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The out-of-time-ordered correlation (OTOC) and entanglement are two physically motivated and widely
used probes of the “scrambling” of quantum information, a phenomenon that has drawn great interest
recently in quantum gravity and many-body physics. We argue that the corresponding notions of scram-
bling can be fundamentally different, by proving an asymptotic separation between the time scales of
the saturation of OTOC and that of entanglement entropy in a random quantum-circuit model defined on
graphs with a tight bottleneck, such as tree graphs. Our result counters the intuition that a random quantum
circuit mixes in time proportional to the diameter of the underlying graph of interactions. It also provides
a more rigorous justification for an argument in our previous work [Shor P.W., Scrambling time and causal
structure of the photon sphere of a Schwarzschild black hole, arXiv:1807.04363 (2018)], that black holes
may be slow information scramblers, which in turn relates to the black-hole information problem. The
bounds we obtain for OTOC are interesting in their own right in that they generalize previous studies of
OTOC on lattices to the geometries on graphs in a rigorous and general fashion.
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I. INTRODUCTION AND OVERVIEW

The “scrambling” of quantum information is a phe-
nomenon of fundamental importance, deeply connected
to many important research topics in physics, such as
black holes [1-4] and many-body chaos [5,6]. In recent
years, a great amount of research effort has been devoted
to the detection and characterization of scrambling. The
so-called out-of-time-ordered correlation (OTOC) [7] is
a commonly used measure of quantum chaos and scram-
bling. A variant based on commutators (also known as the
OTO commutator) is given by

1
@) = {01, 0), 0>(,0]'[01(x,0), 02(y,0]), (1)
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where O (x,0) is an operator acting on site x, and O, (y, )
is a Heisenberg operator at time ¢ that acts only on y at
time 0, i.e., 0,(v, ) = U (H)O1(y, 0)U(¢), where U(?) is the
unitary for the evolution from time O to . The average is
taken with respect to the thermal state at some tempera-
ture, which we take to be infinite in this work. Intuitively
speaking, it characterizes parameters like sensitivity to ini-
tial conditions via the spread of local operators. Also notice
that the scrambling phenomena exhibit a truly quantum
nature—the state of the entire system remains pure during
the unitary evolution (although it is effectively random-
ized), thus no information is really lost; the generation of
global entanglement leads to the scrambling of initially
localized quantum information, spreading and hiding it
from observers that only have access to part of the sys-
tem. This observation leads to another fundamental probe
of a stronger form of scrambling, namely the entanglement
between parts of the system [2,8—10] (which measures the
equivalent effect as the tripartite information [9] in the
case of unitary dynamics; see Ref. [10] for more detailed
discussions).

To understand and characterize the dynamical behav-
iors of scrambling systems, several explicit models have
been proposed and investigated, such as the Sachdev-Ye-
Kitaev (SYK) model [11,12]. Another leading approach
is the random quantum-circuit model (i.e., sequential
applications of random local quantum gates), which is a
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widely used model of chaotic dynamics that make min-
imal assumptions about the nature of the local degrees
of freedom (see, e.g., Refs. [1,9,13—17]). They capture
the key kinematic feature of chaos that the evolution
appears to be random, and the locality of physical inter-
actions. In these well-studied physical scrambling mod-
els, the saturation of OTOC and that of entanglement
are expected to occur at a similar time scale [9,13,14].
More generally, one could consider the dynamics of many
small quantum systems (say qubits) connected accord-
ing to some graph [18,19], with random unitary gates
being applied to each edge. Suppose that we apply gates
in a random order such that on average each edge has
one gate applied to it per unit time. A natural conjec-
ture here, which would be compatible with all previous
results, is that the scrambling time for a constant degree
graph is proportional to its diameter, i.e., the maximum
distance between any two vertices. This would correspond
to information traveling through the graph at a linear veloc-
ity and is assumed implicitly in previous works. However,
no proof exists, outside of the special case of Euclidean lat-
tices in a fixed number of dimensions. Even for Euclidean
lattices in more than one dimension, this result was only
recently proven [20].

Our main results are the following. The first one (The-
orems 1 and 2) shows that for arbitrary graphs with
sufficiently low degree, the OTOC saturation time scales
linearly in the graph diameter. Here by low degree, we
mean d? > z where d is the dimension of the quantum
system and z is the degree of the graph. On the other
hand, we use bounds on entanglement growth to show
that the time needed to establish substantial entanglement
between parts of the system scale at least as the number
of vertices and thus could be longer than the OTOC satu-
ration time, for graphs with bottlenecks (see Theorem 3).
Such graphs include, e.g., binary trees, which we explic-
itly analyze in this paper, and discretizations of hyper-
bolic space around black holes, originally proposed by
Ref. [21], which are expected to exhibit similar behaviors
(as argued below). In other words, we establish an asymp-
totic separation between the time scales of OTOC and
entanglement saturation. Recently, Refs. [22,23] studied
scrambling on certain peculiar graphs via a Hamiltonian
model, but the relations between OTOC and entanglement
were not fully understood and the physical correspon-
dences were not clear; Ref. [24] considered the relations
between specific forms of OTOC and entanglement, but
it focused on a system with a specific quantum optical
Hamiltonian and the main message is about the connec-
tions rather than differences between OTOC and entan-
glement. Here we make key progress in the understand-
ing of scrambling measures by rigorously demonstrating
the fundamental difference between OTOC and entangle-
ment in a general setting and studying the implications to
physics.

Our results have the following major implications.

