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SUMMARY & CONCLUSIONS 

By pressurizing natural gas in pipelines, the compression 
system interlocks upstream gas production and downstream 
consumer use. Considering the installation cost of $1 to $2 
million US dollars for a compressor, the failure of the 
component can be costly. Therefore, the anomaly detection for 
the compression system is essential. In this paper, a deep 
learning-based anomaly detection method is proposed to 
identify the failure of midstream compressors using audio 
sensor data. Firstly, short-term Fourier transform (STFT), Mel-
frequency cepstral coefficients (MFCC), and spectral centroid 
(SC) features are computed using the input audio signals. 
Secondly, deep learning-based feature extraction is applied to 
create high-level features. Finally, a principal component 
analysis step and a support vector machine are applied to 
classify normal and anomaly audio signals. 

The proposed method was evaluated using two datasets 
with a total of 10196 audio signals collected from a compressor. 
The experimental results demonstrate that MFCC features are 
better than STFT features for anomaly detection and the 
combined deep MFCC features and SC features can achieve the 
best normal and anomaly signal classification performance, 
100% for both datasets, using the proposed method. 

1 INTRODUCTION 

Compressor systems play an essential role in the 
connection of upstream gas production to downstream 
consumer use by pressurizing natural gas in pipelines. A 
compressor system typically includes a power unit, a cooling 
unit, and a compressor, which usually contains a crankcase, a 
valve body, and a turbo unit. Regular compression system 
inspection that monitors the working conditions of all 
components is very important because the failure of the 
compression system can be extremely expensive due to repair 
cost and lost production. However, traditional human-based 
inspection methods are very time-consuming and need 
experienced experts to listen to the compressor sounds. 
Moreover, the high decibel level of noise also prevents the 
accurate detection of abnormal sounds by the human ear. 

Therefore, a reliable system that can automatically analyze the 
auditory data, detect anomaly sounds, and predict component 
failure is urgently needed to solve this challenging problem.  

Recently, sound sensors (e.g., microphone) have been 
widely used in automatic anomaly detection systems. Multiple 
sound sensors deployed at different components of a 
compressor system can be controlled by Internet of Things 
(IoT) techniques to collect and transfer the auditory data in  
time, and then advanced signal processing and machine 
learning techniques can be used to analyze the collected data 
and detect anomaly signals automatically.   

A deep learning-based anomaly detection method for the 
compressor system using audio data is proposed in this paper. 
Short-term Fourier transform (STFT), Mel-frequency cepstral 
coefficients (MFCC), and spectral centroid (SC) features are 
first extracted, investigated and compared for normal and 
anomaly signals, and then a new deep learning-based method is 
presented to integrate MFCC high-level features and SC 
features for normal and anomaly audio signal classification. 
The experimental results demonstrate that the proposed method 
can classify all normal and anomaly signals correctly.  

The rest of the paper is organized as follows: literature is 
reviewed in Section 2, the audio features and the proposed deep 
learning-based method are described in Section 3, Section 4 
shows the experimental results and discusses the performance, 
and Section 5 draws the conclusions.  

2 LITERATURE REVIEW 

Much effort has been devoted to developing automatic 
anomaly detection systems using audio signals and many 
related publications can be found in the literature in recent 
years.  

 Prego et al. [1] used a three-stage algorithm for image 
processing to address anomaly detection problems. These 
stages consist of STFT, FEXT, and CLASS stages. The 
algorithm achieved decent anomaly detection rates on their 
dataset. Antonini et al. [2] used smart audio sensors for 
anomaly detection based on IoT architecture of received raw 
audio streams. Two algorithms adopted were Elliptic Envelope 
and Isolation Forest offered by Scikit-Learn. In AGILE -
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Adaptive Gateways for dIverse muLtiple Environments 
gateway instance, Elliptic Envelope performed better in terms 
of being faster and lighter. Erfani et al. [3] proposed DBN-
1SVM hybrid model for resolving the challenge for anomaly 
detection in High-dimensional problem domains that is an 
unsupervised detection method, especially for large scale 
datasets. Combining these two methods as one hybrid model 
purpose some advantages such as resolving scalability issues 
with such complex and large datasets in detecting in training 
and feature detection. This model could also purpose a more 
accurate model, proper generalization and faster execution. 

