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SUMMARY & CONCLUSIONS

By pressurizing natural gas in pipelines, the compression
system interlocks upstream gas production and downstream
consumer use. Considering the installation cost of $1 to $2
million US dollars for a compressor, the failure of the
component can be costly. Therefore, the anomaly detection for
the compression system is essential. In this paper, a deep
learning-based anomaly detection method is proposed to
identify the failure of midstream compressors using audio
sensor data. Firstly, short-term Fourier transform (STFT), Mel-
frequency cepstral coefficients (MFCC), and spectral centroid
(SC) features are computed using the input audio signals.
Secondly, deep learning-based feature extraction is applied to
create high-level features. Finally, a principal component
analysis step and a support vector machine are applied to
classify normal and anomaly audio signals.

The proposed method was evaluated using two datasets
with a total of 10196 audio signals collected from a compressor.
The experimental results demonstrate that MFCC features are
better than STFT features for anomaly detection and the
combined deep MFCC features and SC features can achieve the
best normal and anomaly signal classification performance,
100% for both datasets, using the proposed method.

1 INTRODUCTION

Compressor systems play an essential role in the
connection of upstream gas production to downstream
consumer use by pressurizing natural gas in pipelines. A
compressor system typically includes a power unit, a cooling
unit, and a compressor, which usually contains a crankcase, a
valve body, and a turbo unit. Regular compression system
inspection that monitors the working conditions of all
components is very important because the failure of the
compression system can be extremely expensive due to repair
cost and lost production. However, traditional human-based
inspection methods are very time-consuming and need
experienced experts to listen to the compressor sounds.
Moreover, the high decibel level of noise also prevents the
accurate detection of abnormal sounds by the human ear.
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Therefore, a reliable system that can automatically analyze the
auditory data, detect anomaly sounds, and predict component
failure is urgently needed to solve this challenging problem.

Recently, sound sensors (e.g., microphone) have been
widely used in automatic anomaly detection systems. Multiple
sound sensors deployed at different components of a
compressor system can be controlled by Internet of Things
(IoT) techniques to collect and transfer the auditory data in
time, and then advanced signal processing and machine
learning techniques can be used to analyze the collected data
and detect anomaly signals automatically.

A deep learning-based anomaly detection method for the
compressor system using audio data is proposed in this paper.
Short-term Fourier transform (STFT), Mel-frequency cepstral
coefficients (MFCC), and spectral centroid (SC) features are
first extracted, investigated and compared for normal and
anomaly signals, and then a new deep learning-based method is
presented to integrate MFCC high-level features and SC
features for normal and anomaly audio signal classification.
The experimental results demonstrate that the proposed method
can classify all normal and anomaly signals correctly.

The rest of the paper is organized as follows: literature is
reviewed in Section 2, the audio features and the proposed deep
learning-based method are described in Section 3, Section 4
shows the experimental results and discusses the performance,
and Section 5 draws the conclusions.

2 LITERATURE REVIEW

Much effort has been devoted to developing automatic
anomaly detection systems using audio signals and many
related publications can be found in the literature in recent
years.

Prego et al. [1] used a three-stage algorithm for image
processing to address anomaly detection problems. These
stages consist of STFT, FEXT, and CLASS stages. The
algorithm achieved decent anomaly detection rates on their
dataset. Antonini et al. [2] used smart audio sensors for
anomaly detection based on IoT architecture of received raw
audio streams. Two algorithms adopted were Elliptic Envelope
and Isolation Forest offered by Scikit-Learn. In AGILE -

Authorized licensed use limited to: Lamar University. Downloaded on December 26,2021 at 06:27:40 UTC from IEEE Xplore. Restrictions apply.



Adaptive Gateways for dIverse muLtiple Environments
gateway instance, Elliptic Envelope performed better in terms
of being faster and lighter. Erfani et al. [3] proposed DBN-
1SVM hybrid model for resolving the challenge for anomaly
detection in High-dimensional problem domains that is an
unsupervised detection method, especially for large scale
datasets. Combining these two methods as one hybrid model
purpose some advantages such as resolving scalability issues
with such complex and large datasets in detecting in training
and feature detection. This model could also purpose a more
accurate model, proper generalization and faster execution.

Deep learning technology has been growing and achieving
impressive breakthroughs since 2012 in various research areas,
such as artificial intelligence, computer vision, image
understanding, and natural language process. Deep neural
network models were also applied to detect and identify
mechanical component failures.

