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We analyze repeated games in which players have private informa-

tion about their levels of patience and in which they would like to main-
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1 Introduction

Questions surrounding consumer privacy have taken center stage in recent

years, as have debates surrounding privacy protection. These debates fea-

ture at least two distinct ways of thinking about the value of privacy. First,

within economics, privacy is generally viewed as having some instrumental

value, affecting present and future interactions by changing the informational

landscape. Privacy protection alters market interactions by changing behavior

and equilibrium, and this may have positive or negative effects. For example,

in the online shopping market, when there is no protection and information

about online purchases is public, retailers can better discern consumers’ pref-

erences and the market is more efficient (Fudenberg and Villas-Boas, 2006). In

contrast, with repeated bargaining or auctions, outcomes can be more efficient

when privacy protection is in place and individuals’ behavior is not observed;

examples include Hörner and Vieille (2009), Bergemann and Hörner (2018),

and Chaves (2019).

A second approach is to view privacy as having some intrinsic value, where

the leakage of an individual’s private information is directly associated with a

decrease in well-being.1 This is the typical approach within the computer sci-

ence literature, manifested in the large body of work on “differential privacy”

(DP).2 However, while this approach generally promotes maximal privacy pro-

tection, it often ignores the effects of such protection on behavior.

In this paper we examine the impacts of privacy protection while account-

ing for both the instrumental and intrinsic values of privacy. Privacy protection

consists of some technology measure (e.g., encryption) or proper regulation

that bans the observation or collection of information, and thus shields indi-

1Such an association is corroborated by surveys of individuals’ privacy concerns, such as

Rainie et al. (2013) and Madden et al. (2014).
2Loosely, a mechanism satisfies ε-DP for some individual i if the distribution over the

outcomes of the mechanism with i present is ε-close to the distribution with i absent (Dinur

and Nissim, 2003). See Dwork (2008) for a survey and Abowd and Schmutte (2019) for a

discussion of DP from an economic point of view.
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viduals’ actions from outside observers. For example, in the online shopping

market, privacy can be protected by add-ons that erase cookies from the user’s

browser to hide her actions, as well as by legal restrictions on collecting or sell-

ing individual browsing or shopping history. Our main conclusion is that, even

(and especially) when privacy has large intrinsic value, such privacy protection

may be harmful because of its effects on behavior.

In a previous paper (Gradwohl and Smorodinsky, 2017) we show that for

single-agent decision-making problems such privacy protection is always ben-

eficial. This is quite intuitive, as such protection provides a dual benefit to

the decision maker: it eliminates the cost associated with information leakage,

while also allowing the decision maker to choose an efficient action without

worrying about its privacy-related implications. This straightforward observa-

tion, and in particular the second benefit, does not carry over to multi-player

games, and so the question about the desirability of privacy protection re-

mains.

In this paper we study this question in a multi-player setting in which,

absent privacy concerns, efficiency can also be attained in equilibrium. In par-

ticular, we consider repeated games, where patient players can cooperate and

reach an efficient outcome in equilibrium.3 For concreteness, and to illustrate

our model and results, consider an online shopping scenario in which two buy-

ers repeatedly compete for an item in a first-price auction. At each stage they

both value the product at 6 and are allowed to bid either 0 or 2. Furthermore,

when the buyers bid equally one is randomly awarded the item. Note that

the resulting stage game is none other than the Prisoner’s Dilemma (PD),

depicted in Figure 1a. The folk theorem implies that mutual cooperation can

be sustained in equilibrium when players are sufficiently long-sighted.

Next, we modify the game by incorporating both private information and

privacy concerns about the revelation of this information. More specifically,

let the private information (types) of the individuals be their levels of patience.

3This is captured by the celebrated folk theorem—see, for example, Theorem 13.17 of

Maschler et al. (2013).
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C D

C 3, 3 0, 4

D 4, 0 2, 2

(a) Prisoner’s Dilemma

S H

S 2, 2 0, 1

H 1, 0 1, 1

(b) Stag Hunt

L C R

U 0, 0 0, 1 1, 0

M 1, 0 0, 0 0, 1

D 0, 1 1, 0 0, 0

(c) Shapley Game

Figure 1: Examples of games

Each player can be one of two types—a (very) patient type, who evaluates the

stream of payments from the stage game via the limit-of-means criterion, or

a (very) impatient player, who only cares about the outcome in the current

stage.4 In addition, the players place some intrinsic value on maintaining

the privacy of their types. We capture this value by extending the players’

utility functions to account for how much information about their type is

revealed, above and beyond what is known by the prior, from the way they

play the repeated PD. One interpretation of this intrinsic value is that the

players anticipate playing some future game against some unknown player,

nicknamed Big Brother (BB).5

In this context, privacy protection is a technology or regulation that pre-

vents BB from observing the players’ actions and so deducing anything about

their types. Under privacy protection, then, privacy concerns play no role,

and players play the repeated PD game. Without privacy protection, how-

ever, players’ actions are observed. As a result, BB can draw inferences about

4See Section 5 for a discussion of this assumption on the extreme nature of patience and

impatience.
5This future game may take the form of a bargaining game, à la Rubinstein (Rubinstein,

1982), in which case they would have an advantage if they were to be perceived as patient.

Alternatively, the future game could take the form of the buyer–seller bargaining model of

Fudenberg and Tirole (1983), where, in equilibrium, impatient buyers obtain the goods at

lower prices. Given the ambiguity of the future interaction the buyers would rather not have

their type revealed in the current game.
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their types, which impacts the utilities they derive from the game. Our pri-

mary question is whether society (in this case the two players) would be better

off with or without privacy protection.

Perhaps counter-intuitively, if privacy has high intrinsic value—specifically,

if the cost associated with the revelation of one’s type is more than one—then

privacy protection turns out to be detrimental to welfare in our example. To

see this note that whenever both types of a player pool on the same strategy

then no information about his type is disclosed to anyone observing players’

actions. In particular, this is true if the types pool on the classic grim trigger

strategy. Thus, when actions are observed the grim trigger strategy becomes an

equilibrium strategy for both types: The long-sighted player does not deviate

because he fears being punished, whereas the short-sighted player is motivated

to cooperate because a deviation would reveal his type and lead to a privacy

cost. In contrast, with privacy protection, when players’ actions are concealed

from any third party, the short-sighted player necessarily defects in the first

stage, and so his opponent must defect from the second stage onwards. Thus,

privacy protection denies the players the option of enjoying the fruits of the

Pareto frontier.

The PD is an example in which all Pareto-optimal payoffs can be obtained

in equilibrium when there is no privacy protection, regardless of the realized

types of the players. With privacy protection, however, this Pareto frontier

can be attained only if both realized types are long-sighted. If one or both

of the players are short-sighted, then the unique long-run payoffs are the ones

associated with mutual defection. This strong result, however, is specific to

the structure of the PD, and in particular to the fact that players have strictly

dominated actions, which, when played by both, lead to the Pareto-optimal

outcomes.

The discrepancy between the two scenarios, with and without privacy pro-

tection, in terms of the feasibility of payoffs on the Pareto frontier does not

extend generally. For example, in some games such as the Stag Hunt game

(see Figure 1b), the Pareto frontier may be attainable in equilibrium even
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with privacy protection, regardless of the realized types of players. This holds

because the game has a unique Pareto-optimal payoff that is associated with

a pure Nash equilibrium: the profile in which both players choose to hunt the

S(tag).

The Shapley Game illustrated in Figure 1c is an intermediate case. In this

game, there is a unique mixed equilibrium whose associated payoffs are not on

the Pareto frontier. Thus, when there is privacy protection and both types are

short-sighted, the Pareto frontier is unattainable in equilibrium. In contrast,

if one of the players is long-sighted and the other short-sighted, then some of

the Pareto frontier is attainable in equilibrium (see the end of Section 4.1 for

discussion and analysis of this game).

