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The out-of-time-ordered correlation (OTOC) and entanglement are two physically motivated and widely

used probes of the “scrambling” of quantum information, a phenomenon that has drawn great interest

recently in quantum gravity and many-body physics. We argue that the corresponding notions of scram-

bling can be fundamentally different, by proving an asymptotic separation between the time scales of

the saturation of OTOC and that of entanglement entropy in a random quantum-circuit model defined on

graphs with a tight bottleneck, such as tree graphs. Our result counters the intuition that a random quantum

circuit mixes in time proportional to the diameter of the underlying graph of interactions. It also provides

a more rigorous justification for an argument in our previous work [Shor P.W., Scrambling time and causal

structure of the photon sphere of a Schwarzschild black hole, arXiv:1807.04363 (2018)], that black holes

may be slow information scramblers, which in turn relates to the black-hole information problem. The

bounds we obtain for OTOC are interesting in their own right in that they generalize previous studies of

OTOC on lattices to the geometries on graphs in a rigorous and general fashion.

DOI: 10.1103/PRXQuantum.2.020339

I. INTRODUCTION AND OVERVIEW

The “scrambling” of quantum information is a phe-

nomenon of fundamental importance, deeply connected

to many important research topics in physics, such as

black holes [1–4] and many-body chaos [5,6]. In recent

years, a great amount of research effort has been devoted

to the detection and characterization of scrambling. The

so-called out-of-time-ordered correlation (OTOC) [7] is

a commonly used measure of quantum chaos and scram-

bling. A variant based on commutators (also known as the

OTO commutator) is given by

C(t) = 1

2
〈[O1(x, 0), O2(y, t)]†[O1(x, 0), O2(y, t)]〉, (1)
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where O1(x, 0) is an operator acting on site x, and O2(y, t)

is a Heisenberg operator at time t that acts only on y at

time 0, i.e., O2(y, t) = U†(t)O2(y, 0)U(t), where U(t) is the

unitary for the evolution from time 0 to t. The average is

taken with respect to the thermal state at some tempera-

ture, which we take to be infinite in this work. Intuitively

speaking, it characterizes parameters like sensitivity to ini-

tial conditions via the spread of local operators. Also notice

that the scrambling phenomena exhibit a truly quantum

nature—the state of the entire system remains pure during

the unitary evolution (although it is effectively random-

ized), thus no information is really lost; the generation of

global entanglement leads to the scrambling of initially

localized quantum information, spreading and hiding it

from observers that only have access to part of the sys-

tem. This observation leads to another fundamental probe

of a stronger form of scrambling, namely the entanglement

between parts of the system [2,8–10] (which measures the

equivalent effect as the tripartite information [9] in the

case of unitary dynamics; see Ref. [10] for more detailed

discussions).

To understand and characterize the dynamical behav-

iors of scrambling systems, several explicit models have

been proposed and investigated, such as the Sachdev-Ye-

Kitaev (SYK) model [11,12]. Another leading approach

is the random quantum-circuit model (i.e., sequential

applications of random local quantum gates), which is a
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widely used model of chaotic dynamics that make min-

imal assumptions about the nature of the local degrees

of freedom (see, e.g., Refs. [1,9,13–17]). They capture

the key kinematic feature of chaos that the evolution

appears to be random, and the locality of physical inter-

actions. In these well-studied physical scrambling mod-

els, the saturation of OTOC and that of entanglement

are expected to occur at a similar time scale [9,13,14].

More generally, one could consider the dynamics of many

small quantum systems (say qubits) connected accord-

ing to some graph [18,19], with random unitary gates

being applied to each edge. Suppose that we apply gates

in a random order such that on average each edge has

one gate applied to it per unit time. A natural conjec-

ture here, which would be compatible with all previous

results, is that the scrambling time for a constant degree

graph is proportional to its diameter, i.e., the maximum

distance between any two vertices. This would correspond

to information traveling through the graph at a linear veloc-

ity and is assumed implicitly in previous works. However,

no proof exists, outside of the special case of Euclidean lat-

tices in a fixed number of dimensions. Even for Euclidean

lattices in more than one dimension, this result was only

recently proven [20].

Our main results are the following. The first one (The-

orems 1 and 2) shows that for arbitrary graphs with

sufficiently low degree, the OTOC saturation time scales

linearly in the graph diameter. Here by low degree, we

mean d2 ≥ z where d is the dimension of the quantum

system and z is the degree of the graph. On the other

hand, we use bounds on entanglement growth to show

that the time needed to establish substantial entanglement

between parts of the system scale at least as the number

of vertices and thus could be longer than the OTOC satu-

ration time, for graphs with bottlenecks (see Theorem 3).

Such graphs include, e.g., binary trees, which we explic-

itly analyze in this paper, and discretizations of hyper-

bolic space around black holes, originally proposed by

Ref. [21], which are expected to exhibit similar behaviors

(as argued below). In other words, we establish an asymp-

totic separation between the time scales of OTOC and

entanglement saturation. Recently, Refs. [22,23] studied

scrambling on certain peculiar graphs via a Hamiltonian

model, but the relations between OTOC and entanglement

were not fully understood and the physical correspon-

dences were not clear; Ref. [24] considered the relations

between specific forms of OTOC and entanglement, but

it focused on a system with a specific quantum optical

Hamiltonian and the main message is about the connec-

tions rather than differences between OTOC and entan-

glement. Here we make key progress in the understand-

ing of scrambling measures by rigorously demonstrating

the fundamental difference between OTOC and entangle-

ment in a general setting and studying the implications to

physics.

Our results have the following major implications.

