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ABSTRACT 
Clustering is a popular unsupervised data mining technique. It has 
been applied in various data mining and big data applications. 
Efficient clustering algorithms and implementation techniques are 
keys to cope with the scalability and performance requirements of 
big data analysis. This paper introduces the design and 
implementation of a density-based clustering algorithm that can 
deal with big data efficiently and effectively. We present a 
parallel Shared Nearest Neighbor (SNN) clustering algorithm 
using the k-dimensional tree (k-d tree) to reduce search time to 
improve efficiency. The proposed algorithm is implemented in a 
distributed environment using the Spark framework. The 
effectiveness of the proposed algorithm has been evaluated 
through a case study involving four data sets, Bristol Crime Stats, 
911 call, Complex9, and TLC Trip datasets.  
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• Information systems ➝ Information systems applications ➝ 
Data mining ➝ Clustering 
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1. INTRODUCTION 
Clustering is one of the popular data mining techniques that can 
be applied to many application domains, such as finance, biology, 
political science, sports, etc. Shared Nearest Neighbor (SNN) [1] 
is a well-known density-based clustering algorithm that can 
handle high dimensional data and find clusters of different 
densities, sizes, and shapes. However, as the volume of the 
available data becomes extremely large, traditional techniques 
running on a single machine are inefficient in analyzing big data. 
Therefore, new techniques are needed to address these challenges 
and to provide efficient solutions to analyze this wealth of big 
data. Many researchers have extended traditional clustering 
algorithms such as K-means [2], DBSCAN [3], and SNN [1] on 
high-performance computer clusters for big data analysis. 
Meanwhile, different tree-based data structures, such as k-
dimensional tree (k-d tree) [4] and R-tree [5], have been 
implemented to improve the performance of clustering big data. In 
this paper, we propose a methodology to improve the traditional 

Shared Nearest Neighbor clustering algorithm by utilizing the 
powerful Spark platform [6] and k-dimensional (k-d) tree [4] for 
big data analysis, called Spark-KDT-SNN. The traditional SNN 
has time and space complexity as O(n2) and O(nk), respectively, 
where n is the total number of objects in the dataset, and k is the 
number of nearest neighbors [1]. When utilizing k-d tree to 
perform the k nearest neighbors‟ queries, the runtime complexity 
is reduced to O(nlogn). The main contributions of this paper are:  

1: We develop and implement Spark-KDT-SNN, an efficient 
density-based clustering algorithm on Spark.  

2: We utilize k-d tree data structure to reduce search time.  

3: We evaluate the performance and scalability properties of the 
Spark-KDT-SNN algorithm with real datasets.  

The organization of the paper is as follows. In section 2, we 
discuss the related works. We introduce the Spark-KDT-SNN 
algorithm in section 3. In section 4, we evaluate the performance 
of Spark-KDT-SNN with case studies on real datasets. Section 5 
concludes our study and discusses potential future works.   

2. LITERATURE REVIEW 
Shared Nearest Neighbor (SNN) [1] is one of the density-based 
clustering algorithms. SNN can be applied to many application 
domains. SNN clusters data as DBSCAN does, except that the 
number of nearest neighbors that a pair of points share is used to 
access the similarity. In SNN, the density of a point p is defined as 
the sum of the similarities between p and its‟ k nearest neighbors. 
SNN can find clusters of different sizes, shapes, densities, and can 
handle noises in the dataset. There are a few works based on the 
classic SNN algorithm in the literature. Ye et al. [7] introduced a 
new definition of density that considers both the number of shared 
nearest neighbors and the distance between data objects to 
optimize the traditional SNN algorithm. Sharma et al. [8] 
proposed an enhancement of the SNN clustering algorithm, called 
fuzzy shared nearest neighbor (FSNN).  FSNN has the capability 
of handling the data lying in the boundary regions utilizing a 
fuzzy concept. Singh et al. [9] introduced an incremental 
extension to SNN, called IncSNN-DBSCAN. IncSNN-DBSCAN 
can find clusters on a dataset to which frequent inserts are made. 
Li et al. [10] introduced a new clustering method, called SNNC, 
based on Shared Nearest Neighbor for hyperspectral optimal band 
selection. 

Using k-d tree to improve the efficiency of clustering algorithms 
has been widely studied in the literature as well. Walter et al. [11] 
improved the agglomerative clustering by implementing k-d tree 
to find the best fit cluster for the agglomerative process. 
Vijayalakshmi [12] proposed the KDT-DBSCAN clustering 
algorithm for solving the search complexity problem using k-d 
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tree. Otair [13] compared k-d tree with a brute force search for 
spatial clustering and found that k-d tree to be the most optimal 
among these two for the search of a neighboring point. However, 
both the classic SNN and the improved versions discussed above 
are inherently sequential and not well-suited for processing big 
data that require high-performance computing infrastructure and 
parallel computing systems.  