By and large, in this paper we show that privacy concerns may lead to pool-

ing behavior of different types. Introducing privacy protection, therefore, may

induce separating behavior. In the context of our repeated game, the pooling

behavior will allow the players to attain payoffs on the Pareto frontier of the

stage game, via the folk theorem, even if they are impatient. In contrast, the

introduction of privacy protection will cause separation between patient and

impatient players, which will prevent them from enjoying the Pareto frontier.

Thus, there is a cost to privacy protection, even when privacy has intrinsic

value.

Slightly more formally, our Theorem 1 states that when there is no privacy

protection and privacy concerns are large enough to be meaningful, payoffs on

the entire Pareto frontier can be attained in equilibria of the repeated game,

regardless of players’ types. In contrast, our Theorem 2 states that when there

is privacy protection, some or all of the payoffs on the Pareto frontier cannot

be attained in any equilibria of the repeated game whenever at least one of

the players is short-sighted.

This statement is simple and requires no complex arguments for the PD

game, and in fact it is straightforward to extend Theorem 1 to general games.

The general version of Theorem 2, however, is more involved. First, it (nec-

essarily) makes weaker guarantees than those that hold for the PD game;
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and second, it requires some intricate arguments, invoking results from the

Bayesian learning literature and the reputation literature.

In addition to shedding light on the interplay between privacy protection

and privacy concerns, our results also contribute to the literature on repeated

games. The folk theorem is central to the analysis of such games as it provides

a mechanism by which players can sustain cooperation; however, it is limited

to settings in which players are sufficiently long-sighted. Theorem 1 can be

interpreted as showing that the presence of privacy concerns can lead to sus-

tained cooperation even when one or both of the players may be short-sighted.

Theorem 2 then shows that this channel for cooperation is hindered under

privacy protection.

Comment We do not necessarily think of patience as the most obvious

attribute that should be kept secret, nor that the literature on privacy should

focus much of its attention on this issue. Rather, on the one hand, it is a

reasonable setting where privacy actually matters and which is reasonably well-

motivated, while, on the other hand, it serves our purpose of demonstrating

the intricate connection between privacy protection and social welfare.

Organization The rest of the paper is organized as follows. The remainder

of this section contains a review of the related literature, followed by the model

in Section 2. Section 3 contains our results on equilibrium payoffs without

privacy protection, and in particular shows that the entire Pareto frontier is

attainable. Section 4 then follows with an analysis of payoffs when there is

privacy protection and provides conditions under which the Pareto frontier is

not attainable, hence demonstrating a cost to privacy protection.6 Finally,

Section 5 concludes the main body of the paper, and the Appendix contains

most proofs and some additional results referenced throughout.

6Section 4 is significantly longer and more complex than Section 3, as the latter is a possi-

bility result that involves an equilibrium construction, whereas the former is an impossibility

result that shows that no equilibrium attains particular Pareto-optimal outcomes.
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1.1 Related Literature

Privacy has become a central topic for study by computer scientists. Originally

motivated by privacy issues related to data curation, the lion’s share of the

literature focuses on a very specific notion of privacy preservation, one that is

measured by differential privacy (see Dwork and Smith, 2010, for a survey of

this literature). Underlying the notion of differential privacy are two implicit

assumptions we would like to touch on. First, individuals incur an explicit cost

from privacy loss, and so in many of these models we would like to strengthen

the differential privacy guarantees. Second, there is a clear separation between

the agents’ actions and the measure of privacy. Let us elaborate on this.

The initial literature on differential privacy was motivated by settings

where the data are collected involuntarily from individuals, such as the collec-

tion of patients’ medical records by hospitals or census data collected by the

government (Dinur and Nissim, 2003; Dwork and Nissim, 2004). In such mod-

els there are no strategic considerations on the part of the individuals whose

data is scrutinized, and so many models asked how one can produce statistical

information from the data while maintaining differential privacy guarantees.

More recently there has been a growing literature of differential privacy in

models where agents voluntarily choose to share their data (possibly not in a

truthful manner). These models typically take one of two forms, both of which

maintain a separation between the strategic considerations and the privacy-

related considerations. One strand of this literature endows agents with a

utility function that does not account for privacy loss and produces mecha-

nism that are incentive compatible while satisfying some differential privacy

guarantees (McSherry and Talwar, 2007; Nissim et al., 2012b). The other

strand already accounts for the disutility associated with privacy loss in the

utility function. However, in these papers the differential privacy guarantee of

the mechanism studied (coupled with players’ strategies) serves as a sufficient

statistic for the privacy loss (e.g., Ghosh and Roth, 2015; Nissim et al., 2012a;

Chen et al., 2013). In particular, the disutility associated with privacy is not a
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function of the actual actions played. Thus, whereas a player’s deviation may

alter his material utility, it does not change the component related to privacy,

and therefore separates strategic consideration from privacy considerations.

In contrast, the literature in economics focuses on privacy in the context of

information leakage and its implications on the actions and future utilities of

players. Privacy per se has no value. This tradition goes back to Posner (1981)

but is manifested in many up-to-date studies, many of which are surveyed by

Acquisti et al. (2016). In particular, this can be seen through the study of pri-

vacy protection in models of repeated games. In such models, hidden actions

(e.g., due to privacy protection) in early stages may provide an advantage in

later stages. The roots of this approach and the implications of monitoring can

be traced back to the monumental work of Aumann et al. (1995), who study

an abstract zero-sum setting. In recent years this has been studied in more

specific economic models such as monopolist pricing (Taylor, 2004), sequen-

tial contracting (Calzolari and Pavan, 2006), repeated signaling games (Chen

et al., 2014), repeated bargaining (Hörner and Vieille, 2009; Kaya and Liu,

2015; Chaves, 2019), repeated first-price auctions (Bergemann and Hörner,

2018), and more (we refer the interested reader to the survey of Mailath and

Samuelson, 2006). In all these models privacy serves as a means to an end,

and players have no intrinsic value for privacy. Some show that welfare is

higher when there is no privacy protection, whereas others show that privacy

protection increases efficiency.

We bridge the two strands of the literature. On the one hand, we adopt

the tradition laid out by the differential-privacy community and introduce an

intrinsic predilection for privacy directly into the players’ utility functions.

On the other hand, we fully capture the strategic implications and consider

equilibrium strategies, where privacy considerations play an important role

and are affected by the choice of action. One action could reveal more infor-

mation about the agent than another. This amalgam is already captured in

our previous work (Gradwohl and Smorodinsky, 2017), where we focus on the

implications of privacy in one-shot models of decision-making. The previous
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paper showed that privacy protection is often beneficial in one-shot settings

with a single decision maker, whereas the current paper promotes the idea

that such protection may reduce welfare in the repeated setting with multiple

players.

Embedding privacy considerations introduces some conceptual modeling

difficulties. In particular, a given action may be inferior to another action,

but by deviating to that action the associated privacy loss may also change,

and this may now render the original action superior. This interplay between

actions and their privacy implications is reminiscent of the interplay between

messages and actions in signaling games (see, e.g., Sobel, 2009), psychological

games (Gilboa and Schmeidler, 1988; Geanakoplos et al., 1989; Battigalli and

Dufwenberg, 2009), and models of social image and self image (e.g., Bern-

heim (1994), Glazer and Konrad (1996), and Ireland (1994) on conformity,

charity, and status, respectively; Bénabou and Tirole (2006) on pro-sociality;

and Becker (1974) and Rayo (2013) and Friedrichsen (2013) on self-image).

Finally, a stronger connection between social image and privacy policies has

been studied by Ali and Bénabou (2016). They observe that privacy measures

may garble information about the moral values of society and consequently

jeopardize overall welfare. We refer the reader to Gradwohl and Smorodinsky

(2017) for further discussion of the similarities and distinctions across these

models.