(i) Scrambling in non-Euclidean geometries. Existing

work mostly studied scrambling on Euclidean lattices

[13,14,25]. The general assumption is that after time

t, a localized perturbation will affect everything within

some ball of radius vbutterflyt, where vbutterfly is known as

the “butterfly velocity,” which characterizes the speed of

information spreading. However, this has not been proved

and previous works gave only heuristic arguments for it

that included uncontrolled approximations. For the random

circuit models defined on general graphs, we find that if

the local dimension is large relative to the graph degree

then indeed there is a linear butterfly velocity. We also dis-

cuss apparent counterexamples, which suggest that linear

butterfly velocity no longer holds for high-degree graphs.

More specifically, we give a heuristic argument that for

tree graphs with high degree, the scrambling time could

be exponential in the diameter. The star graph studied in

Ref. [23] is also an example where the scrambling time

grows much faster than the diameter. On the other hand,

for complete graphs [26] the scrambling time is sublinear

in the diameter. We also show that by replacing edges in

a graph by some gadget with high degree, the scrambling

time could be arbitrarily small.

(ii) Black-hole information scrambling. Our results can

be regarded as a more rigorous argument that fleshes out

the idea of a recent paper by one of the authors [21], which

concerns whether it is possible for the fast scrambling

conjecture of black holes [2] to hold if one assumes that

the causality structure of general relativity holds around

a black hole, and if the medium by which the informa-

tion is scrambled is Hawking radiation. In the model of

Ref. [21], the space around the black hole is divided into

cells, each of which contains a constant number of bits of

Hawking radiation. It then gives arguments for why the

Hawking radiation is not adequate for fast scrambling if

the entanglement definition of scrambling is used. The cell

structure around the black hole looks like a patch of a cellu-

lation of hyperbolic geometry, where the cells on the event

horizon are the boundary of this patch. The tree graph

we consider captures a key feature of this geometry: the

leaves lie on the event horizon, and the density of nodes

decreases as one moves outwards radially. As the assump-

tions essentially suggest that information is processed via

local interactions of the Hawking radiation, we may con-

sider a random circuit defined on the underlying graph to

be a toy model that captures key features of the black-hole

scrambling process. Our mathematical results then indicate

that the scrambling time scales given by entanglement and

OTOC are fundamentally different. Another way to inter-

pret our model is that the information “wavefront” could

reach the farthest side rather quickly since there exists

short paths, but it takes a longer time, which scales with

the number of degrees of freedom, to establish truly global

entanglement. This is consistent with recent holographic
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calculations (see, e.g., Refs. [27,28]), which suggest that

the entanglement entropy grows roughly linearly after a

quench in chaotic systems.

We would also like to remark upon the task of recov-

ering quantum information falling into the black hole

from Hawking radiation, which is often referred to as

Hayden-Preskill decoding [1]. This task plays central roles

in recent studies of the black-hole information problem.

Yoshida and Kitaev recently proposed an explicit proto-

col [29] whose decoding fidelity is at least the order of

1/d2
A[1 − C(t)], where dA is the Hilbert-space dimension

of the input message. Here C(t) takes the form of Eq. (1)

and considers O1 and O2 averaged over all Pauli operators

on the infalling system and Hawking radiation, respec-

tively; see Secs. 2–4 of Ref. [29] for details. By simple

calculations one can see that our results imply a possible

time window in which the decoding could be achieved

with high fidelity without substantial entanglement when

the infalling quantum state is sufficiently small compared

to the black hole. However, it appears that adding a small

number of qubits to a Schwarzschild black hole can only

be done by photons whose wavelength is comparable

to the size of the black hole. It does not seem surpris-

ing that the information carried by such photons can be

extracted by a black hole quickly; when the information is

absorbed by the black hole, it is already spread out over

the entire black hole, and so does not need to migrate from

a localized region to a state where it is delocalized on the

black hole.

(iii) Inequivalence of convergence to 2-designs in dif-

ferent measures. The speed of convergence of a random

circuit to a 2-design (distributions that approximately agree

with the Haar measure up to the first two moments,

which have found many important applications as an effi-

cient approximation to Haar randomness [30]) has been

the subject of a large amount of research. In particular,

Refs. [20,26,31–33] show that the time of convergence

depends on the graph of interactions, and suggest that

it should be proportional to the diameter. Note that 2-

designs are very powerful measures of convergence, in the

sense that a distribution being close to a 2-design implies

that the distribution has mixed with respect to not only

OTOC but also von Neumann and Rényi-2 entanglement

entropies [9,34], and other important signatures of infor-

mation scrambling such as decoupling [35]. Our work

provides several examples where a random circuit approx-

imates the OTOC but not the entanglement properties of

a 2-design, and therefore implies that a strong approxima-

tion of 2-designs (in terms of, e.g., the frame operator [10])

may not be achieved in time proportional to the diameter.

II. MODELS AND NOTATION

Let G be a graph with V vertices and E edges. The model

we study consists of a graph with a d-dimensional Hilbert

space associated with each vertex of G. Each edge has

Haar-random unitary gates applied to qudits on its end-

points according to a Poisson process with rate 1, meaning

a Poisson distribution such that k unitaries are applied

in time t with probability tke−t/k!. The mixing times for

OTOC and entanglement, τ
(x,y)

OTOC and τ
(A)
ent , are defined as

follows.

Definition 1. τ
(x,y)

OTOC (respectively, τ
(A)
ent ) is defined to be

the minimum amount of time needed for OTOC between

vertices x and y (respectively, the entanglement entropy

between A and the complement of A) to become at least a

constant fraction of its equilibrium value. In this work we

take the constant to be 1/(d2 + 1).

Here we expect that a qualitatively similar behavior

will hold with 1/(d2 + 1) replaced by any constant strictly

between 0 and 1. We study how τOTOC and τent scale with

parameters such as local dimension, degree, and number of

vertices.

We study the pair of (x, y) that has the largest τ
(x,y)

OTOC,

and the set A that has the largest τ
(A)
ent , as they could best

characterize OTOC and entanglement properties for G.