Zhou et al. [4] presented a new method for anomaly
detection. Their research aimed to improve a GAN network in
terms of accuracy and better generalization. A pipeline structure
with auto-encoder instead of the standard generator in GAN
was used in the method. Koizumi et al. [5] developed an
unsupervised method for unknown anomalous sound based on
an autoencoder. A Neyman-Pearson lemma-based objective
function was used to optimize the detection process. Rushe et
al. [6] proposed a semi-supervised method for anomaly
detection by assuming the anomalous patterns are not available
for training. WaveNet architecture was applied to anomaly
detection in raw audio. The experimental results showed that
their method outperformed a based line autoencode model.

More publications about anomaly detection for IoT time-
series and deep learning-based anomaly detection can be found
in the two comprehensive survey papers [7] and [8].

3  METHODOLOGY

The goal of the proposed method is to classify the normal
and anomaly audio signals collected from a compressor system.
The STFT, MFCC, and SC features were compared and
different methods were evaluated. The method using MFCC
and SC features achieved the best performance and was selected
as the proposed method in this paper.

Figure 1 shows the framework of the proposed method,
which contains five steps. (1) MFCC features are computed
using the input audio signal to form a two-dimensional feature
matrix; (2) SC features are computed using the input audio
signal; (3) A pre-trained deep learning neural network was used
to extract high-level deep features from MFCC; (4) both deep
MFCC features and SC features are fed to a principle
component analysis (PCA) unit for feature extraction and
dimension reduction; and (5) the extracted MFCC and SC
features are combined to train a support vector machine (SVM)
classifier for normal and anomaly audio signal classification.

3.1 STFT Features

A signal can be presented in both time domain and
frequency domain. In the frequency domain, the signal can be
decomposed into many constituent frequencies. STFT takes a

short period of signal from a longer one using a window
function, then applies Fourier transform to this short period of
the signal [9]. This process is repeated from the start to the end
of the original signal and the outputs of Fourier transform can
be combined to generate a two-dimensional STFT image, which
can show the frequency changes of the original signal.
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Fig. 1: The framework of the proposed method

The first row of Fig. 2 illustrates a normal and three
anomaly audio signal waves and the second row shows their
STFT images. The differences between the normal and the
anomaly examples can be seen from the highlighted red boxes.
Compared with the normal STFT, the STFTs of Anomaly-1 and
Anomaly-2 both have narrow dark vertical patterns and there
are clear horizontal textures in Anomaly-2’s pattern. The SFTF
of Anomaly-3 is very similar to the normal STFT except the
dark rectangular regions in the lower half of the image.

3.2 MFCC Features

Mel-frequency analysis of an audio signal is based on
human perception experiments. To concentrate on certain
frequency components instead of the whole of the spectral
envelop, a Mel filter bank with many filters are non-uniformly
spaced on the frequency axis with more filters in the low
frequency regions and less filters in the high frequency regions.
The spectrum of the input audio signal after Fast Fourier
Transform (FFT) is filtered by Mel-filters to create Mel-
spectrum, and then the Cepstral analysis is performed to the
logarithm of Mel-spectrum and the obtained Cepstral
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coefficients are referred to as Mel-Frequency Cepstral
coefficients (MFCC) [10].

The third row of Fig. 2 shows four MFCC images
corresponding to the input audio signals. It can be observed that

the red regions at the bottom parts of the images are quite
different. The normal example is smooth with no big value
changes, while the anomaly examples have many low values
embedded in between with big value changes.
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Fig. 2: A normal and three anomaly audio signals with their STFT, MFCC, and SC features

3.3 Spectral Centroid Features

Spectral Centroid (SC) [11] is another important feature for
audio signal processing. The spectral centroid is associated with
the brightness of a sound and indicates where the center of mass
of the spectrum is. The individual centroid of a spectral frame
can be calculated by using average frequency weighted
amplitudes divided by the sum of amplitudes.

The computed SC signals of the four examples are shown
in the last row of Fig. 2 in red color. Each SC signal can be
considered as a 1x259 feature vector. Similar to STFT and
MEFCC features, the SC features show different properties for
the normal and anomaly examples. The SC of the normal signal
looks like a random signal with no clear periodic patterns, while
the spectral centroids of the anomaly signals have periodic
patterns that are consistent with the abnormal regions in their
STFT images. For example, the SC features of Anomaly-1 and
Anomaly-2 have short periods corresponding to the narrow
vertical abnormal regions in their STFT images and the SC of
Anomaly-3 has a long period corresponding to the wide
rectangular abnormal regions in its STFT image.

3.4 Deep Learning-based Feature Extraction

Because STFT, MFCC, and SC features shown in Fig. 2
can capture the distinctive properties of the input audio signals,
they can be used for normal and anomaly signal classification.

