent steps greatly, that comes with

an impact on the accuracy of the final output. However, the

scope of our approach is to perform reads mapping with an

acceptable accuracy securely. Hence we consider the accuracy

of the final outputs from DIDA’s approach as the baseline.

We compare the output files generated by the merge stage

after running dispatch, alignment, and merge in sequence on

Scone and outside Scone. When Scone outputs are decrypted

to obtain the plain text output, it matches exactly with the

output from the non-Scone execution.

D. Benchmark of SGX overhead

Using SGX could introduce overhead from multiple aspects.

1) Overhead from enclave initialization: Enclave initial-

ization overhead is impacted by the heap size requested. We

measure the enclave initialization time by varying the Heap-

MaxSize (16M, 64M, 256M, 1024M, 4096M). The results

show a good linear relationship with the increasing max size

of heap/stack. We observe that enclave initialization time is

about 0.04 seconds per MB of the configured maximum heap

size.

When developing an SGX application using SGX SDK in

enclave configuration file Enclave.config.xml, we can set the

parameters StackMaxSize and HeapMaxSize. These param-

eters determine the estimated memory requirements of the

generated enclave.

2) Overhead from OCall/ECall: The SGX-enabled pro-

gram defines an interface using Enclave Definition Language

(EDL), in which ECalls and OCalls are defined. A program

can only invoke these defined methods to cross the untrusted

and trusted execution environment boundary. We measured the

overhead of the invocation of these calls. The overhead of

OCall and Ecall are 5.27 and 4.65 seconds per million calls

respectively. As a comparison, making the same calls within

the untrusted environment only costs 1.3 ms per million calls.

3) Overhead from EPC page swapping: An enclave can

only utilize what a Processor Reserved Memory (PRM) can

provide at the current stage, which is 128MB. In actual use,

the usable memory size for an SGX application is only around

90MB, and the system uses the rest. Therefore, enclave Page

Cache (EPC) can only use this memory. When a larger dataset

may not fit into this space, an EPC page swap occurs, and this

process introduces high overhead. For example, for data access

pattern within the memory region of size ∼40MB, the results

show that 1 billion runs of the emulated code block, when very

few page faults occurred (∼ 104), the execution time is around

3 seconds. However, when we need to frequently access data

outside of that region and thus EPC page swap occurred more

frequently (more than 107 times), the execution time is around

300 seconds, which is about 100 times slower.

E. Optimal partitions for splitting the reference genome

We have experimented with a different number of partitions

for the reference genome to find the optimal configuration. Fig.

8 shows the results. The runtime is measured by sequentially

run the alignment for dispatched reads on one single node

using SGX via Scone. We notice that with the increasing

number of partitions, the overall runtime decrease. However,

when the number of partitions is greater than 60, it got

flattened. Considering the human reference genome data we

used is about 3.2 GB, this translates to the reference partition

size around or smaller than 50 MB. With the usable memory

space around 90 MB for SGX, this optimal configuration

suggests that the entire indexing table can fit into the SGX EPC

to minimize the unnecessary EPC swapping, thus improving

the overall performance. We use reference genome partition

number 80 as the optimal number to run within SGX in our

future experiments.

12 20 30 40 50 60 70 80 90 100
2,000

4,000

6,000

8,000

Number of Partitions

Ti
m

e
(s

)

Fig. 8: Sequential run time within SGX for different number

of partitioned reference genomes.

F. Execution times of dispatch and merge

Table II lists the time used for the dispatch and merge steps

(single-end reads). Although bloom filter building seems to be

dominating the entire workflow, it is a one-time operation. The

same set of bloomfilters can be used for subsequent executions

on different user inputs. Also, we notice that partition size does

not significantly impact the execution time as these two stages

739

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Dispatch, Alignment and Merge for BWA (Single End Reads)

Partitions
Dispatch (seconds) Alignment (seconds) Merge (seconds)

Non Secure Secure Non Secure Secure Non Secure Secure
min avg max min avg max min avg max min avg max

10 14.45 14.52 14.45 44.00 44.58 44.87 0.27 0.43 0.77 5.19 7.58 8.70 0.88 4.70
20 6.57 7.81 8.06 22.35 26.62 27.26 0.12 0.14 0.16 2.32 4.10 4.77 0.83 4.65
40 3.20 4.46 4.56 9.63 14.32 14.58 0.06 0.10 0.14 1.05 1.77 2.15 0.80 4.62
80 1.48 1.48 2.93 6.29 9.12 9.68 0.03 0.13 0.47 0.44 0.73 1.18 0.81 4.66

The alignment step is parallelly executed across the cluster. Minimum, Average and Maximum time reported by containers.