Instead of studying this model directly we may con-

sider the process in which a random edge is picked every

1/E time units. This is because in our Poisson process

model, each edge is equally likely to be picked. The num-

ber of unitaries applied within time t is of order Et (see

Appendix A), so the two models above are equivalent up

to a constant factor.

III. OTOC

To analyze the saturation time of OTOC, we for-

mulate the process of operator spreading as a Markov

chain. Consider an arbitrary Pauli operator σ�p acting on

n d-dimensional qudits, �p ∈ {0, . . . , d2 − 1}n, and apply

some unitary U to it. We expand the resulting operator on

Pauli basis and have

U†σ�pU =
∑

�q
α�qσ�q, α�q ≡ 1

dn
Tr[U†σ�pUσ

†

�q ].

The expected value of the cross term for α�q averaged over

the distribution of U is

EUα�qα
∗
�q′ = 1

d2n
EUTr[U†⊗2(σ�p ⊗ σ

†

�p )U⊗2(σ
†

�q ⊗ σ �q′)].

According to the construction of random circuit, this is

zero for �q �= �q′ for U being the unitary in a single step.

Therefore, in each step the values of α�qα∗
�q undergo lin-

ear transformation, which we can interpret as a distribution

because they are positive and sum to 1.

If we start from a Pauli operator located at a single ver-

tex x, on each vertex all nonidentity Pauli operators will
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have the same probability as long as x has been touched at

least once in the process. So we care only if the operator on

a vertex is identity (I ) or nonidentity (N ). And the norm of

the time-evolved operator with a Pauli operator P on some

vertex y would be proportional to the probability of hav-

ing nonzero Pauli operator on that site, and the factor of

proportionality is

1

d2 − 1

d2−1
∑

i=1

1

2d
Tr([σi, P]†[σi, P]) = d2

d2 − 1
,

which is just the commutator averaged over all nonidentity

Pauli operators.

In summary, the object we study is the OTOC between

Pauli operator on vertex y and time-evolved Pauli opera-

tor on vertex x after T steps of random circuits on graph

G, which is equal to d2/(d2 − 1) times the probability of

having “N” on vertex y after T steps in the Markov chain

M0 defined below. The state space of M0 is the set of all the

configurations in which each vertex of G is assigned a label

“N” or “I .” The initial state of M0 has “N” assigned to ver-

tex x and “I” assigned to all other vertices. The update rule

is that in each step a uniformly random edge is picked and

the labels on the two corresponding vertices are updated.

“II” remains “II”, and otherwise they have a proba-

bility of (d2 − 1)/(d4 − 1) = 1/(d2 + 1) for becoming

“IN” or “NI” each, and (d2 − 1)/(d2 + 1) for becoming

“NN” [26].

Now we prove an upper bound for the OTOC saturation

time. Note that O(α) that appears here and in the following

represents a quantity that scales asymptotically as α, i.e.,

a quantity between c1α and c2α for some constants c1, c2

such that 0 < c1 < c2.

Theorem 1 (OTOC upper bound). Let G be a graph with

V vertices and E edges, and suppose the degree for each

vertex at most d2, where d is the Hilbert-space dimension

for each vertex. Then for any pair of vertices x and y,

τ
(x,y)

OTOC = O[D(x, y)] with high probability, where D(x, y) is

the distance between x and y. The probability of failure is

exponentially small in D(x, y). As a consequence the per-

fect binary tree has τ
(x,y)

OTOC = O(ln V), where x and y are

the farthest pair of vertices.

Proof. The proof of this theorem follows from Lemmas 1

and 2 below. As explained earlier, the OTOC saturation

time corresponds to the number of steps needed for M0 to

have constant probability of having a label “N” on y.

We first prove Lemma 1, which states that with probabil-

ity 1 − e−O[D(x,y)] the vertex y gets hit by a label “N” within

order of E × D(x, y) steps. As shown in Appendix A, this

needs order of D(x, y) time units with high probability.

Then we show in Lemma 2 that after this happens, the

probability for having an “N” on y remains constant. �

Lemma 1. Suppose that G is a graph with the degree for

each vertex being at most d2. For any pair of vertices x and

y with distance D(x, y), the expected number of steps for

y to be labeled “N” is of order E × D(x, y) in M0 start-

ing from x. Besides, with high probability the vertex y gets

labeled “N” in time of order E × D(x, y). The probability

of failure is exponentially small in D(x, y).

To set up the proof, we first construct a Markov chain

M , which has the same initial state as M0, and in each step

the update rule of M is applied, followed by changing all

“N” into “I” except the one closest to vertex y. By a simple

coupling argument the number of steps needed for y to get

an “N” in M0 is lower bounded by that in M . The distance

between the vertex with label “N” and vertex y in Markov

chain M0 can be described by a biased random walk, from

which we can obtain the desired bound.

Definition 2 (Markov chain M ). Markov chain M has the

same state space and initial state as M0. In each step the

update rule for M0 is applied, followed by setting all “N”

labels into “I” except for the one closest to y (choose

randomly if this is not unique).

In this way the vertex with label “N” in M is always

labeled “N” in M0 in the most natural way of coupling M0

to M , and therefore after any number of steps the proba-

bility that vertex is labeled “N” in M0 is lower bounded by

the corresponding probability in M .

The Bernstein inequality is needed for the proof of

our theorem, which states that for independent zero-mean

random variables X1, . . . , Xn each with absolute value at

most M ,

Pr

[

n
∑

i=1

Xi > t

]

≤ exp

(

− (1/2)t2
∑

E[X 2
i ] + (1/3)Mt

)

.

This could be generalized to the case with nonzero mean.