In this paper we focus on privacy protection of players’ actions while as-

suming the players’ types are necessarily private. This begs the question on

the implications of privacy over types. In our model one can easily observe

that if player types are not private information then it does not matter whether

there is privacy of action, and regardless, we cannot guarantee outcomes on

the Pareto frontier whenever short-sighted players are involved. For a related

discussion on the nature of information being kept private and the resulting

welfare benefits, see Prat (2005). That paper considers an agency setting and

makes the distinction between “two types of information that the principal

can have about his agent: information about the consequences of the agent’s
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action and information directly about the action.” In that paper, much in con-

trast with our findings, it is shown that the lack of privacy on consequences is

beneficial, while the lack of privacy on action can have detrimental effects.

Finally, a distinctive feature in our model is that incomplete information

is about time preference, rather than payoffs or behavioral type (as in repu-

tation games). In different contexts, Aramendia and Wen (2020) utilize such

incomplete information for equilibrium selection in repeated games, and Maor

and Solan (2015) study the PD game with uncertainty about discount factors.

2 Model

Our model is an extension of the perception games of Gradwohl and Smorodin-

sky (2017) to a repeated setting. There are two players who play a game and

a third party called Big Brother (BB) who may observe the interaction and

draw inferences about the players’ types. The two players play an infinitely

repeated game of G = (A1, A2, u1, u2), where Ai is the finite set of player i’s

actions and ui : A1 × A2 7→ R is player i’s utility function, in the stage game

G. For a profile α of mixed actions, we also denote by ui(α) the expected

utility of player i under α.

Each player i is one of two types, ti = S or ti = L, with probabilities βi and

1−βi, respectively. Prior to the game, each player learns (only) his own type.

A (behavioral) strategy, σi, for player i is a function σi : {S, L} × ∪∞k=0A
k →

∆(Ai), where A = A1 × A2 and A0 = ∅. The strategy assigns a mixed action

in the stage game for each type and finite history of action tuples. A pair

of strategies, σ = (σ1, σ2) induces a (random) infinite stream of payoffs. Let

supp(σ) ⊂ A∞ denote its support.

The types differ in their preferences over infinite streams of payoffs. A

player of type L is long-sighted and evaluates material payoffs by the limit-of-

means criterion. Formally, type L prefers the infinite stream of material payoffs

{uki }∞k=1 over {vki }∞k=1 if limT→∞
1
T

∑T
k=1 u

k
i > limT→∞

1
T

∑T
k=1 v

k
i , whenever
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both limits exist. Existence is not guaranteed,7 a technicality that is handled

by the notion of equilibrium we will use (Definition 1 below).

In contrast, a player of type S is short-sighted and prefers the infinite

stream of material payoffs {uki }∞k=1 over {vki }∞k=1 whenever the former is lexi-

cographically greater than the latter, or formally, whenever there exists some

K such that uki = vki for all k = 1, . . . , K and uK+1
i > vK+1

i .

In what follows we will be interested in evaluating the payoffs of both

types of players, from the point of view of a social planner. For the long-

sighted player, this evaluation naturally takes the form of the long-run payoff.

Regarding the short-sighted player, there is no reason for the social planner to

prefer one period over another, and so he can be modeled as evaluating payoffs

at a random period. With an infinite horizon this is equivalent to the long-run

payoff.8 Thus, we will use the long-run payoff to evaluate both types’ utilities,

and so the following notation will be useful:

Ui(σ : t)
def
= lim

T→∞
Eσ

[∑T
k=1 ui(ak)

T

∣∣∣∣∣ ti = t

]
,

where ak is the action profile played in stage k. We will be interested in

situations in which the limit exists, and will subsequently refer to these payoffs

as players’ material payoffs.

In addition to these material payoffs, players incur a disutility, ci = ci(ti, β
′
i, β
′′
i ),

as a bounded function of their type, the ex-ante belief about their type, and

the ex-post belief about their type, respectively.9 That is, players’ total utility

will be their material payoff minus the disutility incurred due to changes in

7As an example of nonexistence, suppose payoffs consist of a sequence of 10k 0’s, then

10k+1 1’s, then 10k+2 0’s, and so on. In this case the lim inf is 0 whereas the lim sup is 1,

and so the limit does not exist.
8If we consider payoffs at a random period, then when there is a finite horizon this would

equal the mean payoff. A natural extension of this criterion to the game with an infinite

horizon is the limit of the finite horizon means, as we propose.
9We will assume that the long-sighted player incurs a disutility that depends on the prior

and the belief after the repeated interaction. The short-sighted player can be modeled in

one of two ways: either he also incurs a disutility that depends on the prior and on the belief
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beliefs about their types. In order to capture the notion of privacy concerns,

we impose a bit of structure on the function ci as follows: (1) ci(ti, β
′
i, β
′′
i ) = 0

whenever β′i = β′′i and (2) ci(L, β
′
i, β
′′
i ) ≥ 0 for all β′i ∈ [0, 1]. In words, there

is no cost if there is no change in belief and a nonnegative cost for the long-

sighted type.10 Finally, for convenience we will assume that ci is bounded:

that there is some large C such that |ci(ti, β′i, β′′i )| ≤ C for all ti, β
′
i, and β′′i .

Our model of payoffs and equilibrium is an extension of the notion of a

perception game (Gradwohl and Smorodinsky, 2017) to the current infinitely-

repeated setting. To this end, we assign each player a belief function, τi, which

associates an ex-post belief (attributed to BB) over his type for any sequence

of action tuples. Formally, τi : ∪∞k=0A
k 7→ [0, 1] will denote an ex-post belief

that player i is actually of type S at the history h ∈ ∪∞k=0A
k. τi is rational with

respect to σ whenever τi(h) is computed by Bayes’ rule for any finite history h

that is reached with positive probability under σ, and such that τi(h) = τi(h
′)

if τi(h
′) ∈ {0, 1} for some prefix h′ of h. Note that if τi is rational with respect

to σ, then for an infinite history a∞ ∈ A∞ with prefixes a0, . . . , ak . . . that are

all reached with positive probability under σ, the belief τi(a
∞) = limk→∞ τi(a

k)

is well-defined almost surely, by the martingale property of Bayesian updating.

We now define the notion of equilibrium, based on the formulation of

Maschler et al. (2013) (Definition 13.16) but extended to incorporate per-

ceptions and different time-discounting types.

Definition 1 A perfect perception equilibrium is a quadruple, (σ1, σ2, τ1, τ2),

such that:

• τi is rational w.r.t σ for both i = 1, 2.

after the repeated interaction, or he incurs a disutility that depends on the beliefs before

and after each stage. We will adopt the latter for simplicity; using the former, however,

would not alter our results.
10The short-sighted type may incur costs at each stage, and so we do not require his costs

to be nonnegative to avoid dynamic inconsistency (see Gradwohl and Smorodinsky, 2017,

for discussion).
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• For each i, with probability 1 according to σ|(ti = L), the limit limT→∞
1
T

∑T
k=1 u

k
i

exists.

• Type L of either player i has no incentive to deviate: for any strategy γi,

Eσ|(ti=L)

[
lim
T→∞

1

T

T∑
k=1

uki

]
− Eσ|(ti=L)ci(L, βi, τi(a∞))

≥ E(γi,σ−i)

[
lim sup
T→∞

1

T

T∑
k=1

uki

]
− E(γi,σ−i)ci(L, βi, τi(a

∞)).11

• Type S of either player i has no incentive to deviate on any finite history

h: For any h ∈ ∪∞k=0A
k and strategy γi that is identical to σi everywhere

except at histories that have h as a prefix,

E [ui(σi(h), σ−i(h))|ti = S]− Eσ(S,h)ci(S, τi(h), τi((h, a)))

≥ E [ui(γi(h), σ−i(h))|ti = S]− E(γi(h),σ−i(h))ci(S, τi(h), τi((h, a))).