Table II shows the results for the proposed partition and dispatch. The partition and dispatch approach shows a slowdown

which greatly improves for higher partition counts due to better EPC utilization. Our approach makes it easier to run in

parallel because of the pleasingly parallel nature of the data and the application. In the best case(if resources are available),

we can run the single end alignment pipeline securely in 15.53 seconds (based on 9.68s in parallel dispatching, 1.18s in

parallel alignment over 80 nodes and 4.66s in merging) by partitioning the problem into 80 subtasks. Even in the worst case

that has only one SGX enabled node, we can expect to complete the alignment in 792.46 seconds running sequentially.

TABLE III: Non Secure Execution (one-time calculations)

#Partitions Partitioning (s)
Bloomfilter
Building
(seconds)

Indexing
(seconds)

1 0 1985.09 4302
10 37.59 1211.65 3052
20 39.39 1113.9 2853
40 40.17 1147.48 2602
80 41.93 1316 2292

of the workflow are not parallelized. However, the dispatch

step can be parallelized to run in parallel on Bfn and Query

to produce corresponding Queryn in contrast to the Dispatch

step shown in Fig 5. If computing resources are available, this

should reduce the execution time by a factor of ’p’, where ’p’

is the number of partitions.

G. Execution times of Data Sealing/Unsealing

We use RDTSC (returns a 64-bit time stamp counter (TSC),

which is increased on every clock cycle) to measure the time

consumption outside the enclave of data sealing/unsealing

functions we built. Each test runs 10 times. As for sealing

inside, we implement an OCall for timing. The OCall checks

the outside TSC value and itself costs less than 0.01ms.

Table IV shows the average execution time when different

datasets are given. When dealing with the single-end input

SRR062634, the sealing time is less than 3s. For the pair-

ended data (SRR062634 1 and SRR062634 2), the sealing

time is less than 10s.

TABLE IV: Data Sealing/Unsealing with Intel SGX

Operation Single End
(seconds)

Pair End
(seconds)

Sealing outside 2.59 8.29
Unsealing inside 2.59 8.30
Sealing inside 2.59 8.31

H. Execution Time of Reads Mapping

Table V lists the execution time for the reads mapping tasks

in different settings, which includes single-end and paired-end

TABLE V: BWA Alignment (Sequential)

Alignment Type Containers
BWA
Alignment
(seconds)

Slowdown

Single-end
Non Secure 91 1
SCONE 3291 36.1
Graphene 10603 117

Paired-end
Non Secure 15423 1
SCONE >173K >41
Graphene >173K >41

A single-end reads file has 309K reads and each read is 100bp
long. A pair end of reads file has 24M reads each. Non secure
refers to BWA execution w/o SGX.

execution times. The overhead of using SGX and the speedup

of our proposed solution is compared to the direct Scone and

Graphene solutions. The experiment setup and scripts can be

found at [34], [35] and [36].

The file protection features of both Scone and Graphene

are configured and enabled, so the input fastq files and output

SAM files are secured. The overhead is measured against

the non-SGX approach from Table V. The speedup can be

determined against the SGX Scone solution from the same

table.

As shown in Table V, running BWA directly without

involving SGX was fast, but data privacy is not protected.

Another approach is running BWA within a Scone container.

This approach provides an easy way to utilize SGX, but the

performance penalty is huge due to the EPC size limitation of

SGX and the frequent page swapping when dealing with big

data. We observe about 40x-50x slowdown comparing to the

non-SGX setup. Graphene-SGX performs worse than Scone

because it causes more paging overhead when loading more

components with the whole LibOS to the enclave.

Although the bloom filter generation is mostly a one-time

operation, if we consider that time into account too, the

execution times will increase only by 1316 seconds. The best-
case of HySec-Flow execution time (15.52 seconds) is 6x
and 212x speedup compared to non-SGX execution (91
seconds) and Scone execution (3291 seconds) respectively.

