2021 IEEE 14th International Conference on Cloud Computing (CLOUD) | 978-1-6654-0060-2/21/$31.00 ©2021 IEEE | DOI: 10.1109/CLOUD53861.2021.00098

2021 IEEE 14th International Conference on Cloud Computing (CLOUD)

HySec-Flow: Privacy-Preserving Genomic
Computing with SGX-based Big-Data Analytics
Framework

Chathura Widanage'
XiaoFeng Wang?

Weijie Liu!
Haixu Tang?

Jiayu Li' Hongbo Chen'

Judy Fox?

L2Indiana University
3University of Virginia
1{cdwidana,weijliu,jl145,hc50} @iu.edu
2{xw7,hatang} @indiana.edu
3{ckw9mp} @virginia.edu

Abstract—Trusted execution environments (TEE) such as In-
tel’s Software Guard Extension (SGX) have been widely studied
to boost security and privacy protection for the computation of
sensitive data such as human genomics. However, a performance
hurdle is often generated by SGX, especially from the small
enclave memory. In this paper, we propose a new Hybrid Secured
Flow framework (called “HySec-Flow”) for large-scale genomic
data analysis using SGX platforms. Here, the data-intensive
computing tasks can be partitioned into independent subtasks
to be deployed into distinct secured and non-secured containers,
therefore allowing for parallel execution while alleviating the
limited size of Page Cache (EPC) memory in each enclave. We
illustrate our contributions using a workflow supporting indexing,
alignment, dispatching, and merging the execution of SGX- en-
abled containers. We provide details regarding the architecture of
the trusted and untrusted components and the underlying Scorn
and Graphene support as generic shielding execution frameworks
to port legacy code. We thoroughly evaluate the performance
of our privacy-preserving reads mapping algorithm using real
human genome sequencing data. The results demonstrate that
the performance is enhanced by partitioning the time-consuming
genomic computation into subtasks compared to the conventional
execution of the data-intensive reads mapping algorithm in an
enclave. The proposed HySec-Flow framework is made available
as an open-source and adapted to the data-parallel computation

users to perform computation directly on encrypted data.
However, HE introduces several magnitudes of computational
overheads. A promising alternative has recently been presented
by a new generation of hardware supporting a trusted exe-
cution environment (TEE), in which sensitive data are kept
on secure storage and processed in an isolated environment,
called the enclave. A prominent example is the Intel Software
Guard Extension (SGX) [3], which has a set of instructions
for establishment and management of an enclave on Intel’s
mainstream processors, which are available in major cloud
service providers such as Microsoft Azure [4]. Current
benchmark experiments on data-intensive computing tasks [5]
demonstrate that SGX provides data protection against attacks
from the host operating system or even system administrators
while introducing only moderate computation overhead; there-
fore, it is widely considered to be suitable for data-intensive
computation, including the computing tasks involving personal
human genomic data.

| ié Users' Client |

P TEETEETETTETTECErrrrr EECCETCETTErrrrrrrrrrrrr

. .o . Hybrid Task Scheduler(Driver, | HySec-Flow !
of other large-scale genomic tasks requiring security and scalable ; | Y () (7 L ;
computational resources. ' [Non Secure Tasks
Index Terms—Privacy-preserving Computing; Software Guard : (e.g. Partitioning) e.g. Alignment !
Extension (SGX); Reads mapping. ; , e — '
1 | Non Secure Containers - . 1

Secure Containers Shared File

I. INTRODUCTION

Security and privacy issues have received increasing at-
tention in big-data analytics performed on public or com-
mercial clouds. In particular, personal genomic data contain
identifiable information concerning human individuals: it has
been shown that the identity of a participant in a human
genome study could be revealed from her genetic profile
through searching online genealogy databases [1]. As a result,
biomedical researchers are cautious of moving the intensive
computation involving personal human genomic data onto the
commercial cloud.

Cryptographic techniques are available to protect data pri-
vacy on the cloud. Homomorphic encryption (HE) [2] allows

: ¥ System
| Container Orchestrator (Kubernetes) |

Non SGX Aware Hardware | SGX Aware Hardware |

Oogl amazon
Cloud webservices

Fig. 1: Framework Overview.

Privacy-preserving algorithms have been developed for sev-
eral genomic analysis tasks, including genetic testing and vari-
ant searching using human genomic profiles [6]-[8]. These
tasks are relatively lightweight and do not require extensive
memory that exceeds the limited Page Cache (EPC) available
in an enclave. Hence, the efforts of these implementations

2159-6190/21/$31.00 ©2021 IEEE 733
DOI 10.1109/CLOUD53861.2021.00098

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

were focused on the data encryption/decryption and the pro-
tection of the data from side-channel information leaks (e.g.,
using data oblivious algorithms [9]). More recently, privacy-
preserving algorithms [10], [11] were developed for Genome-
wide Association Studies (GWAS), a common computational
approach to identifying the associations between phenotypes
and genetic variants [12]. These methods exploited sketching
algorithms to reduce the memory usage of GWAS computation
to be executed inside the enclave within the limits of EPC
memory. However, the sketching algorithms were customized
for the specific computing task (i.e., GWAS) and cannot be
generalized to other tasks. Furthermore, privacy-preserving
approaches are still lacking for parallel data-intensive com-
putation using multiple enclaves enabled by SGX.

Partition,,

Reference

Partitionq
Genome

H Partition, [PEE—
(a) Distribute . 1

&———)| User Input
(personal
Suffix Que
gene
o ; i$é\-é$gg ' k-mer k-mer k- meﬁequenca
CT$GATC H 3 i ol 3 k
(b) Index g GATCCT$:
5 T$GATCC '
ZTCCT$GA:1O111O11O1
: Bloomfilters
A//\ (c) Dispatch
Indexq Indexy Index, . uerys uery) uery,)
NHeTE NeTE NFeTe
(d) Align
and Merge
aln4.sa Iny.sa aln,.sal

Fig. 2: The conventional (Untrusted) workflow: the data with
gray background needs to be encrypted because it involves
private information.

This paper presents a generic privacy-preserving data ana-
lytics framework for developing large-scale genome comput-
ing tasks using SGX. A key challenge here is that only limited
resources are directly accessible by the code running inside
the enclave. Therefore, it is critical to devise a sophisticated
method to partition the target computation task into subtasks so
that each subtask can be executed efficiently using the enclave
when necessary.

It is worth noting that HySec-Flow distinguishes itself
from the current approaches (e.g., Scone [13] and Graphene-
SGX [14]) that provide runtime environments to run existing
programs inside the enclave. As shown in our benchmark
experiments, these approaches do not support either a hy-
brid enclave/non-enclave architecture or the use of parallel
computation with multiple enclaves and so are not scalable
for large data-intensive genome computing tasks. Furthermore,
the efficiency of running specific algorithms is not optimized
inside the enclave in the original applications. As well as
subtasking, other contributions of the paper include:

734

o We design a hybrid task scheduler to integrate secure and
non-secure containers into HySec-Flow for performing
the subtasks in enclaves to address scaling issues of SGX.
We demonstrate the design strategy of our analytics
framework using the implementation of the reads map-
ping task (i.e., the alignment of millions of short (=~ 100
bases long) DNA sequences (reads) acquired from a
human individual onto a reference human genome).

