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Abstract—Automatic counting of rice seedling stand is 

desirable but challenging. In this paper, we propose a new 

method to detect and count drill-seeded, delay-flooded rice 

seedlings using unmanned aerial vehicle (UAV) images. First, a 

coarse-to-fine dual scale ridge detection method is developed to 

detect individual rice research plot at a coarse scale and its 

associated rice seedlings at a fine scale. Then, the skeleton of 

each detected rice seedling region is extracted and separated into 

small skeleton segments for rice seedling structure analysis. 

Finally, the skeleton segments are grouped based on seedling 

structure by a graph-cut based perceptual grouping. We 

evaluated the proposed method using more than 20,000 rice 

seedlings from 20 UAV images and the results demonstrated that 

our method can detect and count rice seedling with a high 

average accuracy of 89.37%.   

Keywords—rice seedlings counting, unmanned aerial vehicle, 

ridge detection, perceptual grouping 

I. INTRODUCTION 

Rice is an important primary staple food in the world and 
its consumption accounts for more than half of the daily 
caloric intake of over three billion people. Agricultural 
research that helps to ensure the security and continued 
increase in rice production is crucial to meeting the growing 
global demand for rice.   

Rice seedling density is a critical agronomic component for 
rice production it greatly impacts yield potential and it 
determines the crop’s response to insect, disease, and weed 
pests. Traditionally seedling density is estimated based on 
manual counting of rice seedlings, which is not only extremely 
tedious and time-consuming, but also greatly constrained by 
personnel, subjectivity, and weather conditions. Therefore, 
there is a need to develop a fast, low-cost, and reliable method 
that can accurately estimate rice seedling density. 

Digital agricultural research has been receiving an 
increasing attention due to the rapid development in innovative 
computer techniques, such as computer vision, machine 
learning, and artificial intelligence. Several image-based plant 
counting methods that have been reported. Fernandez-Gallego 
et al. [1] developed a method to count wheat ears using a 

Laplacian frequency enhancement and a median filter to 
remove the soil and leaves. Zhou et al. [2] proposed another 
wheat ear counting method that separated the image into wheat 
ear and background by a cluster method, and then classified 
each pixel based on color and texture using a trained twin-
support-vector machine. In the method presented by Guo et al. 
[3], a two-step voting based machine learning method used 
color and features from a gray level co-occurrence matrix to 
train a pixel level segmentation model, which segmented the 
image into sorghum and non-sorghum head regions for 
counting. Tao et al. [4] used Otsu’s thresholding method and a 
chain code-based skeleton optimization method to count wheat 
seedlings in images. 

Unmanned aerial vehicle (UAV), as a new remote sensing 
tool, has begun to be used more frequently in various 
agricultural studies, such as crop disease detection and 
monitoring, pest surveillance, biomass estimation, fertilizer 
spraying, and water status analysis [5]-[9]. UAV can capture 
large-scale crop fields efficiently with accurate GPS 
information and dramatically save human power, time, and 
cost. For rice seedling counting, Reza et al. applied a median 
filter and a morphological operation to count rice seedlings by 
detecting connected components in UAV images [10]. Wu et 
al. used a basic and a combined deep learning network models 
for rice seedling counting using images captured by a UAV 
[11]. However, both studies focused on transplanted rice 
seedlings, which have much larger seedling spacing and lower 
seedling density compared to drill-seeded rice seedlings in the 
current study.  

 
(a)                               (b)                          (c) 

Fig. 1.  Challenges for counting drill-seeded rice seedlings. (a) Blurred 

seedling, (b) Clustered seedlings, and (c) Water reflection. 
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In this paper, we present a new method to automatically 
count drill-seeded rice seedlings from UAV images. 
Automatic counting of drill-seeded seedlings present several 
major challenges: (1) UAV images typically have lower 
resolution and therefore are not as clear as still images taken 
on the ground (Fig. 1-a); (2) drill-seeded rice seedlings usually 
have high densities and many seedlings are often clustered 
together (Fig. 1-b); and (3) rice fields have complex 
background, such as cracks caused by dry soil and water 
reflection (Fig. 1-c).  

