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ABSTRACT

Clustering is a popular unsupervised data mining technique. It has
been applied in various data mining and big data applications.
Efficient clustering algorithms and implementation techniques are
keys to cope with the scalability and performance requirements of
big data analysis. This paper introduces the design and
implementation of a density-based clustering algorithm that can
deal with big data efficiently and effectively. We present a
parallel Shared Nearest Neighbor (SNN) clustering algorithm
using the k-dimensional tree (k-d tree) to reduce search time to
improve efficiency. The proposed algorithm is implemented in a
distributed environment using the Spark framework. The
effectiveness of the proposed algorithm has been evaluated
through a case study involving four data sets, Bristol Crime Stats,
911 call, Complex9, and TLC Trip datasets.
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1. INTRODUCTION

Clustering is one of the popular data mining techniques that can
be applied to many application domains, such as finance, biology,
political science, sports, etc. Shared Nearest Neighbor (SNN) [1]
is a well-known density-based clustering algorithm that can
handle high dimensional data and find clusters of different
densities, sizes, and shapes. However, as the volume of the
available data becomes extremely large, traditional techniques
running on a single machine are inefficient in analyzing big data.
Therefore, new techniques are needed to address these challenges
and to provide efficient solutions to analyze this wealth of big
data. Many researchers have extended traditional clustering
algorithms such as K-means [2], DBSCAN [3], and SNN [1] on
high-performance computer clusters for big data analysis.
Meanwhile, different tree-based data structures, such as k-
dimensional tree (k-d tree) [4] and R-tree [5], have been
implemented to improve the performance of clustering big data. In
this paper, we propose a methodology to improve the traditional
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Shared Nearest Neighbor clustering algorithm by utilizing the
powerful Spark platform [6] and k-dimensional (k-d) tree [4] for
big data analysis, called Spark-KDT-SNN. The traditional SNN
has time and space complexity as O(n2) and O(nk), respectively,
where n is the total number of objects in the dataset, and k is the
number of nearest neighbors [1]. When utilizing k-d tree to
perform the k nearest neighbors™ queries, the runtime complexity
is reduced to O(nlogn). The main contributions of this paper are:

1: We develop and implement Spark-KDT-SNN, an efficient
density-based clustering algorithm on Spark.

2: We utilize k-d tree data structure to reduce search time.

3: We evaluate the performance and scalability properties of the
Spark-KDT-SNN algorithm with real datasets.

The organization of the paper is as follows. In section 2, we
discuss the related works. We introduce the Spark-KDT-SNN
algorithm in section 3. In section 4, we evaluate the performance
of Spark-KDT-SNN with case studies on real datasets. Section 5
concludes our study and discusses potential future works.

2. LITERATURE REVIEW

Shared Nearest Neighbor (SNN) [1] is one of the density-based
clustering algorithms. SNN can be applied to many application
domains. SNN clusters data as DBSCAN does, except that the
number of nearest neighbors that a pair of points share is used to
access the similarity. In SNN, the density of a point p is defined as
the sum of the similarities between p and its* k nearest neighbors.
SNN can find clusters of different sizes, shapes, densities, and can
handle noises in the dataset. There are a few works based on the
classic SNN algorithm in the literature. Ye et al. [7] introduced a
new definition of density that considers both the number of shared
nearest neighbors and the distance between data objects to
optimize the traditional SNN algorithm. Sharma et al. [§]
proposed an enhancement of the SNN clustering algorithm, called
fuzzy shared nearest neighbor (FSNN). FSNN has the capability
of handling the data lying in the boundary regions utilizing a
fuzzy concept. Singh et al. [9] introduced an incremental
extension to SNN, called IncSNN-DBSCAN. IncSNN-DBSCAN
can find clusters on a dataset to which frequent inserts are made.
Li et al. [10] introduced a new clustering method, called SNNC,
based on Shared Nearest Neighbor for hyperspectral optimal band
selection.

Using k-d tree to improve the efficiency of clustering algorithms
has been widely studied in the literature as well. Walter et al. [11]
improved the agglomerative clustering by implementing k-d tree
to find the best fit cluster for the agglomerative process.
Vijayalakshmi [12] proposed the KDT-DBSCAN clustering
algorithm for solving the search complexity problem using k-d



tree. Otair [13] compared k-d tree with a brute force search for
spatial clustering and found that k-d tree to be the most optimal
among these two for the search of a neighboring point. However,
both the classic SNN and the improved versions discussed above
are inherently sequential and not well-suited for processing big
data that require high-performance computing infrastructure and
parallel computing systems.