A deep convolutional neural network, ResNet50 model
with a 50-layer architecture [12], was used to extract deep
features from the two-dimensional STFT and MFCC images.
ResNet50 is a residual network with the added shortcut
connections that skip one or more layers and perform identity
mapping, which allows deeper architectures to learn residuals
left out by earlier layers rather than learn an unreferenced
mapping. Furthermore, these identity mappings are parameter
free thus reducing the number of flops. During
backpropagation, the gradients pass through the identity
mapping unaltered thus alleviating gradient vanishing.

The adopted ResNet50 was pre-trained using ImageNet,
which is a well-known deep learning dataset containing over 14
million images from 1000 categories [13]. The network
retraining or transfer learning was not applied due to the limited
number of samples in the datasets used in this research. The
high-level deep features were extracted from the average
pooling layer after the last convolution layer, which was used
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as a feature extractor in several applications, such as weather
classification, the detection of human rights violations, and
parasite detection. The size of the extracted high-level deep
features was 1x2048.

3.5 PCA and SVM Classification

PCA is widely used in data compression and redundant
data removal. It applies an orthogonal linear transformation to
find the big variances of the data and to make the data lie on the
corresponding coordinates, which are called principal
components. By selecting the first serval principal components,
PCA can keep important information of the data while projects
the data in a higher-dimensional space into a lower-dimensional
space to reduce the data size.

SVM is one of the most used supervised classification
models in the machine learning area. It classifies the data using
optimal hyperplane that can maximize the margin between the
two classes by finding support vectors. Different kernel
functions can be used to map the data to a higher-dimensional
space to make the problem linear separable.

In this research, the deep features extracted in Section 3.4
have 2048 dimensions, which is much higher than 259
dimensions of SC features. In order to integrate the extracted
deep features and SC features and make them have equal
contributions, both of them were input to the PCA and the first
30 principal components of each were used for classification.
The output of PCA is a 60-dimensional feature set combined
with the high-level deep STFT/MFCC features extracted by the
ResNet50 model and the SC features. This feature set was then
fed to a SVM classifier whose kernel function is a Gaussian
function with a scale 7.7 to classify the audio signals into
normal and anomaly classes.

4 EXPERIMENTS
4.1 Dataset

The following two datasets collected by Well Checked
Systems International (http://www.wellchecked.com/) have
been used to develop the proposed anomaly detection system.
(1) Pettijohna Dataset: This dataset has a total of 2343 raw

audio signals collected on 15 Apr 2019. There are 2187

normal audio signals and 156 anomaly audio signals. Each

signal is 3 seconds long and saved in the OGG format.

(2) Pja dataset: This dataset has a total of 7853 audio signals
collected on 24 Apr 2019. There are 6768 normal audio
signals and 1085 anomaly audio signals. Each signal is 3
seconds long and saved in the OGG format.

Both datasets are very unbalanced. There are many more
normal samples than anomaly samples. Only 6.658% and
13.816% are anomaly audio signals, which increases the
classification difficulty for anomaly samples.

4.2 Evaluation Metrics and Experiment Settings

To evaluate the anomaly detection performance of the
proposed method, the following four evaluation metrics,
Accuracy, Precision, Recall, and FI were used in the
experiments.

TP +TN

Accuracy = )
Total Number of Samples
.. TP
Precision = 2)
TP + FP
TP
Recall = 3)
TP + FN

Fl= 2x Prec'is.on X Recall (4)
Precision + Recall

TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the
number of false negatives. F1 is a combination of Precision and
Recall and measures the overall performance. When both
Precision and Recall are 1s, FI reaches the max value 1.

A 2-fold cross-validation was used to evaluate the
performance using Pettijohna and Pja datasets. For each
dataset, 50% of normal samples and 50% of anomaly samples
were randomly selected and combined to create the training
dataset and the remaining samples were used to create the test
dataset. The performance was also evaluated by exchanging the
training dataset and test dataset.

The audio signal feature extraction and ResNet50 model
program was implemented using Python deep learning API
Keras and PCA and SVM classification was implemented using
MATLAB 2018b Classification Learner Toolbox. The
computer used equipped with Intel Xeon CPU, 32 GB RAM,
NVIDIA GeForce GTX 1080Ti GPU with 12 GB memory, and
Debian GNU/Linux 10 (buster) OS

4.3 Experimental Results

A series of experiments were conducted to assess the
extracted STFT, MFCC, SC features for anomaly detection
using ResNet50 deep learning network comprehensively.

(1) STFT+ResNet50+SVM: The method that used STFT deep
features extracted by ResNet50and SVM without the PCA
feature extraction was considered as the baseline to
compare with other methods and its experiment results are
listed in Table 1. This method obtained high classification
performance for both datasets.

