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Abstract—A trusted execution environment (TEE) such as Intel
Software Guard Extension (SGX) runs attestation to prove to
a data owner the integrity of the initial state of an enclave,
including the program to operate on her data. For this purpose,
the data-processing program is supposed to be open to the
owner or a trusted third party, so its functionality can be
evaluated before trust being established. In the real world,
however, increasingly there are application scenarios in which the
program itself needs to be protected (e.g., proprietary algorithm).
So its compliance with privacy policies as expected by the data
owner should be verified without exposing its code.

To this end, this paper presents DEFLECTION, a new model
for TEE-based delegated and flexible in-enclave code verification.
Given that the conventional solutions do not work well under the
resource-limited and TCB-frugal TEE, we come up with a new
design inspired by Proof-Carrying Code. Our design strategically
moves most of the workload to the code generator, which is
responsible for producing easy-to-check code, while keeping the
consumer simple. Also, the whole consumer can be made public
and verified through a conventional attestation. We implemented
this model on Intel SGX and demonstrate that it introduces
a very small part of TCB. We also thoroughly evaluated its
performance on micro- and macro- benchmarks and real-world
applications, showing that the design only incurs a small overhead
when enforcing several categories of security policies.

Index Terms—Intel SGX, Confidential Computing, Proof-
Carrying Code, Enclave Shielding Runtime

I. INTRODUCTION

Recent years have witnessed the emergence of hardware

trusted execution environments (TEEs) that enable efficient

computation on untrusted platforms. A prominent example

such as Intel SGX [1] has already been supported by major

cloud providers today, including Microsoft Azure and Google

Cloud [2], [3], and its further adoption has been facilitated

by the Confidential Computing Consortium [4], a Linux

Foundation project that brings together the biggest technical

companies such as Intel, Google, Microsoft and IBM etc.

However, before TEEs can see truly wide deployment for real-

world confidential computing, key technical barriers still need

to be overcome, remote attestation in particular.

Remote attestation. At the center of a TEE’s trust model is

remote attestation (RA), which allows the user of confidential

computing to verify that the enclave code processing her

§Corresponding authors

sensitive data is correctly built and operates on a genuine

TEE platform [5], so her data is well protected. This is

done on SGX through establishing a chain of trust rooted

at a platform attestation key which is used to generate a

Quote – a signed report that contains the measurement of

the code and data in an enclave; the Quote is delivered to

the data owner and checked against the signature and the

expected measurement hash. This trust building process is

contingent upon the availability of the measurement, which

is calculated from the enclave program either by the data

owner when the program is publicly available or by a trusted

third party working on the owner’s behalf. This becomes

problematic when the program itself is private and cannot be

exposed. Programs may have exploitable bugs or they may

write information out of the enclave through corrupted pointers

easily. For example, a pharmaceutical company can run its

proprietary algorithm inside an enclave hosting patient medical

records, without exposing the algorithm but can still ensure

the compliance of data use with the hospital’s privacy policy.

Another example can be a privacy-preserving credit evaluation

service, in which a customer’s transactions are only exposed

to an enclave running the credit evaluation code in compliance

with a set of public privacy-protection rules (such as GDPR).

We consider confidential computing as a service (CCaaS) as

a privacy extension of today’s online data processing services

like machine-learning as a service [2]. CCaaS is hosted by the

party that operates its own target binary on the data provided

by remote users. With applications of this kind on the rise,

new techniques for protecting both data and code privacy are

in great demand.

Challenges. To address this problem, we present in this paper

a novel Delegated and flexible in-enclave code verification
(DEFLECTION) model to enable verification of an enclave pro-

gram’s compliance with user-defined security policies without

exposing its source or binary code to unauthorized parties

involved. Under the DEFLECTION model, a bootstrap enclave
whose code is public and verifiable through the Intel’s remote

attestation, is responsible for performing the compliance check

on behalf of the participating parties, who even without access

to the code or data to be attested, can be convinced that desired

policies are faithfully enforced. However, building a system
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to support this model turns out to be nontrivial, due to the

complexity in static analysis of enclave binary for policy com-

pliance, the need to keep the verification mechanism, which

is inside the enclave’s trusted computing base (TCB), small,

the demand for a quick turnaround from the enclave user,

and the limited computing resources today’s SGX provides.

Although the shielding runtimes such as Library OSes [6],

[7], SCONE container [8], Ryoan sandbox [9] and the inter-

preters/compilers built for SGX [10], [11] enable confinement

of unmodified binary in SGX enclaves, they all rely on a heavy

interface layer for in-enclave service code to interact with the

OS/Hypervisor [12], which introduces performance overhead.

More importantly, the confinement mechanisms (sometimes

including a whole interpreter) significantly increase the TCB,

leading to a challenge in ensuring its security [13].

A promising direction we envision that could lead to a

practical solution is proof-carrying code (PCC) [14], [15],

a technique that enables a verification condition generator
(VCGen) [16]–[18] to analyze a program and create a proof

that attests the program’s adherence to policies, and a proof
checker to verify the proof and the code. The hope is to

keep the VCGen outside the enclave while keeping the proof

checker inside the enclave small and efficient. The problem is

that this cannot be achieved by existing approaches, which

utilize formal verification (such as [18], [19]) to produce

a proof that could be considerably larger than the original

code. Actually, today’s formal verification techniques, theorem

proving in particular, are still less scalable, difficult to handle

large code blocks when constructing a security proof [20].

Our solution. We developed a new technique to instantiate

the DEFLECTION model on SGX. Our approach, has been

inspired by PCC, but relies on program analysis and Software-

based Fault Isolation (SFI) techniques, particularly out-of-

enclave targeted instrumentation for lightweight in-enclave

information-flow confinement, instead of heavyweight theorem

proving to ensure policy compliance of enclave code. More

specifically, DEFLECTION operates an untrusted code producer
as a compiler to build the binary code for a data-processing

program (called target program) and instrument it with a set of

security annotations for enforcing desired policies at runtime,

together with a lightweight trusted code consumer running in

the bootstrap enclave to statically verify whether the target

code indeed carries properly implanted security annotations.

To reduce the TCB and in-enclave computation, DEFLEC-

TION is designed to simplify the verification step by pushing

out most computing burden to the code producer running

outside the enclave. More specifically, the target binary is

expected to be well formatted by the producer, with all its

indirect control flows resolved, all possible jump target ad-

dresses specified on a list and enforced by security annotations.