740

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Comparison of HySec-Flow against Scone or Graphene for Running BWA

Number of Partitions
SCONE

(Sequential)

Total time (s)

HySec-Flow
parallel SCONE

Total time (s)

Speedup
Graphene
(Sequential)

Total time (s)

HySec-Flow
parallel Graphene

Total time (s)

Speedup

1 3291 3227.48 1.02 10603 11025.41 0.96
10 3291 58.27 56.47 10603 412.66 25.7
20 3291 36.68 89.71 10603 300.9 35.23
40 3291 21.34 154.19 10603 245.84 43.13
80 3291 15.52 211.94 10603 217.23 48.80

HySec-Flow Graphene HySec-Flow Scone Non-SGX

10 20 40 80

101

102

103

Number of Partitions

E
xe

cu
tio

n
tim

e
(s

)

(a) Total Secure Execution Time
(Dispatch, Alignment and Merge)

10 20 40 80
101

102

103

Number of Partitions

E
xe

cu
tio

n
tim

e
(s

)

(b) Dispatch (Sequential)

10 20 40 80
100

101

102

103

Number of Partitions

E
xe

cu
tio

n
tim

e
(s

)

Parallel Graphene Parallel Scone Non-SGX

(c) Dispatch (Parallel)

1 10 20 40 80
101

102

103

Number of Partitions

E
xe

cu
tio

n
tim

e
(s

)

Partitioning Bloomfilter Building Indexing

(d) Non-Secure Execution Time
(Partitioning, Indexing, and
Bloom Filter)

10 20 40 80
0

5

10

15

Number of Partitions

E
xe

cu
tio

n
tim

e
(s

)

(e) Alignment

10 20 40 80
0

5

10

Number of Partitions
E

xe
cu

tio
n

tim
e

(s
)

(f) Merge

Fig. 9: Comparison of the HySec-Flow execution time of Scone and Graphene in different stages.
The total execution times and projected variation of speedups

for other parallelism configurations(10, 20, 40, 80) are shown

in Table VI and illustrated in Fig. 10.

1 10 20 40 80
1

100

200

Number of Partitions

S
pe

ed
up

HySec-Flow Parallel SCONE
HySec-Flow Parallel Graphene

Fig. 10: Speedup of HySec-Flow over Scone and Graphene

V. RELATED WORK

DIDA [24] is a distributed indexing-dispatched alignment

framework for reads mapping. Our approach is inspired by

the DIDA framework but has taken data privacy into full

consideration: the computation involving sensitive data is

executed in the SGX enclave, and these sensitive data re-

mained encrypted outside the enclave. We use customized data

and computation partitions to split human reference genome

sequence into small segments so that each reads mapping

subtask does not consume much memory. This produces better

performance running inside an enclave. In contrast, the original

DIDA framework only supports a small number of subtasks

partitions, each comprising a long reference genome sequence

of the whole chromosome.

Scone [13] provides an easy-to-use container environment

that can run executable code within the SGX enclave. We

use Scone to run the individual alignment worker program in

HySec-Flow. However, executing codes in enclaves directly

using Scone alone may introduce significant performance

overhead due to the lack of optimization on the data access

according to the limited SGX EPC space. Our proposed

framework addresses this issue by splitting data into smaller

segments and running multiple jobs sequentially in a single

enclave or parallel in multiple enclaves.

Graphene-SGX is a practical library OS for unmodified

code on SGX. It uses Graphene LibOS [37] as the inner core

to support the binary code compatibility [38]. The enclave

consists of the application to be protected linked with a library

OS. Graphene-SGX can execute the applications by writing

a manifest file that describes (among other things) the set

741

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

of libraries used by the benchmark (among other things).

Compared to Scone, Graphene can provide a more flexible

configuration of multithreading support.

Although existing SGX-based secure computing approaches

often assume side channels as an orthogonal research

topic [31], [39], [40], side channels impose serious threats

to secure computing using SGX as attackers can use them to

circumvent explicit security defenses implemented by SGX.

A rich literature has focused on discovering SGX side chan-

nels [20], [21], [26], [27]. Notably, HySec-Flow is also vul-

nerable to such threats. Fortunately, most known side channels

in SGX-based computation can be detected or mitigated using

various defense strategies [22], [23], [28]–[30].