(1) Scrambling in non-Euclidean geometries. Existing
work mostly studied scrambling on Euclidean lattices
[13,14,25]. The general assumption is that after time
t, a localized perturbation will affect everything within
some ball of radius vpygeriy?, Where vpygery is known as
the “butterfly velocity,” which characterizes the speed of
information spreading. However, this has not been proved
and previous works gave only heuristic arguments for it
that included uncontrolled approximations. For the random
circuit models defined on general graphs, we find that if
the local dimension is large relative to the graph degree
then indeed there is a linear butterfly velocity. We also dis-
cuss apparent counterexamples, which suggest that linear
butterfly velocity no longer holds for high-degree graphs.
More specifically, we give a heuristic argument that for
tree graphs with high degree, the scrambling time could
be exponential in the diameter. The star graph studied in
Ref. [23] is also an example where the scrambling time
grows much faster than the diameter. On the other hand,
for complete graphs [26] the scrambling time is sublinear
in the diameter. We also show that by replacing edges in
a graph by some gadget with high degree, the scrambling
time could be arbitrarily small.

(i1) Black-hole information scrambling. Our results can
be regarded as a more rigorous argument that fleshes out
the idea of a recent paper by one of the authors [21], which
concerns whether it is possible for the fast scrambling
conjecture of black holes [2] to hold if one assumes that
the causality structure of general relativity holds around
a black hole, and if the medium by which the informa-
tion is scrambled is Hawking radiation. In the model of
Ref. [21], the space around the black hole is divided into
cells, each of which contains a constant number of bits of
Hawking radiation. It then gives arguments for why the
Hawking radiation is not adequate for fast scrambling if
the entanglement definition of scrambling is used. The cell
structure around the black hole looks like a patch of a cellu-
lation of hyperbolic geometry, where the cells on the event
horizon are the boundary of this patch. The tree graph
we consider captures a key feature of this geometry: the
leaves lie on the event horizon, and the density of nodes
decreases as one moves outwards radially. As the assump-
tions essentially suggest that information is processed via
local interactions of the Hawking radiation, we may con-
sider a random circuit defined on the underlying graph to
be a toy model that captures key features of the black-hole
scrambling process. Our mathematical results then indicate
that the scrambling time scales given by entanglement and
OTOC are fundamentally different. Another way to inter-
pret our model is that the information “wavefront” could
reach the farthest side rather quickly since there exists
short paths, but it takes a longer time, which scales with
the number of degrees of freedom, to establish truly global
entanglement. This is consistent with recent holographic
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calculations (see, e.g., Refs. [27,28]), which suggest that
the entanglement entropy grows roughly linearly after a
quench in chaotic systems.

We would also like to remark upon the task of recov-
ering quantum information falling into the black hole
from Hawking radiation, which is often referred to as
Hayden-Preskill decoding [1]. This task plays central roles
in recent studies of the black-hole information problem.
Yoshida and Kitaev recently proposed an explicit proto-
col [29] whose decoding fidelity is at least the order of
1/d%[1 — C(t)], where d4 is the Hilbert-space dimension
of the input message. Here C(7) takes the form of Eq. (1)
and considers O; and O, averaged over all Pauli operators
on the infalling system and Hawking radiation, respec-
tively; see Secs. 2—4 of Ref. [29] for details. By simple
calculations one can see that our results imply a possible
time window in which the decoding could be achieved
with high fidelity without substantial entanglement when
the infalling quantum state is sufficiently small compared
to the black hole. However, it appears that adding a small
number of qubits to a Schwarzschild black hole can only
be done by photons whose wavelength is comparable
to the size of the black hole. It does not seem surpris-
ing that the information carried by such photons can be
extracted by a black hole quickly; when the information is
absorbed by the black hole, it is already spread out over
the entire black hole, and so does not need to migrate from
a localized region to a state where it is delocalized on the
black hole.

(iil) Inequivalence of convergence to 2-designs in dif-
ferent measures. The speed of convergence of a random
circuit to a 2-design (distributions that approximately agree
with the Haar measure up to the first two moments,
which have found many important applications as an effi-
cient approximation to Haar randomness [30]) has been
the subject of a large amount of research. In particular,
Refs. [20,26,31-33] show that the time of convergence
depends on the graph of interactions, and suggest that
it should be proportional to the diameter. Note that 2-
designs are very powerful measures of convergence, in the
sense that a distribution being close to a 2-design implies
that the distribution has mixed with respect to not only
OTOC but also von Neumann and Rényi-2 entanglement
entropies [9,34], and other important signatures of infor-
mation scrambling such as decoupling [35]. Our work
provides several examples where a random circuit approx-
imates the OTOC but not the entanglement properties of
a 2-design, and therefore implies that a strong approxima-
tion of 2-designs (in terms of, e.g., the frame operator [10])
may not be achieved in time proportional to the diameter.

II. MODELS AND NOTATION

Let G be a graph with V vertices and £ edges. The model
we study consists of a graph with a d-dimensional Hilbert

space associated with each vertex of G. Each edge has
Haar-random unitary gates applied to qudits on its end-
points according to a Poisson process with rate 1, meaning
a Poisson distribution such that £ unitaries are applied
in time ¢ with probability #e~'/k!. The mixing times for
OTOC and entanglement, T(())fl%)c and re(ft), are defined as
follows.

Definition 1. Téxfyo)c (respectively, re(f,l,)) is defined to be
the minimum amount of time needed for OTOC between
vertices x and y (respectively, the entanglement entropy
between A and the complement of A) to become at least a
constant fraction of its equilibrium value. In this work we
take the constant to be 1/(d*> + 1).