In this way, the code consumer can check the target binary’s

policy compliance through lightweight Recursive Descent Dis-
assembly to inspect its complete control flow (Section V-B),

so as to ensure the presence of correctly constructed security

annotations in front of each critical operation, such as load,

store, enclave operations like OCall, and stack management

(through a shadow stack). Any failure in such an inspection

causes the rejection of the program. Also, since most code

instrumentation (for injecting security annotations) is tasked

to the producer, the code consumer does not need to make any

change to the binary except relocating it inside the enclave.

As a result, we only need a verifier with a vastly simplified

disassembler, instead of a full-fledged, complicated binary

analysis toolkit, to support categories of security policies,

including data leak control, control-transfer management, self-

modifying code block and side/covert channel mitigation in a

small-size machine-language format (Section IV-B); in further

work, other proofs could be extended given a formal model of

the x64 instruction set (e.g., as in [21]). A wider spectrum of

policies can also be upheld by an extension of DEFLECTION,

as discussed in the paper (Section VII).

We implemented DEFLECTION in our research, building the

code producer on top of the LLVM compiler infrastructure

and the code consumer based upon the Capstone disassembly

framework [22] and the core disassembling engine for x86

architecture. Using this unbalanced design, our in-enclave pro-

gram has only 2000 lines of source code, which is significantly

smaller than other shielding runtimes. We further evaluated

our implementation on micro-benchmarks (nBench), as well

as macro-benchmarks, including credit scoring, HTTPS server,

and also basic biomedical analysis algorithms.

DEFLECTION incurs on average (calculated by geometric

mean) 20% performance overhead enforcing all the proposed

security policies, and leads to around 10% performance over-

head without side/covert channel mitigation. We have released

our code on Github [23].

II. BACKGROUND

Intel SGX. Intel SGX [1] is a user-space TEE, which is

characterized by flexible process-level isolation. Such pro-

tection, however, comes with in-enclave resource constraints.

Particularly, only 128 MB (256 MB for some new processors)

encryption protected memory is reserved. Although virtual

memory support is available, it incurs significant overheads

in paging [8].

Another problem caused by SGX’s design is a large attack

surface. The application can invoke a pre-defined function

inside the enclave, passing input parameters and pointers

to shared memory within the application. Those invocations

from the application to the enclave are called ECall. When

an enclave executes, it can perform an OCall to a pre-

defined function in the application. Contrary to an ECall,

an OCall cannot share enclave memory with the application,

so it must copy the parameters into the application memory

before the OCall. When an enclave program contains memory

vulnerabilities, attacks can happen to compromise enclave’s

privacy protection. Prior research demonstrates that a Return-

oriented programming (ROP) attack can succeed in injecting

malicious code inside an enclave, which can be launched by

the OS, Hypervisor, or BIOS [24]–[26]. Another security risk

is side-channel leak [27]–[29], caused by the thin software
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stack inside an enclave (for reducing TCB), which often has

to resort to the OS for resource management (e.g., paging,

I/O control). Particularly, an OS-level adversary can perform

a controlled side channel attack (e.g., [30]).

PCC. PCC is a mechanism that allows a host system to

verify an application’s properties with a proof accompanying

the application’s executable code. Traditional PCC schemes

tend to utilize formal verification for proof generation and

validation. Techniques for this purpose includes verification

condition generation [16], [31], theorem proving [32]–[34],

and proof checking [35], which typically work on type-safe

intermediate languages (IL) or higher level languages. A

problem here is that up to our knowledge, no formal tool

today can automatically transform a binary to IL for in-

enclave verification. BAP [36] disassembles binaries and lifts

x86 instructions to a formal format, but it does not have a

runtime C/C++ library for static linking, as required for an

enclave program. Moreover, the PCC architecture relies on

the correctness of the VCGen and the proof checker, so a

direct application of PCC to confidential computing needs

to include both in TCB. This is problematic due to their

complicated designs and implementations, which are known to

be error-prone [19]. Particularly, today’s VCGens are built on

either an interpreter/compiler even a virtual machine [17], and

therefore will lead to a huge TCB. Prior attempts [37] to move

VCGen out of TCB are found to have serious performance

impacts, due to the significantly increased proof size growing

exponentially with the size of the program that needs to be

certified [14]. Although techniques are there to reduce the

proof size [18], [37], they are too complicated to scale to

real-world applications [35].

III. DEFLECTION

In this section, we present the DElegated and FLexible in-
Enclave Code verification (DEFLECTION) model to allow the

data owner to verify that the enclave code satisfies predefined

security policy requirements without undermining the privacy

of the enclave code. Consider an organization that provides

data-processing services, such as image editing, tax prepa-

ration, personal health analysis and deep learning inference

as a service. To use the services, customers need to upload

their sensitive data, such as images, tax documents, and health

data, to the hosts operated by the organization. To avoid

exposing the data, the services run inside SGX enclaves and

need to prove to the customers that they are accessing to

attested service programs. However, the organization may not

want to release proprietary programs to protect its intellectual

property. Here, DEFLECTION can enforce the data privacy on

behalf of the data-processing services. Besides, the framework

of our system is highly flexible, which means assembling

new policies into current design can be very straightforward.

Different on-demand policies can be appended/withdrawn to

serve various goals. For example, DEFLECTION can make

the quick patch possible on software level, like the way people

coping with 1-day vulnerabilities - emergency quick fix.

Fig. 1: The DEFLECTION model

A. The Delegation Model

Attestation service. Attestation Service (AS) assists in the

remote attestation process by helping the data owner verify

the quote generated by an enclave, as performed by the Intel

attestation service for SGX.

Bootstrap enclave. The bootstrap enclave is a built-in control

layer on the software stack, hosted by the code provider or a

third party cloud (see Figure 1). Its code is public and initial

state is measured by hardware for generating an attestation

quote, which is later verified by the data owner with the help

of the AS. This software layer is responsible for establishing

security channels with enclave users, authenticating and dy-

namically loading the binary of the target program from the

code provider and data from its owner. It further verifies the

code to ensure its compliance with predefined security policies

before bootstrapping the computation. During the computing,

it also controls the data entering or exiting the enclave, e.g.,

through SGX ECalls/OCalls to perform data sanitization.

Data owner. The data owner uploads sensitive data to use

in-enclave services and intends to keep her data secret during

the computation.

Code provider. The code provider (owner) can be the service

provider, and in this case, her target binary (the service code)

can be directly handed over to the bootstrap enclave for

compliance check. So, similar to the data owner, she can

also request a flexible/portable remote attestation to verify the

bootstrap enclave before delivering her binary to the enclave

for a compliance check.