3 No privacy protection

In this section we assume that there is no privacy protection, and so BB

observes the players’ actions and draws inferences about their types. We will

show that, in this case, all Pareto-optimal payoff profiles are attainable in

equilibrium. Let

vi = min
α−i

max
ai

ui(ai, α−i)

be the minimax payoff of player i, where α−i is any mixed action of player −i.
A payoff vi of player i is individually rational (IR) if vi ≥ vi, and strictly IR if

the inequality is strict. Denote by

Vp = {v ∈ R2 : v = (u1(a), u2(a)) for some pure profile a},
11The existence of the expectations for the costs is guaranteed by the boundedness of

ci—see, for example, Theorem 4 of Royden and Fitzpatrick (1988).
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let its convex hull V = CO(Vp) be the feasible set of payoffs, and

V ∗ = {v ∈ V : ∀i vi ≥ vi}

be the set of feasible, IR payoffs. The standard folk theorem for two long-

sighted players states that all payoff pairs in V ∗ are attainable as equilibrium

payoffs of the repeated game (see, e.g., Theorem 13.17 of Maschler et al., 2013).

The following proposition states that these same payoffs are achievable

when there is incomplete information about player types, as long as they have

privacy concerns and there is no privacy protection.

Theorem 1 Suppose there is no privacy protection. If ci(S, βi, 1) is larger

than maxa∈A,a′i∈Ai
{ui(a)−ui(a′i, a−i)} for both players i, then for every v ∈ V ∗

there exists a perfect perception equilibrium (σ, τ) in which the long-run payoff

profile is v. In particular, all feasible, IR, Pareto-optimal payoff profiles are

attainable in equilibrium.

Our result requires that the privacy cost ci(S, βi, 1) be sufficiently large.

Some comments about this requirement are in order. First, note that the cost

must be large relative to the stage game payoffs.12

Second, some lower bound on the privacy cost is clearly necessary, as a cost

of 0 (or rather any amount smaller than the difference between two possible

material payoffs of a player) would render privacy costs irrelevant and the

claim of Theorem 1 false. Furthermore, in some games the threshold is sharp:

in the PD game of Figure 1a, for example, a privacy cost less than 1 would

be irrelevant, whereas a privacy cost greater than 1 would suffice to yield the

claim of Theorem 1.

Finally, the analysis in Section 4 will show that with privacy protection not

all Pareto-optimal payoffs are attainable in equilibrium. This, together with

12Long-run payoffs in our model are the limit-of-means of stage games, and so on the

same order of magnitude, but our results would be unchanged if the long-run payoffs were

a large multiplicative factor of the limit-of-means, in which case the privacy cost would be

small when compared with the long-run payoffs.
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Theorem 1, demonstrates the counter-intuitive insight that privacy protection

is harmful specifically when privacy costs are large.

Proof: Long-sighted players play the standard grim trigger strategies, it-

erating over pure strategy profiles that lead to an average payoff profile of v,

with a permanent deviation to the minimax strategy when a deviation of the

opponent is detected. Short-sighted players pool with long-sighted players—

i.e., they play the exact same strategies. Note that players use pure actions in

every stage. Furthermore, for each i and h, let τi(h) = βi if h is reached with

positive probability under σ or, if h is infinite, if all its prefixes are reached

with positive probability under σ. Let τi(h) = 1 otherwise. Note that τ is

rational with respect to σ.

Observe first that long-sighted players do not gain from a deviation from

σ: they will be punished by the other player, who plays grim trigger, and their

privacy costs can only increase (since privacy costs are nonnegative). Next,

suppose no player has deviated from σ up to stage k. Does a short-sighted

player i have an incentive to deviate in stage k+ 1? At the beginning of stage

k + 1, the belief of BB about his type is βi, since types have been pooling so

far. If a player deviates, beliefs are τi = 1. Thus, a short-sighted player incurs

cost ci(S, βi, 1) ≥ maxa∈A,a′i∈Ai
{ui(a) − ui(a

′
i, a−i)}. Since this cost is larger

than any potential gain from the deviation, the deviation is not profitable.

Note that, by Theorem 1, all feasible, IR payoffs profiles are attainable

in equilibrium. However, the set of attainable payoffs may be larger, and in

particular, may include non-IR payoffs (see Appendix C.1).

A natural question is whether the equilibrium constructed in Theorem 1

survives common equilibrium refinements. In Appendix B we argue that our

construction does, indeed, satsify the Intuitive Criterion of Cho and Kreps

(1987). However, it does so in an uninteresting way, as the definition is vacu-

ously true. We then consider a modification of the Intuitive Criterion that has

some bite in our model, and provide a strengthening of our theorem. Roughly,

for a given profile of strategies σ, we define the notion of σ-intuitive beliefs. We
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then show that for every v ∈ V ∗ there is a σ such that for all σ-intuitive beliefs

τ , the profile (σ, τ) is a perfect perception equilibrium with payoff profile v.

4 Privacy protection

In this section we assume that there is privacy protection, and so BB does

not observe the players’ actions. Consequently, he cannot draw any inferences

about their types, and so his beliefs τi at every stage are the same, namely the

prior βi. Furthermore, players do not incur any privacy costs, since τi = βi

throughout. We drop the dependence of overall utilities on perception, as these

utilities are now equal to the material payoffs.

Our main result is that under privacy protection, the Pareto frontier is not

generally attainable in equilibrium. For one part of this result we utilize two

minor genericity assumptions on the game G:13

Assumption 1 There do not exist two distinct pure-action profiles a = (a1, a2)

and b = (b1, b2) and a player i for which ui(a) = ui(b).

Assumption 2 There do not exist three distinct pure-action profiles a =

(a1, a2), a′ = (a′1, a
′
2), a′′ = (a′′1, a

′′
2) for which the payoff pair u(a) = (u1(a), u2(a))

is a convex combination of the payoff pairs u(a′) and u(a′′).

Before stating our main result, we need a bit more notation. First, denote

the Pareto frontier by PF, where

PF = {v ∈ V ∗ : @v′ ∈ V ∗ s.t. v′ � v}.

Strictly speaking, PF is the Pareto frontier subject to IR constraints being

satisfied.14 Second, for a stage game G, denote by NE(G) the set of Nash

13These are needed for Lemma 4, and consequently one claim of Theorem 2. For any

game, they hold with probability 1 following a perturbation of the utilities.
14An alternative definition is PF = {v ∈ V ∗ : @v′ ∈ V ∗ s.t. v′ > v} (the difference is in

the inequality). If V ∗ is a rectangle, for example, then the question is whether the top and

right segments are part of PF or just the top-right vertex. The choice of definition does not

matter for our results.
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equilibria of G.

We can now state our main result on the unattainability in equilibrium

of some payoff profiles on the Pareto frontier under privacy protection. Since

the entire Pareto frontier is attainable in equilibrium when there is no privacy

protection, this theorem shows that privacy protection can be harmful.

Theorem 2 If PF 6⊆ CO{NE(G)} and either

• t1 = t2 = S, or

• G is symmetric and satisfies genericity assumptions 1 and 2, and ti = S

for some i,

then there is some v ∈ PF that is obtained with probability 0 in every perfect

perception equilibrium of the repeated incomplete-information game. If PF ∩
NE(G) = ∅ and t1 = t2 = S then every v ∈ PF is obtained with probability 0

in every perfect perception equilibrium.

The qualification on G is necessary: if all Pareto-optimal payoffs are convex

combinations of payoffs attained as Nash equilibria of the stage game G, then

Pareto-optimal payoffs are also attainable in equilibria of the repeated game

regardless of player types, simply by iterating over various Nash equilibria of

the stage game.15

In this section we prove Theorem 2. First, in Section 4.1, we describe the

sets of payoffs when the types of players are commonly known and provide

conditions under which these payoffs do not contain the entire Pareto frontier.

This is followed by Section 4.2, in which we show that the set of payoffs

when types are unknown is a subset of the payoffs when the realized types are

known. Together, these results imply a cost to privacy protection described

by Theorem 2: Without protection, all payoff profiles on the Pareto frontier

15The symmetry and genericity assumptions in the second bullet are necessary for our

proof (in particular, for the proof of Lemma 4), but we do not know if they are necessary

for the result to hold.
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are attainable in equilibrium, by Theorem 1. With protection, in contrast, a

substantial part of the Pareto frontier is unattainable.