Table 1: STFT+ResNet50+SVM

Pettijohna dataset Pja dataset
Accuracy 98.250% 95.976%
Precision 98.290% 95.629%
Recall 99.863% 99.897%
Fl 99.070% 97.716%

(2) STFT+ResNet50+PCA+SVM: This method used STFT
deep features extracted by ResNet50 and SVM with the
PCA feature extraction.

Table 2: STFT+ResNet50+PCA+SVM

Pettijohna dataset Pja dataset
Accuracy 98.421% 96.396%
Precision 98.689% 96.065%
Recall 99.634% 99.911%
Fl 99.407% 97.950%
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The purpose of this experiment was to test the contribution
of the PCA. The experimental results are listed in Table 2.
It can be seen that this method achieved better performance
compared with the baseline method because of the PCA
applied.

(3) MFCC+ResNet50+PCA+SVM: The method used MFCC
features extracted by ResNet50 and SVM with the PCA
feature extraction. The experimental results are listed in
Table 3. This method greatly improved performance
compared to the first two methods. All four evaluation
metrics for the two datasets are higher than 99%.

Table 3: MECC+ResNet50+PCA+SVM

Pettijohna dataset Pja dataset
Accuracy 99.915% 99.211%
Precision 99.909% 99.107%
Recall 100% 99.985%
Fl 99.954% 99.544%

(4) MFCC+ResNet5S0+SC+PCA+SVM: The method used
MFCC deep features extracted by ResNetS0 and SC
features and SVM with the PCA feature extraction. The
experimental results are listed in Table 4. All evaluation
metrics reached 100% for the two datasets.

Table 4: MFCC+ResNet50+SC+PCA+SVM

Pettijohna dataset Pja dataset
Accuracy 100% 100%
Precision 100% 100%
Recall 100% 100%
Fl 100% 100%

Please note that all values listed in Table 1 to Table 4 are the
averages of the outputs of the 2-fold cross-validation described
in Section 4.2.

4.4 Discussions

Based on the experimental results presented in Section 4.3,
it can be seen that all tested methods yielded high classification
performance and Pettijohna dataset is easier for classification
than Pja dataset due to its small number of samples.
Furthermore, there are other important research findings that
are worth noting:

(1) Deep learning is a very powerful tool that can efficiently
extract high-level deep features. One-dimensional audio
signals can be converted to two-dimensional image signals
to take advantage of the advanced deep learning
technologies for audio signal analysis. The 2048-
dimensional deep features extracted from two-dimensional
STFT and MFCC images can capture the essential
information of the input audio signals and achieve the high
classification performances in this research.

(2) PCA can reduce the dimension of the deep features by
extracting the key components and removing redundant
information from the feature set. The normal and anomaly
classification performance improved for both datasets as

shown in Table 2. Therefore, the PCA can increase the
anomaly detection ability for this research task.

(3) MFCC features are better than STFT features for the audio
signal-based normal and anomaly classification task in this
research. For example, by replacing STFT features with
MFCC features, the Accuracy, Precision, Recall, and F'1 of
Pettijohna dataset were improved by 1.494%, 1.220%,
0.366%, and 0.557%, respectively, and the Accuracy,
Precision, Recall, and F'1 of Pja dataset were improved by
2.842%, 3.042%, 0.074%, and 1.594% respectively.

(4) The combination of multiple-resource features can
improve the classification results in this research. Because
MFCC and SC features extract different information from
the input audio signals, the integration of MFCC and SC
features can fuse useful information from different
resources together to create a more comprehensive feature
dataset, which can facilitate the classification step. The best
performance was reached when using the combined
MFCCHSC features. All evaluation metrics of the two
datasets reached 100% as shown in Table 4.

5 CONCLUSIONS

Anomaly detection is critical in reducing the cost of
midstream components maintenance. A deep learning-based
anomaly detection method is presented in this paper to identify
failures of the audio data collected from a compressor. MFCC,
STFT, and SC features were computed using the input audio
data, and then the high-level features extracted from
MFCC/STFT by a deep learning network were fed to the PCA
and SVM for classifying normal and anomalies classification.
Two datasets with a total of 10196 audio signals were used to
evaluate the proposed method. The experiments demonstrated
that MFCC performed better than STFT for this research and
the combined deep MFCC features and SC features achieved
the best performance for normal and anomalies classification
with 100% for four evaluation metrics used in the experiments.

The future work includes using other bigger audio signal
datasets to test the performance of the proposed method,
classifying the anomaly samples into sub-classes that
correspond to different types of component failures, applying
other deep learning networks (e.g., LSTM network) to analyze
one-dimensional raw audio signals, and combining one-
dimensional and two-dimensional audio signal features for
anomaly detection.
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