Key agreement procedure. Both parties, a service provider

(code provider) and a remote user (data owner), inspect and

agree on the implementation details of the bootstrap enclave.

The data owner and the code provider can both attest that the

bootstrap loader is correctly running on SGX platforms using

remote/local attestation. In particular, data owner and code

provider both generate a measurement of the bootstrap enclave,

which acts as the trust anchor of their agreement and is

required for verification during SGX remote/local attestation.

After the two attestations are done and shared session keys

are negotiated by Diffie–Hellman key exchange, all messages

can be transferred through the two trusted channels. Since

the data owner already knows the measurement/hash of the

service code. The bootstrap enclave first extracts and verifies

the measurement/hash of the service code, and then sends the

measurement/hash to the data owner. After the data owner is

sure about the authenticity of the service code, she can begin

to feed data into the service.
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B. Guidelines

To instantiate a DEFLECTION System on a real-world TEE

such as SGX, we expect the following requirements to be met

by the design:

Minimizing TCB and resource consumption. Today’s TEEs

operate under resource constraints. Particularly, SGX is char-

acterized by a limited Enclave Page Cache (EPC). To maintain

reasonable performance, we expect the software stack of the

DEFLECTION model to control its resource use.

Controlling portable code loading. The target binary is

dynamically loaded and inspected by the bootstrap enclave.

However, the binary may further sideload other code during

its runtime. So the target binary, itself loaded dynamically, is

executed on the enclave’s heap space. Preventing it from side-

loading requires a data execution prevention (DEP) scheme to

guarantee the W ⊕ X privilege.

Preventing malicious control flows. Software stack should be

designed to prevent the code from escaping policy enforcement

by redirecting its control flow or tampering with the bootstrap

enclave’s critical data structures. Particularly, previous work

shows that special instructions like ENCLU could form unique

gadgets for control flow redirection [25], which therefore need

proper protection.

Minimizing performance impact. In all application scenar-

ios, the data owner and the code provider expect a quick

turnaround from code verification. Also the target binary’s

performance should not be significantly undermined by the

runtime compliance check.

C. Threat Model

• We do not trust the service code (target binary) and the

platform hosting the enclave. In CCaaS, the platform may

deliberately run vulnerable code to exfiltrate sensitive data,

by exploiting known vulnerabilities during the computation.

• We assume that the code of the bootstrap enclave can be

inspected to verify its functionalities and correctness. Also we

consider the TEE hardware, its attestation protocol, and all

underlying cryptographic primitives to be trusted.

IV. DESIGN

In this section we present our design, which elevates the

SGX platform with the support for the DEFLECTION model.

This is done using an in-enclave software layer – the boot-

strap enclave running the code consumer and an out-enclave

auxiliary – the code generator.

A. Architecture Overview

Fig. 2: System overview

The code generator and the binary/proof it produces are all

considered untrusted. The code consumer in the TCB is with

two components: a dynamic-loader operating a rewriter for re-

locating the target binary, and a proof verifier running a dis-

assembler for checking the correct instrumentation of security

annotations. These components are all made public and can

therefore be measured for a remote attestation (Section V-B).

They are designed to minimize their code size, by moving

most workload to the code producer.

We present the workflow of DEFLECTION in Figure 3.

The target program (the service code) is first instrumented

by the code producer, which runs a customized LLVM-based

compiler (step 1). Then the target binary with the proof are

delivered to the enclave. The code is first parsed (step 2)

and then disassembled from the binary’s entry along with its

control flow traces. After that, the proof with the assembly is

relocated and activated by the dynamic loader (step 3), further

inspected by the verifier and if correct (step 4) before some

immediates being rewriten (step 5). Finally, after the bootstrap

transfers the execution to the target program, the service begins

and policies are checked at runtime.

B. Security Policies

Without exposing its code for verification, the target binary

needs to be inspected for compliance with security policies by

the bootstrap enclave. These policies are meant to protect the

privacy of sensitive data, to prevent its unauthorized disclosure.

The current design supports following categories.

Enclave entry and exit control. DEFLECTION can mediate

the content imported to or exported from the enclave, through

the ECall and OCall interfaces, for the purposes of reducing

the attack surface and controlling information leaks. Another

objective here is to mitigate covert channel leaks through the

interface between the enclave and the OS, making the attempt

to covertly using users’ data to modulate events (e.g., system

call arguments, I/O traffic statistics) hard to succeed.

• P0: Input constraint, output encryption and entropy control.
We restrict the ECall interfaces to just serving the purposes

of uploading data and code, which perform authentication,

decryption and optionally input sanitization (or a simple

length check). Also only some types of system calls are

allowed through OCalls. Particularly, all network communica-

tion through OCalls should be encrypted with proper session

keys (for the data owner or the code provider).

Memory leak control. Information leak can happen through

unauthorized write to the memory outside the enclave, which

should be prohibited through the code inspection.

• P1: Preventing explicit out-of-enclave memory stores. This

policy prevents the target binary from explicit memory writes.

It can be enforced by security annotations through mediation

on the destination addresses of memory store instructions

(such as MOV) to ensure that they are within the enclave

address range ELRANGE).

• P2: Preventing implicit out-enclave memory stores. Illicit

RSP register save/spill operations can also leak sensitive
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Fig. 3: Detailed framework and workflow

information to the out-enclave memory by pushing a register

value to the address specified by the stack pointer, which is

prohibited through inspecting the RSP content [38].

• P3: Preventing unauthorized change to security-critical data
within the bootstrap enclave. This policy ensures that the

security-critical data would never be tampered with by the

untrusted code.

• P4: Preventing runtime code modification. Since the target

code is untrusted and loaded into the enclave during its

operation, under SGXv1, the code can only be relocated to

pages with RWX properties. DEP protection should, therefore,

be in place to prevent the target binary from changing itself

or uploading other code at runtime.

Control-flow management. To ensure that security annota-

tions and other protection cannot be circumvented at runtime,

the control flow of the target binary should not be manipulated.

For this purpose, the following policy should be enforced:

• P5: Preventing manipulation of indirect branches to violate
policies P1 to P4. This policy is to protect the integrity of the

target binary’s control flow, so security annotations cannot be

bypassed. To this end, we need to mediate all indirect control

transfer instructions, including indirect calls and jumps, and

return instructions.