Reads mapping serves as a prerequisite step for many down-
stream analyses in human genome computing (e.g., genome
variation calling, genotyping, gene expression analysis), and
thus many software tools (e.g., BWA [15], Bowtie [16])
have been developed for this fundamental task. Notably, the
reads acquired from a human individual contain identifiable
information about the donor and should be protected in a
public cloud environment. Previously, customized algorithms
were proposed for privacy-preserving reads mapping using
cryptography approaches [17], which introduced significant
computing overheads and did not scale well with massive
demands.

To the best of our knowledge, HySec-Flow is the first
SGX-based privacy-preserving solution of reads mapping that
introduced reasonable computing overhead while is highly par-
allelizable and scalable. Our novel hybrid task scheduler with
secure containers enables a workflow for complex analysis
such as a modified reads mapping and alignment algorithm.
The end-to-end secure analysis framework, as shown in Fig.
1 is released as open-source software at [18].

II. BACKGROUND
A. Intel SGX

Intel SGX is a set of x86 instruction extensions that offer
hardware-based memory encryption and isolation for applica-
tion code and data. The protected memory area (called an
enclave) resides in an application’s address space, provid-
ing confidentiality and integrity protection. SGX is a user-
space TEE characterized by flexible process-level isolation:
a program component can get into an enclave mode and
be protected by execution isolation, memory encryption, and
data sealing against the threats from the untrusted OS and
processes running in other enclaves. More specifically, the
memory of an enclave is mapped to a special physical memory
area called Enclave Page Cache (EPC). It is encrypted by
Memory Encryption Engine (MEE) and cannot be directly
accessed by other system software. Such protection, however,
comes with in-enclave resource constraints. Particularly, only
128 MB (256 MB for some new processors) encryption-
protected memory (called Enclave Page Cache or EPC) is
reserved. Although virtual memory support is available, it
incurs significant overheads in paging.

B. SGX-based Data Sealing

SGX remote attestation allows a remote user to verify that
the enclave is correctly constructed and runs on a genuine
SGX platform. In Intel’s attestation model, three parties are
involved: (1) The Independent Software Vendor (ISV) who

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

is registered to Intel as the enclave developer; (2) The Intel
Attestation Service (IAS) hosted by Intel which verifies the
enclave; and (3) The SGX platform, which operates the SGX
enclaves. The attestation begins with the ISV sending an attes-
tation request challenge, which can be generated by an enclave
user who wants to perform the attestation of the enclave. The
attested enclave then generates a verification report including
the enclave measurement, which can be verified by an Intel-
signed quoting enclave (QE) through local attestation. The QE
signs the report using the attestation key, and the generated
quote is forwarded to the Intel Attestation Service (IAS). The
IAS verifies the quote and signs the verification result using the
Intel private key. The verification result can convince the ISV
or the enclave user by verifying the signature and comparing
the enclave measurement. When an enclave is instantiated, it
protects the data by keeping it within the enclave boundary.
In general, the secrets provisioned to an enclave are lost when
the enclave is closed. However, if the private data must be
preserved during one of these events for future use within
an enclave, it must be stored outside the enclave boundary
before closing the enclave. To protect and preserve the data,
a mechanism is in place which allows enclave software to
retrieve a key unique to that enclave that the enclave can
only generate on that particular platform. Using that key, the
enclave software can encrypt data, store them on the platform,
or decrypt the encrypted data are stored on the platform. SGX
refers to these encryption and decryption operations as sealing
and unsealing, respectively. When data needs to be encrypted
and stored outside the enclave, sealing and unsealing are
needed. Using sealing, the data within the enclave is encrypted
using an encryption key derived from the CPU hardware.

Intel SGX provides two policies for encryption keys:
MRENCLAVE (enclave identity) and MRSIGNER (signing
identity). These policies affect the derivation of the encryption
key and are described in the documentation of Intel SGX [19].
Developers can take advantage of sealing based on the Signing
Identity policy to share sensitive data via a sealed data blob
between multiple enclaves initiated by a single application
and/or those by different applications. To utilize Intel SGX’s
data sealing feature, we use the set of keys generated and
stored in the processor’s fuse array. There are two identities
associated with an enclave. The first is the Enclave Identity
and is represented by the value of MRENCLAVE, which is
a cryptographic hash of the enclave log (measurement) as it
goes through every step of the build and initialization process.
MRENCLAVE uniquely identifies any particular enclave, so
using the Enclave Identity will restrict access to the sealed
data only to instances of that enclave. Therefore, we use the
other key policy provided by SGX - MRSIGNER, which gen-
erates a key based on the value of the enclave’s MRSIGNER
and the enclave’s version. Specifically, we encapsulate the
sgx_seal_data () function, to better leverage the key
derived from the instruction EGETKEY. We also implement
utility codes for encrypting the initial genome data.

735

C. Bloom filter

A Bloom filter is a space-efficient probabilistic data struc-
ture. It provides membership queries over dynamic sets with an
allowable false positive rate. An ordinary Bloom filter consists

Insert Insert Insert
[actet | [TeTCG | | TCGGA |

I
o 1 P o 1 e b B b
[lolxfs 1 o 1 1o 1]
¥ A L))
murmur hy hy hy “hy hy hs
hasher N — RS —
Query ACTGT Query AATGT
True Positive False Positive

Fig. 3: Conventional Bloom filter with £ = 3 that illustrates
the true positive, and false positive.

of a bit array B of m bits, which are initially set to 0, and &
hash functions, hi, ho, ..., hx, mapping keys from a universe
U to the bit array range {1,2,...,m}. In order to insert an
element x from a set S = {x1,2,...,x, }into the filter, the
bits at positions hq(z), ho(x), ..., hi(z) are set to 1. To query
if an element q is in the filter, all of the bits at positions
h1(q), ha(q), ..., hi(q) are examined. If at least one bit is
equal to 0, then ¢ is not in S. Otherwise, ¢ likely belongs
to the set. The false positive rate F = (1 — (1 — L))k ~
(1 —exp (—k/r))*, where r = m/n is the number of bits per
element.

D. Threat Model

For HySec-Flow, we follow the classical SGX threat model.
Denial-of-Service (DoS), side-channel attacks, and physical
attacks against the CPU are out of scope [20], [21] and can
be tackled by different techniques (e.g., mitigating the negative
effect of Hyper-threading [22], [23]). Similarly, enclaves are
trusted and free of vulnerabilities.