Parallel implementation of different clustering algorithms has
been proposed in the literature. Kumari et al. [14] presented two
sequential implementations of the classic SNN algorithm, NaiveR-
SNN, and R-SNN, which uses R-tree for executing neighborhood
queries efficiently and exploiting spatial locality to minimize
memory usage. They also introduced parallel implementations of
R-SNN by employing the Single Process Multiple Data (SPMD)
model. Anchalia et al. [15] introduced a combiner in the mapper
function to implement k-means using the MapReduce paradigm.
He et al. [16] implemented an efficient DBSCAN algorithm in a
4-stage MapReduce paradigm, called MR-DBSCAN. Han et al.
[17] proposed a scalable DBSCAN algorithm with the Spark
framework. Wang et al. [18] designed the MapReduce-based
Shared Nearest Neighbor clustering algorithm called MR-SNN.
As we can see that most of the studies focus on improving the
sequential SNN algorithm or adapting it to MapReduce. However,
Spark has several advantages compared to MapReduce. Our work
focus on improving the efficiency of the traditional SNN
algorithm utilizing k-d tree structure and Spark framework for big
data analysis.

3. SPARK-KDT-SNN

This section introduces the detailed algorithm design and
implementation of a new parallel Shared Nearest Neighbor
clustering using the big data framework Spark. Meanwhile, we
apply k-d tree in our algorithm to reduce the search time. We first
briefly introduce the traditional SNN clustering algorithm, then
SNN using k-d tree, called KDT-SNN, and the parallel
implementation of KDT-SNN on Spark, called Spark-KDT-SNN.

3.1 Shared Nearest Neighbor Clustering

In SNN [1], the similarity between two points p and g is the
number of points they share among their k nearest neighbors as
follows:

similarity(p,q) = INN(p) N NN(q)| (1)

where NN(p) is the set of k nearest neighbors of a point p. The
density of a point p is defined as the sum of the similarities
between p and it's k nearest neighbors as follows:

density(p) = Y&, similarity(p,qx) (2)
After assessing the density of each point in the dataset D, SNN
identifies all core points; all points in the dataset D that have the
SNN density of at least MinPs and forms the clusters around the

core points like DBSCAN.
CoreP(D) = {p € D|density(p) = MinPs} (3)

SNN can find clusters of different sizes, shapes, and can handle
noises in the dataset. Moreover, SNN copes better with high
dimensional data and deals well with datasets having varying
densities. SNN does not require the number of clusters to be
determined in advance.

3.2 K-D Tree

The k-dimensional tree (k-d tree) a space-partitioning data
structure for organizing points in a k-dimensional space. The
nearest neighbor search algorithm aims to find the point in the tree
that is nearest to a given input point. This nearest neighbor search
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can be done efficiently by using the k-d tree properties to quickly
eliminate large portions of the search space

3.3 KDT-SNN

We improved the traditional SNN clustering algorithm using k-d
tree to index all data points to support the k£ nearest neighbors™
search. The proposed algorithm, called KDT-SNN, reduces the
time complexity of SNN to O(nlogn).

The KDT-SNN algorithm requires three parameters: Eps, MinPts,
and k. k is the number of nearest neighbors. MinPts is used to find
the core points. It is a threshold to determine whether a point is a
core point. Eps is used as a threshold for density. It should be
smaller than k. Figure 1 shows the pseudocode of the KDT-SNN
clustering algorithm. KDT-SNN first arranges all the data points
in a k-d tree, the k nearest neighbors of each point in the dataset D
are found directly from the &-d tree build at the first step.

KDT-SNN (D, k, MinPs, Eps)

Input: dataset D, the number of the nearest neighbors k, the core
point threshold MinPs, the similarity threshold Eps

Output: set of clusters C;.
1. Build k-d tree for dataset D: k-d tree(D).

