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Abstract

We analyze repeated games in which players have private informa-
tion about their levels of patience and in which they would like to main-
tain the privacy of this information vis-a-vis third parties. We show
that privacy protection in the form of shielding players’ actions from
outside observers is harmful, as it limits and sometimes eliminates the

possibility of attaining Pareto-optimal payoffs.
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1 Introduction

Questions surrounding consumer privacy have taken center stage in recent
years, as have debates surrounding privacy protection. These debates fea-
ture at least two distinct ways of thinking about the value of privacy. First,
within economics, privacy is generally viewed as having some instrumental
value, affecting present and future interactions by changing the informational
landscape. Privacy protection alters market interactions by changing behavior
and equilibrium, and this may have positive or negative effects. For example,
in the online shopping market, when there is no protection and information
about online purchases is public, retailers can better discern consumers’ pref-
erences and the market is more efficient (Fudenberg and Villas-Boas|, 2006). In
contrast, with repeated bargaining or auctions, outcomes can be more efficient
when privacy protection is in place and individuals’ behavior is not observed;
examples include Horner and Vieille| (2009), Bergemann and Horner| (2018),
and |Chaves| (2019).

A second approach is to view privacy as having some intrinsic value, where
the leakage of an individual’s private information is directly associated with a
decrease in Well—beingE] This is the typical approach within the computer sci-
ence literature, manifested in the large body of work on “differential privacy”
(DP)EI However, while this approach generally promotes maximal privacy pro-
tection, it often ignores the effects of such protection on behavior.

In this paper we examine the impacts of privacy protection while account-
ing for both the instrumental and intrinsic values of privacy. Privacy protection
consists of some technology measure (e.g., encryption) or proper regulation

that bans the observation or collection of information, and thus shields indi-

'Such an association is corroborated by surveys of individuals’ privacy concerns, such as

Rainie et al.| (2013) and [Madden et al.| (2014).
“Loosely, a mechanism satisfies e-DP for some individual ¢ if the distribution over the

outcomes of the mechanism with ¢ present is e-close to the distribution with ¢ absent (Dinur
and Nissim, [2003). See Dwork! (2008) for a survey and |Abowd and Schmutte| (2019)) for a

discussion of DP from an economic point of view.



viduals’ actions from outside observers. For example, in the online shopping
market, privacy can be protected by add-ons that erase cookies from the user’s
browser to hide her actions, as well as by legal restrictions on collecting or sell-
ing individual browsing or shopping history. Our main conclusion is that, even
(and especially) when privacy has large intrinsic value, such privacy protection
may be harmful because of its effects on behavior.

In a previous paper (Gradwohl and Smorodinsky} 2017)) we show that for
single-agent decision-making problems such privacy protection is always ben-
eficial. This is quite intuitive, as such protection provides a dual benefit to
the decision maker: it eliminates the cost associated with information leakage,
while also allowing the decision maker to choose an efficient action without
worrying about its privacy-related implications. This straightforward observa-
tion, and in particular the second benefit, does not carry over to multi-player
games, and so the question about the desirability of privacy protection re-
mains.

In this paper we study this question in a multi-player setting in which,
absent privacy concerns, efficiency can also be attained in equilibrium. In par-
ticular, we consider repeated games, where patient players can cooperate and
reach an efficient outcome in equilibrium.ﬂ For concreteness, and to illustrate
our model and results, consider an online shopping scenario in which two buy-
ers repeatedly compete for an item in a first-price auction. At each stage they
both value the product at 6 and are allowed to bid either 0 or 2. Furthermore,
when the buyers bid equally one is randomly awarded the item. Note that
the resulting stage game is none other than the Prisoner’s Dilemma (PD),
depicted in Figure [Ta] The folk theorem implies that mutual cooperation can
be sustained in equilibrium when players are sufficiently long-sighted.

Next, we modify the game by incorporating both private information and
privacy concerns about the revelation of this information. More specifically,

let the private information (types) of the individuals be their levels of patience.

3This is captured by the celebrated folk theorem—see, for example, Theorem 13.17 of
Maschler et al.| (2013)).
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Figure 1: Examples of games

Each player can be one of two types—a (very) patient type, who evaluates the
stream of payments from the stage game via the limit-of-means criterion, or
a (very) impatient player, who only cares about the outcome in the current
stageﬁ In addition, the players place some intrinsic value on maintaining
the privacy of their types. We capture this value by extending the players’
utility functions to account for how much information about their type is
revealed, above and beyond what is known by the prior, from the way they
play the repeated PD. One interpretation of this intrinsic value is that the
players anticipate playing some future game against some unknown player,
nicknamed Big Brother (BB)[]

In this context, privacy protection is a technology or regulation that pre-
vents BB from observing the players’ actions and so deducing anything about
their types. Under privacy protection, then, privacy concerns play no role,
and players play the repeated PD game. Without privacy protection, how-

ever, players’ actions are observed. As a result, BB can draw inferences about

4See Section [5| for a discussion of this assumption on the extreme nature of patience and

impatience.
5This future game may take the form of a bargaining game, & la Rubinstein (Rubinstein,

1982), in which case they would have an advantage if they were to be perceived as patient.
Alternatively, the future game could take the form of the buyer—seller bargaining model of
Fudenberg and Tirole (1983)), where, in equilibrium, impatient buyers obtain the goods at
lower prices. Given the ambiguity of the future interaction the buyers would rather not have

their type revealed in the current game.



their types, which impacts the utilities they derive from the game. Our pri-
mary question is whether society (in this case the two players) would be better
off with or without privacy protection.

Perhaps counter-intuitively, if privacy has high intrinsic value—specifically,
if the cost associated with the revelation of one’s type is more than one—then
privacy protection turns out to be detrimental to welfare in our example. To
see this note that whenever both types of a player pool on the same strategy
then no information about his type is disclosed to anyone observing players’
actions. In particular, this is true if the types pool on the classic grim trigger
strategy. Thus, when actions are observed the grim trigger strategy becomes an
equilibrium strategy for both types: The long-sighted player does not deviate
because he fears being punished, whereas the short-sighted player is motivated
to cooperate because a deviation would reveal his type and lead to a privacy
cost. In contrast, with privacy protection, when players’ actions are concealed
from any third party, the short-sighted player necessarily defects in the first
stage, and so his opponent must defect from the second stage onwards. Thus,
privacy protection denies the players the option of enjoying the fruits of the
Pareto frontier.

The PD is an example in which all Pareto-optimal payoffs can be obtained
in equilibrium when there is no privacy protection, regardless of the realized
types of the players. With privacy protection, however, this Pareto frontier
can be attained only if both realized types are long-sighted. If one or both
of the players are short-sighted, then the unique long-run payoffs are the ones
associated with mutual defection. This strong result, however, is specific to
the structure of the PD, and in particular to the fact that players have strictly
dominated actions, which, when played by both, lead to the Pareto-optimal
outcomes.

The discrepancy between the two scenarios, with and without privacy pro-
tection, in terms of the feasibility of payoffs on the Pareto frontier does not
extend generally. For example, in some games such as the Stag Hunt game

(see Figure , the Pareto frontier may be attainable in equilibrium even
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with privacy protection, regardless of the realized types of players. This holds
because the game has a unique Pareto-optimal payoff that is associated with
a pure Nash equilibrium: the profile in which both players choose to hunt the
S(tag).

The Shapley Game illustrated in Figure [Lc|is an intermediate case. In this
game, there is a unique mixed equilibrium whose associated payoffs are not on
the Pareto frontier. Thus, when there is privacy protection and both types are
short-sighted, the Pareto frontier is unattainable in equilibrium. In contrast,
if one of the players is long-sighted and the other short-sighted, then some of
the Pareto frontier is attainable in equilibrium (see the end of Section for
discussion and analysis of this game).

By and large, in this paper we show that privacy concerns may lead to pool-
ing behavior of different types. Introducing privacy protection, therefore, may
induce separating behavior. In the context of our repeated game, the pooling
behavior will allow the players to attain payoffs on the Pareto frontier of the
stage game, via the folk theorem, even if they are impatient. In contrast, the
introduction of privacy protection will cause separation between patient and
impatient players, which will prevent them from enjoying the Pareto frontier.
Thus, there is a cost to privacy protection, even when privacy has intrinsic
value.

Slightly more formally, our Theorem [1|states that when there is no privacy
protection and privacy concerns are large enough to be meaningful, payoffs on
the entire Pareto frontier can be attained in equilibria of the repeated game,
regardless of players’ types. In contrast, our Theorem [2] states that when there
1s privacy protection, some or all of the payoffs on the Pareto frontier cannot
be attained in any equilibria of the repeated game whenever at least one of
the players is short-sighted.

This statement is simple and requires no complex arguments for the PD
game, and in fact it is straightforward to extend Theorem [I|to general games.
The general version of Theorem , however, is more involved. First, it (nec-

essarily) makes weaker guarantees than those that hold for the PD game;



and second, it requires some intricate arguments, invoking results from the
Bayesian learning literature and the reputation literature.