Suppose Y1, . . . , Yn has mean µ1, . . . , µn and they satisfy

|Yi − µi| ≤ M then by setting Xi = Yi − µi we have

Pr

[

n
∑

i=1

Yi > t +
n

∑

i=1

µi

]

≤ exp

(

− (1/2)t2
∑

(E[Y2
i ] + µ2

i ) + (1/3)Mt

)

. (2)

Now we give the proof of Lemma 1.

Proof. In this proof we first derive the transition rule of

Markov chain M0. We see that the distance between y and

the vertex labeled “N” could only change by 1 in each step,

the probability of decreasing is larger than that of increas-

ing. Then by Bernstein in equality in Eq. (2) we can show

020339-4



SEPARATION OF OUT-OF-TIME-ORDERED CORRELATION... PRX QUANTUM 2, 020339 (2021)

an upper bound for the number of steps needed for this

distance to decrease to 0.

We would first restate the transition rule of M0 here.

For Markov chain M0, an edge (u, v) is selected for each

step. Suppose the labels on u and v are both “I ,” they

remain unchanged. Otherwise the labels become “IN” or

“NI” with probability 1/(d2 + 1) each, and “NN” with

probability (d2 − 1)/(d2 + 1).

As mentioned, the upper bound for M defined in

Definition 2 gives an upper bound for M0. For Markov

chain M0, let v be the vertex with label “N .” As long as

v �= y, there will be at least one neighbor u that is one

step closer to y, and other neighbors are at most one step

further from y due to the triangle inequality. If the edge

(u, v) is selected, there is a chance of d2/(d2 + 1) that u

obtains label “N” according to the transition rule of M0. In

this case the distance between y and the closest “N” is one

step shorter. If the edge between u and other neighbors is

selected, there is a chance of 1/(d2 + 1) that the label on

u becomes “I ,” and the distance between y and the clos-

est label “N” becomes one step longer. Let the degree of

u be du, and the distance between the label “N” and ver-

tex y will have probability of at least (1/E)d2/(d2 + 1)

to decrease by 1 and at most (du − 1)/E[1/(d2 + 1)] to

increase by 1, where the probabilities depend on the spe-

cific vertex. Since the degree for any vertex is at most d2,

the time needed for the distance to drop from D(x, y) to 0

is upper bounded by the time in the following biased ran-

dom walk W. W has states {0, 1, . . . , dmax} where dmax is

the maximum possible distance to y, and starting from ver-

tex D(x, y) it has a fixed probability of d2/[E(d2 + 1)] for

decreasing by 1 and (d2 − 1)/[E(d2 + 1)] for increasing

by 1.

Extension of this finite chain to an infinite one could

increase only the hitting time of vertex 0, because the

finiteness at vertex dmax prevents us from getting too far

from vertex 0. The displacement of a random walk on an

infinite chain (i.e., the difference of the final position and

initial position) is the sum of displacement for each step,

which has probability d2/[E(d2 + 1)] of being −1 and

(d2 − 1)/[E(d2 + 1)] probability of being +1, and other-

wise it is 0. The mean and variance for displacement at

each step is

µ0 = − 1

E(d2 + 1)
, σ 2

0 = 2d2 + 1

E(d2 + 1)
− µ2

0.

The expected number of steps needed to reach vertex 0 in

this random walk is −D(x, y)/µ0 = �[E × D(x, y)]. We

can also use Eq. (2) to bound the probability that the total

displacement of T steps is larger than −D(x, y), where we

set T to be twice the expected number of steps needed

and t = D(x, y). M can be set to be 2. The denominator

in the exponent will be T(σ 2
0 + 2µ2

0) + 2
3
t = �[D(x, y)],

so Eq. (2) gives a probability of at most e−�[D(x,y)] for not

reaching vertex 0. �

Lemma 2. After a label “N” reaches the target vertex y,

the probability for having an “N” on y will remain order

one.

We again consider the modified chain, which keeps only

one label “N” after each step. We show that vertex y has

constant probability of having label “N” in the equilibrium

distribution. This probability is monotonically nonincreas-

ing as a function of the number of steps, so the probability

is order one in any step.

To give a full proof of this lemma, we need the following

lemma.

Lemma 3. Consider a reversible Markov chain M with

transition matrix P(x, y), x, y ∈ �. M starts determinis-

tically from state x0 ∈ �. If all the eigenvalues of P are

non-negative, then the probability for x0 will be mono-

tonically nonincreasing as a function of the number of

steps.

Proof. Let π(x) be the stationary distribution. The

reversibility implies that A(x, y) ≡
√

π(x)/π(y)P(x, y)

is a symmetric matrix, and therefore has orthonor-

mal eigenvectors fk(x) with corresponding eigenvalues

λk. The eigenvectors for P(x, y) will then be gk(x) =
fk(x)/

√
π(x). Now we want to expand the initial distribu-

tion

p0(x) = δx,x0
in terms of gk(x),

p0(x) =
∑

k

αkgk(x), αk = π(x0)gk(x0),

which can be verified using the orthogonality of fk. After

t steps, the probability distribution would be

pt(x) =
∑

k

αkλ
t
kgk(x),

and the probability for state x0 would be

pt(x0) =
∑

k

αkλ
t
kgk(x0) =

∑

k

π(x0)gk(x0)
2λt

k,

which is a monotonically nonincreasing function of t given

λk are all non-negative. �

Now we can prove Lemma 2.

Proof. We again keep track only of the label “N” clos-

est to y. When it is at y, there is a probability of

dy/E[1/(d2 + 1)] that an “I” is left on y and the clos-

est “N” becomes one of the neighbors of y. Here, dy
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is the degree of y. Otherwise, suppose it is at a vertex

u with degree du. There is at least one neighbor of u

that is one step closer to y, and other neighbors are at

most one step farther. This corresponds to a probability

of 1/E[d2/(d2 + 1)] to move one step closer to y, and

(du − 1)/E[1/(d2 + 1)] to move one step farther.