2. Mark every p in D “unchecked”

3. forallpinD

4. get k nearest neighbors from k-d tree (D)

5. end for

6. For all pair of events p and ¢ in D

7. Compute similarity (p,q) based on k-d
tree(D)

8. end for

9. forallpinD

10.  Compute density(p)

11.  If density(p) is greater than MinPs then

12. Mark p as ,core™;

13.  endif

14. end for

15. for all corepin D

16. If p is marked “unchecked” then

17. Form a cluster C;, of points which can
be reached from core p and add the core
points that can be reached from core p.

end if
Mark all points in C; as ,checked*

end for

return set of clusters C;

18.
19.
20.
21.

Figure 1. Pseudocode of KDT-SNN
3.4 Spark

Spark is an open-source cluster computing framework developed
by AMPLab at the University of California, Berkeley in 2009 for
performing big data analytics on distributed clusters. Spark was
introduced to address the limitations of the MapReduce paradigm
which essentially requires reading of input from the disk, mapping
the input with some map function, and saving the results from the
reduced operations back to the disk. Spark introduced a data
structure called resilient distributed dataset (RDD) [6] which is
immutable and distributed over different nodes in the cluster.
Besides, Spark supports programming languages Java, Scala, R
and Python, and provides ease of use for application developers.




Spark has its standalone cluster manager and supports other
cluster managers such as Hadoop YARN and Apache Mesos.
Spark supports Hadoop Distributed File System (HDFS), MapR
File System (MapR-FS), Cassandra, OpenStack Swift, Amazon
S3, Kudu, etc. Spark consists of five main components, i.e., Spark
Core, Spark SQL, Spark Streaming, MLIlib (Machine Learning
Library), and GraphX. Spark enables in-memory computation in
its restricted distributed shared memory which makes Spark faster
than MapReduce. Therefore, we adopt Spark as the underlying
parallel processing platform to design and implement the
distributed version of KDT-SNN clustering, called Spark-KDT-
SNN. We will introduce the design of the Spark-KDT-SNN
clustering algorithm in section 3.5.

3.5 Spark-KDT-SNN

In this section, we present the design and parallel implementation
of KDT-SNN on Spark, called Spark-KDT-SNN. Spark-KDT-
SNN does spatial data partitioning using k-d tree. Both multimode
parallelism at the node level and multicore parallelism at the core
level are exploited. Spark-KDT-SNN consists of four major steps,
i.e., building k-d tree, partitioning, local clustering, and global
merging. In the first step, k-d tree for dataset D is built. In the
second step, data are divided into equal partitions based on k-d
tree index to distribute among all computer nodes. The objective
of partitioning is to divide the input dataset D into smaller
partitions that can be clustered on each node in parallel. In the
third step, each note constructs its k-d tree and performs local
clustering in parallel. All local clusterings are done in parallel by
exploiting both multi-node and multi-core parallelism. All local
clustering results are saved as intermediate results. In the fourth
step, all local clustering results are then aggregated to get the
global clustering. A cluster may span several partitions, resulting
in multiple local clusters that belong to different partitions.
Therefore, we need to merge the local clusters into global ones.
To identify a cluster that spans more than one partitions, the core
points identified by local KDT-SNN and their clustering ID lists
should be examined. To explain the merging procedure, we first
define Eps criteria. A pair of core points are said to satisfy Eps
criteria if they are within Eps radius of each other. We randomly
select a core point from each local cluster and call it
representative points for that local cluster. If any pair of
representative points satisfy Eps criteria, the two local clusters
presented by these two representative points need to be merged
and relabeled in the merge procedure to get the final global
clustering results. The formal description of Spark-KDT-SNN is
as follow:

Step 1: build the k-d tree for dataset D, KDTree(D).

Step 2 Participation: divide the input dataset D into N partitions,
Si, Ss,..., S, based on the k-d tree such that D = U?’zl S;and
S;nS; =@ for i # j . Each partition S; is distributed on node C;
wherei=1,2, ..., n.

Step 3 Local Clustering: cluster all partitions concurrently using
KDT-SNN on each node C;, i.e. call KDT-SNN (S;, Eps, MinPs)
concurrently on C; fori=1,2, ....,N.

Step 4 Global Merging: merge the local clustering results obtained
from each partition S; into a global clustering result for the input
dataset D.