In addition to shedding light on the interplay between privacy protection
and privacy concerns, our results also contribute to the literature on repeated
games. The folk theorem is central to the analysis of such games as it provides
a mechanism by which players can sustain cooperation; however, it is limited
to settings in which players are sufficiently long-sighted. Theorem [If can be
interpreted as showing that the presence of privacy concerns can lead to sus-
tained cooperation even when one or both of the players may be short-sighted.
Theorem [2| then shows that this channel for cooperation is hindered under

privacy protection.

Comment We do not necessarily think of patience as the most obvious
attribute that should be kept secret, nor that the literature on privacy should
focus much of its attention on this issue. Rather, on the one hand, it is a
reasonable setting where privacy actually matters and which is reasonably well-
motivated, while, on the other hand, it serves our purpose of demonstrating

the intricate connection between privacy protection and social welfare.

Organization The rest of the paper is organized as follows. The remainder
of this section contains a review of the related literature, followed by the model
in Section [2] Section [3] contains our results on equilibrium payoffs without
privacy protection, and in particular shows that the entire Pareto frontier is
attainable. Section 4| then follows with an analysis of payoffs when there is
privacy protection and provides conditions under which the Pareto frontier is
not attainable, hence demonstrating a cost to privacy protectionﬁ Finally,
Section [5 concludes the main body of the paper, and the Appendix contains

most proofs and some additional results referenced throughout.

6Sectionis significantly longer and more complex than Section as the latter is a possi-
bility result that involves an equilibrium construction, whereas the former is an impossibility

result that shows that no equilibrium attains particular Pareto-optimal outcomes.



1.1 Related Literature

Privacy has become a central topic for study by computer scientists. Originally
motivated by privacy issues related to data curation, the lion’s share of the
literature focuses on a very specific notion of privacy preservation, one that is
measured by differential privacy (see Dwork and Smithl 2010} for a survey of
this literature). Underlying the notion of differential privacy are two implicit
assumptions we would like to touch on. First, individuals incur an explicit cost
from privacy loss, and so in many of these models we would like to strengthen
the differential privacy guarantees. Second, there is a clear separation between
the agents’ actions and the measure of privacy. Let us elaborate on this.

The initial literature on differential privacy was motivated by settings
where the data are collected involuntarily from individuals, such as the collec-
tion of patients’ medical records by hospitals or census data collected by the
government (Dinur and Nissim) 2003 |Dwork and Nissim),|2004). In such mod-
els there are no strategic considerations on the part of the individuals whose
data is scrutinized, and so many models asked how one can produce statistical
information from the data while maintaining differential privacy guarantees.

More recently there has been a growing literature of differential privacy in
models where agents voluntarily choose to share their data (possibly not in a
truthful manner). These models typically take one of two forms, both of which
maintain a separation between the strategic considerations and the privacy-
related considerations. One strand of this literature endows agents with a
utility function that does not account for privacy loss and produces mecha-
nism that are incentive compatible while satisfying some differential privacy
guarantees (McSherry and Talwar, 2007; Nissim et al., 2012b). The other
strand already accounts for the disutility associated with privacy loss in the
utility function. However, in these papers the differential privacy guarantee of
the mechanism studied (coupled with players’ strategies) serves as a sufficient
statistic for the privacy loss (e.g., Ghosh and Roth|, 2015; Nissim et al., 2012a;
Chen et al.; 2013)). In particular, the disutility associated with privacy is not a



function of the actual actions played. Thus, whereas a player’s deviation may
alter his material utility, it does not change the component related to privacy,
and therefore separates strategic consideration from privacy considerations.

In contrast, the literature in economics focuses on privacy in the context of
information leakage and its implications on the actions and future utilities of
players. Privacy per se has no value. This tradition goes back to Posner; (1981)
but is manifested in many up-to-date studies, many of which are surveyed by
Acquisti et al.| (2016). In particular, this can be seen through the study of pri-
vacy protection in models of repeated games. In such models, hidden actions
(e.g., due to privacy protection) in early stages may provide an advantage in
later stages. The roots of this approach and the implications of monitoring can
be traced back to the monumental work of Aumann et al.| (1995), who study
an abstract zero-sum setting. In recent years this has been studied in more
specific economic models such as monopolist pricing (Taylor, 2004)), sequen-
tial contracting (Calzolari and Pavan, [2006|), repeated signaling games (Chen
et al., 2014)), repeated bargaining (Horner and Vieille, 2009; |[Kaya and Liul,
2015; |Chaves|, [2019), repeated first-price auctions (Bergemann and Horner,
2018)), and more (we refer the interested reader to the survey of Mailath and
Samuelson), 2006). In all these models privacy serves as a means to an end,
and players have no intrinsic value for privacy. Some show that welfare is
higher when there is no privacy protection, whereas others show that privacy
protection increases efficiency.

We bridge the two strands of the literature. On the one hand, we adopt
the tradition laid out by the differential-privacy community and introduce an
intrinsic predilection for privacy directly into the players’ utility functions.
On the other hand, we fully capture the strategic implications and consider
equilibrium strategies, where privacy considerations play an important role
and are affected by the choice of action. One action could reveal more infor-
mation about the agent than another. This amalgam is already captured in
our previous work (Gradwohl and Smorodinsky, 2017)), where we focus on the

implications of privacy in one-shot models of decision-making. The previous



paper showed that privacy protection is often beneficial in one-shot settings
with a single decision maker, whereas the current paper promotes the idea
that such protection may reduce welfare in the repeated setting with multiple
players.

Embedding privacy considerations introduces some conceptual modeling
difficulties. In particular, a given action may be inferior to another action,
but by deviating to that action the associated privacy loss may also change,
and this may now render the original action superior. This interplay between
actions and their privacy implications is reminiscent of the interplay between
messages and actions in signaling games (see, e.g., |Sobel, 2009), psychological
games (Gilboa and Schmeidler} 1988; (Geanakoplos et al., [1989; Battigalli and
Dufwenberg, 2009), and models of social image and self image (e.g., Bern-
heim| (1994), |Glazer and Konrad (1996)), and [Ireland (1994) on conformity,
charity, and status, respectively; Bénabou and Tirole (2006) on pro-sociality;
and Becker| (1974) and Rayo (2013)) and [Friedrichsen| (2013) on self-image).
Finally, a stronger connection between social image and privacy policies has
been studied by |Ali and Bénabou (2016). They observe that privacy measures
may garble information about the moral values of society and consequently
jeopardize overall welfare. We refer the reader to Gradwohl and Smorodinsky
(2017) for further discussion of the similarities and distinctions across these
models.

In this paper we focus on privacy protection of players’ actions while as-
suming the players’ types are necessarily private. This begs the question on
the implications of privacy over types. In our model one can easily observe
that if player types are not private information then it does not matter whether
there is privacy of action, and regardless, we cannot guarantee outcomes on
the Pareto frontier whenever short-sighted players are involved. For a related
discussion on the nature of information being kept private and the resulting
welfare benefits, see Prat| (2005). That paper considers an agency setting and
makes the distinction between “two types of information that the principal

can have about his agent: information about the consequences of the agent’s



action and information directly about the action.” In that paper, much in con-
trast with our findings, it is shown that the lack of privacy on consequences is
beneficial, while the lack of privacy on action can have detrimental effects.
Finally, a distinctive feature in our model is that incomplete information
is about time preference, rather than payoffs or behavioral type (as in repu-
tation games). In different contexts, Aramendia and Wen| (2020) utilize such
incomplete information for equilibrium selection in repeated games, and |Maor

and Solan| (2015) study the PD game with uncertainty about discount factors.

2 Model

Our model is an extension of the perception games of Gradwohl and Smorodin-
sky| (2017)) to a repeated setting. There are two players who play a game and
a third party called Big Brother (BB) who may observe the interaction and
draw inferences about the players’ types. The two players play an infinitely
repeated game of G = (Ay, Ay, uy, uy), where A; is the finite set of player i’s
actions and wu; : Ay X Ay — R is player ¢’s utility function, in the stage game
G. For a profile a of mixed actions, we also denote by u;(«) the expected
utility of player ¢ under a.

Each player i is one of two types, t; = S or t; = L, with probabilities g; and
1 — f3;, respectively. Prior to the game, each player learns (only) his own type.
A (behavioral) strategy, o;, for player i is a function o; : {S, L} x U A% —
A(A;), where A = A; x Ay and A° = (). The strategy assigns a mixed action
in the stage game for each type and finite history of action tuples. A pair
of strategies, 0 = (01, 03) induces a (random) infinite stream of payoffs. Let
supp(o) C A* denote its support.

The types differ in their preferences over infinite streams of payoffs. A
player of type L is long-sighted and evaluates material payoffs by the limit-of-
means criterion. Formally, type L prefers the infinite stream of material payoffs

kYoo kloo £ 1: 1 T k : 1 T k
{ugi 3z, over {wf )2, if limg oo 75 > pq ui > limpoo 7 Y g vF, Whenever
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both limits exist. Existence is not guaranteedﬂ a technicality that is handled
by the notion of equilibrium we will use (Definition (1| below).