Our analysis is tight: in Appendix D we show by construction that when

there is privacy protection, the payoffs attained when types are known are also

attainable in equilibrium when types are unknown.

4.1 Known types

Suppose the types of the players are commonly known. We will describe the

set of payoff profiles attainable as equilibria of the repeated game, which, of

course, depend on the types of the players. If both players are long-sighted,

then the standard folk theorem applies, and the set of attainable payoffs is

exactly equal to V ∗ (see, e.g., Theorem 13.17 of Maschler et al., 2013). We

next consider the other two cases: when one player is long-sighted and the

other short-sighted, and when both players are short-sighted.

LS: Suppose player i is long-sighted and player −i is short-sighted. What

are the possible payoffs? Let

B′i = {(α1, α2) : α−i ∈ BR(αi)},

where BR(αi) denotes the set of player −i’s best responses to the mixed action

αi of player i, and

Bi = CO{(vi, v−i) ∈ R2 : (vi, v−i) = (ui(α), u−i(α)) for some α ∈ B′i}.

The set of feasible payoffs is a subset of Bi:

Lemma 1 Let ti = L and t−i = S. Then in any equilibrium σ of the repeated

game, the corresponding long-term payoffs (Ui(σ : L), U−i(σ : S)) are contained

in Bi.
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2S: Suppose both players are short-sighted. Let

V 2S = CO{v : v = (u1(α), u2(α)) for some NE α of G}.

Then when types are commonly-known, the feasible set of payoffs is a subset

of V 2S:

Lemma 2 Let t1 = t2 = S. Then in any equilibrium σ of the repeated game,

the corresponding long-term payoffs (Ui(σ : L), U−i(σ : S)) are contained in

V 2S.

Pareto frontier We now provide conditions under which the Pareto frontier

is not attainable in equilibrium.

A first observation is that if the Pareto frontier is defined by convex com-

binations of Nash equilibria of the stage game—formally, if v ∈ PF ⇒ v ∈
CO{v : v = (u1(α), u2(α)) for some NE α of G}—then any payoff profile on

the Pareto frontier can be attained as the long-run payoff of a repeated game in

which players play a NE at every stage. In this case, the Pareto frontier is at-

tainable in equilibrium regardless of the types of the players, and in particular

when both players are short-sighted.

The more interesting case is when the Pareto frontier is not defined only

by the NE of the game. For this case we have two lemmas, one for general

games about payoffs in V 2S and one for symmetric games about payoffs in Bi,

that show that the entire Pareto frontier is not attainable in equilibrium.

Lemma 3 Fix a stage game G, and suppose PF 6⊆ CO{NE(G)}. Then there

exists a payoff profile v ∈ PF such that v 6∈ V 2S.

That is, there is a payoff profile on the Pareto frontier that is not attainable as

the long-run payoff in any equilibrium of the repeated interaction of two short-

sighted players. The lemma follows almost immediately from the definition of

V 2S, but see Appendix A for a formal proof of this and all other lemmas from

this section.
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Next, consider the case in which player i is long-sighted and player −i is

short-sighted, and so by Lemma 1 the set of payoffs lies in Bi. The following

lemma shows that in symmetric games, in which A1 = A2 and u1(a1, a2) =

u2(a2, a1) for all (a1, a2) ∈ A, the set Bi does not contain the entire Pareto

frontier.

Lemma 4 Fix a symmetric stage game G that satisfies genericity assump-

tions 1 and 2, and suppose that PF 6⊆ CO{NE(G)}. Then there exists a payoff

profile v ∈ PF such that v 6∈ Bi.

The main intuition underlying the lemma is as follows. Fix some v ∈ PF
that cannot be attained as a NE of the stage game G, and suppose towards a

contradiction that v ∈ Bi. Also, suppose for simplicity that the payoff v results

from a pure action profile (a1, a2). By assumption, in this pure action profile,

player −i best-responds to player i. Now, by symmetry, if v = (v1, v2) is on

the Pareto frontier, then so is v′ = (v2, v1). By a symmetric analysis, v′ can

only arise from the pure action profile (a2, a1), in which player i best-responds

to player −i. This implies that v results from a NE of G, a contradiction.

Finally, we note that the more challenging part of the proof is to extend the

analysis to the case in which v does not result from a pure action profile (and

this latter part is the one in which we use the genericity assumptions).

Lemmas 3 and 4 showed that PF 6⊆ V 2S and PF 6⊆ Bi whenever PF 6⊆
CO{NE(G)}. The following lemma shows that a stronger conclusion holds if

PF ∩ NE(G) = ∅:

Lemma 5 If PF ∩NE(G) = ∅ then V 2S ∩ PF = ∅.

One might conjecture that there is a stronger lemma to be had also for

the LS case: namely, that if no NE lies on the Pareto frontier, then none of

the Pareto frontier can be obtained in the LS case either, as in Lemma 5 for

the 2S case. However, this conjecture is false, as demonstrated by the game

in Figure 1c. This game has a unique NE in which all players mix uniformly,

but in which the corresponding payoff profile of (1/3, 1/3) does not lie on the
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Pareto frontier. However, some part of the Pareto frontier can be obtained

when the type profile is LS: in particular, if the row player is the L-type and the

column player is the S-type, then the profile in which the row player mixes

uniformly between his first two actions, U and M , and the column player

plays his third action R with probability 1, is in Bi. Furthermore, this profile

is Pareto-optimal and has payoffs (1/2, 1/2).

4.2 Unknown types

In this section we return to our game of incomplete information and show that

in any equilibrium of that game and for any pair of realized types, the payoff

pair lies in the set of possible payoffs in the counterpart game with complete

information in which the realized types are commonly known.

Lemma 6 In any equilibrium σ of the incomplete-information repeated game

and almost every play path, the realized limit-of-means payoffs of the two play-

ers, (Ui(σ : t), U−i(σ : t)), lie in the set of payoffs attainable in equilibria of

the repeated game when the types are known.

The proof of Lemma 6 uses a theorem about learning due to Kalai and Lehrer

(1993), which states that in a repeated game of incomplete information and

finitely many types players’ equilibrium strategies and others’ beliefs about

those strategies get arbitrarily close. In our context, this implies that players

eventually play almost the same as they would play if types were commonly

known. Thus, the main part in the proof of the lemma is to show that payoffs

are also nearly the same.

We are now ready to prove Theorem 2:

Proof: Lemma 2 shows that when t1 = t2 = S, the feasible set of payoffs

lies in V 2S in the game with complete information, and Lemma 3 shows that

when PF 6⊆ CO{NE(G)} there is some v ∈ PF such that v 6∈ V 2S. Lemma 5

shows that when PF ∩NE(G) = ∅ then V 2S ∩ PF = ∅.
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Lemma 1 shows that when ti = L and t−i = S the feasible set of payoffs

lies in Bi, and Lemma 4 shows that when PF 6⊆ CO{NE(G)}, the game is

symmetric, and the genericity assumptions hold, there is some v ∈ PF such

that v 6∈ Bi.

Finally, Lemma 6 shows that payoffs in any perfect perception equilibrium

of the incomplete-information game lie in the set of payoffs in equilibrium

when types are commonly-known. Together, these lemmas imply the claim of

the theorem.

5 Conclusion

In this paper we argued that privacy protection—in the form of disallowing

third parties from observing actions—is harmful to privacy-concerned players

engaged in a repeated interaction, as it limits and sometimes eliminates the

possibility of attaining Pareto-optimal payoffs.

Our criticism of the potential harm of privacy protection hinges on the

prevalence of the “best” equilibria in a game, those that induce payoffs on the

Pareto frontier. If, on the other hand, one is concerned with the prevalence of

the “worst” equilibria then a similar analysis will argue in favor of privacy pro-

tection, as it may eliminate bad equilibria (we refer the reader to Appendix C

for the technical analysis).