III. ARCHITECTURE

In the framework shown in Fig. 1, the driver (task sched-
uler) runs on the central control node where a computing
task first splits into subtasks, and the subtasks are then
deployed to worker nodes for execution. Subtasks are de-
ployed with APIs of existing orchestration tools on their dis-
tributed platforms (e.g., Kubernetes and Docker Swarm) and
the framework-specific communication mechanism between
the workers (secure/non-secure containers). In this paper, we
implement the reads mapping algorithm using the proposed
framework.

We’ve devised a workflow-based approach to address the
privacy issues in the existing read mapping software tools
while adding the capability to parallelize the computation
workload across a cluster of Intel SGX-enabled nodes. The
DIDA framework [24] for parallel execution inspires our im-
plementation of reads mapping on high-performance comput-
ing platforms while designing the SGX-based implementation
for the subtasks involving sensitive data (i.e., input reads). It
first partitions the reference genome into multiple segments
and then uses bloom filters to partition the input set of reads

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

EUser Input

(personal gene sequence)
Reference H

Genome ‘ Args

Non Secure
Containers @

o I3
mm | ©

Qe (4] o

Bloomfilter
Building

Dispatcher

JUTR SN Secure
Containers|

----- ' ®

ey L

|

|

Non

Partitions Index Bloomfilters Encrypted
l File System

d

ﬂ Encrypted FS

Intermediate
SAM

®

Fig. 4: The Workflow of Privacy-Preserving Genomic Computing Framework with Hybrid Containers and Resources.

Algorithm 1: Distributed Pipeline

Algorithm 2: Internal operations within the framework

input : G ={g1,92,...,9p} : Reference genome partitions;
I: Input DNA Sequence;
args: Program arguments
output: Q = {q1,¢2,...,qp} : Partitioned user input;
M = {mi,ma,...,mp} : Reads mapping per
partition;
S : Final output
1 Function PIPLINE (G, I, args):
2 B = GenerateBloomFilters (G, args)
3 Q=[] // protected fs
4 for pin {1...G.length} distributed do
5 Q[p] = DISPATCH (B[i], I, args)
// protected

6 M =[] // protected fs
7 for pin {1...G.length} distributed do
8 MIp] = ALIGNMENT (G/[p], QO[p])

// protected

9 S = MERGE (M) // protected

into subsets, which is assigned to a segment that the reads
are likely mapped onto. In the next step, multiple subtasks
are deployed and each substask involves a segment mapping
to a subset of reads. Notably, although Intel SGX provides
hardware-assisted encryption and protection of sensitive data,
it comes with a performance cost due to the limited size of
the EPC (Enclave Page Cache) available for the computation
inside the enclave. Hence, we have to be careful only to move
data that needs to be protected into the SGX enclaves and
perform only the computations involving sensitive data inside
the SGX enclaves. This clear separation helps to minimize
the data that needs to be moved into the protected space and
minimize the computation overhead introduced by EPC swaps.

Fig. 4 shows the detailed workflow of our implementation
for SGX-based secure reads mapping. We have adapted four
significant tasks from the DIDA framework that will be
executed to perform genome sequencing. The driver node
accepts the job, while the worker nodes are used for the data
pre-processing and read alignment. The partitioning of the
reference genome into segments and their indexing is a one-
time process. Furthermore, the reference genome is public and

input : G ={g1,92,...,9p} : Reference genome partitions;
I: Input DNA Sequence
1 Function DISPATCH (b, I, args):

2 | g=]
// reading sequences of the input
3 for seq in I do
4 for bmer in seq do
5 if b.test(bmer) then
6 L | g.append(i)
7 return q

8 Function ALIGNMENT (g, ¢q):
9 | return bwa(g, q)

10 Function MERGE (M) :
11 S =merge (M) // call DIDA merge
return S

such a step can be performed without using SGX.

However, the input reads need to be protected. Together
with the partitioned reference genome, inputs are fed into the
dispatch process to get the same number of dispatched reads
as the partitioned reference genome. The partitioned reference
genome and the dispatched reads are then distributed to a
cluster of nodes for the parallel running of the actual alignment
(or run sequentially on one node). The partial results are then
merged to form the final output, which will also be encrypted.

In Figs. 4-7, all the processes running within SGX are
depicted in blue boxes. The alignment process in the worker
nodes uses Scone to minimize the source code revision, which
is required to handle sensitive data securely. The input and
output SAM files are stored in a protected folder. They are
handled transparently by the Scone file protection feature [25].
All nodes are from the same cluster and have access to a
common shared file system where the intermediate results
between processes are all encrypted. Each process within an
SGX is undergoing the unsealing/sealing process to securely
read the data and write the output to the file system.

A. Trust Establishment

When the data owner wants to delegate a job to HySec-
Flow, the owner needs to know that the service provider
truly provides the service on a trusted platform. Therefore,

736

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

the owner can initiate remote attestation to establish mutual
trust. Since the source code of HySec-Flow is public, the data
owner can easily know whether the remote service is running
in a trusted control node enclave or not through verifying the
measurement, which can be derived from the enclave source
code. The RA-TLS protocol can be integrated into our work
for trust establishment and key exchange. After mutual trust
between the data owner and service provider is established
via remote attestation, a key K p can be generated by ECDH
key exchange to securely communicate and transfer data. It
should be noted that the key agreement step can be done
using the attestation feature of Scone’s premium version or
using Graphene-SGX’s remote attestation plan, so we don’t
implement it by ourselves.

The data owner can then transfer data files encrypted using
this key, and these files can then be decrypted in the work
nodes’ enclaves at the server-side. Notice that the enclaves
between the control node and work nodes also need to estab-
lish mutual trust, and the key K p to decrypt data files should
also be passed through a secure channel. Yet intermediate data
files can be securely stored in untrusted storage, such as in a
shared file system, and be transferred via an untrusted channel
since they are encrypted. Finally, the framework can encrypt
and return the result to the data owner.

B. PFartition

This stage is performed to split the reference genome
sequence into multiple partitions such that each partition can
be individually indexed and searched on different nodes of
the cluster. The partitioner takes the reference genome as the
input and outputs p number of partitions as shown in steps
1 and 2 of Fig. 4. The partition task works only on non-
sensitive data and can run on a single node for a simple pass
through the reference genome sequence. For the same p and
same reference genome, partitioning will only execute once.

C. Indexing

The partitions generated are indexed using a popular read
alignment tool like BWA. This operation can be performed
parallelly on each partition utilizing the available computing
resources of the cluster. Furthermore, this operation does not
require to be running in a secure environment. Hence this step
reads and writes to the non-secure shared file system as shown
in steps 3 and 4 of Fig. 4.