In contrast, a player of type S is short-sighted and prefers the infinite
stream of material payoffs {u¥}2°, over {vF}2°, whenever the former is lexi-
cographically greater than the latter, or formally, whenever there exists some
K such that uf =¥ for all k = 1,..., K and u/*™" > v+

In what follows we will be interested in evaluating the payoffs of both
types of players, from the point of view of a social planner. For the long-
sighted player, this evaluation naturally takes the form of the long-run payoff.
Regarding the short-sighted player, there is no reason for the social planner to
prefer one period over another, and so he can be modeled as evaluating payofts
at a random period. With an infinite horizon this is equivalent to the long-run

payoffﬁ Thus, we will use the long-run payoff to evaluate both types’ utilities,

ti:t],

where aj is the action profile played in stage k. We will be interested in

and so the following notation will be useful:

> ey ilar)

T

Ui(o : t) © lim E,

T—o0

situations in which the limit exists, and will subsequently refer to these payoffs
as players’ material payoffs.

In addition to these material payoffs, players incur a disutility, ¢; = ¢;(¢;, 5}, B),
as a bounded function of their type, the ex-ante belief about their type, and
the ex-post belief about their type, respectivelyﬂ That is, players’ total utility

will be their material payoff minus the disutility incurred due to changes in

7As an example of nonexistence, suppose payoffs consist of a sequence of 10¥ 0s, then
10**1 1’s, then 10*+2 0’s, and so on. In this case the liminf is 0 whereas the limsup is 1,

and so the limit does not exist.
81f we consider payoffs at a random period, then when there is a finite horizon this would

equal the mean payoff. A natural extension of this criterion to the game with an infinite

horizon is the limit of the finite horizon means, as we propose.
9We will assume that the long-sighted player incurs a disutility that depends on the prior

and the belief after the repeated interaction. The short-sighted player can be modeled in

one of two ways: either he also incurs a disutility that depends on the prior and on the belief

11



beliefs about their types. In order to capture the notion of privacy concerns,
we impose a bit of structure on the function ¢; as follows: (1) ¢;(¢;, 8, 8Y) =0
whenever ] = g and (2) ¢;(L, 8], B!') > 0 for all g/ € [0,1]. In words, there
is no cost if there is no change in belief and a nonnegative cost for the long-
sighted typeH Finally, for convenience we will assume that ¢; is bounded:
that there is some large C' such that |¢;(¢;, 87, )| < C for all ¢;, Bi, and 5.
Our model of payoffs and equilibrium is an extension of the notion of a
perception game (Gradwohl and Smorodinsky, 2017)) to the current infinitely-
repeated setting. To this end, we assign each player a belief function, 7;, which
associates an ex-post belief (attributed to BB) over his type for any sequence
of action tuples. Formally, 7; : U A* +— [0,1] will denote an ex-post belief
that player i is actually of type S at the history h € U A*. 7; is rational with
respect to o whenever 7;(h) is computed by Bayes’ rule for any finite history h
that is reached with positive probability under o, and such that 7;(h) = 7;(1)
if 7;(h') € {0, 1} for some prefix h’ of h. Note that if 7; is rational with respect
to o, then for an infinite history a® € A> with prefixes a°,...,a" ... that are
all reached with positive probability under o, the belief 7;(a*°) = limy_; 7i(a*)
is well-defined almost surely, by the martingale property of Bayesian updating.
We now define the notion of equilibrium, based on the formulation of
Maschler et al.| (2013)) (Definition 13.16) but extended to incorporate per-

ceptions and different time-discounting types.

Definition 1 A perfect perception equilibrium is a quadruple, (o1, 09,1, T2),
such that:

e 7; is rational w.r.t o for both 1 =1,2.

after the repeated interaction, or he incurs a disutility that depends on the beliefs before
and after each stage. We will adopt the latter for simplicity; using the former, however,

would not alter our results.
10The short-sighted type may incur costs at each stage, and so we do not require his costs

to be nonnegative to avoid dynamic inconsistency (see |Gradwohl and Smorodinskyl, 2017,

for discussion).
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e For each i, with probability 1 according to o|(t; = L), the limit limy_, o S uk

exists.

o Type L of either player i has no incentive to deviate: for any strategy -v;,

_Ea\ (ti= L)Cl< B’L?Tl( ))

> FE,0 lhm sup — Z u; | — Eyo_nci(L, Bi, Ti(aoo)).

T—o00
o Type S of either player i has no incentive to deviate on any finite history

h: For any h € UL  A* and strategy ; that is identical to o; everywhere

except at histories that have h as a prefix,

Eui(oi(h),0-i(h))|t: = S| = Essmci(S, i(h), mi((h, a)))
> Elui(vi(h),0-i(h))|t: = S| = Euhy.o_inyci(S; Ti(h), Ti((h, a))).

3 No privacy protection

In this section we assume that there is no privacy protection, and so BB
observes the players’ actions and draws inferences about their types. We will
show that, in this case, all Pareto-optimal payoff profiles are attainable in
equilibrium. Let

v; = minmax u;(a;, ;)

be the minimax payoff of player i, where a_; is any mixed action of player —i.
A payoft v; of player i is individually rational (IR) if v; > v,, and strictly IR if
the inequality is strict. Denote by

= {v € R*: v = (u1(a), uz(a)) for some pure profile a},

1 The existence of the expectations for the costs is guaranteed by the boundedness of

ci—see, for example, Theorem 4 of |Royden and Fitzpatrick| (1988).
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let its convex hull V' = CO(V},) be the feasible set of payoffs, and
Vi ={veV:Vivy>uy}

be the set of feasible, IR payoffs. The standard folk theorem for two long-
sighted players states that all payoff pairs in V* are attainable as equilibrium
payoffs of the repeated game (see, e.g., Theorem 13.17 of Maschler et al., 2013]).

The following proposition states that these same payoffs are achievable
when there is incomplete information about player types, as long as they have

privacy concerns and there is no privacy protection.

Theorem 1 Suppose there is no privacy protection. If ¢;(S,5;,1) is larger
than maxaea o, {wi(a) —ui(ai, a_;)} for both players i, then for every v € V*
there exists a perfect perception equilibrium (o, T) in which the long-run payoff
profile is v. In particular, all feasible, IR, Pareto-optimal payoff profiles are

attainable in equilibrium.

Our result requires that the privacy cost ¢; (S, 5;, 1) be sufficiently large.
Some comments about this requirement are in order. First, note that the cost
must be large relative to the stage game payoffsE

Second, some lower bound on the privacy cost is clearly necessary, as a cost
of 0 (or rather any amount smaller than the difference between two possible
material payoffs of a player) would render privacy costs irrelevant and the
claim of Theorem (1| false. Furthermore, in some games the threshold is sharp:
in the PD game of Figure [Ia] for example, a privacy cost less than 1 would
be irrelevant, whereas a privacy cost greater than 1 would suffice to yield the
claim of Theorem [II

Finally, the analysis in Section [d] will show that with privacy protection not

all Pareto-optimal payoffs are attainable in equilibrium. This, together with

12T ong-run payoffs in our model are the limit-of-means of stage games, and so on the
same order of magnitude, but our results would be unchanged if the long-run payoffs were
a large multiplicative factor of the limit-of-means, in which case the privacy cost would be

small when compared with the long-run payoffs.
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Theorem [T} demonstrates the counter-intuitive insight that privacy protection

is harmful specifically when privacy costs are large.

Proof:  Long-sighted players play the standard grim trigger strategies, it-
erating over pure strategy profiles that lead to an average payoff profile of v,
with a permanent deviation to the minimax strategy when a deviation of the
opponent is detected. Short-sighted players pool with long-sighted players—
i.e., they play the exact same strategies. Note that players use pure actions in
every stage. Furthermore, for each i and h, let 7;(h) = f3; if h is reached with
positive probability under o or, if A is infinite, if all its prefixes are reached
with positive probability under o. Let 7;(h) = 1 otherwise. Note that 7 is
rational with respect to o.

Observe first that long-sighted players do not gain from a deviation from
o: they will be punished by the other player, who plays grim trigger, and their
privacy costs can only increase (since privacy costs are nonnegative). Next,
suppose no player has deviated from o up to stage k. Does a short-sighted
player 7 have an incentive to deviate in stage k+ 17 At the beginning of stage
k + 1, the belief of BB about his type is §;, since types have been pooling so
far. If a player deviates, beliefs are 7, = 1. Thus, a short-sighted player incurs
cost ¢;(S, Bi, 1) > maxeeaarea, {ui(a) — ui(aj,a_;)}. Since this cost is larger

than any potential gain from the deviation, the deviation is not profitable. W

Note that, by Theorem [I] all feasible, IR payoffs profiles are attainable
in equilibrium. However, the set of attainable payoffs may be larger, and in
particular, may include non-IR payoffs (see Appendix .