Deep learning technology has been growing and achieving 
impressive breakthroughs since 2012 in various research areas, 
such as artificial intelligence, computer vision, image 
understanding, and natural language process. Deep neural 
network models were also applied to detect and identify 
mechanical component failures. 

Zhou et al. [4] presented a new method for anomaly 
detection. Their research aimed to improve a GAN network in 
terms of accuracy and better generalization. A pipeline structure 
with auto-encoder instead of the standard generator in GAN 
was used in the method. Koizumi et al. [5] developed an 
unsupervised method for unknown anomalous sound based on 
an autoencoder. A Neyman-Pearson lemma-based objective 
function was used to optimize the detection process. Rushe et 
al. [6] proposed a semi-supervised method for anomaly 
detection by assuming the anomalous patterns are not available 
for training. WaveNet architecture was applied to anomaly 
detection in raw audio. The experimental results showed that 
their method outperformed a based line autoencode model.  

More publications about anomaly detection for IoT time-
series and deep learning-based anomaly detection can be found 
in the two comprehensive survey papers [7] and [8]. 

3 METHODOLOGY 

The goal of the proposed method is to classify the normal 
and anomaly audio signals collected from a compressor system. 
The STFT, MFCC, and SC features were compared and 
different methods were evaluated. The method using MFCC 
and SC features achieved the best performance and was selected 
as the proposed method in this paper.  

Figure 1 shows the framework of the proposed method, 
which contains five steps. (1) MFCC features are computed 
using the input audio signal to form a two-dimensional feature 
matrix; (2) SC features are computed using the input audio 
signal; (3) A pre-trained deep learning neural network was used 
to extract high-level deep features from MFCC; (4) both deep 
MFCC features and SC features are fed to a principle 
component analysis (PCA) unit for feature extraction and 
dimension reduction; and (5) the extracted MFCC and SC 
features are combined to train a support vector machine (SVM) 
classifier for normal and anomaly audio signal classification.  

3.1 STFT Features 

A signal can be presented in both time domain and 
frequency domain. In the frequency domain, the signal can be 
decomposed into many constituent frequencies. STFT takes a 

short period of signal from a longer one using a window 
function, then applies Fourier transform to this short period of 
the signal [9]. This process is repeated from the start to the end 
of the original signal and the outputs of Fourier transform can 
be combined to generate a two-dimensional STFT image, which 
can show the frequency changes of the original signal. 

 

Fig. 1: The framework of the proposed method 

The first row of Fig. 2 illustrates a normal and three 
anomaly audio signal waves and the second row shows their 
STFT images. The differences between the normal and the 
anomaly examples can be seen from the highlighted red boxes. 
Compared with the normal STFT, the STFTs of Anomaly-1 and 
Anomaly-2 both have narrow dark vertical patterns and there 
are clear horizontal textures in Anomaly-2’s pattern. The SFTF 
of Anomaly-3 is very similar to the normal STFT except the 
dark rectangular regions in the lower half of the image.  

3.2 MFCC Features  

Mel-frequency analysis of an audio signal is based on 
human perception experiments. To concentrate on certain 
frequency components instead of the whole of the spectral 
envelop, a Mel filter bank with many filters are non-uniformly 
spaced on the frequency axis with more filters in the low 
frequency regions and less filters in the high frequency regions. 
The spectrum of the input audio signal after Fast Fourier 
Transform (FFT) is filtered by Mel-filters to create Mel-
spectrum, and then the Cepstral analysis is performed to the 
logarithm of Mel-spectrum and the obtained Cepstral 
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coefficients are referred to as Mel-Frequency Cepstral 
coefficients (MFCC) [10].   