Here we expect that a qualitatively similar behavior
will hold with 1/(d? + 1) replaced by any constant strictly
between 0 and 1. We study how toroc and 7. scale with
parameters such as local dimension, degree, and number of
vertices.

We study the pair of (x,y) that has the largest rg%)c,
and the set A4 that has the largest té:t), as they could best
characterize OTOC and entanglement properties for G.

Instead of studying this model directly we may con-
sider the process in which a random edge is picked every
1/E time units. This is because in our Poisson process
model, each edge is equally likely to be picked. The num-
ber of unitaries applied within time ¢ is of order E? (see
Appendix A), so the two models above are equivalent up
to a constant factor.

III. OTOC

To analyze the saturation time of OTOC, we for-
mulate the process of operator spreading as a Markov
chain. Consider an arbitrary Pauli operator o acting on
n d-dimensional qudits, p € {0,...,d*> — 1}", and apply
some unitary U to it. We expand the resulting operator on
Pauli basis and have

1
UTO‘;,UZ Za{;m}, oG = ETr[UTa; Ua;].
q

The expected value of the cross term for o averaged over
the distribution of U is

1
Eyagaq’i/ = ﬁEUTr[UT®2(O’13 ® U;)U@)z(o’;;r ®0)]

According to the construction of random circuit, this is
zero for g # ¢’ for U being the unitary in a single step.
Therefore, in each step the values of aqa(i; undergo lin-
ear transformation, which we can interpret as a distribution
because they are positive and sum to 1.

If we start from a Pauli operator located at a single ver-
tex x, on each vertex all nonidentity Pauli operators will
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have the same probability as long as x has been touched at
least once in the process. So we care only if the operator on
a vertex is identity (/) or nonidentity (N). And the norm of
the time-evolved operator with a Pauli operator P on some
vertex y would be proportional to the probability of hav-
ing nonzero Pauli operator on that site, and the factor of
proportionality is

-1

1 1 d
E - Pl'1o; -
d2 _ 1 2dTr([GI’P] [Glap]) - dz . 19

i=1

which is just the commutator averaged over all nonidentity
Pauli operators.

In summary, the object we study is the OTOC between
Pauli operator on vertex y and time-evolved Pauli opera-
tor on vertex x after T steps of random circuits on graph
G, which is equal to d?/(d*> — 1) times the probability of
having “N” on vertex y after T steps in the Markov chain
M, defined below. The state space of M, is the set of all the
configurations in which each vertex of G is assigned a label
“N” or “I.” The initial state of My has “N” assigned to ver-
tex x and “/” assigned to all other vertices. The update rule
is that in each step a uniformly random edge is picked and
the labels on the two corresponding vertices are updated.
“II” remains “II”, and otherwise they have a proba-
bility of (&> —1)/(d* — 1) =1/(d*> + 1) for becoming
“IN” or “NI” each, and (d> — 1)/(d?> + 1) for becoming
“NN” [26].

Now we prove an upper bound for the OTOC saturation
time. Note that O(«) that appears here and in the following
represents a quantity that scales asymptotically as «, i.e.,
a quantity between cj« and c,a for some constants ¢y, ¢,
such that 0 < ¢ < cs.

Theorem 1 (OTOC upper bound). Let G be a graph with
V vertices and E edges, and suppose the degree for each
vertex at most d2, where d is the Hilbert-space dimension
Jfor each vertex. Then for any pair of vertices x and y,
Téxiyo)c = O[D(x,y)] with high probability, where D(x,y) is
the distance between x and y. The probability of failure is
exponentially small in D(x,y). As a consequence the per-
fect binary tree has Téxfyo)c = O0(nV), where x and y are
the farthest pair of vertices.

Proof. The proof of this theorem follows from Lemmas 1
and 2 below. As explained earlier, the OTOC saturation
time corresponds to the number of steps needed for M to
have constant probability of having a label “N” on y.

We first prove Lemma 1, which states that with probabil-
ity 1 — e~ 9lP=)] the vertex y gets hit by a label “N” within
order of E x D(x,y) steps. As shown in Appendix A, this
needs order of D(x,y) time units with high probability.
Then we show in Lemma 2 that after this happens, the
probability for having an “N” on y remains constant. H

Lemma 1. Suppose that G is a graph with the degree for
each vertex being at most d*. For any pair of vertices x and
y with distance D(x,y), the expected number of steps for
y to be labeled “N " is of order E x D(x,y) in My start-
ing from x. Besides, with high probability the vertex y gets
labeled “N " in time of order E x D(x,y). The probability
of failure is exponentially small in D(x, y).

To set up the proof, we first construct a Markov chain
M, which has the same initial state as M;, and in each step
the update rule of M is applied, followed by changing all
“N” into “I” except the one closest to vertex y. By a simple
coupling argument the number of steps needed for y to get
an “N” in M, is lower bounded by that in M. The distance
between the vertex with label “N” and vertex y in Markov
chain M) can be described by a biased random walk, from
which we can obtain the desired bound.

Definition 2 (Markov chain M). Markov chain M has the
same state space and initial state as My. In each step the
update rule for My is applied, followed by setting all “N”
labels into “I1” except for the one closest to y (choose
randomly if this is not unique).

In this way the vertex with label “N” in M is always
labeled “N” in M, in the most natural way of coupling M,
to M, and therefore after any number of steps the proba-
bility that vertex is labeled “N” in M, is lower bounded by
the corresponding probability in M.