Our results hold for more general utility functions than the ones we use,

with separable additivity between material payoffs and privacy costs. In par-

ticular, they hold for any utility function u that takes as its arguments the

action profile and the two beliefs, ex ante and ex post, and that satisfies the

following two properties for any profile a and two beliefs 0 < β′ 6= β′′ < 1: (i)

u(a, β′, β′) = u(a, β′′, β′′), and (ii) u(a, β′, β′′) < u(a, β′, β′).

While our results apply to general two-player repeated games, they are

limited by our assumption about player types. In particular, we assumed

that players are either very long-sighted or very short-sighted. While this
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assumption is largely for simplicity of exposition, we used it in the proof of

Lemma 6, which showed that realized long-run payoffs of players under incom-

plete information lie in the set of payoffs attainable in equilibrium under their

realized types. This proof uses a theorem about learning due to Kalai and

Lehrer (1993). If player types were less extreme—say, discounting the future

with one of two discount factors—then the rate of such learning would play a

crucial role, significantly complicating the analysis.

However, while the proofs of our general results do not go through with

less extreme player types, they do go through for specific games. For exam-

ple, our insights on the benefit or harm of privacy protection in the context

of the Prisoner’s Dilemma and its variants (see Figure 1a and Appendix C.1)

still hold. Suppose long-sighted and short-sighted players are differentiated by

different discount factors, say λL > λS, as opposed to limit-of-means versus

myopic discounting. Then we can show that mutual cooperation is attain-

able in equilibrium regardless of the realized types when there is no privacy

protection, whereas it is unattainable with privacy protection.

A more general limitation of our analysis is our assumption that a player’s

type corresponds to her time discounting. One might consider more general

private information, and in particular private information that affects material

payoffs of the stage game, as in Gradwohl and Smorodinsky (2017), along with

corresponding privacy concerns. We leave the analysis of privacy protection

in such a model to future research.
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Appendix

A Proofs from Section 4

Proof of Lemma 1: In any equilibrium σ and any history h reached with

positive probability by σ, the corresponding mixed actions at h must belong

to B′i. Thus, the payoff profile at h belongs to Bi. Any infinite realized stream

of payoffs to either player j, namely {ukj}∞k=1, is such that (uki , u
k
−i) ∈ Bi, and

so limT→∞
1
T

∑T
k=1(u

k
i , u

k
−i) ∈ Bi.

16 Since Ui(σ : L) and U−i(σ : S) are convex

combinations of such limits, they also lie in Bi.

Proof of Lemma 2: In any equilibrium σ and any history h reached with

positive probability by σ, the corresponding mixed actions at h must be a NE

of G. Thus, the payoff profile at h belongs to V 2S. Any infinite realized stream

of payoffs to either player j, namely {ukj}∞k=1, is such that (uki , u
k
−i) ∈ V 2S, and

so limT→∞
1
T

∑T
k=1(u

k
i , u

k
−i) ∈ V 2S. Since Ui(σ : L) and U−i(σ : S) are convex

combinations of such limits, they also lie in V 2S.

A geometric interpretation of PF will be useful for later. Consider a plot

of V ∗, where player i’s payoffs are on the horizontal axis and player −i’s
on the vertical axis. V ∗ is a convex set, whose left and bottom boundaries

correspond to the minimax payoffs of players i and −i, respectively. Then PF

consists of the “top-right” boundary of V ∗, a connected set of line segments

of nonpositive slope. Denote by e−i the top-left endpoint of PF (where player

−i obtains the highest feasible utility), and by ei the bottom-right endpoint

(where player i obtains the highest feasible utility). If PF is a singleton, then

PF = {ei} = {e−i}. If PF is a line segment, it connects e−i to ei. Otherwise,

PF consists of connected line segments: starting at e−i, proceeding towards

some vertex v1, then proceeding to another vertex v2, and so on, until ei.

Note that the vertices vk of PF correspond to payoffs of pure-action profiles

of the stage game G. The endpoints ei and e−i, on the other hand, could

16Recall that the limit exists with probability 1 by Definition 1.
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correspond to payoffs of pure-action profiles or could be convex combinations

of payoffs of pure-action profiles. In the latter case, it must be that one of the

pure-action profiles in the convex combination is not IR for one of the players.

Proof of Lemma 3: Any element of V 2S is a convex combination of the

payoffs of NE of G. Since by assumption the Pareto frontier is not defined by

the NE of G, there exists some v on the Pareto frontier that is not a convex

combination of payoffs of NE of G. Thus, v 6∈ V 2S.

Proof of Lemma 4: Let F = {e−i, v1, . . . , vk, ei} denote the set of endpoints

and vertices along PF, and suppose towards a contradiction that all of PF lies

in Bi. Consider the payoff profiles F that define the Pareto frontier, and note

that, by assumption, not all are NE payoffs of the stage game. So there is

some payoff profile x ∈ F that cannot be attained as the payoff pair of a NE

of G. Furthermore, because x ∈ PF and PF ⊆ Bi it follows that x ∈ Bi.

We now consider two cases: that x ∈ Vp, the set of feasible points attainable

by a pure strategy profile, and that it is not. In the former case, x is a payoff

profile that can only be attained as the payoff of some pure-action profile

ax = (axi , a
x
−i), namely x = u(ax). Furthermore, since x ∈ Bi it must be the

case that ax ∈ B′i, and so

ax−i ∈ BR(axi ). (1)

Consider now the payoff profile x = (x−i, xi). By symmetry, x ∈ Vp is a

payoff profile that lies in PF that can only be attained as the payoff of the

pure-action profile ax = (axi , a
x
−i) = (ax−i, a

x
i ). Furthermore, since x ∈ PF it

must be the case that x ∈ Bi. This implies that ax ∈ B′i, and so ax−i ∈ BR(axi ),

and thus

axi ∈ BR(ax−i). (2)

Combining (1) and (2) implies that ax is a NE of the game, contradicting the

assumption that x cannot be attained as the payoff profile of a NE.

We now consider the second case, that x is not an element of Vp. In

particular, this means that x ∈ {ei, e−i}, since the other elements of F are
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all vertices of V and so lie in Vp. Now, x is not the payoff of a pure-action

profile but can be attained as the convex combination of the payoffs of two

pure-action profiles. Denote these payoff profiles by y and z, where y = u(ay)

and z = u(az). By genericity assumption 2, x can only be attained as the

convex combination of these two pure profiles (and no other pure profiles).

Furthermore, one element of {y, z} is in PF, and the other is not in PF, and

thus is not IR for one of the players. Let z be the former and y the latter.

Because the game is symmetric we can assume without loss of generality

that x = e−i. By symmetry, the point x = ei is also in PF, and furthermore,

x is the convex combination of y and z, where y = (y−i, yi) and z = (z−i, zi).

Note that z and z are pure profiles in PF, that y is not IR for player i, and that

y is not IR for player −i. As there is no point in B′i in which −i does not best-

respond to some action of player i, the payoff profile y 6∈ Bi, nor is any payoff

of player −i that is below x−i: these are not IR for player −i. Thus, the only

way x ∈ Bi is if the mixed profile ax satisfies ax−i ∈ BR(axi ). However, since x

is on the border (and not the interior) of V ∗, genericity assumption 1 implies

that ax is such that only one player mixes. Furthermore, since player −i is

short-sighted, and one realization of the mixture yields a payoff below −i’s IR

payoff, it must be player i who mixes. To conclude, the payoff profile x can

only be obtained as the payoff of some mixed action profile ax in which only

player i mixes between two actions, say actions b and c. Thus, ay = (b, ax−i)

and az = (c, ax−i), such that ax−i is a best response to the mixture axi of b and

c.