Then we need only to consider a random walk on the

states {0, 1, . . . , dmax}, where dmax is the largest possible

distance from y. At state 0 there is a chance of d2/[E(d2 +
1)] moving to 1, and at other state k the probabilities for

moving to k + 1 and k − 1 are (d2 − 1)/[E(d2 + 1)] and

d2/[E(d2 + 1)] respectively. From Ref. [36] we can get

the probability for state 0 in the stationary distribution,

which is

1

1 + ∑dmax−1
t=0

[

(d2 − 1)/d2
]t >

1

d2 + 1
,

which is �(1). Note that at large E, the probability for stay-

ing at the same state is larger than 1
2
, which means that

all eigenvalues are positive. Also the random walk on a

finite chain is reversible, so by Lemma 3, the probability

for having “N” on t remain �(1). �

Theorem 1 states that the number of steps needed for

OTOC saturation in a low-degree graph is at most of order

E × D(x, y). However, we expect that in a graph with high

degree, the number could be much larger. Some intuitions

are given in Appendix C.

Besides this upper bound we also derive a lower bound

for OTOC saturation time.

Theorem 2 (OTOC lower bound). Let G be a graph with

V vertices and E edges, and suppose the degree for each

vertex is O(1). Then for any pair of vertices x and y, τ
(x,y)

OTOC

is at least of order D(x, y) with high probability, where

D(x, y) is the distance between x and y. The probability of

failure is exponentially small in D(x, y).

Proof. Consider a Markov chain M ′ on all configurations

in which every vertex of G is assigned labels “N” or “I .”

Initially x is assigned “N” and other vertices are assigned

“I .” In each step a random edge is picked and the vertices

it connects are changed to “N” if at least one of the vertices

is previously assigned “N .” Using a simple coupling argu-

ment the number of steps needed for y to be assigned “N”

gives a lower bound for τ
(x,y)

OTOC. To show a lower bound

for the number of steps needed in M ′, we prove an even

stronger statement that with probability at least 1 − e−�(d),

all of the vertices with distance d to vertex x (denoted by

Sd) have label “I” after �(E × d) steps.

We start with a Chernoff-type bound for a sum of k

independent identically distributed (IID) geometric vari-

ables. Let X = X1 + · · · + Xk where Xi has probability of

p(1 − p)m−1 for value m, m ≥ 1. For any t > 0, we have

Ee−tXi = p/[et − (1 − p)], and therefore

Ee−tX =
(

p

et − (1 − p)

)k

.

The mean for X is µ ≡ EX = k/p . By Markov inequality,

Pr [X ≤ λµ] = Pr[e−tX ≥ e−tλµ]

≤ etλk/p
Ee−tX

= exp

[

k

(

ln
p

et − (1 − p)
+ tλ

p

)]

,

for any t > 0. When λ > p , we take t = ln[(1 − p)λ]/

(λ − p) and get Pr[X < λµ] ≤ exp [−kf (p , λ)] where

f (p , λ) = − ln
λ − p

1 − p
− λ

p
ln

λ(1 − p)

λ − p
.

In Markov chain M ′, the number of steps needed for

spreading labels “N” along a path with length d is a sum

of d geometric variables with p = 1/E. Let C be the max

degree of the vertices. From vertex x to vertices in Sd,

there could be at most (C − 1)d paths with length d, so by

union bound the probability that any vertex in Sd gets label

“N” after λdE steps is at most (C − 1)d exp [−df (p , λ)].

Knowing that f (p , λ) = − log λ + λ − 1 + O(p) can be

arbitrarily large for small constant λ, we can pick λ such

that the probability becomes e−�(d). By Appendix A,

the λdE steps here correspond to �(λd) = �(d) time

units. �

IV. ENTANGLEMENT

We now turn our attention to entanglement. Here we

need only to consider the case where the evolution is uni-

tary and the system is pure. As a standard entanglement

measure, the entanglement entropy of a pure state |ψ〉AB is

given by E(|ψ〉) := S(ρA) where ρA = TrB[|ψ〉〈ψ |] and S

is the von Neumann entropy. Notice the following simple,

general fact.

Lemma 4. Let UAB be a unitary operator acting on two

d-dimensional systems AB. Then for any |ψ〉AA′BB′ with

ancilla systems A′, B′,

E[(UAB ⊗ idA′B′)|ψ〉AA′BB′] − E(|ψ〉AA′BB′) ≤ 2 log d.

Proof. Adapted from the proof of Lemma 1 of Ref. [37].

Suppose Alice holds AA′ and Bob holds BB′. In addition,

they share two copies of the maximally entangled state

|�d〉 = (1/
√

d)
∑d

i=1 |i〉|i〉, E(|�d〉) = log d. Consider the

following double teleportation protocol. Alice consumes
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a |�d〉 and classical communication to teleport A to Bob,

who performs U locally and then consumes a |�d〉 and

classical communication to teleport system A back to

Alice. The protocol is LOCC, under which the entangle-

ment entropy between Alice and Bob is monotonically

nonincreasing. Therefore, by the additivity of S (and thus

E) on tensor products,

E(|ψ〉AA′BB′) + 2E(|�d〉) ≥ E[(UAB ⊗ idA′B′)|ψ〉AA′BB′],

and so the claimed bound follows. �

Note that the proof also applies to, e.g., the Rényi-2

entropy, which is a variant of the entanglement entropy that

can be more easily measured in experiments [38,39].

By Lemma 4, the entanglement entropy between the two

trees increases by at most 2 log d when the random unitary

is acted across the middle edge. This edge has only a proba-

bility of 1/E ∼ 1/V to be selected in each step. So in order

to reach the maximum entropy of order V log d, we need

at least an order of V2 steps or equivalently order V time.