The Bernstein inequality is needed for the proof of
our theorem, which states that for independent zero-mean
random variables Xi,...,X, each with absolute value at
most M,

" (1/2)7
" [ZX" ] t} < (~Sa )

i=1

This could be generalized to the case with nonzero mean.
Suppose Y1,..., Y, has mean wu,,..., 1, and they satisfy
|Y; — ;] < M then by setting X; = ¥; — u; we have

n n
Pr|:ZYi > Z+ZM{|
i=1 i=1

(1/2)7
= oxp (_ S E2] + 12) + (1 3>M’) @

Now we give the proof of Lemma 1.

Proof. In this proof we first derive the transition rule of
Markov chain M,. We see that the distance between y and
the vertex labeled “N” could only change by 1 in each step,
the probability of decreasing is larger than that of increas-
ing. Then by Bernstein in equality in Eq. (2) we can show
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an upper bound for the number of steps needed for this
distance to decrease to 0.

We would first restate the transition rule of M, here.
For Markov chain M, an edge (i, v) is selected for each
step. Suppose the labels on u and v are both “I,” they
remain unchanged. Otherwise the labels become “IN” or
“NI” with probability 1/(d?> + 1) each, and “NN” with
probability (@*> — 1)/(d*> + 1).

As mentioned, the upper bound for M defined in
Definition 2 gives an upper bound for M,. For Markov
chain My, let v be the vertex with label “N.” As long as
v # y, there will be at least one neighbor u that is one
step closer to y, and other neighbors are at most one step
further from y due to the triangle inequality. If the edge
(u,v) is selected, there is a chance of d?/(d?> + 1) that u
obtains label “N” according to the transition rule of My. In
this case the distance between y and the closest “N” is one
step shorter. If the edge between u and other neighbors is
selected, there is a chance of 1/(d? + 1) that the label on
u becomes “/,” and the distance between y and the clos-
est label “N” becomes one step longer. Let the degree of
u be d,, and the distance between the label “N” and ver-
tex y will have probability of at least (1/E)d?/(d*> + 1)
to decrease by 1 and at most (d, — 1)/E[1/(d* + 1)] to
increase by 1, where the probabilities depend on the spe-
cific vertex. Since the degree for any vertex is at most d?,
the time needed for the distance to drop from D(x,y) to 0
is upper bounded by the time in the following biased ran-
dom walk W. W has states {0, 1, ..., dmnax} Where dpax 1S
the maximum possible distance to y, and starting from ver-
tex D(x,y) it has a fixed probability of d?/[E(d? + 1)] for
decreasing by 1 and (d?> — 1)/[E(d? + 1)] for increasing
by 1.

Extension of this finite chain to an infinite one could
increase only the hitting time of vertex 0, because the
finiteness at vertex dp,x prevents us from getting too far
from vertex 0. The displacement of a random walk on an
infinite chain (i.e., the difference of the final position and
initial position) is the sum of displacement for each step,
which has probability @?/[E(d*> + 1)] of being —1 and
(d* — 1)/[E(d* + 1)] probability of being +1, and other-
wise it is 0. The mean and variance for displacement at
each step is

1 2

2d* + 1 5
R S s S
E@+1) 7 E@+1)

Ho = M-

The expected number of steps needed to reach vertex 0 in
this random walk is —D(x,y)/uo = O[E x D(x,y)]. We
can also use Eq. (2) to bound the probability that the total
displacement of T steps is larger than —D(x, y), where we
set T to be twice the expected number of steps needed
and ¢t = D(x,y). M can be set to be 2. The denominator
in the exponent will be T(cro2 + 2,u6) + %t = O[D(x, )],

so Eq. (2) gives a probability of at most e~ ®P¢] for not
reaching vertex 0. n

Lemma 2. After a label “N ” reaches the target vertex y,
the probability for having an “N ” on y will remain order
one.

We again consider the modified chain, which keeps only
one label “N” after each step. We show that vertex y has
constant probability of having label “N” in the equilibrium
distribution. This probability is monotonically nonincreas-
ing as a function of the number of steps, so the probability
is order one in any step.

To give a full proof of this lemma, we need the following
lemma.

Lemma 3. Consider a reversible Markov chain M with
transition matrix P(x,y), x,y € Q. M starts determinis-
tically from state xy € Q. If all the eigenvalues of P are
non-negative, then the probability for xo will be mono-
tonically nonincreasing as a function of the number of
steps.

Proof. Let m(x) be the stationary distribution. The
reversibility implies that A(x,y) = /7 (x)/7()P(x,y)
is a symmetric matrix, and therefore has orthonor-
mal eigenvectors f;(x) with corresponding eigenvalues
Ar. The eigenvectors for P(x,y) will then be gi(x) =
fr(x)/+/7(x). Now we want to expand the initial distribu-
tion

Po(x) = 8y, in terms of gx(x),

Pox) =Y angi(x), & = 7 (x0)gi(x0),
k

which can be verified using the orthogonality of f;. After
t steps, the probability distribution would be

P =) arhigi(x),
k

and the probability for state xy would be

pixo) = Y arehigixo) = Y 7 (x0)g(x0)* A,
k k

which is a monotonically nonincreasing function of ¢ given
Ay are all non-negative. |

Now we can prove Lemma 2.

Proof. We again keep track only of the label “N” clos-
est to y. When it is at p, there is a probability of
dy/E[1/(d* + 1)] that an “/” is left on y and the clos-
est “N” becomes one of the neighbors of y. Here, d,
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is the degree of y. Otherwise, suppose it is at a vertex
u with degree d,. There is at least one neighbor of u
that is one step closer to y, and other neighbors are at
most one step farther. This corresponds to a probability
of 1/E[d?/(d? 4+ 1)] to move one step closer to y, and
(d, — 1)/E[1/(d* + 1)] to move one step farther.