The merging procedure relies on two fundamentals of the original
KDT-SNN algorithm. First, all the core points in a cluster satisfy
Eps criteria. Second, all the non-core points in a cluster are closest
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to one of the core points in that cluster. This in turn implies that if
any two core points in different partitions satisfy Eps criteria, the
corresponding local clusters need to be merged. The merging
stage ensures that all the data points in the input dataset D are
assigned a global cluster index. All computations in the merging
stage are performed at the driver node and none of the operations
in this stage is distributed. However, this stage only requires the
comparison of the representative points hence, the contribution of
this computation latency to the overall computation latency is
almost negligible.

4. CASE STUDY

In this section, we discuss several case studies to evaluate the
performance of KDT-SNN and Spark-KDT-SNN using three
datasets, i.e., Bristol Crime Stats [19], Complex9 dataset [20],
TLC Trip Record Data [21], and 911 Call dataset [22]. Complex9
is a 2-dimensional dataset with different shapes. TLC Trip record
data is the taxi trip records of New York City, which has different
attributes including pick-up and drop-off locations, trip distances,
rate types, etc. Figure 1 shows a subset of TLC Trip Record Data.

4.1 Results for KDT-SNN and SNN

We first compare the performance of KDT-SNN with SNN using
the same configuration for Bristol Crime Stats, Complex9, and
TLC Trip Record Data. Figures 2, 3, and 4 show the visualization
of the clustering results of KDT-SNN for each dataset,
respectively. Each color represents one cluster on the figures. We
can see that the KDT-SNN clustering algorithm can effectively
identify clusters of different sizes, shapes, and densities.
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Figure 2. KDT-SNN clustering result of Bristol dataset
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Figure 3. KDT-SNN clustering result of Complex9 dataset
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Figure 4. KDT-SNN clustering result of TLC Trip dataset

We also compare KDT-SNN and SNN in terms of runtime for
three datasets using the same parameter values. The results are
listed in Table 1. Table 1 shows that KDT-SNN is faster than
SNN for all three datasets.

Table 1. Runtime Results of KDT-SNN and SNN

Dataset K | MinPs | Eps | KDT-SNN | SNN
Bristol 40 | 22 20 | 48.0505s 514.59s
Complex9 30 | 18 13 6.297s 37.73s
TLC Trip 28 | 13 13 10.88s 100.08s

4.2 Results for Spark-KDT-SNN

We use Bristol Crime Stats and 911 Call for the experiments. We
fist conduct experiments on a non-distributed single-JVM mode to
facilitate the development and testing. In this non-distributed
single-JVM deployment mode, Spark spawns all the execution
components in the single JVM. Then we conduct the experiments
on a lab-size three-node cluster. Each node has an Intel Xeon
Processor E5-2603 V4 1.7 GHz processor, 32 GB DDR4 memory,
and one 2 TB hard disk. The operating system is Ubuntu 16.04
LTS. For the Spark platform, we install Spark 2.1.0. We chose
Spark“s standalone cluster manager as the cluster manager and
HDEFS as the distributed file system.
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We ran the Spark-submit script at the master node. Therefore, the
driver program is hosted on the master node. Client mode is
selected for two main reasons. First, it does not require storing the
results in the file or database as in cluster deployment mode.
Secondly, it helps in the dynamic analysis of the results. Moreover,
this mode enabled us to decide where to run the driver program.
Client mode, however, does not utilize the cluster managers
ability to find a slave having enough available resources to
execute the driver program. Moreover, the driver program cannot
be monitored from Spark master web UI like other workers in this
mode. Spark framework divides Spark-KDT-SNN into seven
stages.

Table 2. The Runtime of Spark-KDT-SNN on Bristol

No. of Cores | No. of Nodes Time (Seconds)
2 1 900.448
4 1 519.85
6 1 402.71
12 2 227.13
18 3 175.055

Table 3. The Runtime of Spark-KDT-SNN on 911

No. of Cores No. of Nodes Time (Seconds)
2 1 5597.4667
4 1 2870.3048
6 1 2224.7991
12 2 1860.25
18 3 1151.66

5. CONCLUSION

We developed a scalable density-based clustering algorithm called
Spark-KDT-SNN. It improves the traditional SNN clustering
algorithm by utilizing k-d tree as the data structure to compute the
nearest neighbor to reduce the computation time. We also
presented the parallel implementation of Spark-KDT-SNN for
distributed systems. The experimental results demonstrate the
efficiency and performance of the Spark-KDT-SNN algorithm.
One of the future works is to compare the performance of Spark-
KDT-SNN with other density-based clustering algorithms on
Spark.
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