Parallel implementation of different clustering algorithms has 
been proposed in the literature. Kumari et al. [14] presented two 
sequential implementations of the classic SNN algorithm, NaiveR-
SNN, and R-SNN, which uses R-tree for executing neighborhood 
queries efficiently and exploiting spatial locality to minimize 
memory usage. They also introduced parallel implementations of 
R-SNN by employing the Single Process Multiple Data (SPMD) 
model. Anchalia et al. [15] introduced a combiner in the mapper 
function to implement k-means using the MapReduce paradigm.  
He et al. [16] implemented an efficient DBSCAN algorithm in a 
4-stage MapReduce paradigm, called MR-DBSCAN. Han et al. 
[17] proposed a scalable DBSCAN algorithm with the Spark 
framework. Wang et al. [18] designed the MapReduce-based 
Shared Nearest Neighbor clustering algorithm called MR-SNN. 
As we can see that most of the studies focus on improving the 
sequential SNN algorithm or adapting it to MapReduce. However, 
Spark has several advantages compared to MapReduce. Our work 
focus on improving the efficiency of the traditional SNN 
algorithm utilizing k-d tree structure and Spark framework for big 
data analysis.  

3. SPARK-KDT-SNN 
This section introduces the detailed algorithm design and 
implementation of a new parallel Shared Nearest Neighbor 
clustering using the big data framework Spark. Meanwhile, we 
apply k-d tree in our algorithm to reduce the search time. We first 
briefly introduce the traditional SNN clustering algorithm, then 
SNN using k-d tree, called KDT-SNN, and the parallel 
implementation of KDT-SNN on Spark, called Spark-KDT-SNN.  

3.1 Shared Nearest Neighbor Clustering 
In SNN [1], the similarity between two points p and q is the 
number of points they share among their k nearest neighbors as 
follows: 

                |           |    (1) 
where NN(p) is the set of k nearest neighbors of a point p. The 
density of a point p is defined as the sum of the similarities 
between p and it‟s k nearest neighbors as follows: 

           ∑                 
 
      (2) 

After assessing the density of each point in the dataset D, SNN 
identifies all core points; all points in the dataset D that have the 
SNN density of at least MinPs and forms the clusters around the 
core points like DBSCAN.  

         {   |                }   (3) 
SNN can find clusters of different sizes, shapes, and can handle 
noises in the dataset. Moreover, SNN copes better with high 
dimensional data and deals well with datasets having varying 
densities. SNN does not require the number of clusters to be 
determined in advance. 

3.2 K-D Tree 
The k-dimensional tree (k-d tree) a space-partitioning data 
structure for organizing points in a k-dimensional space. The 
nearest neighbor search algorithm aims to find the point in the tree 
that is nearest to a given input point. This nearest neighbor search 

can be done efficiently by using the k-d tree properties to quickly 
eliminate large portions of the search space 

3.3 KDT-SNN 
We improved the traditional SNN clustering algorithm using k-d 
tree to index all data points to support the k nearest neighbors‟ 
search. The proposed algorithm, called KDT-SNN, reduces the 
time complexity of SNN to O(nlogn).  

The KDT-SNN algorithm requires three parameters: Eps, MinPts, 
and k. k is the number of nearest neighbors. MinPts is used to find 
the core points. It is a threshold to determine whether a point is a 
core point. Eps is used as a threshold for density. It should be 
smaller than k. Figure 1 shows the pseudocode of the KDT-SNN 
clustering algorithm. KDT-SNN first arranges all the data points 
in a k-d tree, the k nearest neighbors of each point in the dataset D 
are found directly from the k-d tree build at the first step.  

KDT-SNN (D, k, MinPs, Eps) 
Input: dataset D, the number of the nearest neighbors k, the core 
point threshold MinPs, the similarity threshold Eps 
Output: set of clusters Ci. 

1. Build k-d tree for dataset D: k-d tree(D). 
2. Mark every p in D “unchecked” 
3. for all p in D 
4.      get k nearest neighbors from k-d tree (D)  
5. end for 
6. For all pair of events p and q in D 
7.      Compute similarity (p,q) based on k-d 

tree(D) 
8. end for 
9. for all p in D 
10.     Compute density(p) 
11.     If density(p) is greater than MinPs then 
12.         Mark p as „core‟; 
13.     end if 
14. end for 
15. for all core p in D 
16.      If p is marked “unchecked” then 
17.      Form a cluster Ci, of points which can 

be reached from core p and add the core 
points that can be reached from core p. 