Then we need only to consider a random walk on the
states {0, 1, ..., dnax}, Where dpay 1s the largest possible
distance from y. At state 0 there is a chance of @? /[E(d*> +
1)] moving to 1, and at other state £ the probabilities for
moving to k+ 1 and k — 1 are (&* — 1)/[E(d*> + 1)] and
d*/[E(d* + 1)] respectively. From Ref. [36] we can get
the probability for state 0 in the stationary distribution,
which is

1 1
Ly (@ /@] P+

which is €2 (1). Note that at large £, the probability for stay-
ing at the same state is larger than %, which means that
all eigenvalues are positive. Also the random walk on a
finite chain is reversible, so by Lemma 3, the probability
for having “N” on ¢ remain Q(1). [ |

Theorem 1 states that the number of steps needed for
OTOC saturation in a low-degree graph is at most of order
E x D(x,y). However, we expect that in a graph with high
degree, the number could be much larger. Some intuitions
are given in Appendix C.

Besides this upper bound we also derive a lower bound
for OTOC saturation time.

Theorem 2 (OTOC lower bound). Let G be a graph with
V vertices and E edges, and suppose the degree for each
vertex is O(1). Then for any pair of vertices x and y, r(()'rT’gC
is at least of order D(x,y) with high probability, where
D(x,y) is the distance between x and y. The probability of

failure is exponentially small in D(x,y).

Proof. Consider a Markov chain M’ on all configurations
in which every vertex of G is assigned labels “N” or “/.”
Initially x is assigned “N” and other vertices are assigned
“[.” In each step a random edge is picked and the vertices
it connects are changed to “N” if at least one of the vertices
is previously assigned “N.” Using a simple coupling argu-
ment the number of steps needed for y to be assigned “N”
gives a lower bound for téxT’yO)C. To show a lower bound
for the number of steps needed in M’, we prove an even
stronger statement that with probability at least 1 — e=©@,
all of the vertices with distance d to vertex x (denoted by
Sz) have label “I” after ® (£ x d) steps.

We start with a Chernoff-type bound for a sum of &
independent identically distributed (IID) geometric vari-
ables. Let X = X| + - - - + X} where X; has probability of

p(1 —p)™=! for value m, m > 1. For any 7 > 0, we have
Ee i = p/[e' — (1 — p)], and therefore

]EeftX =< p )k
e—1-p))

The mean for X is u = EX = k/p. By Markov inequality,

PriX < au] =Prle ™ > e™#]

< PP X

_ p o
_exp[k(lnet_(l_p) +p)],

for any ¢ > 0. When A > p, we take = In[(1 —p)A]/
(A — p) and get Pr[X < Au] < exp[—kf (p,L)] where

Y )
fp2)=—In% .

— —In
-p P A—p

In Markov chain M’, the number of steps needed for
spreading labels “N” along a path with length d is a sum
of d geometric variables with p = 1/E. Let C be the max
degree of the vertices. From vertex x to vertices in Sy,
there could be at most (C — 1)“ paths with length d, so by
union bound the probability that any vertex in S, gets label
“N” after AdE steps is at most (C — 1)? exp [—df (p,1)].
Knowing that f (p,1) = —logh + A — 14 O(p) can be
arbitrarily large for small constant A, we can pick A such
that the probability becomes e ©“@. By Appendix A,
the AdE steps here correspond to ®(Ad) = ©(d) time
units. |

IV. ENTANGLEMENT

We now turn our attention to entanglement. Here we
need only to consider the case where the evolution is uni-
tary and the system is pure. As a standard entanglement
measure, the entanglement entropy of a pure state |y) 45 is
given by E(|v/)) := S(p4) where py = Trp[|¢)(¥|] and S
is the von Neumann entropy. Notice the following simple,
general fact.

Lemma 4. Let Uy be a unitary operator acting on two
d-dimensional systems AB. Then for any V)4 4pp with
ancilla systems A', B,

E[(Uyp @ idyp) V) aarsp] — E(Y) aapp) < 2logd.

Proof. Adapted from the proof of Lemma 1 of Ref. [37].
Suppose Alice holds 44" and Bob holds BB'. In addition,
they share two copies of the maximally entangled state
|Dy) = (1/\/3) Zle [i)]7), E(]®4)) = logd. Consider the
following double teleportation protocol. Alice consumes
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a |®,) and classical communication to teleport 4 to Bob,
who performs U locally and then consumes a |®,;) and
classical communication to teleport system A back to
Alice. The protocol is LOCC, under which the entangle-
ment entropy between Alice and Bob is monotonically
nonincreasing. Therefore, by the additivity of S (and thus
E) on tensor products,

E(W)awpp) +2E(|Pg) = E[(Usp @ idap) |V ) aapp],

and so the claimed bound follows. [ |

Note that the proof also applies to, e.g., the Rényi-2
entropy, which is a variant of the entanglement entropy that
can be more easily measured in experiments [38,39].

By Lemma 4, the entanglement entropy between the two
trees increases by at most 2 log d when the random unitary
is acted across the middle edge. This edge has only a proba-
bility of 1/E ~ 1/V to be selected in each step. So in order
to reach the maximum entropy of order Vlogd, we need
at least an order of V2 steps or equivalently order V time.
This is much larger than the OTOC time of order log V.

From Lemma 4 we obtain the following result for a
general graph.