A natural question is whether the equilibrium constructed in Theorem
survives common equilibrium refinements. In Appendix [B| we argue that our
construction does, indeed, satsify the Intuitive Criterion of (Cho and Kreps
(1987). However, it does so in an uninteresting way, as the definition is vacu-
ously true. We then consider a modification of the Intuitive Criterion that has
some bite in our model, and provide a strengthening of our theorem. Roughly,

for a given profile of strategies o, we define the notion of o-intuitive beliefs. We
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then show that for every v € V* there is a o such that for all o-intuitive beliefs

T, the profile (¢, 7) is a perfect perception equilibrium with payoff profile v.

4 Privacy protection

In this section we assume that there is privacy protection, and so BB does
not observe the players’ actions. Consequently, he cannot draw any inferences
about their types, and so his beliefs 7; at every stage are the same, namely the
prior ;. Furthermore, players do not incur any privacy costs, since 7; = [;
throughout. We drop the dependence of overall utilities on perception, as these
utilities are now equal to the material payoffs.

Our main result is that under privacy protection, the Pareto frontier is not
generally attainable in equilibrium. For one part of this result we utilize two

minor genericity assumptions on the game G:E

Assumption 1 There do not exist two distinct pure-action profiles a = (a1, as)
and b = (b1, be) and a player i for which u;(a) = u;(b).

Assumption 2 There do not exist three distinct pure-action profiles a =

(a1,02), @' = (a}, ), " = (al, ) for which the payoff pair u(a) = (u1(a), us(a))

is a convex combination of the payoff pairs u(a’) and u(a”).

Before stating our main result, we need a bit more notation. First, denote

the Pareto frontier by PF, where
PF={veV*": # eV st v > v}

Strictly speaking, PF is the Pareto frontier subject to IR constraints being
satisﬁedﬁ Second, for a stage game G, denote by NE(G) the set of Nash

BThese are needed for Lemma [4] and consequently one claim of Theorem For any

game, they hold with probability 1 following a perturbation of the utilities.
14 An alternative definition is PF = {v € V* : o’ € V* s.t. v/ > v} (the difference is in

the inequality). If V* is a rectangle, for example, then the question is whether the top and
right segments are part of PF or just the top-right vertex. The choice of definition does not

matter for our results.
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equilibria of G.

We can now state our main result on the unattainability in equilibrium
of some payoft profiles on the Pareto frontier under privacy protection. Since
the entire Pareto frontier is attainable in equilibrium when there is no privacy

protection, this theorem shows that privacy protection can be harmful.
Theorem 2 [f PF ¢ CO{NE(G)} and either
et =t =5, or

o G is symmetric and satisfies genericity assumptions[l] and[3, and t; = S

for some i,

then there is some v € PF that is obtained with probability 0 in every perfect
perception equilibrium of the repeated incomplete-information game. If PF N
NE(G) =0 and t; = ty = S then every v € PF is obtained with probability 0

i every perfect perception equilibrium.

The qualification on G is necessary: if all Pareto-optimal payoffs are convex
combinations of payoffs attained as Nash equilibria of the stage game G, then
Pareto-optimal payoffs are also attainable in equilibria of the repeated game
regardless of player types, simply by iterating over various Nash equilibria of
the stage gameﬂ

In this section we prove Theorem [2| First, in Section we describe the
sets of payoffs when the types of players are commonly known and provide
conditions under which these payoffs do not contain the entire Pareto frontier.
This is followed by Section [4.2] in which we show that the set of payoffs
when types are unknown is a subset of the payoffs when the realized types are
known. Together, these results imply a cost to privacy protection described

by Theorem [2} Without protection, all payoff profiles on the Pareto frontier

15The symmetry and genericity assumptions in the second bullet are necessary for our
proof (in particular, for the proof of Lemma , but we do not know if they are necessary
for the result to hold.
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are attainable in equilibrium, by Theorem [I} With protection, in contrast, a
substantial part of the Pareto frontier is unattainable.

Our analysis is tight: in Appendix [D| we show by construction that when
there is privacy protection, the payoffs attained when types are known are also

attainable in equilibrium when types are unknown.

4.1 Known types

Suppose the types of the players are commonly known. We will describe the
set of payoff profiles attainable as equilibria of the repeated game, which, of
course, depend on the types of the players. If both players are long-sighted,
then the standard folk theorem applies, and the set of attainable payoffs is
exactly equal to V* (see, e.g., Theorem 13.17 of Maschler et al., 2013). We
next consider the other two cases: when one player is long-sighted and the

other short-sighted, and when both players are short-sighted.

LS: Suppose player i is long-sighted and player —i is short-sighted. What
are the possible payoffs? Let

B! ={(a1,a5) : a_; € BR(«;)},

where BR(a;) denotes the set of player —i’s best responses to the mixed action

«; of player 7, and
B; = CO{(vi,v_;) € R? : (vs,v_;) = (i), u_;()) for some o € B.}.
The set of feasible payoffs is a subset of B;:

Lemma 1 Lett; =L andt_; = S. Then in any equilibrium o of the repeated
game, the corresponding long-term payoffs (U;(o : L), U_;(o : S)) are contained
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2S: Suppose both players are short-sighted. Let
V2 = CO{v : v = (uy(a), uz(a)) for some NE a of G}.

Then when types are commonly-known, the feasible set of payoffs is a subset

of V25:

Lemma 2 Letty =ty = S. Then in any equilibrium o of the repeated game,
the corresponding long-term payoffs (U;(o : L),U_;(c : S)) are contained in
Vs,

Pareto frontier We now provide conditions under which the Pareto frontier
is not attainable in equilibrium.

A first observation is that if the Pareto frontier is defined by convex com-
binations of Nash equilibria of the stage game—formally, if v € PF = v €
CO{7 : 7 = (u1(a), uz(x)) for some NE « of G}—then any payoff profile on
the Pareto frontier can be attained as the long-run payoff of a repeated game in
which players play a NE at every stage. In this case, the Pareto frontier is at-
tainable in equilibrium regardless of the types of the players, and in particular
when both players are short-sighted.

The more interesting case is when the Pareto frontier is not defined only
by the NE of the game. For this case we have two lemmas, one for general
games about payoffs in V2% and one for symmetric games about payoffs in B;,

that show that the entire Pareto frontier is not attainable in equilibrium.

Lemma 3 Fiz a stage game G, and suppose PF  CO{NE(G)}. Then there
exists a payoff profile v € PF such that v & V*5.

That is, there is a payoff profile on the Pareto frontier that is not attainable as
the long-run payoff in any equilibrium of the repeated interaction of two short-
sighted players. The lemma follows almost immediately from the definition of
V2% but see Appendix |A] for a formal proof of this and all other lemmas from

this section.
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Next, consider the case in which player ¢ is long-sighted and player —i is
short-sighted, and so by Lemma [1| the set of payoffs lies in B;. The following
lemma shows that in symmetric games, in which A; = A, and wuy(ay,a2) =
ug(ag, ay) for all (aj,as) € A, the set B; does not contain the entire Pareto

frontier.

Lemma 4 Fix a symmetric stage game G that satisfies genericity assump-
tions and@ and suppose that PF ¢ CO{NE(G)}. Then there exists a payoff
profile v € PF such that v € B;.

The main intuition underlying the lemma is as follows. Fix some v € PF
that cannot be attained as a NE of the stage game G, and suppose towards a
contradiction that v € B;. Also, suppose for simplicity that the payoff v results
from a pure action profile (a1, ay). By assumption, in this pure action profile,
player —i best-responds to player i. Now, by symmetry, if v = (v, v7) is on
the Pareto frontier, then so is v' = (vq,v1). By a symmetric analysis, v’ can
only arise from the pure action profile (as, a1 ), in which player i best-responds
to player —i. This implies that v results from a NE of GG, a contradiction.
Finally, we note that the more challenging part of the proof is to extend the
analysis to the case in which v does not result from a pure action profile (and
this latter part is the one in which we use the genericity assumptions).

Lemmas [3] and [4| showed that PF ¢ V2% and PF ¢ B; whenever PF ¢
CO{NE(G)}. The following lemma shows that a stronger conclusion holds if
PF N NE(G) = 0:

Lemma 5 If PENNE(G) =0 then V> NPF = ().

One might conjecture that there is a stronger lemma to be had also for
the LS case: namely, that if no NE lies on the Pareto frontier, then none of
the Pareto frontier can be obtained in the LS case either, as in Lemma [5| for
the 2S case. However, this conjecture is false, as demonstrated by the game
in Figure [Id This game has a unique NE in which all players mix uniformly,
but in which the corresponding payoff profile of (1/3,1/3) does not lie on the
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Pareto frontier. However, some part of the Pareto frontier can be obtained
when the type profile is LLS: in particular, if the row player is the L-type and the
column player is the S-type, then the profile in which the row player mixes
uniformly between his first two actions, U and M, and the column player
plays his third action R with probability 1, is in B;. Furthermore, this profile
is Pareto-optimal and has payoffs (1/2,1/2).