The third row of Fig. 2 shows four MFCC images 
corresponding to the input audio signals. It can be observed that 

the red regions at the bottom parts of the images are quite 
different. The normal example is smooth with no big value 
changes, while the anomaly examples have many low values 
embedded in between with big value changes.  

Fig. 2: A normal and three anomaly audio signals with their STFT, MFCC, and SC features 

3.3 Spectral Centroid Features 

Spectral Centroid (SC) [11] is another important feature for 
audio signal processing. The spectral centroid is associated with 
the brightness of a sound and indicates where the center of mass 
of the spectrum is. The individual centroid of a spectral frame 
can be calculated by using average frequency weighted 
amplitudes divided by the sum of amplitudes.  

The computed SC signals of the four examples are shown 
in the last row of Fig. 2 in red color. Each SC signal can be 
considered as a 1×259 feature vector. Similar to STFT and 
MFCC features, the SC features show different properties for 
the normal and anomaly examples. The SC of the normal signal 
looks like a random signal with no clear periodic patterns, while 
the spectral centroids of the anomaly signals have periodic 
patterns that are consistent with the abnormal regions in their 
STFT images. For example, the SC features of Anomaly-1 and 
Anomaly-2 have short periods corresponding to the narrow 
vertical abnormal regions in their STFT images and the SC of 
Anomaly-3 has a long period corresponding to the wide 
rectangular abnormal regions in its STFT image.  

3.4 Deep Learning-based Feature Extraction  

Because STFT, MFCC, and SC features shown in Fig. 2 
can capture the distinctive properties of the input audio signals, 
they can be used for normal and anomaly signal classification. 

A deep convolutional neural network, ResNet50 model 
with a 50-layer architecture [12], was used to extract deep 
features from the two-dimensional STFT and MFCC images. 
ResNet50 is a residual network with the added shortcut 
connections that skip one or more layers and perform identity 
mapping, which allows deeper architectures to learn residuals 
left out by earlier layers rather than learn an unreferenced 
mapping. Furthermore, these identity mappings are parameter 
free thus reducing the number of flops. During 
backpropagation, the gradients pass through the identity 
mapping unaltered thus alleviating gradient vanishing.  

The adopted ResNet50 was pre-trained using ImageNet, 
which is a well-known deep learning dataset containing over 14 
million images from 1000 categories [13]. The network 
retraining or transfer learning was not applied due to the limited 
number of samples in the datasets used in this research. The 
high-level deep features were extracted from the average 
pooling layer after the last convolution layer, which was used 
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as a feature extractor in several applications, such as weather 
classification, the detection of human rights violations, and 
parasite detection. The size of the extracted high-level deep 
features was 1×2048. 

3.5 PCA and SVM Classification 

PCA is widely used in data compression and redundant 
data removal. It applies an orthogonal linear transformation to 
find the big variances of the data and to make the data lie on the 
corresponding coordinates, which are called principal 
components. By selecting the first serval principal components, 
PCA can keep important information of the data while projects 
the data in a higher-dimensional space into a lower-dimensional 
space to reduce the data size.  

SVM is one of the most used supervised classification 
models in the machine learning area. It classifies the data using 
optimal hyperplane that can maximize the margin between the 
two classes by finding support vectors. Different kernel 
functions can be used to map the data to a higher-dimensional 
space to make the problem linear separable.  

In this research, the deep features extracted in Section 3.4 
have 2048 dimensions, which is much higher than 259 
dimensions of SC features. In order to integrate the extracted 
deep features and SC features and make them have equal 
contributions, both of them were input to the PCA and the first 
30 principal components of each were used for classification. 
The output of PCA is a 60-dimensional feature set combined 
with the high-level deep STFT/MFCC features extracted by the 
ResNet50 model and the SC features. This feature set was then 
fed to a SVM classifier whose kernel function is a Gaussian 
function with a scale 7.7 to classify the audio signals into 
normal and anomaly classes.   