Theorem 3 (Entanglement lower bound). For a general
graph G with vertices partitioned into sets A and B, the
expected entanglement saturation time is at least of order
min{|A4|, |B|}/[C(4, B)], where C(A,B) is the number of
edges with one endpoint in A and one in B.

Since approximate 2-designs exhibit nearly maximal
entanglement [9,34], this result also provides lower bounds
on the time it takes for the random circuit to converge to
2-designs.

V. OTOC VERSUS ENTANGLEMENT IN
DIFFERENT MODELS

According to our results, a simple graph that can give a
separation of OTOC and entanglement saturation times is
a perfect binary tree, as depicted in Fig. 1. Here we con-
sider the OTOC of operators located on the pair of farthest
vertices in the graph (a leaf vertex of left subtree and a leaf
vertex of the right subtree), and the entanglement entropy
between left and right subtrees. The cell structure roughly
equivalent to the hyperbolic geometry in three dimensions,
or indeed any constant number of dimensions, exhibits
such a separation as well. These graphs are regarded as
toy models of quantum-information scrambling around
black holes [21], as motivated in the introduction; see also
Appendix B.

The behaviors of OTOC and entanglement on some
other graphs are also studied. These include the follow-
ing: (i) the “dumbbell graph” consisting of two complete

@

0 0,

FIG. 1. Illustration of the binary-tree model of depth 4. We
consider OTOC between local operators originally acting on two
farthest vertices (a leaf of the left and right subtrees, respectively,
for example, O; and O, in the diagram), and entanglement
between the left subtree (dashed circle) and the rest of the graph
(the cut shown by the red double line).

graphs connected by a bottleneck edge. A careful anal-
ysis could still show a separation between OTOC and
entanglement; (ii) high-degree graphs. We demonstrate
two examples in which the OTOC saturation time can be
much longer or shorter than the bound we have on low-
degree graphs. To be more precise, for a tree with high
degree, the OTOC time could be exponential in the diame-
ter of the graph. Another example is the star graph, which
has constant diameter but the OTOC time is logarithmic
in the number of vertices [23]. On the other hand, a com-
plete graph has vanishing OTOC time when the graph size
grows large, while the diameter remains constant. Another
example is that by replacing edges in a graph by gad-
gets with arbitrarily large degree, the OTOC saturation
time could be made arbitrarily small. See Sec. VI and
Appendix C for more details. Also note that there is no sep-
aration on Euclidean lattices. These results are summarized
in Table 1.

Other than the Poisson process on each edge, different
orders of choosing the edges are also studied below in
Sec. VL.

TABLE I. Comparison of the time scales of OTOC and entan-
glement saturation in various graphs. #n is the total number of
vertices in the graph.

Models and graphs OTOC Entanglement
Euclidean lattices in D n'/P n'/P
dimensions

Hyperbolic space with D = 3 logn Jnt
Binary tree logn n

Tree with degree z > d? pi—(logd/logz) n/z
Dumbbell graph logn/n n

2See Sec. 4 of Ref. [21].
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VI. VARIANTS OF OUR MODEL

As mentioned in the main text, one may be concerned
that the slow entanglement saturation is due to the low
chance of picking the cut edge in each step. Here we first
consider a naturally modified model where the probability
of picking the cut edge is much higher, albeit the OTOC
and entanglement times remain separated. In this model
we still apply Haar-random unitaries to vertices connected
by randomly chosen edges. Instead of picking a random
edge from all edges, in each step we pick a random edge
from the left subtree (L), and then the cut edge (C), and
finally a random edge from the rest of the edges (R). In
this LCR model, the analysis for OTOC does not change
by much and still has the O(Vlog V) upper bound. We
argue that the entanglement saturation time is still 2 (V?).
Consider the sequence of picking edges L; CR;, L;,CR;, . ..
The probability that the random edge on L or R is con-
nected to the cut edge is ®(1/V). So the probability that
neither R;, nor L;_, is connected to C'is 1 — ®(1/)), in
which case R;, L;, ., commute with the neighboring C, and
the chain reads ...L; CCR; L;_R;.,, ..., where the two
C gates reduce to one effective C gate. The probability
that such commutation does not happen is ®(1/V), which
means that the expected number of effective C gates in con-
stant time steps is @ (1/V). So the expected saturation time
is Q(1?).

We can also consider two complete graphs connected by
a cut edge. Let V' be the number of vertices, and the num-
ber of edges is E = ©(V?). We still have a similar Markov
chain describing the evolution of OTOC. In the LCR model
for this graph, by Ref. [26] the complete graph on the left
reaches equilibrium in O(log V) time. Then after a constant
number of steps there will be a label “N” propagated to
the right, and another O(log V) steps will be needed for
OTOC to equilibrate. On the other hand, Q2 (V) steps will
be needed for entanglement. If a random edge is picked
in each step, we expect the OTOC time scales to stay the
same. In this case, though, the entanglement takes time
Q(E) = Q(V?) to saturate.