4.2 Unknown types

In this section we return to our game of incomplete information and show that
in any equilibrium of that game and for any pair of realized types, the payoff
pair lies in the set of possible payoffs in the counterpart game with complete

information in which the realized types are commonly known.

Lemma 6 In any equilibrium o of the incomplete-information repeated game
and almost every play path, the realized limit-of-means payoffs of the two play-
ers, (Ui(o : t),U_;(0 : t)), lie in the set of payoffs attainable in equilibria of

the repeated game when the types are known.

The proof of Lemma [6] uses a theorem about learning due to Kalai and Lehrer
(1993)), which states that in a repeated game of incomplete information and
finitely many types players’ equilibrium strategies and others’ beliefs about
those strategies get arbitrarily close. In our context, this implies that players
eventually play almost the same as they would play if types were commonly
known. Thus, the main part in the proof of the lemma is to show that payoffs
are also nearly the same.

We are now ready to prove Theorem [2}

Proof: Lemma [2| shows that when t; = t, = S, the feasible set of payoffs
lies in V2% in the game with complete information, and Lemma, [3| shows that
when PF ¢ CO{NE(G)} there is some v € PF such that v ¢ V?%. Lemma
shows that when PF N NE(G) = §) then V* N PF = .
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Lemma (1| shows that when ¢; = L and t_; = S the feasible set of payoffs
lies in B;, and Lemma {| shows that when PF ¢ CO{NE(G)}, the game is
symmetric, and the genericity assumptions hold, there is some v € PF such
that v € B;.

Finally, Lemma [6] shows that payoffs in any perfect perception equilibrium
of the incomplete-information game lie in the set of payoffs in equilibrium
when types are commonly-known. Together, these lemmas imply the claim of
the theorem. |

5 Conclusion

In this paper we argued that privacy protection—in the form of disallowing
third parties from observing actions—is harmful to privacy-concerned players
engaged in a repeated interaction, as it limits and sometimes eliminates the
possibility of attaining Pareto-optimal payoffs.

Our criticism of the potential harm of privacy protection hinges on the
prevalence of the “best” equilibria in a game, those that induce payoffs on the
Pareto frontier. If, on the other hand, one is concerned with the prevalence of
the “worst” equilibria then a similar analysis will argue in favor of privacy pro-
tection, as it may eliminate bad equilibria (we refer the reader to Appendix
for the technical analysis).

Our results hold for more general utility functions than the ones we use,
with separable additivity between material payoffs and privacy costs. In par-
ticular, they hold for any utility function u that takes as its arguments the
action profile and the two beliefs, ex ante and ex post, and that satisfies the
following two properties for any profile a and two beliefs 0 < 5" # " < 1: (i)
u(a, B,5) = u(a, 8, 8"), and (ii) u(a, &, ") < u(a, 5, ).

While our results apply to general two-player repeated games, they are
limited by our assumption about player types. In particular, we assumed

that players are either very long-sighted or very short-sighted. While this
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assumption is largely for simplicity of exposition, we used it in the proof of
Lemmal[6] which showed that realized long-run payoffs of players under incom-
plete information lie in the set of payoffs attainable in equilibrium under their
realized types. This proof uses a theorem about learning due to [Kalai and
Lehrer (1993). If player types were less extreme—say, discounting the future
with one of two discount factors—then the rate of such learning would play a
crucial role, significantly complicating the analysis.

However, while the proofs of our general results do not go through with
less extreme player types, they do go through for specific games. For exam-
ple, our insights on the benefit or harm of privacy protection in the context
of the Prisoner’s Dilemma and its variants (see Figure [lal and Appendix
still hold. Suppose long-sighted and short-sighted players are differentiated by
different discount factors, say A\, > Ag, as opposed to limit-of-means versus
myopic discounting. Then we can show that mutual cooperation is attain-
able in equilibrium regardless of the realized types when there is no privacy
protection, whereas it is unattainable with privacy protection.

A more general limitation of our analysis is our assumption that a player’s
type corresponds to her time discounting. One might consider more general
private information, and in particular private information that affects material
payoffs of the stage game, as in|Gradwohl and Smorodinsky! (2017)), along with
corresponding privacy concerns. We leave the analysis of privacy protection

in such a model to future research.
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Appendix

A  Proofs from Section (4

Proof of Lemma In any equilibrium ¢ and any history h reached with
positive probability by o, the corresponding mixed actions at h must belong
to B.. Thus, the payoff profile at h belongs to B;. Any infinite realized stream
of payoffs to either player j, namely {u}}72,, is such that (uf,u*;) € B;, and
so imy_o0 7 S (ukuby) € Bi Since U;(o : L) and U_;(0 : S) are convex

combinations of such limits, they also lie in B;. [ |

Proof of Lemma In any equilibrium ¢ and any history h reached with
positive probability by o, the corresponding mixed actions at h must be a NE
of G. Thus, the payoff profile at h belongs to V2. Any infinite realized stream
of payoffs to either player j, namely {u¥}72,, is such that (uf, u*;) € V5, and
so imy_e0 7 ST (uF uk,) € V5. Since Uy(o @ L) and U_;(0 : S) are convex

combinations of such limits, they also lie in V2%, |

A geometric interpretation of PF will be useful for later. Consider a plot
of V* where player ¢’s payoffs are on the horizontal axis and player —i’s
on the vertical axis. V* is a convex set, whose left and bottom boundaries
correspond to the minimax payoffs of players ¢ and —i, respectively. Then PF
consists of the “top-right” boundary of V*, a connected set of line segments
of nonpositive slope. Denote by e~ the top-left endpoint of PF (where player
—i obtains the highest feasible utility), and by e’ the bottom-right endpoint
(where player ¢ obtains the highest feasible utility). If PF is a singleton, then
PF = {¢'} = {e7'}. If PF is a line segment, it connects e™* to e'. Otherwise,
PF consists of connected line segments: starting at e~?, proceeding towards
some vertex vy, then proceeding to another vertex v,, and so on, until e’.

Note that the vertices v of PF correspond to payoffs of pure-action profiles

of the stage game G. The endpoints e’ and e~%, on the other hand, could

16Recall that the limit exists with probability 1 by Definition
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correspond to payoffs of pure-action profiles or could be convex combinations
of payoffs of pure-action profiles. In the latter case, it must be that one of the

pure-action profiles in the convex combination is not IR for one of the players.

Proof of Lemma [3;  Any element of V2 is a convex combination of the
payoffs of NE of GG. Since by assumption the Pareto frontier is not defined by
the NE of GG, there exists some v on the Pareto frontier that is not a convex
combination of payoffs of NE of G. Thus, v & V25, [ |

Proof of Lemmafd} Let F'= {e~/,v',...,v¥, e’} denote the set of endpoints
and vertices along PF, and suppose towards a contradiction that all of PF lies
in B;. Consider the payoff profiles F' that define the Pareto frontier, and note
that, by assumption, not all are NE payoffs of the stage game. So there is
some payoff profile x € F' that cannot be attained as the payoff pair of a NE
of G. Furthermore, because x € PF and PF C B; it follows that = € B;.

We now consider two cases: that x € V), the set of feasible points attainable
by a pure strategy profile, and that it is not. In the former case, x is a payoff
profile that can only be attained as the payoff of some pure-action profile
a® = (a?,a";), namely x = u(a”). Furthermore, since x € B; it must be the
case that a” € B!, and so

a”, € BR(af). (1)

Consider now the payoff profile 7 = (x_;,z;). By symmetry, T € V,, is a
payoff profile that lies in PF that can only be attained as the payoff of the
Lo ai
must be the case that T € B;. This implies that «® € B, and so a”,; € BR(a?),
and thus

pure-action profile a® = (af,a”;) = (a ). Furthermore, since 7 € PF it

ai € BR(a",). (2)

Combining and implies that a” is a NE of the game, contradicting the
assumption that x cannot be attained as the payoff profile of a NE.
We now consider the second case, that z is not an element of V,. In

particular, this means that z € {e’,e™"}, since the other elements of F are
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all vertices of V' and so lie in V,,. Now, z is not the payoff of a pure-action
profile but can be attained as the convex combination of the payoffs of two
pure-action profiles. Denote these payoff profiles by y and z, where y = u(aV)
and z = u(a®). By genericity assumption [}  can only be attained as the
convex combination of these two pure profiles (and no other pure profiles).
Furthermore, one element of {y, z} is in PF, and the other is not in PF, and
thus is not IR for one of the players. Let z be the former and y the latter.