AEX based side/covert channel mitigation. In addition to

the covert channel through software interfaces like system

calls, we further studied the potential to mitigate the covert

channel threat through SGX hardware interfaces. It is well

known that SGX’s user-land TEE design exposes a large side-

channel surface, which cannot be easily eliminated. Examples

include the controlled side channel attack [30] that relies on

triggering page faults, and the attacks on L1/L2 caches [39],

which requires context switches to schedule between the attack

thread and the enclave thread, when Hyper-threading is turned

off or a co-location test is performed before running the bi-

nary [40]. Such protection can be integrated into DEFLECTION

to mitigate side- or covert-channel attacks in this category,

closing an important attack surface.

• P6: Controlling the AEX frequency. The policy requires

the total number of the AEX concurrences to keep below a

threshold during the whole computation. Once the AEX is

found to be too frequent, above the threshold, the execution

is terminated to prevent further information leak.

C. Policy-Compliant Code Generation
As mentioned earlier, the design of DEFLECTION is to move

the workload from in-enclave verification to out-enclave gen-

eration of policy-compliant binary and its proof. In this section

we describe the design of the code generator, particularly how

it analyzes and instruments the target program so that security

policies (P1-P6, see Section IV-B) can be enforced during

the program’s runtime. Customized policies for purposes other

than privacy can also be translated into proof and be enforced

flexibly, e.g., to verify code logic and its functionalities.

Enforcing P1. The code generator is built on top of the LLVM

compiler framework (Section V-A). When compiling the target

program (in C) into binary, the code generator identifies

(through the LLVM API MachineInstr::mayStore())

all memory storing operation instructions (e.g., MOV, Scale-

Index-Base (SIB) instructions) and further inserts annotation

code before each instruction to check its destination address

and ensure that it does not write outside the enclave at runtime.

The boundaries of the enclave address space can be obtained

during dynamic code loading, which is provided by the loader

(Section IV-D). The correct instrumentation of the annotation

is later verified by the code consumer inside the enclave.

Enforcing P2. The generator locates all instructions that

explicitly modify the stack pointer (the RSP in x86 arch)

from the binary (e.g., a MOV changing its content) and inserts

annotations to check the validity of the stack pointer after

them. This protection, including the content of the annota-

tions and their placement, is verified by the code consumer

(Section IV-D). Note that RSP can also be changed implicitly,

e.g., through pushing oversized objects onto the stack. This

violation is prevented by the loader (Section IV-D), which adds

guard pages (pages without permission) around the stack.

Enforcing P3. Similar to the enforcement of P1 and P2, the

code generator inserts security annotations to prevent (both

explicit and implicit) memory write operations on security-

critical enclave data (e.g., SSA/TLS/TCS) once the untrusted

code is loaded and verified.

Enforcing P4. To prevent the target binary from chang-

ing its own code at runtime, the code generator instru-

ments all its write operations (as identified by the APIs

readsWritesVirtualRegister() and mayStore())

with the annotations that disallow alternation of code pages.

Note that the code of the target binary has to be placed on

RWX pages by the loader under SGXv1 and its stack and heap

are assigned to RW pages, so runtime code modification cannot

be stopped solely by page-level protection.

Enforcing P5. To control indirect calls or indirect jumps in

the target program, the code generator extracts all labels from
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its binary during compilation and instruments security annota-

tions before related instructions to ensure that only these labels

can serve as legitimate jump targets. The locations of these

labels should not allow instrumented security annotations to

be bypassed. Also to prevent the backward-edge control flow

manipulation (through RET), the generator injects annotations

after entry into and before return from every function call to

operate on a shadow stack, which is allocated during code

loading. All the legitimate labels are also replaced by the

loader when relocating the target binary. Such annotations are

then inspected by the verifier when disassembling the binary

to ensure that protection will not be circumvented by control-

flow manipulation (Section IV-D).

Enforcing P6 with SSA inspection. We incorporated Hyper-

race [40] to enforce P6. When an exception or interrupt takes

place during enclave execution, an AEX is triggered by the

hardware to save the enclave context (such as general registers)

to the state saving area (SSA). This makes the occurrence of

the AEX visible [40], [41]. Specifically, the code generator

enforces the policy by instrumenting every basic block with

an annotation that sets a marker in the SSA and monitors

whether the marker is overwritten, which happens when the

enclave context in the area has been changed, indicating that an

AEX has occurred. The instrumented code inspects the marker

every q instructions within a basic block, which guarantees

that the consecutive AEX(s) triggered will be detected and

counted at least once. If an AEX is detected, a co-location

test via data race probability will be performed to check co-

location of the two threads. Through counting the number of

consecutive AEXes, the protected target binary can be aborted

if the counted number of AEXs exceeds a preset threshold. The

threshold, as a tradeoff of performance and security, can be

set by profiling the enclave program in benign environments

under reasonable workload. Meanwhile, we parameterized the

threshold to control the possibility of an attack is co-located.

We empirically evaluated the accuracy of the co-location

tests. As the primary goal of the co-location test is to raise

alarms when the two threads are not co-located, we define

a false positive α as a false alarm (i.e., the co-location test

fails) when the two threads are indeed scheduled on the same

physical core. We run the same co-location test code on four

different processors (i.e., i7-6700, E3-1280 v5, i7-7700HQ,

and i5-6200U). Accuracy values are estimated by conducting

25,600,000 unit tests and results are on the same order of

magnitude. We believe it is reasonable to select a desired α
value to approximate false positives in practice. More details

can be found at our previous work [40].

Code loading support. Loading the binary is a procedure that

links the binary to external libraries and relocates the code.

For a self-contained function (i.e., one does not use external

elements), compiling and sending the bytes of the assembled

code is enough. However, if the function wants to use external

elements but not supported inside an enclave (e.g., a system

call), a distributed code loading support mechanism is needed.

In our design, the loading procedure is divided into two parts,

one (linking) outside and the other (relocation) inside the

enclave. Our code generator assembles all the symbols of the

entire code (including necessary libraries and dependencies)

into one relocatable file via static linking. While linking all

object files generated by the LLVM, it keeps all symbols

and relocation information held in relocatable entries. The

relocatable file, as above-mentioned target binary, is expected

to be loaded for being relocated later (Section IV-D).

D. Configuration, Loading and Verification
With annotations instrumented and legitimate jump targets

identified, the in-enclave workload undertaken by the bootstrap

enclave side has been significantly reduced. Still, it needs to

be properly configured to enforce the policy (P0) that cannot

be implemented by the code generator. Following we elaborate

how these critical operations are supported by our design.