D. Dispatch

The dispatch stage is performed to reduce the search
space of an input DNA sequence within each partition. This
can be performed by utilizing many application-dependent
techniques. We adapt an approach based on the bloom filters
from DIDA. We compute a bloom filter for each partition by
inserting sub-sequences of length ’b’ of the reference genome
partition with overlaps of length ’I’. Bloom filter generation
works only on non-sensitive data. We perform this part of the
dispatch process entirely outside Intel SGX (step 5 of Fig. 4).
Furthermore, generated bloomfilters can be reused for future

737

Reference i | Partition, Partitiony Partition,,
Genome L M S, i I, e P i
Bloomfilters [110[1I1I1] [IoMMMI] [Iof11I1]
Shared . : i
Bloomfilter-. Bloomfilter. Bloomfilter,
File System ! 2 n

¥ Dispatcher
-

ﬁ Enclave

Shared File System
Encypted
Fig. 5: Dispatch

executions as long as ’b’ and ’I’ remain the same. Hence we
persist generated bloom-filters to the disk as a binary file(6
of Fig. 4). Bloom-filters generated per each partition will be
assigned with a uniquely identifiable name generated based on
the reference genome and the ’b’ and ’I’ arguments. Having
a separate binary file for each bloomfilter makes running
dispatch inside the limited enclave memory efficient.

We assume input DNA sequences are in the encrypted
form when we receive them into the framework. The next
stage of the dispatch task is looking up the bloom-filters to
determine the membership of the subsequences of the input
DNA sequence within each partition. Since dispatch involves
sensitive data, we have modified the DIDA framework to
execute the bloom filter lookup logic inside the SGX enclaves.
Input partitioning is performed by first loading the encrypted
DNA sequence into the SGX enclave and then decrypting
internally to extract the unencrypted data. Then we create
empty string builders within the enclave (Line 6 of algorithm
2) to hold the input sequence for each partition. Finally, bloom
filter lookups are performed to determine the membership.
In case of a positive lookup in the bloom filter, we append
the input subsequence to the corresponding string builder. As
shown in Fig. 3 and explained in section II-C, we expect
false positive responses for some of the lookups. But overall,
this approach reduces the search space for the alignment
step significantly. Furthermore, the false-positive rate can be
controlled by configuring the size of the bloom-filter. We then
persist input partitions into the disk by encrypting the files
transparently using the file protection features provided by
Scone or Graphene.

The dispatch step can be parallelly run for each reference
genome partition as depicted in line 4-5 of Algorithm 2. The
output will be saved back to the protected file system as shown
in step 9 of Fig. 4.

E. Alignment

Together with the corresponding index of the partitioned
reference genome, the dispatched reads file is assigned to the
cluster’s worker nodes for the alignment process (Step 10 of
Fig. 4). This step could run sequentially on a single node or
distribute over multiple nodes. As a proof-of-concept, we use
BWA for the actual alignment of the reads with the Scone
framework to leverage the SGX capability. Minor changes on

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

the BWA code are needed so it works with the Scone file
protection [25] setup. It provides transparent file decryption
and encryption of the input and output files for the alignment
setup. The code is compiled within a docker image from Scone
that provides a cross compiler toolset and run in a docker
container. This approach is generally applicable to other legacy
applications, like BWA, to run within SGX. While using the
BWA tool for this step, other alternative tools could be used, or
even customized programs developed totally with SGX SDK,
in which case Scone would not be needed anymore. The results

Index4 ﬁ @

Iny.sam Elnn.sam

Shared File System
Encypted

Fig. 6: Alignment

Indexy Indexp
| |

Inq.sam

ﬂ Enclave

of this step are the partial SAM output (Step 11 of Fig. 4)
from each dispatched reads and partitioned reference. Once
all the results are ready, they will be merged in the following
step to form the final results. In the evaluation experiment, we
considered the input reads files containing either the paired-
end reads, in which two reads were sequenced from a short
distance (i.e., 300-500 base pairs apart) in the genome, or
the single-end reads each read was sequenced independently.
Thus, the reads alignment task for these two types of input
is referred to as the paired-end alignment and the single-end
alignment respectively.

FE Merge

This task expects multiple encrypted SAM files (Step 12
of Fig. 4) as the input and performs merging techniques in
the DIDA framework inside the SGX enclaves. The encrypted
input SAM files will be decrypted only within the SGX
enclave. Once the merging is done, the output will be sealed
(Step 13 of Fig. 4) using the user’s shared key since this
is the final output expected by the user. Besides sealing the
final output and unsealing the initial input, we have delegated
encryption and decryption of the intermediate inputs and
outputs to the transparent file system’s encryption mechanisms
provided by Scone or Graphene.

Ialn1.sa;I Flnz.sa;I Ialnn.sam

I
a s

Fig. 7: Merge encrypted SAM files

G. Pipeline

Algorithm 1 shows how we can run the above stages
in a distributed pipeline to leverage the resources available

738

across the cluster. For a given user query, the first task
scheduled will generate the bloomfilters. If the bloomlfilters
are already available in the disk for the provided arguments,
this stage completes immediately. The next task is to run the
dispatch in a secure environment. So the resource scheduler is
configured to schedule dispatch tasks into nodes having SGX
hardware capabilities. Once the dispatched task is completed,
the alignment tasks can be parallelly scheduled on multiple
SGX nodes as shown in Algorithm 1, lines 7-8. Once all the
dispatch tasks are completed, the merge can be scheduled on
a secure node to generate the final output.

H. Data Sealing

All information that lies outside the trusted parts (enclave)
in the workflow should be in ciphertext state. Therefore
we propose sealing/unsealing modules inside the enclave to
encrypt/decrypt intermediate data across nodes.

Assuming the remote attestation has been done before the
data owner’s input is uploaded to the framework, a session
key can be retrieved to establish a secure channel between
the genomic data owner and the framework. HySec-Flow can
accept file input in plaintext and can do the initial encryption
for the user. Besides, to protect the data transferring between
enclaves from the outside attacker, we seal the output data and
unseal the input data with the same key. To this end, secure
channels can be built.

IV. EVALUATION

A. Security Analysis

SGX Enclave can protect the code/data integrity even when
the executable is loaded into a library OS (e.g., Graphene-
SGX can provide a measurement hash against the loaded
code/library for checking). Moreover, disk I/O has been
safeguarded by Scone/Graphene’s protected filesystem, which
utilizes AES-GCM to encrypt user data and immediate data
during the computation. Under our threat model, the only
security risk is key delivery, which is protected by the secure
channels we built after trust establishment. Therefore, file
tampering attacks can be defeated.