Because the game is symmetric we can assume without loss of generality
that x = e~%. By symmetry, the point T = ¢ is also in PF, and furthermore,
T is the convex combination of ¥ and Z, where 5 = (y_;,y;) and Z = (z_;, 2;).
Note that z and Z are pure profiles in PF, that y is not IR for player 7, and that
7 is not IR for player —i. As there is no point in B} in which —i does not best-
respond to some action of player i, the payoff profile § € B;, nor is any payoff
of player —i that is below Z_;: these are not IR for player —:. Thus, the only
way T € B; is if the mized profile a* satisfies a®, € BR(a?). However, since T
is on the border (and not the interior) of V*, genericity assumption (1| implies
that a® is such that only one player mixes. Furthermore, since player —i is
short-sighted, and one realization of the mixture yields a payoff below —i’s IR
payoff, it must be player ¢ who mixes. To conclude, the payoff profile T can
only be obtained as the payoff of some mixed action profile a® in which only
player i mixes between two actions, say actions b and ¢. Thus, a¥ = (b,a”;)
and a® = (c¢,a”;), such that a”, is a best response to the mixture af of b and
c.

Now consider the payoff profile z = e™*. Recall that z is the convex
combination of y and z, each of which is the utility profile of a unique pure
action profile, say a¥ and a®. By symmetry, ¥ = (af,b) and a* = (a?,c),
both of which are pure-action profiles. Furthermore, a¥,a* € Bj, and so both
b,c € BR(a}). But note that af = a”,. This, together with the above, implies

that a” and a” are NE of GG, which is a contradiction. |

Proof of Lemma The set of NE of G that are in PF is empty, and so
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the intersection of CO(NE(G)) with PF is empty. Since V2% = CO(NE(G)),
it follows that V% N PF = .
|

Proof of Lemma [6;  For the realized LL case, this is almost immediate:
The only limitation on V* is that payoffs be IR, and clearly no equilibrium of
the repeated game with incomplete information leads to payoffs that are not
IR.

Next, fix any equilibrium profile o. Let ol denote the strategy of player
i of type L, and o7 the strategy of player i of type S. Furthermore, denote
the belief of player i about player —i’s strategy as o~‘. Note that initially
o~ places weight 3; on 0, and weight 1 — 3; on o%,. Thus, o~¢ is absolutely
continuous with respect to both ol; and 0°,. By Theorem 1 of Kalai and
Lehrer| (1993)), for every € > 0 and almost every play path h, there is a time
T = T'(h,e) after which the strategy of the realized type of player —i is e-close
to the belief 0~ that player i has about his opponent’s strategy.

First, suppose the realized types are L and S. From some point on the
S player ¢ best responds to his beliefs 07*(h), and his beliefs are e-close to
the actions of the opponent. That is, from some point on the strategy profile
at stage t is o7 (h') € BR(o~(h')), where o~ (h') is e-close to o, (h'). This
implies that i’s payoff under o7 (k') is e-close to his payoff in some profile in
VLS. The long-sighted player’s payoff is also in V;'¥, since at every stage t
his opponent is best-responding to o~¢(h'), which is a possible mixed action
of player —i.

Next, suppose the realized types are S and S. Note that in o, players may
not be playing a NE of the stage game in early stages, since they are best
responding to their beliefs, which place positive weight on the other player
being of type L. At every history h, player i is best-responding to his belief
o~'(H) about the other’s mixed action at that history. Furthermore, from
stage T' onward, the behavior of the other player is e-close to 0. From that

point on, each player ¢ is best responding to beliefs that are e-close to the true
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strategy of the opponent. We claim that from this stage on their payoffs in
each stage must be close to the payoffs of some NE of GG, which will imply that
the limit-of-means payoff of the interaction is in V2°.

To see this, consider some sequence of histories (ht)tZT. We claim that
for every § > 0 and sufficiently large ¢, the payoff profile u(o?(h?), o°,(h')) is
within 0 of u(«), where « is the convex combination of some NE of G. In fact,
we claim something stronger: that all the partial limits of (o7 (h'), 0%, (h")) .,
are NE of G. )

For suppose towards a contradiction that this is false. Then there ex-
ists some partial limit (x;,z_;), some =, € A(A4;), and some v > 0 such that
wi(w), w_;) > ui(w;, v_;)+7. Let (zf, 2 ), be the subsequence of (of (hf),05,(R")) .,
that converges to (z;,z_;). For all sufficiently large ¢, Theorem 1 of Kalai and B
Lehrer| (1993) implies that =} € BR(y}), where y; is 3 d -close

(maxq ui(a)—ming u;(a)

to z' ;. But this implies that x! is a §/2-best response to z* ;. This contradicts
the existence of the x; above. Thus, all the limit points are NE, and so the

limit-of-means payoff is in the convex combination of all NE payoffs, namely
V2, |

B Equilibrium refinements

In this section we consider strengthening Theorem [1| with a refinement of per-
fect perception equilibrium. One possibility would be to consider perfect per-
ception equilibria that satisfy the Intuitive Criterion of Cho and Kreps| (1987).
Gradwohl and Smorodinsky| (2014) define a variant of the Intuitive Criterion
that applies to perception games, and this definition is easily amenable to our
repeated setting.

In our setting, the Intuitive Criterion can be described as follows. Fix a
perfect perception equilibrium ¢ and a history A reached with positive prob-
ability by o. Consider a player i, type t;, and a deviation by this type at h

to an action that has probability 0 under o, and let the perception following
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that action place weight 1 on type t;. Then if type t; strictly gains from this
deviation, whereas type t_; weakly prefers the equilibrium strategy, then o
does not satisfy the Intuitive Criterion.

It is straightforward to show that the perfect perception equilibrium con-
struction of Theorem [I| satisfies the Intuitive Criterion. However, it does so in
an uninteresting way, as the definition is vacuously true: no player will ever
gain from a deviation that leads to a perception that places weight 1 on his
type, because of the associated privacy cost. Thus, in no perfect perception
equilibrium will the Intuitive Criterion have any bite.

In the remainder of this section we consider a modification of the Intuitive
Criterion that does have some bite in our model, and then provide a strength-
ening of our theorem that utilizes this refinement. Roughly, for a given profile
of strategies o, we define the notion of o-intuitive beliefs. We then show that
for every v € V* there is a ¢ such that for all o-intuitive beliefs 7, the profile
(o,7) is a perfect perception equilibrium with payoff profile v.

We begin with a definition of our refinement, followed by the theorem and

intuition.

Definition of refinement Denote by
def 9]
Ui(L,7i,0-i,7) = Ui(vi,0-i : L) — Ey, 5, i (L, By, 7:(a™))

the utility of a long-sighted player, when strategies are (7;,0_;) and beliefs are
7;. For any history h, denote by

Ui, i 0 i 72 D) Bui (3 (), 0 i)t = S) = Erunyo_su (S 7 (), (B, @)

the utility of a short-sighted player at h, when strategies are (v;,0_;) and
beliefs are 7;.

The following refinement restricts BB’s beliefs on profiles for which players
assign probability zero. In particular, it states that if one type of player will

not gain from deviating regardless of the beliefs at a deviation, whereas another
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type will gain by deviating given some belief, then the support of BB’s belief

must consist only of the latter type.

Definition 2 For a given strategy profile o, beliefs T are o-intuitive if they
are rational w.r.t. o, and if they satisfy the following for every i € {1,2},
h € U A¥, and strategy vy; that is identical to o; everywhere except at histories

that have h as a prefiz,:
o [f

1. Uy(L,o,7;) > U/(L,~;,0_,7}) for every 7} for which ;(h') = 7/(})

at every h' that is reached with positive probability under o;

2. Ui(S,0,7i,h) < Ui(S,vi,0-i, 7, h) for some T for which ;(h') =
T/(R') at every h' that is reached with positive probability under o;

and

3. at least one of the inequalities above is strict,
then 1;(h,a) =1 for every a € supp(~;(h)) \ supp(o;(h)).
o [f

1. Uy(S,o,1;,h) > Ui(S,vi,0-i, 7/, h) for every 1/ for which m;(h') =
7/(R') at every h' that is reached with positive probability under o;

2. Ui(L,o,1;) < Ui(L,v;,0-;,7]) for some 1/ for which 7;(h’") = 7/(h')
at every h' that is reached with positive probability under o; and

3. at least one of the inequalities above is strict,

then 1i(h,a) = 0 for every a € supp(~v;(h)) \ supp(c;(h)).

Strengthening of Theorem We are now ready to state our theorem.