VI. CONCLUSION

We have introduced an architecture for an end-to-end

workflow of privacy-preserving genomic data analytics using

Intel’s SGX technology. We use the reads mapping application

(specifically the commonly used BWA algorithm) to showcase

the usability and the performance of the framework. The

naive Scone solution has modest performance improvement

on single-node even when using the partition and dispatch

methods. HySec-Flow makes it possible to run in parallel
on multiple nodes while still in a secured fashion. When
tested with single-end reads mapping tasks, we’ve observed
a speedup of up to 212x (for 80 partitions) compared to
the naive approach directly executing BWA within the
Scone framework. The speedup is mainly achieved from
the process level parallelism as well as significantly reduced
search space by the bloomfilter based dispatch step.

We stress that HySec-Flow can be easily adapted to a cate-

gory of many genomics applications where the algorithms are

pleasantly data-parallel, e.g., for genome variation calling [9],

[41], for gene expression analysis using RNA-seq data [42],

and peptide identification in clinical proteomics [43]. However,

in each of these cases, we need to devise a customized data

partition algorithm that can assemble subsets of input data for

subtasks so that the subtasks are performed most efficiently.

VII. FUTURE WORK

The HySec-Flow framework can be extended to handle

multiple search tasks from different users by adding a new

’driver’ component to securely accept jobs from users and

assign containers on demand from a heterogeneous pool of

containers due to the pleasingly parallel nature of the work-

loads.

We will further integrate into future work another sophis-

ticated framework, Harp [44]–[51], which utilizes MPI-style

collective communications to deal with Big Data among the

nodes from a cluster in an HPC-Cloud environment with an

SGX-enabled machine learning applications.

The HySec-Flow framework has been designed to support

non-secure tasks, secure tasks written directly on Intel SGX

API, and secure tasks on Scone or Graphene. Hence other

hybrid workflows (secure / non-secure) other than genome

sequencing can be ported into the framework and scale in-

finitely using a programmable API [18]. Reads mapping is

a large data-intensive computing task compared to previously

developed SGX-based solutions (e.g., variant searching and

GWAS). Therefore, the framework presented here can be

extended to implement privacy-preserving algorithms for other

data-intensive genome computing tasks such as genome varia-

tion calling [52] and gene expression analyses [53] in future

work.

VIII. ACKNOWLEDGMENT

This work is partially supported by NSF grant No.1838083

on BIGDATA: IA: Enabling Large-Scale, Privacy-Preserving

Genomic Computing with a Hardware-Assisted Secure Big-

Data Analytics Framework, NSF grant CCF-1918626 Ex-

peditions: Collaborative Research: Global Pervasive Com-

putational Epidemiology, NSF grant No. 1835631 CINES:

A Scalable Cyberinfrastructure for Sustained Innovation in

Network Engineering and Science, and NIH R01HG010798:

Secure and Privacy-preserving Genome-wide and Phenome-

wide Association Studies via Intel Software Guard Extensions

(SGX). We appreciate technical support from Intel Inc. and

would like to thank Robert Henderson and the system team

for their assistance with our experiments on the SGX cluster.

REFERENCES

[1] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich,
“Identifying personal genomes by surname inference,” Science, vol. 339,
no. 6117, pp. 321–324, 2013.

[2] C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP Journal on Information Security, vol. 2007,
p. 15, 2007.

[3] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for cpu based attestation and sealing,” in Proceedings of the 2nd inter-
national workshop on hardware and architectural support for security
and privacy, vol. 13. Citeseer, 2013, p. 7.

[4] M. Russinovich, “Introducing Azure confidential computing,” Seattle,
WA: Microsoft, 2017.

[5] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “Sgx-bigmatrix: A
practical encrypted data analytic framework with trusted processors,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1211–1228.

[6] F. Chen, C. Wang, W. Dai, X. Jiang, N. Mohammed, M. M. Al Aziz,
M. N. Sadat, C. Sahinalp, K. Lauter, and S. Wang, “Presage: privacy-
preserving genetic testing via software guard extension,” BMC medical
genomics, vol. 10, no. 2, pp. 77–85, 2017.