4 EXPERIMENTS 

4.1 Dataset 

The following two datasets collected by Well Checked 
Systems International (http://www.wellchecked.com/) have 
been used to develop the proposed anomaly detection system. 
(1) Pettijohna Dataset: This dataset has a total of 2343 raw 

audio signals collected on 15 Apr 2019. There are 2187 
normal audio signals and 156 anomaly audio signals. Each 
signal is 3 seconds long and saved in the OGG format.   

(2) Pja dataset: This dataset has a total of 7853 audio signals 
collected on 24 Apr 2019. There are 6768 normal audio 
signals and 1085 anomaly audio signals. Each signal is 3 
seconds long and saved in the OGG format. 
Both datasets are very unbalanced. There are many more 

normal samples than anomaly samples. Only 6.658% and 
13.816% are anomaly audio signals, which increases the 
classification difficulty for anomaly samples.  

4.2 Evaluation Metrics and Experiment Settings  

To evaluate the anomaly detection performance of the 
proposed method, the following four evaluation metrics, 
Accuracy, Precision, Recall, and F1 were used in the 
experiments.  

       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  
்௉ ା ்ே

்௢௧௔௟ ே௨௠௕௘௥ ௢௙ ௌ௔௠௣௟௘௦
  (1) 

                              𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
்௉

்௉ ା ி௉
                        (2) 

                                   𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
்௉

்௉ ା ிே
                         (3) 

                          𝐹1 ൌ  2 ൈ
௉௥௘௖௜௦௢௡ ൈ ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ ା ோ௘௖௔௟௟
           (4) 

TP is the number of true positives, TN is the number of true 
negatives, FP is the number of false positives, and FN is the 
number of false negatives. F1 is a combination of Precision and 
Recall and measures the overall performance. When both 
Precision and Recall are 1s, F1 reaches the max value 1.  

A 2-fold cross-validation was used to evaluate the 
performance using Pettijohna and Pja datasets. For each 
dataset, 50% of normal samples and 50% of anomaly samples 
were randomly selected and combined to create the training 
dataset and the remaining samples were used to create the test 
dataset. The performance was also evaluated by exchanging the 
training dataset and test dataset. 

The audio signal feature extraction and ResNet50 model 
program was implemented using Python deep learning API 
Keras and PCA and SVM classification was implemented using 
MATLAB 2018b Classification Learner Toolbox. The 
computer used equipped with Intel Xeon CPU, 32 GB RAM, 
NVIDIA GeForce GTX 1080Ti GPU with 12 GB memory, and 
Debian GNU/Linux 10 (buster) OS 

4.3 Experimental Results 

A series of experiments were conducted to assess the 
extracted STFT, MFCC, SC features for anomaly detection 
using ResNet50 deep learning network comprehensively.  
(1) STFT+ResNet50+SVM: The method that used STFT deep 

features extracted by ResNet50and SVM without the PCA 
feature extraction was considered as the baseline to 
compare with other methods and its experiment results are 
listed in Table 1. This method obtained high classification 
performance for both datasets. 

Table 1: STFT+ResNet50+SVM 

 Pettijohna dataset Pja dataset 
Accuracy 98.250% 95.976% 
Precision 98.290% 95.629% 
Recall 99.863% 99.897% 
F1 99.070% 97.716% 

(2) STFT+ResNet50+PCA+SVM: This method used STFT 
deep features extracted by ResNet50 and SVM with the 
PCA feature extraction.  

Table 2: STFT+ResNet50+PCA+SVM 

 Pettijohna dataset Pja dataset 
Accuracy 98.421% 96.396% 
Precision 98.689% 96.065% 
Recall 99.634% 99.911% 
F1 99.407% 97.950% 
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The purpose of this experiment was to test the contribution 
of the PCA. The experimental results are listed in Table 2. 
It can be seen that this method achieved better performance 
compared with the baseline method because of the PCA 
applied. 

(3) MFCC+ResNet50+PCA+SVM: The method used MFCC 
features extracted by ResNet50 and SVM with the PCA 
feature extraction. The experimental results are listed in 
Table 3. This method greatly improved performance 
compared to the first two methods. All four evaluation 
metrics for the two datasets are higher than 99%. 