Theorem 3 If ¢;(S,p,1) is sufficiently large, then for every v € V* there
exists a strategy profile o such that for all o-intuitive beliefs T, the profile
(o,7) is a perfect perception equilibrium in which the long-run payoff profile is

v. Furthermore, there exists a o-intuitive 7.
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Proof: Let o be the profile in which both types of both players play the
standard grim trigger strategy leading to payoff v, as in Theorem [I] The L
type will never gain by deviating, since this will lead to (long-term) punishment
and a nonnegative privacy cost. For an S type, if at some history h he has a
profitable deviation (for some belief), then the perception must place weight
1 on type S after that deviation at h—formally, 7;(h’) = 1 whenever h is a
prefix of A'—and so the deviation will not be profitable for him with the given
belief. If at some h the S type has no profitable deviation for any belief, then
the refinement has no bite at that deviation, and so the perception at the
deviation can be anything: there will be no profitable deviation since neither

type gains from deviating at h, by assumption. |

C The benefits of privacy protection

In Section 4] we argued that privacy protection is harmful, as it may hinder the
ability of players to obtain Pareto-optimal payoff profiles. That is, when com-
paring the best payoffs attainable in equilibrium, privacy protection is harmful.
In this section we show that there may be benefits to privacy protection. In
particular, we show that in some games privacy protection can prevent the
players from obtaining suboptimal payoffs. More specifically, we show that
when comparing the worst payoffs in equilibrium, privacy protection can be
beneficial. We illustrate two distinct such benefits, both for the particular case
in which the stage game G is the Prisoner’s Dilemma (PD) from Figure [la} or
a small modification thereof (although it will be clear that the ideas extend to

other games as well).

C.1 Avoiding non-IR payoffs

When there is no privacy protection, Theorem [I| states that all of V* can be
obtained in equilibrium. However, it may also be possible to obtain lower

payoffs for some player. For example, suppose G is the PD, and that both
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c1(S, Bi,1) and ¢ (L, B;,1) are high. That is, both types of player 1 incur a
high cost to the belief that they are short-sighted type (whether or not this is
true).

Here there is an equilibrium in which both types of player 1 always play C,
while both types of player 2 always play D. This is not IR for player 1, and
he obtains a low payoff of 0. However, the equilibrium can be sustained by
perceptions 7y (h) = 1 for all histories h that are not on the equilibrium path.
Note that under privacy protection, such a low payoff to player 1 is impossible,
as he will always obtain at least his minimax payoff of 1.

Two additional notes are in order. First, the “bad” equilibrium above does
not satisfy the refinement of Definition 2 However, other (more complicated)
equilibria can be constructed that do satisfy the refinement and which also
lead to non-IR payoffs.

Second, equilibria with such low payoffs are not always possible, and their
existence depends on the specifics of the privacy cost function. For example,
in the PD, if only the short-sighted type incurs privacy costs—formally, if
¢i(L, B;,0) = 0—then no player will ever get non-IR payoffs in equilibrium.

C.2 Higher minimax values

When there is no privacy protection, players get at least the minimax pay-
offs v; = min,_, max,, u;(a;,«_;), regardless of whether their opponent is
long-sighted or short-sighted. With privacy protection, however, a player
1 facing a short-sighted opponent has a different minimax payoff, namely
v} = mingep, max,, u;(a;, a_;): this is the minimax value under the additional
condition that the short-sighted player —i is best responding to player ¢. In
some games, v; > v,. In such games, the worst-case (over all equilibria) payoff
of a player without privacy protection will be lower than her worst-case payoff
with privacy protection.

A simple example of a game in which v, > v, is the PD, but where each

player has a third option B, to set off a bomb. Payoffs are such that if one
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player chooses B, both players get —1000, and if both players choose B, they
both get —1001. In this game the minimax payoff is v, = —1000, whereas
the minimax payoff of a player facing a short-sighted player is v, = 1. This
is because choosing B is a strictly dominated action, and so an S type will
never choose it. In particular, he cannot use it to threaten punishment on the

opponent.

D Construction

D.1 Preliminaries

LS: Suppose player ¢ is long-sighted and player —¢ is short-sighted. What
are the possible payoffs? Recall that

Bz’ = {(@1,&2) TO0_; € BR(O&Z)}
is the set of feasible mixed actions, and

Vi .
v; = min maxu;(a;, a_;)
acB_; a4

the minimax payoff of player 7. Next, let
V! = CO{(vi,v_) € R?: (vs,v_4) = (ui(),u_;()) for some o € B_;},

and
VS = {(vi,0-s) € VI 20 > vl

When types are known, |Fudenberg et al. show that all player ¢ payoffs
in V.19 and only those, are attainable as equilibrium payoffs of the repeated
game (Fudenberg et all 1990, Proposition 5). Their proof can be extended to

show that, in fact, all payoff pairs in V.* can be attained in equilibrium:

Lemma 7 Suppose player i is long-sighted and player —i short-sighted. For
every v € ViP9, there emists an equilibrium strategy profile o such that the

long-run average payoffs of the players are v.
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Proof:  Since v € VX9 there exist three mixed-action profiles a',a?, a® €
B_; such that v € CO{u(a'),u(a?),u(a?)}. Furthermore, by standard folk
theorem arguments, there is an infinite sequence of alternations among the
three mixed-action profiles, for which the long-run average payoffs are exactly
v. Denote this sequence by {s*}2 | where each s* € {a!, a? a3}.

Modify the construction of ¢ from the proof of Fudenberg et al./[s Propo-
sition 5 as follows: Whenever I, < 0, let o be the first unplayed s* in the
sequence. If I, > 0 let o = m!, the profile that minimaxes player ZE The
remainder of the proof is the same as in Fudenberg et al.| (1990). |

2S: Suppose both players are short-sighted. Recall that
V2 = CO{v : v = (uy(a), uz(a)) for some NE a of G}.

When types are known, the long-run payoffs of the repeated game for the
players are in V2%, That is, for any equilibrium o, both U;j(o : S) € V25,
Then:

Lemma 8 Suppose both players are short-sighted. For every v € V2, and
only such v, there exists an equilibrium strategy profile o such that the long-

run average payoffs of the players are v.

Proof: If v € V%% then there exist three Nash equilibrium profiles o, o2, a®

such that v € CO{u(a'),u(a?),u(a?®)}. By standard folk theorem arguments,
there is an infinite sequence of alternations among the three mixed-action
profiles, for which the long-run average payoffs are exactly v. Let o be the
strategy profile that alternates between these profiles in this manner.

Now suppose v &€ V2%, but that there is an equilibrium ¢ with long-run
payoffs equal to v. If under o in every stage of the game both players play
a NE of G, then v € V29 Thus, in some stage of the game players must
play a non-NE action profile. This, however, cannot be an equilibrium for two

short-sighted players. |

17See the proof of Proposition 5 in [Fudenberg et al| (1990) for details and definitions of

I, and m*.
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D.2 The construction

We have the following construction:

Theorem 4 For any (v, v vE% v25) € V* x VIES x VIES x V25 there exists

an equilibrium o = o(ty,ty) such that:

o ifty =ty =L, then (Ui(L,0),Us(L,0)) = v;

o ifti=Landt_; =S, then (Uy(L,0),U_i(S,0)) = vE5; and

o ifti =ty =25, then (U(S,0),Us(S,0)) = v*.

The proof is by construction of a strategy profile that has the following
structure. First, the players play a series of stage games in which player 1
“reveals” his type to player 2. Then, they play a series of stage games in
which player 2 “reveals” his type to player 1. Finally, the players play folk
theorem strategies corresponding to their now-commonly known types. The
challenge lies in constructing the two revelation phases in such a way that they
will be part of the equilibrium of the repeated game.

For each player i, we will consider three cases for the revelation phase.
The first case is easiest and applies to stage games GG in which player ¢ has
a dominant action. The second case applies when there is a NE of the stage
game G in which player ¢ plays a mixed action. Finally, the third and most
involved case applies when neither of the first two cases does, namely, when
there is no dominant action and, in all NE of G, player i plays a pure actionE

For each kind of revelation phase, we will argue that it can be part of an
equilibrium of the repeated game. This requires that the S type of each player
play a best response to the other player in every stage game. Additionally,
the L type of each player must either best-respond in a stage game or play a

suboptimal action, but can do the latter only finitely many times. Finally, in

18Note that the cases are not mutually exclusive, and that the latter two would suffice.
We include the first for illustrative purposes and because it involves a shorter revelation

phase.
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order to obtain the claimed long-run payoff, the revelation phases must end

with probability 1 in finitely many stages.

D.2.1 Dominant action

Let a be a dominant action of player i. The revelation phase will last one
round, in which the short-sighted type of player ¢ plays action a, and the long-
sighted type of player i plays some other action b # a. Both types of player —i
play the same action ¢ that is a best response to the mixed action that plays
a with probability m and b with probability 1 — 7, where 7 is the probability
that player ¢ is the short-sighted type.

This clearly reveals player i’s type, as S and L play different actions. It is
also a best response for the S type, since he plays a dominant action, and for
both types of player —i, since they play a best response. Thus, this revelation

phase can be part of an equilibrium of the repeated game.

D.2.2 Mixed NE action

Suppose now that player ¢ has no dominant action in GG. Let a be a NE of
G in which player ¢ plays a mixed strategy, and let a be the action played by
player ¢ with minimal but positive probability in this equilibrium. Suppose
a;(a) = q. Also, suppose that the probability that player i is the short-sighted
type is w. The type-revelation phase for player ¢ will consist of a sequence
of stage games G, where both types of player —i play a_;. The two types of
player i play differently, as follows.