Besides the two ways of picking random edges, we can
also pick a random matching in each step (assuming the
number of vertices on each side is even), followed by pick-
ing the cut edge. The entanglement entropy takes 2 (V)
steps to saturate. For OTOC, the number of edges connect-
ing a vertex with label “N” and a vertex with label “/” in a
random matching should be proportional to the total num-
ber of “N,” so we expect the number of vertices with “N”
to grow exponentially. Therefore, it would take O(log V)
steps for an “N” to go across the middle edge, and a total
number of O(log V) steps for OTOC to saturate.

ikt

VII. CONCLUSION

Random quantum circuits have widespread applica-
tions in quantum information, and are also very important

models of scrambling and chaotic quantum systems in the-
oretical physics. There are several ways to characterize
scrambling and randomness in quantum processes, among
which the OTOC and entanglement are two important
types of measures. This work aims to understand whether
they are equivalent to each other as the signature of scram-
bling. To this end, we carefully analyze local random
quantum circuits defined on, e.g., a binary tree, which
exhibit the property that OTOC mixes rather fast since
the light cone can quickly reach the far end (time of order
In V), while it takes a much longer time for entanglement
between the left and right subtrees to grow (time at least
of order V). We furthermore generalize the result to any
bounded-degree graph with a tight bottleneck. That is, the
generation of entanglement is slow, even if the graph has
small diameter. Our result indicates that unitary #-designs
can be much more expensive than we thought: they require
a random quantum circuit to have depth much larger than
the diameter of the underlying graph. This result provides
a more rigorous evidence for arguments made in Ref. [21]:
if we consider the model discussed in Refs. [2,21], then
the scrambling of quantum information as seen by strong
measures such as entanglement or decoupling can be
much slower than we thought before. It would be inter-
esting to explore further implications of this phenomenon,
and more generally, quantum information processing, to
the black hole information problem, many-body physics,
and beyond.
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APPENDIX A: POISSON CLOCK

Here we argue that the Poisson clock model and the sim-
plified model in which a random edge is picked every 1/E
time units are essentially equivalent, by the following fact.

Proposition 1. Within time t, the number of unitaries
applied in the Poisson clock model is between %Et and %Et
with probability 1 — e~ D,
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Proof. The number of unitaries applied to each edge is
a Poisson distribution with mean ¢, so the total number
of unitaries A is a Poisson distribution with mean Et.
By Ref. [40],

2
Pr [M — Et| > %Er} <2exp { [(1/2)Et] }

" 2[Et+ (1)2)Ef]
— o O

APPENDIX B: CELLULATION OF HYPERBOLIC
GEOMETRY

Here we include the figure from Ref. [21] that roughly
depicts the cellulation of hyperbolic geometry (see Fig. 2),
representing the causality structure of a black hole in
Schwarzschild coordinates.

The line element in this geometry is

-1
ds2=—<1—2ﬂ>dﬁ+<1—2ﬂ> dr

r r

+ 12(d6? + sin® 0dep?).

The black hole has radius 2M, the photon sphere has radius
3M, and we are interested in the region 2M < r < 3M.
The total number of cells N is O(M?). A great circle of
radius » = 2M + h traverses approximately /M /h cells
while a line from radius 2M + h to radius 3M traverses
approximately log(M /h) cells. Thus the graph diameter is
O(log N).

FIG. 2. The cell structure roughly equivalent to the hyperbolic
geometry, depicted in two dimensions. In [21], this represents
the black-hole cell structure in Schwarzschild coordinates, where
each cell carries one qubit of Hawking-Unruh radiation.

APPENDIX C: OTOC FOR THE HIGH-DEGREE
CASE

1. Examples with long OTOC time

In this section we describe two examples of a high-
degree graph where the OTOC time is asymptotically
larger than the graph diameter. One example is the star
graph (see Fig. 3) where this phenomenon was previously
observed by Lucas [23]. A second example is a binary
tree with high but constant degree. We summarize the
parameters of these two examples in Table II.

In this section we sketch proofs of both of the claimed
OTOC times. First we give a simplified explanation of
the O(logn) OTOC time for the star graph. (A more pre-
cise but also more complicated argument was given in
Ref. [23].) In the star graph there are n — 1 vertices each
connected to a central vertex.

Consider the OTOC between Paulis on two of the non-
central vertices, say 1 and 2. We begin with a single N on
vertex 1 and I’s everywhere else. Vertices 0 and 1 interact
after expected time 1, and when they interact there is a 4/5
chance that vertex 0 ends up with an N. Thus the expected
time for vertex 0 to turn to NV is 5/4 and after this happens
the expected number of noncentral N’s is 3 /4.

After this, vertex 0 rapidly interacts with the other n — 1
vertices. Each time there is a 3/5 chance that the other ver-
tex will turn from 7 to NV, a 1/5 chance that the other vertex
will remain / (or change from N to /, but consider for sim-
plicity the early stages when most vertices are /), and a
1/5 chance that the other vertex will become N and vertex
0 will revert to /. The number of N’s created here before
vertex 0 turns back to / is given by a geometric random
variable with expectation 3, and the time this takes has
expectation approximately equal to 4/a. For simplicity, we
ignore the fluctuations and assume that the process creates
exactly three N’s and takes time exactly 4/n.

Now there (on expectation) 3.75 N’s in noncentral ver-
tices and /’s elsewhere. Again there is a long wait until the
central vertex turns back to &V, but now the expected wait
is only % x1/B+ %). (We pretend, crudely, that there are
exactly 3.75 N’s in noncentral vertices.) Again (on aver-
age) three more noncentral vertices turn to NV and this again
takes expected time 4/n.

FIG. 3. Star graph.
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TABLE II. Two examples with OTOC time asymptotically
larger than the graph diameter.
Graph Diameter OTOC time Source
n qubits in 2 O(logn) [23]
star graph
Tree with O (logn/logz) O (nl‘““("z)/ lnz]) This section
degree
z>»d

The time for O(n) of the noncentral vertices to turn to N
is thus dominated by the waits for the central vertex to turn
back to N, which add up to

5 1 1
Z[1+1x3+(3/4)+2x3+(3/4)

1
+"'+0(n)x3+(3/4)]’ €D

and is equal to O(log n).