Side channels have been considered to be a threat to trusted
execution environments, including SGX. There is a line of
research that identifies such security risks [20], [21], [26], [27].
In the meantime, prior research also shows that most of the
side channel risks can be detected or mitigated using certain
defense strategies [22], [23], [28]-[30]. Most prior studies on
SGX-based computing systems consider side channels to be
outside their threat models [13], [14], [31] with the continuous
interest in the topic, as Intel assumes when developing the
TEE [32]. Our research follows this threat model and has
not implemented known protection (including those against
a set of micro-architectural threats) in our prototype. In future
research, we will evaluate the impacts of side-channel leaks
on our computing frameworks and genomic data analysis tasks
and build into our system a proper protection when necessary.

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

B. Experimental setup & data sets

Our experiments are conducted on a 10-nodes SGX-enabled
cluster, with each node has an Intel(R) Xeon(R) CPU E3-
1280 v5 @ 3.70GHz CPU and 64G RAM. The SGX enclaves
are initialized with 8GB heap space with both Scone and
Graphene. The libraries are ported into Graphene include /d.so,
libc.so, libm.so, libdl.so, libutil.so, and librt.so. We also port
libpthread.so for multi-threading support. Scone containers
are based on Scone’s alpine linux images running Scone
version 1. We use datasets from the 1000 Genome project
[33] for the testing. Without loss of generality, for single-end
alignment, we use the SRR062634 filt.fastq, which has ~309K
reads, with 100bp per read. For paired-end alignment, we use
SRR062634_1 and SRR062634_2. These files are arbitrarily
selected as a personal genome. The detailed data set and
specification are shown in Table 1.

TABLE I: Dataset specification.

Data Set Source # Reads | bp/read
SRR062634 filt.fastq | 1000 Genomes [33] 309K 100
SRR062634_1 1000 Genomes [33] 24M 100
SRR062634_2 1000 Genomes [33] 24M 100

C. Accuracy

Although the bloomfilter-based dispatch step narrows down
the search space for subsequent steps greatly, that comes with
an impact on the accuracy of the final output. However, the
scope of our approach is to perform reads mapping with an
acceptable accuracy securely. Hence we consider the accuracy
of the final outputs from DIDA’s approach as the baseline.
We compare the output files generated by the merge stage
after running dispatch, alignment, and merge in sequence on
Scone and outside Scone. When Scone outputs are decrypted
to obtain the plain text output, it matches exactly with the
output from the non-Scone execution.

D. Benchmark of SGX overhead

Using SGX could introduce overhead from multiple aspects.

1) Overhead from enclave initialization: Enclave initial-
ization overhead is impacted by the heap size requested. We
measure the enclave initialization time by varying the Heap-
MaxSize (16M, 64M, 256M, 1024M, 4096M). The results
show a good linear relationship with the increasing max size
of heap/stack. We observe that enclave initialization time is
about 0.04 seconds per MB of the configured maximum heap
size.

When developing an SGX application using SGX SDK in
enclave configuration file Enclave.config.xml, we can set the
parameters StackMaxSize and HeapMaxSize. These param-
eters determine the estimated memory requirements of the
generated enclave.

2) Overhead from OCall/ECall: The SGX-enabled pro-
gram defines an interface using Enclave Definition Language
(EDL), in which ECalls and OCalls are defined. A program
can only invoke these defined methods to cross the untrusted
and trusted execution environment boundary. We measured the

739

overhead of the invocation of these calls. The overhead of
OCall and Ecall are 5.27 and 4.65 seconds per million calls
respectively. As a comparison, making the same calls within
the untrusted environment only costs 1.3 ms per million calls.

3) Overhead from EPC page swapping: An enclave can
only utilize what a Processor Reserved Memory (PRM) can
provide at the current stage, which is 128MB. In actual use,
the usable memory size for an SGX application is only around
90MB, and the system uses the rest. Therefore, enclave Page
Cache (EPC) can only use this memory. When a larger dataset
may not fit into this space, an EPC page swap occurs, and this
process introduces high overhead. For example, for data access
pattern within the memory region of size ~40MB, the results
show that 1 billion runs of the emulated code block, when very
few page faults occurred (~ 10%), the execution time is around
3 seconds. However, when we need to frequently access data
outside of that region and thus EPC page swap occurred more
frequently (more than 107 times), the execution time is around
300 seconds, which is about 100 times slower.

E. Optimal partitions for splitting the reference genome

We have experimented with a different number of partitions
for the reference genome to find the optimal configuration. Fig.
8 shows the results. The runtime is measured by sequentially
run the alignment for dispatched reads on one single node
using SGX via Scone. We notice that with the increasing
number of partitions, the overall runtime decrease. However,
when the number of partitions is greater than 60, it got
flattened. Considering the human reference genome data we
used is about 3.2 GB, this translates to the reference partition
size around or smaller than 50 MB. With the usable memory
space around 90 MB for SGX, this optimal configuration
suggests that the entire indexing table can fit into the SGX EPC
to minimize the unnecessary EPC swapping, thus improving
the overall performance. We use reference genome partition
number 80 as the optimal number to run within SGX in our
future experiments.

8,000

6,000

Time (s)

4,000

2,000

12 20 30 40 50 60 70 80 90 100

Number of Partitions

Fig. 8: Sequential run time within SGX for different number
of partitioned reference genomes.

E. Execution times of dispatch and merge

Table II lists the time used for the dispatch and merge steps
(single-end reads). Although bloom filter building seems to be
dominating the entire workflow, it is a one-time operation. The
same set of bloomfilters can be used for subsequent executions
on different user inputs. Also, we notice that partition size does
not significantly impact the execution time as these two stages

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Dispatch, Alignment and Merge for BWA (Single End Reads)

Dispatch (seconds) Alignment (seconds) Merge (seconds)
Partitions Non Secure Secure Non Secure Secure Non Secure Secure
min avg max min avg max | min avg max | min avg max
10 | 1445 1452 1445 | 44.00 4458 4487 | 027 043 077 | 5.19 7.58 8.70 0.88 4.70
20 6.57 7.81 8.06 | 2235 26.62 2726 | 0.12 0.14 0.16 | 2.32 410 4.77 0.83 4.65
40 3.20 4.46 4.56 9.63 1432 1458 | 0.06 0.10 0.14 | 1.05 1.77 2.15 0.80 4.62
80 1.48 1.48 2.93 6.29 9.12 9.68 | 0.03 0.13 047 | 044 0.73 1.18 0.81 4.66

The alignment step is parallelly executed across the cluster. Minimum, Average and Maximum time reported by containers.

Table I shows the results for the proposed partition and dispatch. The partition and dispatch approach shows a slowdown
which greatly improves for higher partition counts due to better EPC utilization. Our approach makes it easier to run in
parallel because of the pleasingly parallel nature of the data and the application. In the best case(if resources are available),
we can run the single end alignment pipeline securely in 15.53 seconds (based on 9.68s in parallel dispatching, 1.18s in
parallel alignment over 80 nodes and 4.66s in merging) by partitioning the problem into 80 subtasks. Even in the worst case
that has only one SGX enabled node, we can expect to complete the alignment in 792.46 seconds running sequentially.