[7] F. Chen, S. Wang, X. Jiang, S. Ding, Y. Lu, J. Kim, S. C. Sahinalp,
C. Shimizu, J. C. Burns, V. J. Wright et al., “Princess: Privacy-protecting
rare disease international network collaboration via encryption through
software guard extensions,” Bioinformatics, vol. 33, no. 6, pp. 871–878,
2017.

[8] S. Carpov and T. Tortech, “Secure top most significant genome variants
search: idash 2017 competition,” BMC medical genomics, vol. 11, no. 4,
pp. 47–55, 2018.

[9] A. Mandal, J. C. Mitchell, H. Montgomery, and A. Roy, “Data oblivious
genome variants search on intel sgx,” in Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Springer, 2018, pp. 296–
310.

[10] C. Kockan, K. Zhu, N. Dokmai, N. Karpov, M. O. Kulekci, D. P.
Woodruff, and S. C. Sahinalp, “Sketching algorithms for genomic data
analysis and querying in a secure enclave,” Nature methods, vol. 17,
no. 3, pp. 295–301, 2020.

[11] T. Pascoal, J. Decouchant, A. Boutet, and P. Esteves-Verissimo, “Dyps:
Dynamic, private and secure gwas,” Proceedings on Privacy Enhancing
Technologies, 2021.

742

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

[12] V. Tam, N. Patel, M. Turcotte, Y. Bossé, G. Paré, and D. Meyre,
“Benefits and limitations of genome-wide association studies,” Nature
Reviews Genetics, vol. 20, no. 8, pp. 467–484, 2019.

[13] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al.,
“{SCONE}: Secure linux containers with intel {SGX},” in 12th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 16), 2016, pp. 689–703.

[14] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library
{OS} for unmodified applications on {SGX},” in 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), 2017, pp. 645–
658.

[15] H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows–wheeler transform,” bioinformatics, vol. 25, no. 14, pp. 1754–
1760, 2009.

[16] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
bowtie 2,” Nature methods, vol. 9, no. 4, p. 357, 2012.

[17] Y. Chen, B. Peng, X. Wang, and H. Tang, “Large-scale privacy-
preserving mapping of human genomic sequences on hybrid clouds.”
in NDSS, 2012.

[18] “Scalable and secure platform for hybrid task scheduling,” https://github.
com/Data-ScienceHub/sgx-tasks, accessed: 2021-07-11.

[19] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[20] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside {SGX} enclaves with branch shadow-
ing,” in 26th {USENIX} Security Symposium ({USENIX} Security 17),
2017, pp. 557–574.

[21] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in sgx,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 2421–2434.

[22] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T.-H. Lai, and
D. Lin, “Racing in hyperspace: Closing hyper-threading side channels
on sgx with contrived data races,” in 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 178–194.

[23] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys:
Protecting {SGX} enclaves from practical side-channel attacks,” in 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC} 18), 2018,
pp. 227–240.

[24] H. Mohamadi, B. P. Vandervalk, A. Raymond, S. D. Jackman, J. Chu,
C. P. Breshears, and I. Birol, “Dida: Distributed indexing dispatched
alignment,” PloS one, vol. 10, no. 4, p. e0126409, 2015.

[25] “Scone file projection,” https://sconedocs.github.io/SCONE\
Fileshield/, accessed: 2021-02-04.

[26] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient out-of-
order execution,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 991–1008.

[27] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[28] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, 2016, pp.
317–328.

[29] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs.” in NDSS, 2017.

[30] R. Sinha, S. Rajamani, and S. A. Seshia, “A compiler and verifier for
page access oblivious computation,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, 2017, pp. 649–
660.

[31] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and efficient multitasking inside a single enclave of
intel sgx,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 955–970.

[32] J. Van Bulck and F. Piessens, “Tutorial: Uncovering and mitigating side-
channel leakage in intel sgx enclaves,” in Proceedings of the 8th Inter-
national Conference on Security, Privacy, and Applied Cryptography
Engineering (SPACE’18). Springer, 2018.

[33] N. Siva, “1000 genomes project,” 2008.
[34] “BWA using Scone,” https://github.com/dsc-sgx/bwa-sgx-scone, ac-

cessed: 2021-02-05.
[35] “BWA using Graphene-SGX,” https://github.com/StanPlatinum/

graphene-bwa, accessed: 2021-06-19.
[36] “Containerized dida & bwa on scone,” https://github.com/

Data-ScienceHub/scone-dida-bwa, accessed: 2021-06-20.
[37] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.

Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation
and security isolation of library oses for multi-process applications,” in
Proceedings of the Ninth European Conference on Computer Systems,
2014, pp. 1–14.

[38] K. Shanker, A. Joseph, and V. Ganapathy, “An evaluation of methods to
port legacy code to sgx enclaves,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1077–1088.

[39] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying
confidentiality of enclave programs,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 1169–1184.

[40] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia,
“A Formal Foundation for Secure Remote Execution of Enclaves,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2435–2450.

[41] C. Lambert, M. Fernandes, J. Decouchant, and P. Esteves-Verissimo,
“Maskal: Privacy preserving masked reads alignment using intel sgx,”
in 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS).
IEEE, 2018, pp. 113–122.

[42] K. V. Prasad, A. A. Abdel-Hameed, D. Xing, and A. S. Reddy,
“Global gene expression analysis using rna-seq uncovered a new role for
sr1/camta3 transcription factor in salt stress,” Scientific reports, vol. 6,
no. 1, pp. 1–15, 2016.

[43] S. Decramer, A. G. de Peredo, B. Breuil, H. Mischak, B. Monsarrat, J.-L.
Bascands, and J. P. Schanstra, “Urine in clinical proteomics,” Molecular
& cellular proteomics, vol. 7, no. 10, pp. 1850–1862, 2008.

[44] B. Zhang, Y. Ruan, and J. Qiu, “Harp: Collective communication on
hadoop,” in 2015 IEEE International Conference on Cloud Engineering.
IEEE, 2015, pp. 228–233.

[45] B. Zhang, B. Peng, and J. Qiu, “High performance lda through collec-
tive model communication optimization,” Procedia Computer Science,
vol. 80, pp. 86–97, 2016.

[46] L. Chen, B. Peng, B. Zhang, T. Liu, Y. Zou, L. Jiang, R. Henschel,
C. Stewart, Z. Zhang, E. Mccallum et al., “Benchmarking harp-daal:
High performance hadoop on knl clusters,” in 2017 IEEE 10th Interna-
tional Conference on Cloud Computing (CLOUD). IEEE, 2017, pp.
82–89.

[47] B. Peng, B. Zhang, L. Chen, M. Avram, R. Henschel, C. Stewart, S. Zhu,
E. Mccallum, L. Smith, T. Zahniser et al., “Harplda+: Optimizing latent
dirichlet allocation for parallel efficiency,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 243–252.

[48] B. Peng, L. Chen, J. Li, M. Jiang, S. Akkas, E. Smirnov, R. Israfilov,
S. Khekhnev, A. Nikolaev, and J. Qiu, “Harpgbdt: Optimizing gradient
boosting decision tree for parallel efficiency,” in 2019 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2019, pp. 1–11.

[49] B. Zhang, B. Peng, and J. Qiu, “Model-centric computation abstractions
in machine learning applications,” in Proceedings of the 3rd ACM
SIGMOD Workshop on Algorithms and Systems for MapReduce and
Beyond, 2016, pp. 1–4.

[50] L. Chen, J. Li, C. Sahinalp, M. Marathe, A. Vullikanti, A. Nikolaev,
E. Smirnov, R. Israfilov, and J. Qiu, “Subgraph2vec: Highly-vectorized
tree-like subgraph counting,” in 2019 IEEE International Conference on
Big Data (Big Data). IEEE, 2019, pp. 483–492.

[51] B. Peng, J. Li, S. Akkas, T. Araki, O. Yoshiyuki, and J. Qiu, “Rank
position forecasting in car racing,” in 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 724–
733.

[52] P. Consortium, “A map of human genome variation from population-
scale sequencing,” Nature, vol. 467, no. 7319, p. 1061, 2010.

[53] M. Alarcón, B. S. Abrahams, J. L. Stone, J. A. Duvall, J. V. Perederiy,
J. M. Bomar, J. Sebat, M. Wigler, C. L. Martin, D. H. Ledbetter et al.,
“Linkage, association, and gene-expression analyses identify cntnap2
as an autism-susceptibility gene,” The American Journal of Human
Genetics, vol. 82, no. 1, pp. 150–159, 2008.

743

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