This is much larger than the OTOC time of order log V.

From Lemma 4 we obtain the following result for a

general graph.

Theorem 3 (Entanglement lower bound). For a general

graph G with vertices partitioned into sets A and B, the

expected entanglement saturation time is at least of order

min{|A|, |B|}/[C(A, B)], where C(A, B) is the number of

edges with one endpoint in A and one in B.

Since approximate 2-designs exhibit nearly maximal

entanglement [9,34], this result also provides lower bounds

on the time it takes for the random circuit to converge to

2-designs.

V. OTOC VERSUS ENTANGLEMENT IN

DIFFERENT MODELS

According to our results, a simple graph that can give a

separation of OTOC and entanglement saturation times is

a perfect binary tree, as depicted in Fig. 1. Here we con-

sider the OTOC of operators located on the pair of farthest

vertices in the graph (a leaf vertex of left subtree and a leaf

vertex of the right subtree), and the entanglement entropy

between left and right subtrees. The cell structure roughly

equivalent to the hyperbolic geometry in three dimensions,

or indeed any constant number of dimensions, exhibits

such a separation as well. These graphs are regarded as

toy models of quantum-information scrambling around

black holes [21], as motivated in the introduction; see also

Appendix B.

The behaviors of OTOC and entanglement on some

other graphs are also studied. These include the follow-

ing: (i) the “dumbbell graph” consisting of two complete

FIG. 1. Illustration of the binary-tree model of depth 4. We

consider OTOC between local operators originally acting on two

farthest vertices (a leaf of the left and right subtrees, respectively,

for example, O1 and O2 in the diagram), and entanglement

between the left subtree (dashed circle) and the rest of the graph

(the cut shown by the red double line).

graphs connected by a bottleneck edge. A careful anal-

ysis could still show a separation between OTOC and

entanglement; (ii) high-degree graphs. We demonstrate

two examples in which the OTOC saturation time can be

much longer or shorter than the bound we have on low-

degree graphs. To be more precise, for a tree with high

degree, the OTOC time could be exponential in the diame-

ter of the graph. Another example is the star graph, which

has constant diameter but the OTOC time is logarithmic

in the number of vertices [23]. On the other hand, a com-

plete graph has vanishing OTOC time when the graph size

grows large, while the diameter remains constant. Another

example is that by replacing edges in a graph by gad-

gets with arbitrarily large degree, the OTOC saturation

time could be made arbitrarily small. See Sec. VI and

Appendix C for more details. Also note that there is no sep-

aration on Euclidean lattices. These results are summarized

in Table I.

Other than the Poisson process on each edge, different

orders of choosing the edges are also studied below in

Sec. VI.

TABLE I. Comparison of the time scales of OTOC and entan-

glement saturation in various graphs. n is the total number of

vertices in the graph.

Models and graphs OTOC Entanglement

Euclidean lattices in D

dimensions

n1/D n1/D

Hyperbolic space with D = 3 log n
√

na

Binary tree log n n

Tree with degree z ≫ d2 n1−(log d2/ log z) n/z

Dumbbell graph log n/n n

aSee Sec. 4 of Ref. [21].
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VI. VARIANTS OF OUR MODEL

As mentioned in the main text, one may be concerned

that the slow entanglement saturation is due to the low

chance of picking the cut edge in each step. Here we first

consider a naturally modified model where the probability

of picking the cut edge is much higher, albeit the OTOC

and entanglement times remain separated. In this model

we still apply Haar-random unitaries to vertices connected

by randomly chosen edges. Instead of picking a random

edge from all edges, in each step we pick a random edge

from the left subtree (L), and then the cut edge (C), and

finally a random edge from the rest of the edges (R). In

this LCR model, the analysis for OTOC does not change

by much and still has the O(V log V) upper bound. We

argue that the entanglement saturation time is still �(V2).

Consider the sequence of picking edges Li1CRj1Li2CRj2 . . .

The probability that the random edge on L or R is con-

nected to the cut edge is �(1/V). So the probability that

neither Rjk nor Lik+1
is connected to C is 1 − �(1/V), in

which case Rjk Lik+1
commute with the neighboring C, and

the chain reads . . . Lik CCRjk Lik+1
Rjk+1

. . ., where the two

C gates reduce to one effective C gate. The probability

that such commutation does not happen is �(1/V), which

means that the expected number of effective C gates in con-

stant time steps is �(1/V). So the expected saturation time

is �(V2).

We can also consider two complete graphs connected by

a cut edge. Let V be the number of vertices, and the num-

ber of edges is E = �(V2). We still have a similar Markov

chain describing the evolution of OTOC. In the LCR model

for this graph, by Ref. [26] the complete graph on the left

reaches equilibrium in O(log V) time. Then after a constant

number of steps there will be a label “N” propagated to

the right, and another O(log V) steps will be needed for

OTOC to equilibrate. On the other hand, �(V) steps will

be needed for entanglement. If a random edge is picked

in each step, we expect the OTOC time scales to stay the

same. In this case, though, the entanglement takes time

�(E) = �(V2) to saturate.

Besides the two ways of picking random edges, we can

also pick a random matching in each step (assuming the

number of vertices on each side is even), followed by pick-

ing the cut edge. The entanglement entropy takes �(V)

steps to saturate. For OTOC, the number of edges connect-

ing a vertex with label “N” and a vertex with label “I” in a

random matching should be proportional to the total num-

ber of “N ,” so we expect the number of vertices with “N”

to grow exponentially. Therefore, it would take O(log V)

steps for an “N” to go across the middle edge, and a total

number of O(log V) steps for OTOC to saturate.