Enclave configuration to enforce P0. To enforce the input

constraint, we need to configure the enclave by defining certain

public ECalls in Enclave Definition Language (EDL) files

for data and code secure delivery. Note such a configuration,

together with other security settings, can be attested to the

remote data owner or code provider. The computation result

of the in-enclave service is encrypted using a shared session

key after the remote attestation and is sent out through a

customized OCall. For this purpose, DEFLECTION only de-

fines allowed system calls (e.g., send/recv) in the EDL

file, together with their wrappers for security control (e.g.,

verifying the system call arguments). To support the basic

CCaaS setting, send and recv need to be communicated

to the data owner.
We use entropy control to mitigate covert-channels. Since

the data owner is the recipient of an enclave’s output, all a

malicious enclave program can do is to signal to the untrusted

OS the content of the data through covert channels, e.g.,

through system call interfaces. To address this type of covert

channel leak, we control the enclave program’s input and

output behaviors. Specially, the wrapper for send encrypts

the message to be delivered and pads it to a fixed length.

Further, the wrapper can put a constraint on the length of the

result to control the amount of information disclosed to the

code provider: e.g., only 8 bits can be sent out.

Dynamic code loading and unloading. The target binary is

delivered into the enclave as data through an ECall, processed

by the wrapper placed by DEFLECTION, which authenticates

the sender and then decrypts the code before handing it over

to the dynamic loader. The primary task of the loader is to

rebase all symbols of the binary according to its relocation

information (Section IV-C). For this purpose, the loader first

parses the binary to retrieve its relocation tables, then updates

symbol offsets, and further reloads the symbols to designated

addresses. During this loading procedure, the indirect branch

label list is “translated” to in-enclave addresses, which are

considered to be legitimate branch targets and later used for

policy compliance verification.
As mentioned earlier (Section IV-C), the code section of

the target binary is placed on pages with RWX privileges, since
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under SGXv1, the page permissions cannot be changed during

an enclave’s operation, while the data sessions (stack, heap)

are assigned to the pages with RW privileges. These code pages

for the binary are guarded against any write operation by the

annotations for enforcing P4. Other enclave code, including

that of the code consumer, is under the RX protection through

enclave configuration. Further the loader assigns two non-

writable blank guard pages right before and after the target

binary’s stack for enforcing P2, and also reserves pages for

hosting the list of legitimate branch targets and the shadow

stack for enforcing P5.

Just-enough disassembling and verification. After loading

and relocating, the target binary is passed to the verifier for

a policy compliance check. Such a verification is meant to

be highly efficient, together with a lightweight disassembler.

Specifically, our disassembler is designed to leverage the

assistance provided by the code generator. It starts from the

program entry discovered by the parser and follows its control

flow until an indirect control flow transfer, such as indirect

jump or call, is encountered. Then, it utilizes all the legitimate

target addresses on the list to continue the disassembly and

control-flow inspection. In this way, the whole program will

be quickly and comprehensively examined.

For each indirect branch, the verifier checks the annotation

code right before the branch operation, which ensures that

the target is always on the list at runtime. Also, these target

addresses, together with direct branch targets, are compared

with all guarded operations in the code to detect any attempt

to evade security annotations. To simplify the verification of

the CFI policy compliance, the verifier utilizes hints (i.e.,

the symbol name on the list) to identify the set of possible

targets for calls/jumps. For this purpose, the verifier scans the

machine code to ensure that these identifiers appear only at

the beginning of basic blocks. The verification of P6 for covert

channel mitigation is done one basic block at a time, and

on the basic-block exit the verifier checks whether all policy-

compliance instrumentations are in position at the entries to all

possible successor blocks. With such verification, no hidden

control transfers will be performed by the binary, allowing

further inspection of other instrumented annotations. These

annotations are expected to be well formatted and located

around the critical operations as described in Section IV-C.

More details are given in Section V-A.

V. IMPLEMENTATION

We implemented the prototype on Linux/x86 arch. Specif-

ically, we implemented the code generator with LLVM 9.0.0,

and built other parts on an SGX environment. The LLVM

passes consist of several types of instrumentations for the

code generator. Besides, we implemented the bootstrap enclave

based on Capstone [22] as the disassembler.

A. Multi-level Instrumentation

The code generator we built is mainly based on LLVM

(Fig. 4), and the assembly-level instrumentation is the core

module. More specifically, we implemented modules for

Source Code Clang LLVM IR LLVM Assembly

Backend Pass

Shadow Stack
instrumentation

Forward-edge branch
instrumentation

Memory storing
instrumentation

RSP modifying
instrumentation

IR PassSwitches

SSA monitoring
instrumentation

...

Fig. 4: Workflow of flexible code generation

1 pushq %rbx ; s av e e x e c u t i o n s t a t u s
2 pushq %r a x
3 l e a q [ r e g +imm ] , %r a x ; l o a d t h e ope rand
4 movq $0x3FFFFFFFFFFFFFFF , %rbx ; s e t bounds
5 cmpq %rbx , %r a x
6 j a e x i t l a b e l
7 movq $0x4FFFFFFFFFFFFFFF , %rbx ; s e t bounds
8 cmpq %rbx , %r a x
9 j b e x i t l a b e l

10 popq %r a x
11 popq %rbx
12 movq reg , [ r e g +imm]

Fig. 5: Store instruction instrumentation

checking memory writing instructions, RSP modification,

indirect branches and for building shadow stack. We also

reformed an instrumentation module to generate side-channel-

resilient annotations. To support flexible control of different

security policies, we implanted a set of switches into our

code generator. These switches work on the IR level and

their on/off states can be passed down to the target code level

for further control, depending on the policies to be enforced.

On the in-enclave verifier side, we also use this separating
mechanism and policy design, allowing for smooth integration

of a loading-time pass that supports a new mitigation scheme.

More specifically, we provide high-level APIs that allows the

developers to implement their instrumentation and validation

passes and plug them into the loader [23].

Here is an example (Figure 5). The main function of

the module for checking explicit memory write instructions

(P1) is to insert annotations before them. Suppose there is

such a memory write instruction in the target program, ‘mov
reg, [reg+imm]’, the structured annotation first sets the

upper and lower bounds as two temporary Imms (0x3ffffffffffff

and 0x4ffffffffffff), and then compares the address of the

destination operand with the bounds. The real upper/lower

bounds of the memory write instruction are specified by the

loader later. If our instrumentation finds the memory write

instruction trying to write data to illegal space, it will cause

the program to exit at runtime.