Repeat the following until the posterior 7 on type S is 0 or 1:
1. Ifw <gq:

e The short-sighted type of player i plays action a.
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e The long-sighted type of player i plays action a such that the
total (unconditional) probability of a is ¢, and other actions so

that the distribution over actions is «;.

e [f after this game player ¢ played an action other than a, then the
posterior becomes m = 0. Otherwise, the posterior 7 increases

to m/q.
2. fm>q:

e The short-sighted type of player ¢ plays a so that the uncon-
ditional probability of a is ¢, and plays the other actions with

probabilities proportional to their probabilities under «;.

e The long-sighted type of player i plays all actions except a with

probabilities proportional to their probabilities under «;.

e [f after this game player ¢ played action a, then the posterior on

S is m = 1. Otherwise, the posterior m decreases to (7 —¢)/(1—

q).

Note that this type-revelation phase can be part of an equilibrium of the
repeated game, since both types of both players play actions that are part of
a NE.

Furthermore, this phase leads to the revelation of player i’s type with
probability 1. Suppose first that he is short-sighted. Whenever the players
play (2) above, his type is revealed with probability ¢/m. When they play
(1) above, his type will not be revealed, but the posterior on 7 increases by
a factor of 1/¢. Within a finite number of stages, then, = will once again be
greater than ¢, and they will play (2) again, and so on. Thus, player i’s type
will be revealed in a finite number of rounds, and this revelation phase will
end. More formally, for any € > 0, there is a K such that after K repetitions,
the probability that player i’s type will be revealed as S is at least 1 — €.
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Finally, a similar argument holds when player i is long-sighted: in that
case he will fully reveal his type when players play (1), and they can play (2)

at most a finite number of times for each time they play (1).

D.2.3 Pure NE action only

The last case to consider is when player ¢ has no dominant action in G and
when all NE of GG are such that i plays a pure action. This case is more involved,
but the basic strategy will be to construct a type-revelation phase that lasts
at most k£ rounds. In each stage game of the phase, both types of player —:
will best-respond to player i, and the S-type of player ¢ will best-respond to
player —i. The L-type of player 7, however, will play a different action with
some small probability, in order to allow for separation. The construction of
such a strategy is closely related to the notion of a trembling-hand perfect
equilibrium and requires some additional definitions.

An e-mixed action is a mixed action that places weight at least € on each
pure action. Furthermore, recall that a trembling-hand perfect equilibrium
(THPE) « of a game G is a mixed-action profile such that there exists a
sequence (e%);>0 that converges to 0 and a sequence (a¥)>o that converges to

k

a, and for which each o is e¥-mixed, such that for each player i, the mixed

action a; is a best response to of; for all k.

Definition 3 A one-sided THPE for player ¢ is a THPE where only player

1 trembles. Formally, it is a mized-action profile, o, such that there exists a
k

sequence (5k)k20 that converges to 0 and a sequence (o )g>o that converges to

a; for which the following hold:

k_mized;

o cach al ise
e «; is a best response to a_;; and
e a_; is a best response to of for all k.

Note that any (one-sided) THPE is also a NE.
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Lemma 9 In any game, there exists a one-sided THPE for player 1.

Lemma 10 For any sequence {€™},>o that converges to 0 there exists a con-
vergent subsequence {€¥}r>o and a one-sided THPE « for player i with a cor-

k

responding sequence {a¥}r>o, such that each strategy of is ek-mived.

Proof:  The proof is analogous to the standard proof for the existence of
a THPE (see, e.g., Proposition 249.1 in |Osborne and Rubinstein, (1994), with
the proper modifications for a one-sided THPE for player i. We include it here
for completeness.

For each m, define the normal-game G, to be the one in which player i’s
actions are the set of all €]"-mixed actions of player 7 in G, and player —i’s
actions are all his mixed actions in G. By |Glicksberg (1952), each such game
has a Nash equilibrium o™. By Bolzano-Weierstrass, {a™},,>0 has a conver-
gent subsequence {a*}>0, which converges to some a. It is straightforward to
verify that « is a one-sided THPE for player i, with corresponding sequence

k

{a¥}1>0 in which each of is e*-mixed. |

Consider a NE of the stage game, «, where player i plays a pure action,
a. Assume that at the given stage, the prior probability that i is of type L
is ¢ = ¢(0). We now construct an auxiliary strategy profile a4(¢) for any
0 < e < g. For player —i, let a4(e)_;(S) = a9(e)_i(L) = a_;. That is, both
types of player —i play their equilibrium action a_;. On the other hand, type
S of player ¢ plays the pure action a (a4(¢);(S,a) = 1), and type L mixes as
follows: he plays all actions other than a with equal probabilities, and action a
with some probability, such that the prior probability (not knowing the type)
that a is not played equals €. This is possible because 0 < € < g.

Assume we play this stage game action profile once. If i plays an action
other than a, then this reveals that the type of ¢ is L. Otherwise, if a is
played, then the probability that the player is of type L decreases. Denote
this posterior probability by ¢(1). If it is still greater than or equal to €, then
the strategy /) (e) is well-defined.
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We can repeat this iteratively until one of the following occurs: Either, at
some stage, the action a is not played, in which case player —i learns that ¢
is of type L. Otherwise, action a is repeatedly played until, at some stage k,
the posterior probability that player i is of type L, denoted ¢(k), is eventually

less than e.

Lemma 11 There is a sequence {e*}1>0 converging to 0 such that the follow-
ing holds for each k: if we start with the prior on L equal to q(0) = 1 — ;,
players play the mized actions a90)(¢*), and a is not played in one of the first
k — 1 stages, then at the beginning of the k’th stage, the probability that player
i is of type L is exactly £*.

Proof: By construction, for each ¢ there is some k(g) such that if we start
with prior ¢(0) = 1 — j3;, players play the mixed actions a?")(¢), and a is not
played in one of the first k() — 1 stages, then at the k(e)*" stage the posterior
of player i being of type L is q(k(¢) —1) < e. Denote by g(k, e) the probability
that player ¢ is an L-type at the beginning of round k, given that players play
the mixed actions a?0)(g). Observe that for any ¢’ < ¢, if k(¢') = k(e), then
g(k(e"),e") > g(k(e),e). Furthermore, g(k(e),e) changes continuously with ¢,
conditional on k(e) remaining fixed.

We now iteratively construct the sequence {e¥};>¢. First, fix e® = 1—3; and
the corresponding k£ = 0. Next, suppose we have constructed the sequences for
all k < k, and consider the case k = k + 1. If we decrease ek to some ¢ < EE,
then in round k we will have g(k, ) > g(k, sg). In particular g(k, ) > ek since
g(k,e*) > &*, and also g(k,e) > ¢ (since ¢ < £¥). Thus, we can add another
round of the stage game. As we consider smaller and smaller ¢, the posterior
on L in round k = k+ 1 will be higher and higher. Since both ¢ and g(k+1,¢)

change continuously, at some ¢ they will be equal. Set ebtl = ¢, |

When a mixed action is e-mixed, it may be the case that the mixing player
plays all actions with probability strictly greater than €. The following lemma

shows that when ¢ is small enough this is no longer the case.
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Lemma 12 Suppose G is such that in every NE, player i plays a pure strategy.
For any one-sided THPE « for player i with corresponding sequence {af}rso
that is e¥-mized for each k, the mized action of places weight exactly €¥ on all

but at most one action.

Proof: Suppose towards a contradiction that for some k, the mixed action
aF places weight greater than e¥ on more than one action, say actions a (the
pure equilibrium action) and b. Recall from the proof of Lemma [10| that o is
a best-response to a_; out of the set of all e¥-mixed actions. But since both a
and b are played with probability greater than ¥, it holds that both a and b
are best responses of player i to a_;.

Now, since « is a NE, a_; is a best-response of player —i to the pure action
a of player i. By genericity assumption|ljon G, ar_; must also be a pure action,

as there are no distinct pure action ¢ and ¢ for which u_;(a,c) = u_;(a,c).
k

Thus, as o is a best response to a_;, it is a best response to a pure action,
say action c. Again by the genericity assumption, it cannot be the case that
u;(a, c) = u;(b,c). Thus, it is impossible for both a and b to be best responses

to a_;, a contradiction. [ |

Combining Lemmas [10] [11], and [I2] yields the following. There exists a k

with the following properties:

1. of places weight exactly €* on all actions other than a, and the action a

is a best response of player i to a_;.
2. a_; is a best response of player —i to aF.

3. If players play the mixed actions a?)(¢¥), and @ is not played in one
of the first k — 1 stages, then at the beginning of the k’th stage, the
probability that player i is of type L is exactly €. In the k’th stage,
the L-type does not play action a, and so his type will be revealed with

certainty.
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This is thus a type-revelation phase that lasts at most k rounds. Note that
in each stage game of the phase both types of player —¢ best-respond to player
1, and the S-type of player ¢ best-responds to player —i. Finally, after at most

k rounds, the type of player i is revealed with certainty.
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