This is not quite rigorous as we replace random variables
with their expectations in several places, but otherwise is
strong evidence for the OTOC time of O(logn) for the
star graph. A more rigorous argument is given in Sec. 5
of Ref. [23]. There it is also observed that dynamics based
on random Hamiltonians give an asymptotically different
OTOC time.

We can obtain a stronger separation between diame-
ter and OTOC time by considering a tree. Here we need
the degree z only to be a sufficiently large constant and
can obtain an OTOC time of n!'=® with § — 0 as z —
oo. However, the diameter is also asymptotically growing
as O(logn), unlike the star graph where the diameter is
only 2.

Suppose that degree z > d?> > 1. Consider a tree
of depth H, so that there are (z—1)" vertices
at level A for h=0,...,H. The total number of
vertices is thus n=14+C—-D+ - 1>+ + (= —
) = zH+1 _ 1. Each vertex with # > 0 has one parent
and each vertex with 47 < H has z — 1 children.

Consider an N at vertex v, with height 4. Suppose that
x(z — 1) of its children are in state N and (1 —x)(z — 1)
are in state / for some x € [0, 1]. We approximate the
dynamics as follows.

(a) The parent of v becomes N atrate | — 1/(d?> + 1) ~
1, regardless of its current state.

(b) A child of v turns into N at a rate (z — 1)[1 —
1/(d?> + 1)] ~ z, again regardless of its current
state. This means that dx/dt has an expected con-
tribution of (1 — x).

(c) A child of v currently in state N turns to /, at rate
x(z — 1)/(d*> + 1) =~ xz/d?, yielding a contribution
to dx/dt of —x/d>.

(d) v itself turns to / at a rate of (z — 1)/d*> ~ z/d*. (At
the same time, one of v’s children turns to N, but we
can neglect this.)

Overall we find that x evolves according to

dx
= x~1-=0+1/d
p (I +1/d)x,

(C2)
which asymptotically approaches (14 1/d*)~' ~ 1 —
1/d*. However, v will turn to I before this happens, typ-
ically after time @”/z. During this time, the probability of
v’s parent turning to N is & z/d".

Once v turns to /, its children can turn it back to N. This
happens at rate approximately equal to xd.

First, let us analyze more carefully the dynamics of x. If
h < H — 2 then the children of v will themselves undergo
the same process. In particular, they will turn to / at rate
z/d?*. This means Eq. (C2) is modified to become

dx > 5 z
Ewl—(l—{—l/d —|—z/d)x~1—Ex,

(C3)
Now x will saturate at x = d?/z.

Putting this together, the N’s will “fall” to lower levels
more quickly than they can climb or be replaced.

By the time they have fallen to the base, the N’s corre-
spond to the leaves of a subtree S with branching factor d?.
Then they begin slowly climbing back up.

Let us start at level H. Fix a vertex v € § at height
H — 1. After time 1/d?, v will turn to N. Then it will fall
back down again after time d?/z, during which it will have
created another d> N’s at level H. Now there are 2d> N’s
below v. This means it will take time 1/24? to turn v back
to N. Again it falls down after time d?/z, creating another
d*> N’s. This process continues z/d” times, for a total time
of

1 1_’_1_‘_ n 1 +z d? 1_}_1n(z)
J— —_ _— — X — X .
z a2 oz d?

This happens in parallel for each height-(H — 1) vertex
in S. These vertices no longer fall because most of their
children are (and remain) equal to V.

Now consider a height-(H — 2) vertex in S, again called
v. By the previous arguments, it has @” children that remain
mostly permanently set to N. So v will become N after
time 1/d?. However, after time d?/z it will fall down to
level H — 1, creating @ N’s at level H — 1 in the process;
call this set 4. These in turn will fall to level H where they
create d* N’s. Again it takes time 1 + In(z)/d? to cause
the vertices in 4 to turn permanently into N’s. After this
it takes time 1/2d” to again turn v to N, etc. There are
again z/d? rounds, and focusing only on the 1 + In(z)/d?
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contribution to the time for one round, we obtain a total
time of

;[1 1 In(z)/d].

Now we move on to the height-(H — 3) part of S. Each
vertex there again turns to N and then falls to the bottom
of the tree z/d” times. But now climbing back up takes
time

~ (%)2 [1 4 In(z)/d?].

We conclude that the entire OTOC time is

H-1 1
~ (;_2) (1+ 1;(5))_ (C4)

Using that H + 1 = In(z 4+ 1)/In(z), the OTOC time is
approximately

() (5"

2N\ 2
(d_) (n + 1)InG/d)/nG)
z

2\ 2
(‘i) (n + 1)!~n@)/ @],
z

Thus by taking z = d'/® we obtain OTOC scaling as
n'=% which is much larger than the diameter of O(H) =
O[In(n)/ In(z)] = O[S In(n)/ In(d)].

2. Examples with short OTOC time

For a complete graph with V vertices, ® (V'log V) edges
should be picked in order for the OTOC to be ®(1),
according to Ref. [26]. By Proposition 1, the OTOC satura-
tion time is ®[log(¥)/V]. In contrast, the distance between
any pair of vertices is 1.

Another example is that the OTOC saturation time on
any graph can be scaled down by a factor of ®(1/k) if we
replace each edge by k-fold parallel edges. Alternatively
we can replace each edge (u,v) by 2k edge (u,z;) and
(zi,v) for 1 <i <k, where {zi}f.‘:1 are newly added ver-
tices (there are 2kE new vertices in total, k for each edge).
Since & could be arbitrary, this violates the lower bound we
obtain at finite degree.
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