Our contributions are summarized as follows: (1) this is the 
first study to count drill-seeded rice seedling from UAV 
images; (2) we have developed a new coarse-to-fine dual-scale 
ridge detection method for rice field plot and rice seedling 
detection; and (3) we use a graph cut-based perceptual 
grouping for high-accuracy individual rice seedling counting.   

II. METHODOLOGY 

The proposed drilled rice seedling counting method 
consists of three major steps as shown in Fig. 2. The details of 
each step will be described in the rest of this section. 

 

Fig. 2.  The flowchart of the rice seedling counting method. 

A. Rice Detection Using Dual-Scale Ridge Detector 

Ridge points are the points that have local maximum or 
minimum of principal curvature of a smooth function. The 
ridge points of an image can be detected by calculating the 
eigenvalues of a Hessian matrix composed of the second order 
directional derivatives of the convolution of the image and a 
Gaussian function [12]. The detected ridge points can be 
linked to form a curve, which captures both local and global 
structural information of elongated objects in the image by 
adjusting the scale level of the Gaussian function.  

In this study, we propose a coarse-to-fine dual-scale ridge 
detection method to extract rice field regions and then rice 
seedling regions from UAV images based on the facts that: (1) 
rice seedlings were planted in rows with a large fixed row 
spacing, and small variable seedling spacing. The seedlings in 
each row become connected after a broad Gaussian filtering 
and form an elongated object. Therefore, rice fields can be 

detected by a coarse-scale ridge detection; and (2) rice 
seedlings have a long narrow shape that can be considered as 
elongated objects at a fine scale. Therefore, they can be 
detected by a fine-scale ridge detection. Algorithm 1 lists the 
steps of our rice seedling detection. 

Algorithm 1: Ridge-based Rice Seedling Detection 

(1) Convert the input UAV image from RGB to L*a*b space 

and the a* channel is used for detection. 

(2) Apply a coarse-scale ridge detection and a morphological 

close operation with a horizontal structure element to 

extract rice rows.  

(3) Use a Hysteresis-based double thresholding method to 

segment rice rows from the image. 

(4) Apply a fine-scale ridge detection to detect rice seedling 

regions based on the rice seedling rows detected in Step 

(4). 

(5) Use a Hysteresis-based double thresholding method to 

segment rice seedlings from the image. 

 

 

Fig. 3.  Ridge-based rice seedling detection. 

Fig. 3-(a) shows a UAV image and Fig. 3-(b) is a close-up 
of the region bounded in the red box in Fig. 3-(a). Fig. 3-(c) 
and (d) are the rice row and rice seedlings detected by 
Algorithm 1. The results show that our method can extract rice 
seedlings accurately, including the first two very blurred ones. 
However, seedling shadows are also detected and need to be 
removed before counting.   

B. Rice Seedling Structure Analysis Using Skeletons 

Each rice seedling region detected in Section 2.1 can be 
considered as a connected component. However, these 
connected components cannot be used for rice seedling 
counting directly because one component may be composed of 
several connected seedlings. For example, the last connected 
component in Fig. 3-(d) has three rice seedlings.  

We divide the skeleton of each connected component into 
small meaningful segments for seedling structure analysis 
based on the following steps: 

(1) A medial axis transform is applied to each connected 
component to extract its skeleton, which can simplify each 
component while keeping its essential structure. 

(2) Two types of key point are extracted for every skeleton 
obtained in Step (1):  
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• Skeleton End Point: a skeleton point that has only one 
skeleton point in its 8-connected neighborhood. 

• Skeleton Branch Point: a skeleton point that is the 
intersection of two or more skeletons.  

For rice seedlings, a skeleton end point corresponds the 

bottom of a seedling or the end point of a leaf, and a 

skeleton branch point corresponds to the intersection of 

two leaves or stems.  

(3) Skeletons are divided into small segments using the key 
points detected in Step (2). The length and the mean RGB 
color of each skeleton segment are calculated to remove 
too small and non-seedling skeleton segments by a green 
color thresholding, which results in the removal of shadow 
skeletons in black. 