TABLE III: Non Secure Execution (one-time calculations)

Bloomfilter Indexin
#Partitions | Partitioning (s) | Building g
(seconds)

(seconds)

1 0 1985.09 4302
10 37.59 1211.65 3052
20 39.39 1113.9 2853
40 40.17 1147.48 2602
80 41.93 1316 2292

of the workflow are not parallelized. However, the dispatch
step can be parallelized to run in parallel on Bf, and Query
to produce corresponding Query, in contrast to the Dispatch
step shown in Fig 5. If computing resources are available, this
should reduce the execution time by a factor of "p’, where 'p’
is the number of partitions.

G. Execution times of Data Sealing/Unsealing

We use RDTSC (returns a 64-bit time stamp counter (TSC),
which is increased on every clock cycle) to measure the time
consumption outside the enclave of data sealing/unsealing
functions we built. Each test runs 10 times. As for sealing
inside, we implement an OCall for timing. The OCall checks
the outside TSC value and itself costs less than 0.0lms.
Table IV shows the average execution time when different
datasets are given. When dealing with the single-end input
SRR062634, the sealing time is less than 3s. For the pair-
ended data (SRR062634_1 and SRR062634_2), the sealing
time is less than 10s.

TABLE IV: Data Sealing/Unsealing with Intel SGX

Operation Single End Pair End
(seconds) (seconds)
Sealing outside 2.59 8.29
Unsealing inside 2.59 8.30
Sealing inside 2.59 8.31

H. Execution Time of Reads Mapping

Table V lists the execution time for the reads mapping tasks
in different settings, which includes single-end and paired-end

TABLE V: BWA Alignment (Sequential)

BWA
Alignment Type | Containers Alignment Slowdown
(seconds)
Non Secure 91 1
Single-end SCONE 3291 36.1
Graphene 10603 117
Non Secure 15423 1
Paired-end SCONE >173K >41
Graphene >173K >41

A single-end reads file has 309K reads and each read is 100bp
long. A pair end of reads file has 24M reads each. Non secure
refers to BWA execution w/o SGX.

execution times. The overhead of using SGX and the speedup
of our proposed solution is compared to the direct Scone and
Graphene solutions. The experiment setup and scripts can be
found at [34], [35] and [36].

The file protection features of both Scone and Graphene
are configured and enabled, so the input fastq files and output
SAM files are secured. The overhead is measured against
the non-SGX approach from Table V. The speedup can be
determined against the SGX Scone solution from the same
table.

As shown in Table V, running BWA directly without
involving SGX was fast, but data privacy is not protected.
Another approach is running BWA within a Scone container.
This approach provides an easy way to utilize SGX, but the
performance penalty is huge due to the EPC size limitation of
SGX and the frequent page swapping when dealing with big
data. We observe about 40x-50x slowdown comparing to the
non-SGX setup. Graphene-SGX performs worse than Scone
because it causes more paging overhead when loading more
components with the whole LibOS to the enclave.

Although the bloom filter generation is mostly a one-time
operation, if we consider that time into account too, the
execution times will increase only by 1316 seconds. The best-
case of HySec-Flow execution time (15.52 seconds) is 6x
and 212x speedup compared to non-SGX execution (91
seconds) and Scone execution (3291 seconds) respectively.

740

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Comparison of HySec-Flow against Scone or Graphene for Running BWA

SCONE HySec-Flow Graphene HySec-Flow

Number of Partitions | (Sequential) parallel SCONE Speedup | (Sequential) parallel Graphene Speedup
Total time (s) Total time (s) Total time (s) Total time (s)

1 3291 3227.48 1.02 10603 11025.41 0.96

10 3291 58.27 56.47 10603 412.66 25.7

20 32901 36.68 89.71 10603 300.9 35.23

40 3291 21.34 154.19 10603 245.84 43.13

80 32901 15.52 211.94 10603 217.23 48.80

HySec-Flow Graphene I HySec-Flow Scone

Non-SGX

Y Parallel Graphene [Parallel Scone ¥ Non-SGX

103 3
B B, _ 107 . s \
© o 10 « N N N N
£ 2 £ ® N N N N
= 10 = £ 10210 N N N
c c = 107N N N N\
S S ., c N N N N
= 5 10 o N N N N
8 10! 2 5 N N N N
= 3 S 10N N N N
fin] w < N N N N
1] N\ N N N
10! oL \ \ N
10 20 40 80 10 20 40 80 10 10 20 40 80
Number of Partitions Number of Partitions Number of Partitions
(a) Total Secure Execution Time (b) Dispatch (Sequential) (c) Dispatch (Parallel)
(Dispatch, Alignment and Merge)
Partitioning Bloomfilter Building » Indexing . . 10
o 2
— ~ 15 @
£ 5 10 & 5
§ 3 3
3102 £ 5 g
§ w fin}
w 0 0
10! 10 20 40 80 10 20 40 80
1 10 20 40 80

Number of Partitions

(d) Non-Secure Execution Time
(Partitioning, Indexing, and
Bloom Filter)

Number of Partitions

(e) Alignment

Number of Partitions

(f) Merge

Fig. 9: Comparison of the HySec-Flow execution time of Scone and Graphene in different stages.

The total execution times and projected variation of speedups
for other parallelism configurations(10, 20, 40, 80) are shown
in Table VI and illustrated in Fig. 10.

== HySec-Flow Parallel SCONE
HySec-Flow Parallel Graphene

200

100

Speedup

L | \ \
1 10 20 40 80

Number of Partitions
Fig. 10: Speedup of HySec-Flow over Scone and Graphene

V. RELATED WORK

DIDA [24] is a distributed indexing-dispatched alignment
framework for reads mapping. Our approach is inspired by
the DIDA framework but has taken data privacy into full
consideration: the computation involving sensitive data is
executed in the SGX enclave, and these sensitive data re-
mained encrypted outside the enclave. We use customized data
and computation partitions to split human reference genome

741

sequence into small segments so that each reads mapping
subtask does not consume much memory. This produces better
performance running inside an enclave. In contrast, the original
DIDA framework only supports a small number of subtasks
partitions, each comprising a long reference genome sequence
of the whole chromosome.

Scone [13] provides an easy-to-use container environment
that can run executable code within the SGX enclave. We
use Scone to run the individual alignment worker program in
HySec-Flow. However, executing codes in enclaves directly
using Scone alone may introduce significant performance
overhead due to the lack of optimization on the data access
according to the limited SGX EPC space. Our proposed
framework addresses this issue by splitting data into smaller
segments and running multiple jobs sequentially in a single
enclave or parallel in multiple enclaves.