B. Building Bootstrap Enclave

Following the design in Section IV-D, we implemented

a Dynamic Loading after RA mechanism for the bootstrap

enclave. The enclave is initiated based upon a configuration

file (a.k.a. the manifest file), which specifies the system calls

the enclave is allowed to make in compliance with security

policies, the protection enforced through instrumented OCall

stubs. During the whole service, the data owner can only
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see the attestation messages related to the bootstrap’s enclave

quote, but learn nothing about service provider’s code.

Relocatable
Target Program

Indirect Branch List

Relocatable
Target Program

Loader / Verifier

Reserved 

Others

Enclave

Indirect
Branch List

Heap for
Relocated
Program

Indirect Branch List

Loader / Verifier

Others

Enclave

Shadow Stack

1. Receive with
ECALLs

2. In-enclave
Rebase

RWX
with
DEP

Relocated
Program

Fig. 6: Detailed workflow of the dynamic loader

Remote attestation. Once the bootstrap enclave is initiated,

it needs to be attested. We leverage the RA-TLS routine [42]

and adjust it to our implementation. The conception of “Role”

(code owner or data owner) is incorporated in RA-TLS, to

make sure the bootstrap enclave can distinguish the two parties

and communicate with them using different schemes. The

RA procedures are invoked inside the bootstrap enclave after

secret provision between parties. After obtaining a quote of the

bootstrap enclave, the remote data owner submits the quote to

IAS and obtains an attestation report.

Dynamic loader. When the RA is finished, trust be-

tween the data owner and the bootstrap enclave is es-

tablished. The user then can locally/remotely call Ecall

(ecall_receive_binary) to load the service binary in-

strumented with security annotations and the indirect branch

list without knowing the code. User data is loaded from

untrusted memory into the trusted enclave memory when the

user remotely calls Ecall (ecall_receive_userdata), to

copy the data to the section reserved for it.

Then, the dynamic loader in the bootstrap enclave loads

and relocates the generated code. The indirect branch list,

which is comprised of symbol names that will be checked in

indirect branch instrumentations, will be resolved at the very

beginning. The memory size of our bootstrap enclave when

initialing is about 96 MB by default, including 1 MB reserved

for shadow stack, 1 MB for indirect branch targets, 64 MB for

data, 28 MB for service binary code, and less than 2 MB of the

loader/verifier. After loading the service binary, the memory

cost would be the size of the service binary plus the necessary

libraries (e.g., libc, mbedtls, etc.).

Policy verifier. The policy-compliance verifier, is composed

of three components - a clipped disassembler, a verifier, and

an immediate operand rewriter.

• Clipped disassembler. We enforce each policy at assembly

level. Thus, we incorporate a lightweight disassembler inside

the enclave. To implement it, we remove unused components

of this existing wide-used framework, and use Recursive

Descent Disassembly to traverse the code. When dealing with

conditional branching instructions, we add call/jump target

instructions to a list of deferred code to be disassembled

at later time using the recursive descent algorithm. As a

control flow-based algorithm, it can provide very complete

code coverage with minimal code. Also, we use the diet mode,

making the engine size at least 40% smaller [43]. The clipped

Capstone consists of 9.1 KLoC as the base of our verifier.

• Policy verifier. The verifier and the following rewriter do

the work just right after the target binary is disassembled.

The verifier uses a simple scanning algorithm to ensure that

the policies are applied in assembly language instrumentation.

Specifically, the verifier scans the whole assembly recursively

along with the disassembler. It follows the clipped disassem-

bler to scan instrumentations before/after certain instructions

are in place, and checks if there is any branch target pointing

between instructions in those instrumentations.

• Imm rewriter. One last but not least step before executing the

target binary code is to resolve and replace the Imm operands

in instrumentations, including the base of the shadow stack,

and the addresses of indirect branch targets (i.e. legal jump

addresses). For example, the genuine base address of shadow

stack is the start address __ss_start of the memory space

reserved by the bootstrap enclave for the shadow stack. The

ranges are determined using functions of Intel SGX SDK

during dynamic loading (Section IV-D).

VI. ANALYSIS AND EVALUATION

A. Security Analysis

TCB analysis. The hardware TCB of DEFLECTION includes

the TEE-enabled platform, i.e. the SGX hardware. The soft-

ware TCB includes the components shown in Table I. Security

and privacy are guaranteed by the lightweight in-enclave veri-

fier (in TCB), even if the code generator has mis-compilation

errors. The correctness of our verifier can be formally verified,

using memory safety verification tools such as SMACK and

model checking tools such as SPIN.

The loader we implemented consists of less than 600 lines

of code (LoCs) and the verifier includes less than 700 LoCs,

also integrating the SGX SDK and part of Capstone libraries.

The binary sizes of shielded runtimes such as Graphene-SGX

increase to 2.5 times or more compared to ours. Currently,

Occlum has not integrated the SFI feature in its latest ver-

sion [44], thus we can only know the lower bound of its TCB

size. Altogether, our software TCB contains a self-contained

enclave binary (1.9 MB) with a shim libc (2.6 MB). By

comparison, most solutions are at least an order of magnitude

larger as compared to DEFLECTION.

Policy analysis. Here we show how the policies on the

untrusted code, once enforced, prevent information leaks from

the enclaves. In addition to side channels, there are two

possible ways for a data operation to go across the enclave

boundaries: bridge functions [13] and memory write.

• Bridge functions. With the enforcement of P0, the loaded

code can only invoke our OCall stubs, which prevents the leak
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TABLE I: TCB comparison with other solutions

Shielding runtimes Core components kLoCs Size(MB)
Eglibc 892

Ryoan NaCl sandbox 216 > 19
Naclports 460

SCONE OS Shield and shim libc 187 > 16
Glibc 1200

Graphene-SGX LibPAL 22 > 58.5
Graphene LibOS 34
Occlum shim libc 93

Occlum Verifier N/A > 8.6
Occlum LibOS and PAL 24.5

Loader/Verifier 1.3
RA/Encryption 0.2

DEFLECTION Shim libc 33 3.5
Capstone base 9.1

Other dependencies 23

of plaintext data through encryption and controls the amount

of information that can be sent out.

• Memory write operations. All memory writes, both direct

memory store and indirect register spill, are detected and

blocked. Additionally, software DEP is deployed so the code

cannot change itself. Also the control-flow integrity (CFI)

policy, P5, prevents the attacker from bypassing the checker

with carefully constructed gadgets by limiting the control flow

to only legitimate target addresses.