VII. CONCLUSION

Random quantum circuits have widespread applica-

tions in quantum information, and are also very important

models of scrambling and chaotic quantum systems in the-

oretical physics. There are several ways to characterize

scrambling and randomness in quantum processes, among

which the OTOC and entanglement are two important

types of measures. This work aims to understand whether

they are equivalent to each other as the signature of scram-

bling. To this end, we carefully analyze local random

quantum circuits defined on, e.g., a binary tree, which

exhibit the property that OTOC mixes rather fast since

the light cone can quickly reach the far end (time of order

ln V), while it takes a much longer time for entanglement

between the left and right subtrees to grow (time at least

of order V). We furthermore generalize the result to any

bounded-degree graph with a tight bottleneck. That is, the

generation of entanglement is slow, even if the graph has

small diameter. Our result indicates that unitary t-designs

can be much more expensive than we thought: they require

a random quantum circuit to have depth much larger than

the diameter of the underlying graph. This result provides

a more rigorous evidence for arguments made in Ref. [21]:

if we consider the model discussed in Refs. [2,21], then

the scrambling of quantum information as seen by strong

measures such as entanglement or decoupling can be

much slower than we thought before. It would be inter-

esting to explore further implications of this phenomenon,

and more generally, quantum information processing, to

the black hole information problem, many-body physics,

and beyond.
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APPENDIX A: POISSON CLOCK

Here we argue that the Poisson clock model and the sim-

plified model in which a random edge is picked every 1/E

time units are essentially equivalent, by the following fact.

Proposition 1. Within time t, the number of unitaries

applied in the Poisson clock model is between 1
2
Et and 3

2
Et

with probability 1 − e−�(Et).
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Proof. The number of unitaries applied to each edge is

a Poisson distribution with mean t, so the total number

of unitaries λ is a Poisson distribution with mean Et.

By Ref. [40],

Pr

[

|λ − Et| ≥ 1

2
Et

]

≤ 2 exp

{

− [(1/2)Et]2

2[Et + (1/2)Et]

}

= e−�(Et).

�

APPENDIX B: CELLULATION OF HYPERBOLIC

GEOMETRY

Here we include the figure from Ref. [21] that roughly

depicts the cellulation of hyperbolic geometry (see Fig. 2),

representing the causality structure of a black hole in

Schwarzschild coordinates.

The line element in this geometry is

ds2 = −
(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2

+ r2(dθ2 + sin2 θdφ2).

The black hole has radius 2M , the photon sphere has radius

3M , and we are interested in the region 2M ≤ r ≤ 3M .

The total number of cells N is O(M 2). A great circle of

radius r = 2M + h traverses approximately
√

M/h cells

while a line from radius 2M + h to radius 3M traverses

approximately log(M/h) cells. Thus the graph diameter is

O(log N ).

FIG. 2. The cell structure roughly equivalent to the hyperbolic

geometry, depicted in two dimensions. In [21], this represents

the black-hole cell structure in Schwarzschild coordinates, where

each cell carries one qubit of Hawking-Unruh radiation.

APPENDIX C: OTOC FOR THE HIGH-DEGREE

CASE

1. Examples with long OTOC time

In this section we describe two examples of a high-

degree graph where the OTOC time is asymptotically

larger than the graph diameter. One example is the star

graph (see Fig. 3) where this phenomenon was previously

observed by Lucas [23]. A second example is a binary

tree with high but constant degree. We summarize the

parameters of these two examples in Table II.

In this section we sketch proofs of both of the claimed

OTOC times. First we give a simplified explanation of

the O(log n) OTOC time for the star graph. (A more pre-

cise but also more complicated argument was given in

Ref. [23].) In the star graph there are n − 1 vertices each

connected to a central vertex.

Consider the OTOC between Paulis on two of the non-

central vertices, say 1 and 2. We begin with a single N on

vertex 1 and I ’s everywhere else. Vertices 0 and 1 interact

after expected time 1, and when they interact there is a 4/5

chance that vertex 0 ends up with an N . Thus the expected

time for vertex 0 to turn to N is 5/4 and after this happens

the expected number of noncentral N ’s is 3/4.

After this, vertex 0 rapidly interacts with the other n − 1

vertices. Each time there is a 3/5 chance that the other ver-

tex will turn from I to N , a 1/5 chance that the other vertex

will remain I (or change from N to I , but consider for sim-

plicity the early stages when most vertices are I ), and a

1/5 chance that the other vertex will become N and vertex

0 will revert to I . The number of N ’s created here before

vertex 0 turns back to I is given by a geometric random

variable with expectation 3, and the time this takes has

expectation approximately equal to 4/n. For simplicity, we

ignore the fluctuations and assume that the process creates

exactly three N ’s and takes time exactly 4/n.

Now there (on expectation) 3.75 N ’s in noncentral ver-

tices and I ’s elsewhere. Again there is a long wait until the

central vertex turns back to N , but now the expected wait

is only 5
4

× 1/(3 + 3
4
). (We pretend, crudely, that there are

exactly 3.75 N ’s in noncentral vertices.) Again (on aver-

age) three more noncentral vertices turn to N and this again

takes expected time 4/n.

0

1 2

3

4

FIG. 3. Star graph.
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TABLE II. Two examples with OTOC time asymptotically

larger than the graph diameter.

Graph Diameter OTOC time Source

n qubits in

star graph

2 O(log n) [23]

Tree with

degree

z ≫ d2

O (log n/log z) Õ
(

n1−[ln(d2)/ln z]
)

This section

The time for O(n) of the noncentral vertices to turn to N

is thus dominated by the waits for the central vertex to turn

back to N , which add up to

5

4

[

1 + 1

1 × 3 + (3/4)
+ 1

2 × 3 + (3/4)

+ · · · + 1

O(n) × 3 + (3/4)

]

, (C1)

and is equal to O(log n).