Graphene-SGX is a practical library OS for unmodified
code on SGX. It uses Graphene LibOS [37] as the inner core
to support the binary code compatibility [38]. The enclave
consists of the application to be protected linked with a library
OS. Graphene-SGX can execute the applications by writing
a manifest file that describes (among other things) the set

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

of libraries used by the benchmark (among other things).
Compared to Scone, Graphene can provide a more flexible
configuration of multithreading support.

Although existing SGX-based secure computing approaches
often assume side channels as an orthogonal research
topic [31], [39], [40], side channels impose serious threats
to secure computing using SGX as attackers can use them to
circumvent explicit security defenses implemented by SGX.
A rich literature has focused on discovering SGX side chan-
nels [20], [21], [26], [27]. Notably, HySec-Flow is also vul-
nerable to such threats. Fortunately, most known side channels
in SGX-based computation can be detected or mitigated using
various defense strategies [22], [23], [28]-[30].

VI. CONCLUSION

We have introduced an architecture for an end-to-end
workflow of privacy-preserving genomic data analytics using
Intel’s SGX technology. We use the reads mapping application
(specifically the commonly used BWA algorithm) to showcase
the usability and the performance of the framework. The
naive Scone solution has modest performance improvement
on single-node even when using the partition and dispatch
methods. HySec-Flow makes it possible to run in parallel
on multiple nodes while still in a secured fashion. When
tested with single-end reads mapping tasks, we’ve observed
a speedup of up to 212x (for 80 partitions) compared to
the naive approach directly executing BWA within the
Scone framework. The speedup is mainly achieved from
the process level parallelism as well as significantly reduced
search space by the bloomfilter based dispatch step.

We stress that HySec-Flow can be easily adapted to a cate-
gory of many genomics applications where the algorithms are
pleasantly data-parallel, e.g., for genome variation calling [9],
[41], for gene expression analysis using RNA-seq data [42],
and peptide identification in clinical proteomics [43]. However,
in each of these cases, we need to devise a customized data
partition algorithm that can assemble subsets of input data for
subtasks so that the subtasks are performed most efficiently.

VII. FUTURE WORK

The HySec-Flow framework can be extended to handle
multiple search tasks from different users by adding a new
’driver’ component to securely accept jobs from users and
assign containers on demand from a heterogeneous pool of
containers due to the pleasingly parallel nature of the work-
loads.

We will further integrate into future work another sophis-
ticated framework, Harp [44]-[51], which utilizes MPI-style
collective communications to deal with Big Data among the
nodes from a cluster in an HPC-Cloud environment with an
SGX-enabled machine learning applications.

The HySec-Flow framework has been designed to support
non-secure tasks, secure tasks written directly on Intel SGX
API, and secure tasks on Scone or Graphene. Hence other
hybrid workflows (secure / non-secure) other than genome

742

sequencing can be ported into the framework and scale in-
finitely using a programmable API [18]. Reads mapping is
a large data-intensive computing task compared to previously
developed SGX-based solutions (e.g., variant searching and
GWAS). Therefore, the framework presented here can be
extended to implement privacy-preserving algorithms for other
data-intensive genome computing tasks such as genome varia-
tion calling [52] and gene expression analyses [53] in future
work.

VIII. ACKNOWLEDGMENT

This work is partially supported by NSF grant No.1838083
on BIGDATA: IA: Enabling Large-Scale, Privacy-Preserving
Genomic Computing with a Hardware-Assisted Secure Big-
Data Analytics Framework, NSF grant CCF-1918626 Ex-
peditions: Collaborative Research: Global Pervasive Com-
putational Epidemiology, NSF grant No. 1835631 CINES:
A Scalable Cyberinfrastructure for Sustained Innovation in
Network Engineering and Science, and NIH RO1HGO010798:
Secure and Privacy-preserving Genome-wide and Phenome-
wide Association Studies via Intel Software Guard Extensions
(SGX). We appreciate technical support from Intel Inc. and
would like to thank Robert Henderson and the system team
for their assistance with our experiments on the SGX cluster.

REFERENCES
[1] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich,
“Identifying personal genomes by surname inference,” Science, vol. 339,
no. 6117, pp. 321-324, 2013.
C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP Journal on Information Security, vol. 2007,
p- 15, 2007.
I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for cpu based attestation and sealing,” in Proceedings of the 2nd inter-
national workshop on hardware and architectural support for security
and privacy, vol. 13. Citeseer, 2013, p. 7.
M. Russinovich, “Introducing Azure confidential computing,” Seattle,
WA: Microsoft, 2017.
F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “Sgx-bigmatrix: A
practical encrypted data analytic framework with trusted processors,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1211-1228.
F. Chen, C. Wang, W. Dai, X. Jiang, N. Mohammed, M. M. Al Aziz,
M. N. Sadat, C. Sahinalp, K. Lauter, and S. Wang, “Presage: privacy-
preserving genetic testing via software guard extension,” BMC medical
genomics, vol. 10, no. 2, pp. 77-85, 2017.
F. Chen, S. Wang, X. Jiang, S. Ding, Y. Lu, J. Kim, S. C. Sahinalp,
C. Shimizu, J. C. Burns, V. J. Wright et al., “Princess: Privacy-protecting
rare disease international network collaboration via encryption through
software guard extensions,” Bioinformatics, vol. 33, no. 6, pp. 871-878,
2017.
S. Carpov and T. Tortech, “Secure top most significant genome variants
search: idash 2017 competition,” BMC medical genomics, vol. 11, no. 4,
pp. 47-55, 2018.
A. Mandal, J. C. Mitchell, H. Montgomery, and A. Roy, “Data oblivious
genome variants search on intel sgx,” in Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Springer, 2018, pp. 296—
310.
C. Kockan, K. Zhu, N. Dokmai, N. Karpov, M. O. Kulekci, D. P.
Woodruff, and S. C. Sahinalp, “Sketching algorithms for genomic data
analysis and querying in a secure enclave,” Nature methods, vol. 17,
no. 3, pp. 295-301, 2020.
T. Pascoal, J. Decouchant, A. Boutet, and P. Esteves-Verissimo, “Dyps:
Dynamic, private and secure gwas,” Proceedings on Privacy Enhancing
Technologies, 2021.

[2]

=

[4]

[5

[6]

[7]

[8]

9

[10]

[11]

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23

[24]

[25]

[26

[28

[29]

[31]

[32]

V. Tam, N. Patel, M. Turcotte, Y. Bossé, G. Paré, and D. Meyre,
“Benefits and limitations of genome-wide association studies,” Nature
Reviews Genetics, vol. 20, no. 8, pp. 467-484, 2019.

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al.,
“{SCONE}: Secure linux containers with intel {SGX},” in I2th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 16), 2016, pp. 689-703.

C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library
{OS} for unmodified applications on {SGX},” in 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), 2017, pp. 645—
658.

H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows—wheeler transform,” bioinformatics, vol. 25, no. 14, pp. 1754—
1760, 2009.

B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
bowtie 2,” Nature methods, vol. 9, no. 4, p. 357, 2012.