Now consider the payoff profile x = e−i. Recall that x is the convex

combination of y and z, each of which is the utility profile of a unique pure

action profile, say ay and az. By symmetry, ay = (axi , b) and az = (axi , c),

both of which are pure-action profiles. Furthermore, ay, az ∈ B′i, and so both

b, c ∈ BR(axi ). But note that axi = ax−i. This, together with the above, implies

that ax and ax are NE of G, which is a contradiction.

Proof of Lemma 5: The set of NE of G that are in PF is empty, and so
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the intersection of CO(NE(G)) with PF is empty. Since V 2S = CO(NE(G)),

it follows that V 2S ∩ PF = ∅.

Proof of Lemma 6: For the realized LL case, this is almost immediate:

The only limitation on V ∗ is that payoffs be IR, and clearly no equilibrium of

the repeated game with incomplete information leads to payoffs that are not

IR.

Next, fix any equilibrium profile σ. Let σLi denote the strategy of player

i of type L, and σSi the strategy of player i of type S. Furthermore, denote

the belief of player i about player −i’s strategy as σ−i. Note that initially

σ−i places weight βi on σS−i and weight 1− βi on σL−i. Thus, σ−i is absolutely

continuous with respect to both σL−i and σS−i. By Theorem 1 of Kalai and

Lehrer (1993), for every ε > 0 and almost every play path h, there is a time

T = T (h, ε) after which the strategy of the realized type of player −i is ε-close

to the belief σ−i that player i has about his opponent’s strategy.

First, suppose the realized types are L and S. From some point on the

S player i best responds to his beliefs σ−i(h), and his beliefs are ε-close to

the actions of the opponent. That is, from some point on the strategy profile

at stage t is σSi (ht) ∈ BR(σ−i(ht)), where σ−i(ht) is ε-close to σL−i(h
t). This

implies that i’s payoff under σSi (ht) is ε-close to his payoff in some profile in

V LS
i . The long-sighted player’s payoff is also in V LS

i , since at every stage t

his opponent is best-responding to σ−i(ht), which is a possible mixed action

of player −i.
Next, suppose the realized types are S and S. Note that in σ, players may

not be playing a NE of the stage game in early stages, since they are best

responding to their beliefs, which place positive weight on the other player

being of type L. At every history h, player i is best-responding to his belief

σ−i(H) about the other’s mixed action at that history. Furthermore, from

stage T onward, the behavior of the other player is ε-close to σ−i. From that

point on, each player i is best responding to beliefs that are ε-close to the true
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strategy of the opponent. We claim that from this stage on their payoffs in

each stage must be close to the payoffs of some NE of G, which will imply that

the limit-of-means payoff of the interaction is in V 2S.

To see this, consider some sequence of histories (ht)t≥T . We claim that

for every δ > 0 and sufficiently large t, the payoff profile u(σSi (ht), σS−i(h
t)) is

within δ of u(α), where α is the convex combination of some NE of G. In fact,

we claim something stronger: that all the partial limits of
(
σSi (ht), σS−i(h

t)
)
t≥T

are NE of G.

For suppose towards a contradiction that this is false. Then there ex-

ists some partial limit (xi, x−i), some x′i ∈ ∆(Ai), and some γ > 0 such that

ui(x
′
i, x−i) > ui(xi, x−i)+γ. Let (xti, x

t
−i)t be the subsequence of

(
σSi (ht), σS−i(h

t)
)
t≥T

that converges to (xi, x−i). For all sufficiently large t, Theorem 1 of Kalai and

Lehrer (1993) implies that xti ∈ BR(yti), where yti is δ
2(maxa ui(a)−mina ui(a))

-close

to xt−i. But this implies that xti is a δ/2-best response to xt−i. This contradicts

the existence of the x′i above. Thus, all the limit points are NE, and so the

limit-of-means payoff is in the convex combination of all NE payoffs, namely

V 2S.

B Equilibrium refinements

In this section we consider strengthening Theorem 1 with a refinement of per-

fect perception equilibrium. One possibility would be to consider perfect per-

ception equilibria that satisfy the Intuitive Criterion of Cho and Kreps (1987).

Gradwohl and Smorodinsky (2014) define a variant of the Intuitive Criterion

that applies to perception games, and this definition is easily amenable to our

repeated setting.

In our setting, the Intuitive Criterion can be described as follows. Fix a

perfect perception equilibrium σ and a history h reached with positive prob-

ability by σ. Consider a player i, type ti, and a deviation by this type at h

to an action that has probability 0 under σ, and let the perception following
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that action place weight 1 on type ti. Then if type ti strictly gains from this

deviation, whereas type t−i weakly prefers the equilibrium strategy, then σ

does not satisfy the Intuitive Criterion.

It is straightforward to show that the perfect perception equilibrium con-

struction of Theorem 1 satisfies the Intuitive Criterion. However, it does so in

an uninteresting way, as the definition is vacuously true: no player will ever

gain from a deviation that leads to a perception that places weight 1 on his

type, because of the associated privacy cost. Thus, in no perfect perception

equilibrium will the Intuitive Criterion have any bite.

In the remainder of this section we consider a modification of the Intuitive

Criterion that does have some bite in our model, and then provide a strength-

ening of our theorem that utilizes this refinement. Roughly, for a given profile

of strategies σ, we define the notion of σ-intuitive beliefs. We then show that

for every v ∈ V ∗ there is a σ such that for all σ-intuitive beliefs τ , the profile

(σ, τ) is a perfect perception equilibrium with payoff profile v.

We begin with a definition of our refinement, followed by the theorem and

intuition.

Definition of refinement Denote by

Ui(L, γi, σ−i, τi)
def
= Ui(γi, σ−i : L)− E(γi,σ−i)ci(L, βi, τi(a

∞))

the utility of a long-sighted player, when strategies are (γi, σ−i) and beliefs are

τi. For any history h, denote by

Ui(S, γi, σ−i, τi, h)
def
=E(ui(γi(h), σ−i(h))|ti = S)−E(γi(h),σ−i(h))ci(S, τi(h), τi((h, a)))

the utility of a short-sighted player at h, when strategies are (γi, σ−i) and

beliefs are τi.

The following refinement restricts BB’s beliefs on profiles for which players

assign probability zero. In particular, it states that if one type of player will

not gain from deviating regardless of the beliefs at a deviation, whereas another
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type will gain by deviating given some belief, then the support of BB’s belief

must consist only of the latter type.

Definition 2 For a given strategy profile σ, beliefs τ are σ-intuitive if they

are rational w.r.t. σ, and if they satisfy the following for every i ∈ {1, 2},
h ∈ ∪∞k=0A

k, and strategy γi that is identical to σi everywhere except at histories

that have h as a prefix,:

• If

1. Ui(L, σ, τi) ≥ Ui(L, γi, σ−i, τ
′
i) for every τ ′i for which τi(h

′) = τ ′i(h
′)

at every h′ that is reached with positive probability under σ;

2. Ui(S, σ, τi, h) ≤ Ui(S, γi, σ−i, τ
′
i , h) for some τ ′i for which τi(h

′) =

τ ′i(h
′) at every h′ that is reached with positive probability under σ;

and

3. at least one of the inequalities above is strict,

then τi(h, a) = 1 for every a ∈ supp(γi(h)) \ supp(σi(h)).

• If

1. Ui(S, σ, τi, h) ≥ Ui(S, γi, σ−i, τ
′
i , h) for every τ ′i for which τi(h

′) =

τ ′i(h
′) at every h′ that is reached with positive probability under σ;

2. Ui(L, σ, τi) ≤ Ui(L, γi, σ−i, τ
′
i) for some τ ′i for which τi(h

′) = τ ′i(h
′)

at every h′ that is reached with positive probability under σ; and

3. at least one of the inequalities above is strict,

then τi(h, a) = 0 for every a ∈ supp(γi(h)) \ supp(σi(h)).

Strengthening of Theorem 1 We are now ready to state our theorem.