This is not quite rigorous as we replace random variables

with their expectations in several places, but otherwise is

strong evidence for the OTOC time of O(log n) for the

star graph. A more rigorous argument is given in Sec. 5

of Ref. [23]. There it is also observed that dynamics based

on random Hamiltonians give an asymptotically different

OTOC time.

We can obtain a stronger separation between diame-

ter and OTOC time by considering a tree. Here we need

the degree z only to be a sufficiently large constant and

can obtain an OTOC time of n1−δ with δ → 0 as z →
∞. However, the diameter is also asymptotically growing

as O(log n), unlike the star graph where the diameter is

only 2.

Suppose that degree z ≫ d2 ≫ 1. Consider a tree

of depth H , so that there are (z − 1)h vertices

at level h for h = 0, . . . , H . The total number of

vertices is thus n = 1 + (z − 1) + (z − 1)2 + · · · + (z −
1)H = zH+1 − 1. Each vertex with h > 0 has one parent

and each vertex with h < H has z − 1 children.

Consider an N at vertex v, with height h. Suppose that

x(z − 1) of its children are in state N and (1 − x)(z − 1)

are in state I for some x ∈ [0, 1]. We approximate the

dynamics as follows.

(a) The parent of v becomes N at rate 1 − 1/(d2 + 1) ≈
1, regardless of its current state.

(b) A child of v turns into N at a rate (z − 1)[1 −
1/(d2 + 1)] ≈ z, again regardless of its current

state. This means that dx/dt has an expected con-

tribution of (1 − x).

(c) A child of v currently in state N turns to I , at rate

x(z − 1)/(d2 + 1) ≈ xz/d2, yielding a contribution

to dx/dt of −x/d2.

(d) v itself turns to I at a rate of (z − 1)/d2 ≈ z/d2. (At

the same time, one of v’s children turns to N , but we

can neglect this.)

Overall we find that x evolves according to

dx

dt
≈ 1 − (1 + 1/d2)x, (C2)

which asymptotically approaches (1 + 1/d2)−1 ≈ 1 −
1/d2. However, v will turn to I before this happens, typ-

ically after time d2/z. During this time, the probability of

v’s parent turning to N is ≈ z/d2.

Once v turns to I , its children can turn it back to N . This

happens at rate approximately equal to xd.

First, let us analyze more carefully the dynamics of x. If

h ≤ H − 2 then the children of v will themselves undergo

the same process. In particular, they will turn to I at rate

z/d2. This means Eq. (C2) is modified to become

dx

dt
≈ 1 − (1 + 1/d2 + z/d2)x ≈ 1 − z

d2
x, (C3)

Now x will saturate at x = d2/z.

Putting this together, the N ’s will “fall” to lower levels

more quickly than they can climb or be replaced.

By the time they have fallen to the base, the N ’s corre-

spond to the leaves of a subtree S with branching factor d2.

Then they begin slowly climbing back up.

Let us start at level H . Fix a vertex v ∈ S at height

H − 1. After time 1/d2, v will turn to N . Then it will fall

back down again after time d2/z, during which it will have

created another d2 N ’s at level H . Now there are 2d2 N ’s

below v. This means it will take time 1/2d2 to turn v back

to N . Again it falls down after time d2/z, creating another

d2 N ’s. This process continues z/d2 times, for a total time

of

1

d2

(

1 + 1

2
+ · · · + 1

z/d2

)

+ z

d2
× d2

z
≈ 1 + ln(z)

d2
.

This happens in parallel for each height-(H − 1) vertex

in S. These vertices no longer fall because most of their

children are (and remain) equal to N .

Now consider a height-(H − 2) vertex in S, again called

v. By the previous arguments, it has d2 children that remain

mostly permanently set to N . So v will become N after

time 1/d2. However, after time d2/z it will fall down to

level H − 1, creating d2 N ’s at level H − 1 in the process;

call this set A. These in turn will fall to level H where they

create d4 N ’s. Again it takes time 1 + ln(z)/d2 to cause

the vertices in A to turn permanently into N ’s. After this

it takes time 1/2d2 to again turn v to N , etc. There are

again z/d2 rounds, and focusing only on the 1 + ln(z)/d2
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contribution to the time for one round, we obtain a total

time of
z

d2
[1 + ln(z)/d2].

Now we move on to the height-(H − 3) part of S. Each

vertex there again turns to N and then falls to the bottom

of the tree z/d2 times. But now climbing back up takes

time

≈
( z

d2

)2

[1 + ln(z)/d2].

We conclude that the entire OTOC time is

≈
( z

d2

)H−1
(

1 + ln(z)

d2

)

. (C4)

Using that H + 1 = ln(n + 1)/ ln(z), the OTOC time is

approximately

(

d2

z

)2
( z

d2

)H+1

=
(

d2

z

)2

(n + 1)ln(z/d2)/ ln(z)

=
(

d2

z

)2

(n + 1)1−[ln(d2)/ ln(z)].

Thus by taking z = d1/δ we obtain OTOC scaling as

n1−δ ,which is much larger than the diameter of O(H) =
O[ln(n)/ ln(z)] = O[δ ln(n)/ ln(d)].

2. Examples with short OTOC time

For a complete graph with V vertices, �(V log V) edges

should be picked in order for the OTOC to be �(1),

according to Ref. [26]. By Proposition 1, the OTOC satura-

tion time is �[log(V)/V]. In contrast, the distance between

any pair of vertices is 1.

Another example is that the OTOC saturation time on

any graph can be scaled down by a factor of �(1/k) if we

replace each edge by k-fold parallel edges. Alternatively

we can replace each edge (u, v) by 2k edge (u, zi) and

(zi, v) for 1 ≤ i ≤ k, where {zi}k
i=1 are newly added ver-

tices (there are 2kE new vertices in total, k for each edge).

Since k could be arbitrary, this violates the lower bound we

obtain at finite degree.
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