(4) Skeleton segments are categorized into four classes based 
on the types of their upper and lower end points, as listed 
in Table I.  

TABLE I. FOUR CLASSES OF SKELETON SEGMENTS 

Segment’s  

upper end point  

Segment’s 

lower end point 

Segment 

Class 

Skeleton End Point  Skeleton End Point  EE 

Skeleton End Point  Skeleton Branch Point  EB 

Skeleton Branch Point  Skeleton End Point  BE 

Skeleton Branch Point Skeleton Branch Point BB 

 

Fig. 4-(a) shows rice seedlings with their skeletons in red 
color. Fig. 4-(b) illustrates the skeleton segments after the 
removal of shadow skeletons. The detected skeleton end points 
and skeleton branch points are marked as green and red 
crosses. The 1st skeleton has 1 EE segment, the 2nd skeleton 
has 1 EE and 2 EB segments, and the last skeleton has 3 BE, 1 
BB, and 1 EB segments.  

 
(a)                                       (b) 

Fig. 4.  Seedling Skeletons and their segments. 

By analyzing the skeleton segments of rice seedling, we 
can see that different segments represent different parts of a 
rice seedling. EE and BE segments typically represent seedling 
stems, EB segments typically represent seedling leaves, and 
BB segments typically represent the connection part between 
stem and leaf. Therefore, each individual rice seeding can be 
extracted by grouping the parts from the same rice seedling 
together.  

C. Seedling Counting Using Perceptual Grouping 

Inspired by the edge grouping method presented in [13], 
we modified a graph based perceptual grouping method to 
group rice seeding skeleton segments.  

Each skeleton can be converted to a weighted graph 
G(V,E). Every segment of a skeleton is a vertex in the vertex 
set V and there is a link in the edge set E between every two 
connected segments. 

Two Gestalt principles, proximity and continuity, are 
calculated as follows to indicate the likelihood of grouping the 
segments together:  

(1) Proximity, which measures the distance between two 

segments. Because any two segments in a skeleton are 

connected directly or via one or more other segments, the 

distance between two segments is the number of skeleton 

points connecting them. If two segments share an end 

point, the distance between them is zero. 

(2) Continuity, which measures the orientation difference of 

two segments. The segment orientation is the angle 

between the x-axis and the major axis of the ellipse that 

has the same second moments as the segment.  

The weight of a link is computed using a RankSVM 
trained by a large scale human-drawn sketch dataset [14]. The 
RankSVM can give a larger link score to a link if the two 
vertices of that link are more likely to be grouped together 
based on their proximities and continuities.  

After constructing the graph using skeleton segments, the 
rice seedling segmentation is treated as a graph partition 
problem, which can be solved as a min-cut optimization 
problem by minimizing an overall energy below [13]: 

 
where, 

 

 

VL is a set of cluster centers that correspond to EE and BE 
segments in the graph because they have high probabilities to 
be rice seedling stems. D(VI, VL) is the energy measuring how 
close the two vertices in the Gestalt space, which is indicated 
by an inverse sigmoid function on the link score produced by 
the RankSVM. N is the set of neighboring vertices of VI in V. 
S(VI, VJ) is the energy measuring the spatial correlation 
between two neighboring vertices, which is computed as the 
inverse Euclidean hausdorff-distance function between them. 
Two inverse functions are used here to fit the minimization 
problem defined by the min-cut problem for graph partition.  

Fig. 5 shows an example with 8 detected rice seedling 
regions that have 1, 1, 7, 1, 9, 1, 3, and 5 skeleton segments, 
respectively. After grouping, a total of 12 rice seedling are 
detected.  
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Fig. 5.  Graph-cut-based perceptual grouping results. 

III. EXPERIMENTS 

A. UAV Image Dataset 

Twenty UAV images with more than 20,000 rice seedlings 
were collected at the Texas A&M AgriLife Research Center in 
Beaumont, TX, USA using a Zenmuse X7 24 MP camera 
mounted on a DJI Inspire 2 flying at an altitude of 7 m and a 
60˚ angle between the camera and ground. All images have a 
3936×5248 pixel resolution.  