18. end if 
19.      Mark all points in Ci as „checked‟ 
20. end for 
21. return set of clusters Ci 

 
Figure 1. Pseudocode of KDT-SNN 

3.4 Spark  
Spark is an open-source cluster computing framework developed 
by AMPLab at the University of California, Berkeley in 2009 for 
performing big data analytics on distributed clusters. Spark was 
introduced to address the limitations of the MapReduce paradigm 
which essentially requires reading of input from the disk, mapping 
the input with some map function, and saving the results from the 
reduced operations back to the disk. Spark introduced a data 
structure called resilient distributed dataset (RDD) [6] which is 
immutable and distributed over different nodes in the cluster. 
Besides, Spark supports programming languages Java, Scala, R 
and Python, and provides ease of use for application developers. 
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Spark has its standalone cluster manager and supports other 
cluster managers such as Hadoop YARN and Apache Mesos. 
Spark supports Hadoop Distributed File System (HDFS), MapR 
File System (MapR-FS), Cassandra, OpenStack Swift, Amazon 
S3, Kudu, etc. Spark consists of five main components, i.e., Spark 
Core, Spark SQL, Spark Streaming, MLlib (Machine Learning 
Library), and GraphX. Spark enables in-memory computation in 
its restricted distributed shared memory which makes Spark faster 
than MapReduce. Therefore, we adopt Spark as the underlying 
parallel processing platform to design and implement the 
distributed version of KDT-SNN clustering, called Spark-KDT-
SNN. We will introduce the design of the Spark-KDT-SNN 
clustering algorithm in section 3.5.  

3.5 Spark-KDT-SNN 
In this section, we present the design and parallel implementation 
of KDT-SNN on Spark, called Spark-KDT-SNN. Spark-KDT-
SNN does spatial data partitioning using k-d tree. Both multimode 
parallelism at the node level and multicore parallelism at the core 
level are exploited. Spark-KDT-SNN consists of four major steps, 
i.e., building k-d tree, partitioning, local clustering, and global 
merging. In the first step, k-d tree for dataset D is built. In the 
second step, data are divided into equal partitions based on k-d 
tree index to distribute among all computer nodes. The objective 
of partitioning is to divide the input dataset D into smaller 
partitions that can be clustered on each node in parallel. In the 
third step, each note constructs its k-d tree and performs local 
clustering in parallel. All local clusterings are done in parallel by 
exploiting both multi-node and multi-core parallelism. All local 
clustering results are saved as intermediate results. In the fourth 
step, all local clustering results are then aggregated to get the 
global clustering. A cluster may span several partitions, resulting 
in multiple local clusters that belong to different partitions. 
Therefore, we need to merge the local clusters into global ones. 
To identify a cluster that spans more than one partitions, the core 
points identified by local KDT-SNN and their clustering ID lists 
should be examined. To explain the merging procedure, we first 
define Eps criteria. A pair of core points are said to satisfy Eps 
criteria if they are within Eps radius of each other. We randomly 
select a core point from each local cluster and call it 
representative points for that local cluster. If any pair of 
representative points satisfy Eps criteria, the two local clusters 
presented by these two representative points need to be merged 
and relabeled in the merge procedure to get the final global 
clustering results. The formal description of Spark-KDT-SNN is 
as follow:  

Step 1: build the k-d tree for dataset D, KDTree(D).  

Step 2 Participation:  divide the input dataset D into N partitions, 
S1, S2,…, Sn based on the k-d tree such that   ⋃   

 
   and 

        for ji  . Each partition Si is distributed on node Ci 
where i =1, 2, …, n.  

Step 3 Local Clustering: cluster all partitions concurrently using 
KDT-SNN on each node Ci, i.e. call KDT-SNN (Si, Eps, MinPs) 
concurrently on Ci for i = 1, 2, …., N. 

Step 4 Global Merging: merge the local clustering results obtained 
from each partition Si into a global clustering result for the input 
dataset D. 