Y. Chen, B. Peng, X. Wang, and H. Tang, “Large-scale privacy-
preserving mapping of human genomic sequences on hybrid clouds.”
in NDSS, 2012.

“Scalable and secure platform for hybrid task scheduling,” https://github.
com/Data-ScienceHub/sgx-tasks, accessed: 2021-07-11.

V. Costan and S. Devadas, “Intel sgx explained.” JACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1-118, 2016.

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside {SGX} enclaves with branch shadow-
ing,” in 26th {USENIX} Security Symposium ({USENIX} Security 17),
2017, pp. 557-574.

W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in sgx,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 2421-2434.

G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T.-H. Lai, and
D. Lin, “Racing in hyperspace: Closing hyper-threading side channels
on sgx with contrived data races,” in 2018 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2018, pp. 178-194.

0. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys:
Protecting {SGX} enclaves from practical side-channel attacks,” in 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC} 18), 2018,
pp. 227-240.

H. Mohamadi, B. P. Vandervalk, A. Raymond, S. D. Jackman, J. Chu,
C. P. Breshears, and I. Birol, “Dida: Distributed indexing dispatched
alignment,” PloS one, vol. 10, no. 4, p. 0126409, 2015.

“Scone file projection,” https://sconedocs.github.io/SCONE_
Fileshield/, accessed: 2021-02-04.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, ‘“Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient out-of-
order execution,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 991-1008.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142-157.

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, 2016, pp.
317-328.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs.” in NDSS, 2017.
R. Sinha, S. Rajamani, and S. A. Seshia, “A compiler and verifier for
page access oblivious computation,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, 2017, pp. 649—
660.

Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and efficient multitasking inside a single enclave of
intel sgx,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 955-970.

J. Van Bulck and F. Piessens, “Tutorial: Uncovering and mitigating side-
channel leakage in intel sgx enclaves,” in Proceedings of the 8th Inter-
national Conference on Security, Privacy, and Applied Cryptography
Engineering (SPACE’18). Springer, 2018.

743

[33
[34]

[35]
[36]

[37]

[38]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

N. Siva, “1000 genomes project,” 2008.

“BWA using Scone,” https://github.com/dsc-sgx/bwa-sgx-scone, ac-
cessed: 2021-02-05.

“BWA using Graphene-SGX,”
graphene-bwa, accessed: 2021-06-19.
“Containerized dida & bwa on scone,” https:/github.com/
Data-ScienceHub/scone-dida-bwa, accessed: 2021-06-20.

C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation
and security isolation of library oses for multi-process applications,” in
Proceedings of the Ninth European Conference on Computer Systems,
2014, pp. 1-14.

K. Shanker, A. Joseph, and V. Ganapathy, “An evaluation of methods to
port legacy code to sgx enclaves,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1077-1088.

R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying
confidentiality of enclave programs,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 1169-1184.

P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia,
“A Formal Foundation for Secure Remote Execution of Enclaves,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2435-2450.

C. Lambert, M. Fernandes, J. Decouchant, and P. Esteves-Verissimo,
“Maskal: Privacy preserving masked reads alignment using intel sgx,”
in 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS).
IEEE, 2018, pp. 113-122.

K. V. Prasad, A. A. Abdel-Hameed, D. Xing, and A. S. Reddy,
“Global gene expression analysis using rna-seq uncovered a new role for
srl/camta3 transcription factor in salt stress,” Scientific reports, vol. 6,
no. 1, pp. 1-15, 2016.

S. Decramer, A. G. de Peredo, B. Breuil, H. Mischak, B. Monsarrat, J.-L.
Bascands, and J. P. Schanstra, “Urine in clinical proteomics,” Molecular
& cellular proteomics, vol. 7, no. 10, pp. 1850-1862, 2008.

B. Zhang, Y. Ruan, and J. Qiu, “Harp: Collective communication on
hadoop,” in 2015 IEEE International Conference on Cloud Engineering.
IEEE, 2015, pp. 228-233.

B. Zhang, B. Peng, and J. Qiu, “High performance lda through collec-
tive model communication optimization,” Procedia Computer Science,
vol. 80, pp. 86-97, 2016.

L. Chen, B. Peng, B. Zhang, T. Liu, Y. Zou, L. Jiang, R. Henschel,
C. Stewart, Z. Zhang, E. Mccallum et al., “Benchmarking harp-daal:
High performance hadoop on knl clusters,” in 2017 IEEE 10th Interna-
tional Conference on Cloud Computing (CLOUD). 1EEE, 2017, pp.
82-89.

B. Peng, B. Zhang, L. Chen, M. Avram, R. Henschel, C. Stewart, S. Zhu,
E. Mccallum, L. Smith, T. Zahniser et al., “Harplda+: Optimizing latent
dirichlet allocation for parallel efficiency,” in 2017 IEEE International
Conference on Big Data (Big Data). 1EEE, 2017, pp. 243-252.

B. Peng, L. Chen, J. Li, M. Jiang, S. Akkas, E. Smirnov, R. Israfilov,
S. Khekhnev, A. Nikolaev, and J. Qiu, “Harpgbdt: Optimizing gradient
boosting decision tree for parallel efficiency,” in 2019 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2019, pp. 1-11.
B. Zhang, B. Peng, and J. Qiu, “Model-centric computation abstractions
in machine learning applications,” in Proceedings of the 3rd ACM
SIGMOD Workshop on Algorithms and Systems for MapReduce and
Beyond, 2016, pp. 1-4.

L. Chen, J. Li, C. Sahinalp, M. Marathe, A. Vullikanti, A. Nikolaev,
E. Smirnov, R. Israfilov, and J. Qiu, “Subgraph2vec: Highly-vectorized
tree-like subgraph counting,” in 2019 IEEE International Conference on
Big Data (Big Data). 1EEE, 2019, pp. 483-492.

B. Peng, J. Li, S. Akkas, T. Araki, O. Yoshiyuki, and J. Qiu, “Rank
position forecasting in car racing,” in 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 1EEE, 2021, pp. 724—
733.

P. Consortium, “A map of human genome variation from population-
scale sequencing,” Nature, vol. 467, no. 7319, p. 1061, 2010.

M. Alarcén, B. S. Abrahams, J. L. Stone, J. A. Duvall, J. V. Perederiy,
J. M. Bomar, J. Sebat, M. Wigler, C. L. Martin, D. H. Ledbetter et al.,
“Linkage, association, and gene-expression analyses identify cntnap2
as an autism-susceptibility gene,” The American Journal of Human
Genetics, vol. 82, no. 1, pp. 150-159, 2008.

https://github.com/StanPlatinum/

Authorized licensed use limited to: Indiana University. Downloaded on December 23,2021 at 17:14:56 UTC from IEEE Xplore. Restrictions apply.