The ground truth data (i.e., the number of rice seedlings) of 
the selected UAV images were manually counted by an 
experienced rice research technician at the Texas A&M 
AgriLife Research Center. The number of rice seedlings in the 
20 images ranges from 532 to 1391.  

B. Evaluation Metrics and Experimental Settings 

The absolute error (AE) and accuracy (Acc) defined below 
were used as evaluation metrics to assess the performance of 
the proposed method. 

 

 

TI is the ground truth of the ITH image and CI is the output 

of the proposed method (1 ≤ I ≤ 20). The lower the AE, the 

better the counting performance, and the higher the Acc, the 
better the counting performance. 

In our experiments, the coarse and fine scales of Gaussian 
function were 50 and 2.5. The Hysteresis-based thresholding 
values were 0.15 and 0.24 for rice row detection and 0.14 and 
0.23 for seedlings. The skeleton segments with length smaller 
than 30 pixels were removed. All parameters were determined 
experimentally.  

C. Experimental Results 

The experimental results of 20 images with more than 
20,000 rice seedlings are listed in Table II. Fig. 6 illustrates the 
number of rice seedlings of each image given by the ground 
truth and our method.  

TABLE II. ABSOLUTE ERROR AND ACCURACY OF 20 IMAGES 

Image ID AE Acc Image ID AE Acc 

1 11 99.11% 11 27 97.74% 

2 16 98.26% 12 154 82.96% 

3 57 95.79% 13 70 92.16% 

4 69 93.72% 14 33 93.80% 

5 66 93.86% 15 244 75.28% 

6 33 97.62% 16 161 80.27% 

7 135 87.05% 17 180 82.56% 

8 40 96.31% 18 207 77.86% 

9 102 90.87% 19 196 80.82% 

10 100 88.57% 20 145 82.84% 

 

Since this is the first study to count drill-seeded rice 
seedling from UAV images, no other methods can be used for 
performance comparison. We believe our method achieved 
good performance on this very challenging task. The average 
accuracy of 20 images is 89.37%, which reflects the current 
state-of-the-art. Moreover, it can serve as a baseline method 
for future research in this area. We also noticed that the 
performance of the first 14 images (average accuracy 93.42%) 
is better than that of the last six images (average accuracy 
79.94%). Many seedlings were not detected in the last six 
images. The reason is that the last six images have large part of 
the background region covered by water with strong reflection, 
which increased the difficulty to detect the rice seedlings. Fig. 
7 shows two parts from the 1st and 15th images, 
demonstrating the increased difficulty detecting seedlings from 
the 15th image. 

 

Fig. 6.  Ground truth versus the method output of 20 images. 

  

Fig. 7.  Two parts from the 1st image and the 15th image. 

IV. CONCLUIONS AND FUTURE WORK 

Maintaining a sufficient rice seedling stand is critical to 
approach the yield potential of a cultivar in drill-seeded, delay-
flooded production. Traditional seedling density estimation is 
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based on manual seedling counting, which is very time-
consuming and its counting accuracy affected by many factors. 
In this paper, we presented the first automatic method in the 
literature to count drill-seeded rice seedlings using UAV 
images. An efficient coarse-to-fine dual-scale detection 
method is developed to detect rice fields and rice seedling 
regions based on their shape properties. To extract each rice 
seedling from clusters of seedlings, a graph-cut based 
perceptual grouping method is applied to group the skeleton 
segments from the same seedling together based on a seedling 
structure analysis. The proposed method was evaluated using 
20 rice UAV images and achieved high (approximately 90%) 
counting accuracy.  

In our future work, we will continue to improve the rice 
seedling detection method to make it robust to water 
background reflection, soil cracking, solar reflectance, and 
seedling stage. We will also include more structure features to 
strengthen perceptual grouping to further increase the rice 
seedling counting accuracy.  
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