Table 3: MFCC+ResNet50+PCA+SVM 

 Pettijohna dataset Pja dataset 
Accuracy 99.915% 99.211% 
Precision 99.909% 99.107% 
Recall 100% 99.985% 
F1 99.954% 99.544% 

(4) MFCC+ResNet50+SC+PCA+SVM: The method used 
MFCC deep features extracted by ResNet50 and SC 
features and SVM with the PCA feature extraction. The 
experimental results are listed in Table 4. All evaluation 
metrics reached 100% for the two datasets.  

Table 4: MFCC+ResNet50+SC+PCA+SVM 

 Pettijohna dataset Pja dataset 
Accuracy 100% 100% 
Precision 100% 100% 
Recall 100% 100% 
F1 100% 100% 

 
Please note that all values listed in Table 1 to Table 4 are the 
averages of the outputs of the 2-fold cross-validation described 
in Section 4.2.  

4.4 Discussions 

Based on the experimental results presented in Section 4.3, 
it can be seen that all tested methods yielded high classification 
performance and Pettijohna dataset is easier for classification 
than Pja dataset due to its small number of samples. 
Furthermore, there are other important research findings that 
are worth noting: 
(1) Deep learning is a very powerful tool that can efficiently 

extract high-level deep features. One-dimensional audio 
signals can be converted to two-dimensional image signals 
to take advantage of the advanced deep learning 
technologies for audio signal analysis. The 2048-
dimensional deep features extracted from two-dimensional 
STFT and MFCC images can capture the essential 
information of the input audio signals and achieve the high 
classification performances in this research.  

(2) PCA can reduce the dimension of the deep features by 
extracting the key components and removing redundant 
information from the feature set. The normal and anomaly 
classification performance improved for both datasets as 

shown in Table 2. Therefore, the PCA can increase the 
anomaly detection ability for this research task. 

(3) MFCC features are better than STFT features for the audio 
signal-based normal and anomaly classification task in this 
research. For example, by replacing STFT features with 
MFCC features, the Accuracy, Precision, Recall, and F1 of 
Pettijohna dataset were improved by 1.494%, 1.220%, 
0.366%, and 0.557%, respectively, and the Accuracy, 
Precision, Recall, and F1 of Pja dataset were improved by 
2.842%, 3.042%, 0.074%, and 1.594% respectively.  

(4) The combination of multiple-resource features can 
improve the classification results in this research. Because 
MFCC and SC features extract different information from 
the input audio signals, the integration of MFCC and SC 
features can fuse useful information from different 
resources together to create a more comprehensive feature 
dataset, which can facilitate the classification step. The best 
performance was reached when using the combined 
MFCC+SC features. All evaluation metrics of the two 
datasets reached 100% as shown in Table 4.  

5 CONCLUSIONS 

 Anomaly detection is critical in reducing the cost of 
midstream components maintenance. A deep learning-based 
anomaly detection method is presented in this paper to identify 
failures of the audio data collected from a compressor. MFCC, 
STFT, and SC features were computed using the input audio 
data, and then the high-level features extracted from 
MFCC/STFT by a deep learning network were fed to the PCA 
and SVM for classifying normal and anomalies classification. 
Two datasets with a total of 10196 audio signals were used to 
evaluate the proposed method. The experiments demonstrated 
that MFCC performed better than STFT for this research and 
the combined deep MFCC features and SC features achieved 
the best performance for normal and anomalies classification 
with 100% for four evaluation metrics used in the experiments.  

The future work includes using other bigger audio signal 
datasets to test the performance of the proposed method, 
classifying the anomaly samples into sub-classes that 
correspond to different types of component failures, applying 
other deep learning networks (e.g., LSTM network) to analyze 
one-dimensional raw audio signals, and combining one-
dimensional and two-dimensional audio signal features for 
anomaly detection.  
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