The merging procedure relies on two fundamentals of the original 
KDT-SNN algorithm. First, all the core points in a cluster satisfy 
Eps criteria. Second, all the non-core points in a cluster are closest 

to one of the core points in that cluster. This in turn implies that if 
any two core points in different partitions satisfy Eps criteria, the 
corresponding local clusters need to be merged. The merging 
stage ensures that all the data points in the input dataset D are 
assigned a global cluster index. All computations in the merging 
stage are performed at the driver node and none of the operations 
in this stage is distributed. However, this stage only requires the 
comparison of the representative points hence, the contribution of 
this computation latency to the overall computation latency is 
almost negligible. 

4. CASE STUDY 
In this section, we discuss several case studies to evaluate the 
performance of KDT-SNN and Spark-KDT-SNN using three 
datasets, i.e., Bristol Crime Stats [19], Complex9 dataset [20],  
TLC Trip Record Data [21], and 911 Call dataset [22]. Complex9 
is a 2-dimensional dataset with different shapes. TLC Trip record 
data is the taxi trip records of New York City, which has different 
attributes including pick-up and drop-off locations, trip distances, 
rate types, etc. Figure 1 shows a subset of TLC Trip Record Data. 

4.1 Results for KDT-SNN and SNN 
We first compare the performance of KDT-SNN with SNN using 
the same configuration for Bristol Crime Stats, Complex9, and 
TLC Trip Record Data. Figures 2, 3, and 4 show the visualization 
of the clustering results of KDT-SNN for each dataset, 
respectively. Each color represents one cluster on the figures. We 
can see that the KDT-SNN clustering algorithm can effectively 
identify clusters of different sizes, shapes, and densities.  

 
Figure 2. KDT-SNN clustering result of Bristol dataset 
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Figure 3. KDT-SNN clustering result of Complex9 dataset 

 
Figure 4. KDT-SNN clustering result of TLC Trip dataset 

We also compare KDT-SNN and SNN in terms of runtime for 
three datasets using the same parameter values. The results are 
listed in Table 1. Table 1 shows that KDT-SNN is faster than 
SNN for all three datasets. 

 
Table 1. Runtime Results of KDT-SNN and SNN 

Dataset K MinPs Eps KDT-SNN SNN 

Bristol  40 22 20 48.0505s 514.59s 

Complex9 30 18 13 6.297s 37.73s 

TLC Trip 28 13 13 10.88s 100.08s 

 
4.2 Results for Spark-KDT-SNN 
We use Bristol Crime Stats and 911 Call for the experiments. We 
fist conduct experiments on a non-distributed single-JVM mode to 
facilitate the development and testing. In this non-distributed 
single-JVM deployment mode, Spark spawns all the execution 
components in the single JVM. Then we conduct the experiments 
on a lab-size three-node cluster. Each node has an Intel Xeon 
Processor E5-2603 V4 1.7 GHz processor, 32 GB DDR4 memory, 
and one 2 TB hard disk. The operating system is Ubuntu 16.04 
LTS. For the Spark platform, we install Spark 2.1.0. We chose 
Spark‟s standalone cluster manager as the cluster manager and 
HDFS as the distributed file system.  

We ran the Spark-submit script at the master node. Therefore, the 
driver program is hosted on the master node. Client mode is 
selected for two main reasons. First, it does not require storing the 
results in the file or database as in cluster deployment mode. 
Secondly, it helps in the dynamic analysis of the results. Moreover, 
this mode enabled us to decide where to run the driver program. 
Client mode, however, does not utilize the cluster manager‟s 
ability to find a slave having enough available resources to 
execute the driver program. Moreover, the driver program cannot 
be monitored from Spark master web UI like other workers in this 
mode. Spark framework divides Spark-KDT-SNN into seven 
stages.  

 
Table 2.  The Runtime of Spark-KDT-SNN on Bristol  

No. of Cores No. of Nodes Time (Seconds) 
2 1 900.448 
4 1 519.85 
6 1 402.71 

12 2 227.13 
18 3 175.055 

 
Table 3. The Runtime of Spark-KDT-SNN on 911  

No. of Cores No. of Nodes Time (Seconds) 
2 1 5597.4667 
4 1 2870.3048 
6 1 2224.7991 

12 2 1860.25 
18 3 1151.66 

 

5. CONCLUSION 
We developed a scalable density-based clustering algorithm called 
Spark-KDT-SNN. It improves the traditional SNN clustering 
algorithm by utilizing k-d tree as the data structure to compute the 
nearest neighbor to reduce the computation time. We also 
presented the parallel implementation of Spark-KDT-SNN for 
distributed systems. The experimental results demonstrate the 
efficiency and performance of the Spark-KDT-SNN algorithm. 
One of the future works is to compare the performance of Spark-
KDT-SNN with other density-based clustering algorithms on 
Spark.   
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