As such, possible ways of information leak to the outside of

the enclave are controlled. As proved by previous work [20],

[45] the above-mentioned policies (P1-P5) guarantee the

property of confidentiality. Furthermore the policy (P5) of

protecting return addresses and indirect control flow transfer,
together with preventing writes to outside has been proved

to be adequate to construct the confinement [45], [46]. So,

enforcement of the whole set of policies from P0 to P5 is

sound and complete in preventing explicit information leaks.

In the meantime, our current design is limited in side-channel

protection. We can mitigate the threats of page-fault based

attacks and exploits on L1/L2 cache once Hyper-threading is

turned off or HyperRace [40] is incorporated (P6). However,

defeating the attacks without triggering interrupts, such as

inference through LLC is left for future research.

With such protection, still our design cannot eliminate all

covert channels, which is known to be hard. However, it is

important to note that other SGX runtimes, including SCONE,

Graphene-SGX, Occlum, provide no such protection either. An

exception is Ryoan, which pads its enclave output to the same

size, as we do. However, it does not handle the leak from the

hardware-based channels.

B. Performance Evaluation

Here we discuss performance overhead of different level

protections DEFLECTION can provide. These settings include

just explicit memory write check (P1), both explicit memory

write check and implicit stack write check (P1+P2), all mem-

ory write and indirect branch check (P1-P5), and together with

side channel mitigation (P1-P6).

Testbed setup. In our research, we evaluated the performance

of our prototype and tested its code generation and code execu-

tion. All experiments were conducted on Ubuntu 18.04 (Linux

kernel version 4.4) with SGX SDK 2.5 installed on Intel Xeon

CPU E3-1280 with 64GB memory. Also we utilized GCC 5.4

to build the bootstrap enclave and the SGX application, and

the parameters ‘-fPIC’, ‘-fno-asynchronous-unwind-tables’, ‘-

fno-addrsig’, and ‘-mstackrealign’ to generate x86 binaries.

TABLE II: Performance overhead on nBench

Program Name P1 P1+P2 P1-P5 P1-P6
NUMERIC SORT +5.18% +6.05% +6.79% +12.0%

STRING SORT +8.05% +10.2% +12.4% +18.4%
BITFIELD +6.11% +11.3% +15.5% +17.9%

FP EMULATION +0.20% +0.27% +0.33% +5.36%
FOURIER +2.48% +2.72% +2.89% +7.45%

ASSIGNMENT +6.73% +15.6% +25.0% +39.8%
IDEA +2.34% +2.66% +3.13% +12.1%

HUFFMAN +15.5% +16.6% +18.1% +21.3%
NEURAL NET +13.8% +19.4% +20.2% +23.1%

LU DECOMPOSITION +4.30% +7.03% +9.67% +22.6%

Performance on nBench. We instrumented all applications

in the SGX-nBench [47], and ran each testcase of the nBench

suites under a few settings, each for 10 times. Table II shows

the average execution time under different settings. Without

side channel mitigation (P1-P5), our prototype introduces an

0.3% to 25% overhead (on FP-emulation). Apparently, the

store instruction instrumentation alone (P1) does not cause

a large performance overhead, with the largest being 6.7%.

Also, when P1 and P2 are applied together, the overhead just

becomes slightly higher than P1 is enforced alone. The per-

formance overhead fluctuates from application to application

since different instrumentations are applied. FP EMULATION

has much less memory write operations than others. And it has

rare indirect branches. Compared to it, ASSIGNMENT uses

a lot of function pointers, which leads to a relatively heavy

instrumentation overhead of enforcing P5. Besides, almost all

benchmarks in nBench perform well under the CFI check P5

(less than 4%) except for the Assignment (about 10% due to

its frequent memory access pattern).

Performance on real-world applications. We further eval-

uated our prototype on various real-world applications, in-

cluding personal health data analysis, personal financial data

analysis, and Web servers. We implemented those macro-

benchmarks and measured the differences between their base-

line performance (without instrumentation) in enclave and the

performance of our prototype. We evaluated multiple settings

(input sizes) and reported the most representative results,

in ascending order across at least one order of magnitude.

The baseline results are measured on a pure loader, with no

security/privacy policies enforced.

• Sensitive genome data analysis. We implemented the

Needleman–Wunsch algorithm [48] that aligns two human

genomic sequences in the FASTA format [49] taken from

the 1000 Genomes project [50]. The algorithm uses dynamic

programming to compute recursively a two dimensional matrix

of similarity scores between subsequences; as a result, it takes

N2 memory space where N is the length of the two input

sequences. We measured the sequence alignment program

execution time under the aforementioned settings. Figure 7
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shows the performance of the sequence alignment algorithm

with different input lengths (x-axis). The overall overhead

(including all kinds of instrumentations) is no more than 20%

(with the P1 alone no more than 10%), when input size is

small (less than 200 Bytes). When input size is greater than

500 Bytes, the overhead of P1+P2 is about 19.7% while P1-P5

spends 22.2% more time than the baseline.

For sequence generation, Figure 8 shows the performance

when the output size (x-axis) varies from 1K to 500K

nucleotides. Enforcing P1 alone results in 5.1% and 6.9%

overheads when 1K and 100K are set as the output lengths.

When the output size is 200K, our prototype yields less than

20% overhead. Even when the side channel mitigation is

applied, the overhead becomes just 25%. With the increase of

processing data size, the overhead of the system also escalates;

however, the overall performance remains acceptable. Some-

times the differences between P1+P2 and P1-P5 seem slight

mainly because the instrumentations on indirect branches (P5)

are few. Meanwhile, the instrumentation to enforce P1/P2 can

be reused to enforce P3/P4 (via different boundaries). Thus,

the performance overhead caused by P3/P4 is negligible (when

P1/P2 are already enforced).

• Personal credit score analysis. In our study, we implemented

a BP neural network-based credit scoring algorithm [51] that

trains a model to calculate user’s credit scores. The model

was trained on 10000 records and then used to make pre-

diction (i.e., output a confidence probability) on different test

cases. As shown in Figure 9, on 1000 and 10000 records,

enforcement of P1-P5 would yields around 15% overhead.

While processing more than 50000 records, the overhead of

the full check does not exceed 20%. The overhead of P1-P6

does not exceed 10% when processing 100K records.

• HTTPS server. We built an HTTPS server in enclave using

the mbed TLS library [52]. The case of HTTPS server is

to show that DEFLECTION is capable of handling multiple

clients and it outperforms other solutions when the data size

is increasing. A client executes a stress test tool - Siege [53]

- on another host in an isolated LAN. Siege was configured

to send continuous HTTPS requests (with no delay between

two consecutive ones) to the web server for 10 minutes.

We measured its performance in the presence of different

concurrent connections to understand how our instrumented

HTTPS server implementation would perform.

Figure 10 shows the response times and throughput when

all policies are applied to the HTTPS server benchmark. When

the concurrent connections are less than 75, the instrumented

HTTPS server has similar performance of the in-enclave

https server without instrumentation. When the concurrency

increases to 100, the performance goes down to some extent.

While after the concurrency increases to 150, the response

time of instrumented server goes up significantly. On average,

enforcing P1-P6 results in 14.1% overhead in the response

time. As for throughput, when the number of the concurrent

connections is between 75 and 200, the overhead is less than

10%. These experiments on realistic workloads show that all

policies, including side-channel mitigation, can be enforced at

only reasonable cost.

Performance comparison on HTTPS server. Here we com-

pare the performance overheads induced by existing shielding

runtimes with our solution. Since Occlum has not integrated

the SFI feature in its latest version [44] and Graphene-SGX

does not support our security policies, we cannot get their

performance details to compare against ours when policy-

enforcing instrumentations are added. In our study, we ran an

HTTPS server within those runtimes. As expected, their per-

formance is affected by the workload, sizes of files requested

from the server. As shown in Figure 11, unprotected Graphene-

SGX has the best transfer rate with relatively small files.

However, with the size growing, DEFLECTION outperforms

both runtimes (77% of running the server on the native Linux),

even when our approach implements security policies (P0-P5)

while these runtimes do not.

VII. DISCUSSION

Supporting other side/covert channel defenses. The frame-

work of our system is highly flexible, which means assembling

new policies into current design can be very straightforward. In

Section IV-C, we talked about policy enforcement approaches

for side channel resilience. It demonstrated that our framework

can take various side channel mitigation approaches to gener-

ate code carried with proof. Besides AEX based mitigations

which we learnt from Hyperrace [40], others [41], [54]–[59]

can also be transformed and incorporated into the design,

specifically for mitigating cache timing, memory bus tim-

ing [60], and other timing channels. ORAM [61], [62] can also

be integrated to DEFLECTION as a policy, to relieve memory

access based side- or covert- channel leakage to some extend.

Additionally, policies such as on-demand aligning/blurring
processing time can be added for preventing processing-time

based covert channels [63]. Even though new attacks have

been kept being proposed and there is perhaps no definitive

and practical solutions to all side/covert channel attacks, we

believe eventually some efforts can be integrated in our work,

even using SGXv2 [64].

Supporting multi-threading. SGX supports multi-threaded

execution. To concurrently service many clients, policies such

as isolating each thread’s private memory and setting read-only

permissions on cross-thread shared memory can be enforced.

Multi-threading could introduce serious bugs [65]. The proof

enforcement of CFI may suffer from a time of check to time of

use (TOCTOU) problem [66]. To cope with that, we can make

all CFI metadata to be kept in the register or hardware [67]

instead of in memory, and guarantee that the instrumented

proof could not be modified by any threads [68].

VIII. RELATED WORK

Secure computing using SGX. Many existing works pro-

pose using SGX to secure cloud computing systems, e.g.,

VC3 [46], TVM [69], by using sand-boxing, containers [70],

and others [71], [72]. In-enclave JVM interpreter is also a good
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choice [73]. These systems protect the enclave on untrusted

platform, as a result, they either do not protect the code privacy

or they consider a one-party scenario, i.e., the code and data

needed for the computation are from the same participant.

Data confinement with SFI. Most related to our work are

data confinement technologies, which confines untrusted code

with confidentiality and integrity guarantees. Ryoan [9] and

its follow-up work [74] provide an distributed sand-box by

porting NaCl to the enclave environment, confining untrusted

data-processing modules to prevent leakage of the user’s input

data. However the overhead of Ryoan turns out huge (e.g.,

100% on genes data) and was evaluated on an software

emulator for supporting SGXv2 instructions. XFI [75] is

the most representative unconventional PCC work based on

SFI, which places a verifier at OS level, instead of a TEE.

Our compiler-based generator is more efficient in providing

forward-edge CFI and our runtime enforcement is simpler than

inline reference monitor or dynamic binary translation used

by traditional SFI [76], [77]. The advantage of our design

compared to other state-of-the-art shielding runtimes (e.g.,

Occlum) is three-fold. Firstly, DEFLECTION is more general.

The memory access check of Occlum relies on hardware (Intel

MPX) which is no longer supported, significantly hindering

deployment. Secondly, DEFLECTION has a smaller size of

TCB. Other than importing Zydis and PyVEX (in Python)

to be the disassembler and verifier, we shrank and modified

Capstone (in C) to implement our smaller disassembler and

verifier. Thirdly, DEFLECTION can mitigate some side/covert

channel leaks while others provide no such protection.

Code privacy. Code secrecy is an easy to be ignored but

very important issue [78]. TEEshift [12], DynSGX [79] and

SGXElide [80] both make possible that developers execute

their code privately in public cloud environments, enabling

developers to better manage the scarce memory resources.

However, they only care about the developer’s privacy but

ignore the confidentiality of data belonging to users.

Confidentiality verification of enclave programs. With for-

mal verification tools, Moat [20] and its follow-up works [45]

verify if an enclave program has the risk of data leakage. The

major focus of them is to verify the confidentiality of an SGX

application outside the enclave formally and independently.

Although it is possible that the verification could be performed

within a “bootstrap enclave”, the TCB would include the

IR level language (BoogiePL) interpreter [81] and a theorem

prover [33]. Moreover, neither of them can discharge the large

overhead introduced by instruction modeling and assertion

proving when large-scale real-world programs are verified.

IX. CONCLUSION

In this paper we proposed DEFLECTION, which allows the

user to verify the code provided by untrusted parties without

undermining their privacy and integrity. Meanwhile, we in-

stantiated the design of a code generator and a code consumer

(the bootstrap enclave) - a lightweight PCC-type framework.

Our work does not use formal certificate to validate the loaded

private binary, but leverage data/control flow analysis to fulfill

the goal of verifying if a binary has such data leakage, allowing

our solution to scale to real-world software.
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