Theorem 3 If ci(S, p, 1) is sufficiently large, then for every v ∈ V ∗ there

exists a strategy profile σ such that for all σ-intuitive beliefs τ , the profile

(σ, τ) is a perfect perception equilibrium in which the long-run payoff profile is

v. Furthermore, there exists a σ-intuitive τ .
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Proof: Let σ be the profile in which both types of both players play the

standard grim trigger strategy leading to payoff v, as in Theorem 1. The L

type will never gain by deviating, since this will lead to (long-term) punishment

and a nonnegative privacy cost. For an S type, if at some history h he has a

profitable deviation (for some belief), then the perception must place weight

1 on type S after that deviation at h—formally, τi(h
′) = 1 whenever h is a

prefix of h′—and so the deviation will not be profitable for him with the given

belief. If at some h the S type has no profitable deviation for any belief, then

the refinement has no bite at that deviation, and so the perception at the

deviation can be anything: there will be no profitable deviation since neither

type gains from deviating at h, by assumption.

C The benefits of privacy protection

In Section 4 we argued that privacy protection is harmful, as it may hinder the

ability of players to obtain Pareto-optimal payoff profiles. That is, when com-

paring the best payoffs attainable in equilibrium, privacy protection is harmful.

In this section we show that there may be benefits to privacy protection. In

particular, we show that in some games privacy protection can prevent the

players from obtaining suboptimal payoffs. More specifically, we show that

when comparing the worst payoffs in equilibrium, privacy protection can be

beneficial. We illustrate two distinct such benefits, both for the particular case

in which the stage game G is the Prisoner’s Dilemma (PD) from Figure 1a, or

a small modification thereof (although it will be clear that the ideas extend to

other games as well).

C.1 Avoiding non-IR payoffs

When there is no privacy protection, Theorem 1 states that all of V ∗ can be

obtained in equilibrium. However, it may also be possible to obtain lower

payoffs for some player. For example, suppose G is the PD, and that both
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c1(S, βi, 1) and c1(L, βi, 1) are high. That is, both types of player 1 incur a

high cost to the belief that they are short-sighted type (whether or not this is

true).

Here there is an equilibrium in which both types of player 1 always play C,

while both types of player 2 always play D. This is not IR for player 1, and

he obtains a low payoff of 0. However, the equilibrium can be sustained by

perceptions τ1(h) = 1 for all histories h that are not on the equilibrium path.

Note that under privacy protection, such a low payoff to player 1 is impossible,

as he will always obtain at least his minimax payoff of 1.

Two additional notes are in order. First, the “bad” equilibrium above does

not satisfy the refinement of Definition 2. However, other (more complicated)

equilibria can be constructed that do satisfy the refinement and which also

lead to non-IR payoffs.

Second, equilibria with such low payoffs are not always possible, and their

existence depends on the specifics of the privacy cost function. For example,

in the PD, if only the short-sighted type incurs privacy costs—formally, if

ci(L, βi, 0) ≡ 0—then no player will ever get non-IR payoffs in equilibrium.

C.2 Higher minimax values

When there is no privacy protection, players get at least the minimax pay-

offs vi = minα−i
maxai ui(ai, α−i), regardless of whether their opponent is

long-sighted or short-sighted. With privacy protection, however, a player

i facing a short-sighted opponent has a different minimax payoff, namely

v′i = minα∈Bi
maxai ui(ai, α−i): this is the minimax value under the additional

condition that the short-sighted player −i is best responding to player i. In

some games, v′i > vi. In such games, the worst-case (over all equilibria) payoff

of a player without privacy protection will be lower than her worst-case payoff

with privacy protection.

A simple example of a game in which v′i > vi is the PD, but where each

player has a third option B, to set off a bomb. Payoffs are such that if one
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player chooses B, both players get −1000, and if both players choose B, they

both get −1001. In this game the minimax payoff is vi = −1000, whereas

the minimax payoff of a player facing a short-sighted player is v′i = 1. This

is because choosing B is a strictly dominated action, and so an S type will

never choose it. In particular, he cannot use it to threaten punishment on the

opponent.

D Construction

D.1 Preliminaries

LS: Suppose player i is long-sighted and player −i is short-sighted. What

are the possible payoffs? Recall that

Bi = {(α1, α2) : α−i ∈ BR(αi)}

is the set of feasible mixed actions, and

v′i = min
α∈B−i

max
ai

ui(ai, α−i)

the minimax payoff of player i. Next, let

V ′i = CO{(vi, v−i) ∈ R2 : (vi, v−i) = (ui(α), u−i(α)) for some α ∈ B−i},

and

V LS
i = {(vi, v−i) ∈ V ′i : vi ≥ v′i}.

When types are known, Fudenberg et al. show that all player i payoffs

in V LS
i , and only those, are attainable as equilibrium payoffs of the repeated

game (Fudenberg et al., 1990, Proposition 5). Their proof can be extended to

show that, in fact, all payoff pairs in V LS
i can be attained in equilibrium:

Lemma 7 Suppose player i is long-sighted and player −i short-sighted. For

every v ∈ V LS
i , there exists an equilibrium strategy profile σ such that the

long-run average payoffs of the players are v.
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Proof: Since v ∈ V LS
i , there exist three mixed-action profiles α1, α2, α3 ∈

B−i such that v ∈ CO{u(α1), u(α2), u(α3)}. Furthermore, by standard folk

theorem arguments, there is an infinite sequence of alternations among the

three mixed-action profiles, for which the long-run average payoffs are exactly

v. Denote this sequence by {sk}∞k=1, where each sk ∈ {α1, α2, α3}.
Modify the construction of σ from the proof of Fudenberg et al.’s Propo-

sition 5 as follows: Whenever It ≤ 0, let σt be the first unplayed sk in the

sequence. If It > 0 let σt = mi, the profile that minimaxes player i.17 The

remainder of the proof is the same as in Fudenberg et al. (1990).

2S: Suppose both players are short-sighted. Recall that

V 2S = CO{v : v = (u1(α), u2(α)) for some NE α of G}.

When types are known, the long-run payoffs of the repeated game for the

players are in V 2S. That is, for any equilibrium σ, both Ui(σ : S) ∈ V 2S.

Then:

Lemma 8 Suppose both players are short-sighted. For every v ∈ V 2S, and

only such v, there exists an equilibrium strategy profile σ such that the long-

run average payoffs of the players are v.

Proof: If v ∈ V 2S, then there exist three Nash equilibrium profiles α1, α2, α3

such that v ∈ CO{u(α1), u(α2), u(α3)}. By standard folk theorem arguments,

there is an infinite sequence of alternations among the three mixed-action

profiles, for which the long-run average payoffs are exactly v. Let σ be the

strategy profile that alternates between these profiles in this manner.

Now suppose v 6∈ V 2S, but that there is an equilibrium σ with long-run

payoffs equal to v. If under σ in every stage of the game both players play

a NE of G, then v ∈ V 2S. Thus, in some stage of the game players must

play a non-NE action profile. This, however, cannot be an equilibrium for two

short-sighted players.
17See the proof of Proposition 5 in Fudenberg et al. (1990) for details and definitions of

It and mi.
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D.2 The construction

We have the following construction:

Theorem 4 For any (v, vLS1 , vLS2 , v2S) ∈ V ∗ × V LS
1 × V LS

2 × V 2S, there exists

an equilibrium σ = σ(t1, t2) such that:

• if t1 = t2 = L, then (U1(L, σ), U2(L, σ)) = v;

• if ti = L and t−i = S, then (Ui(L, σ), U−i(S, σ)) = vLSi ; and

• if t1 = t2 = S, then (U1(S, σ), U2(S, σ)) = v2S.

The proof is by construction of a strategy profile that has the following

structure. First, the players play a series of stage games in which player 1

“reveals” his type to player 2. Then, they play a series of stage games in

which player 2 “reveals” his type to player 1. Finally, the players play folk

theorem strategies corresponding to their now-commonly known types. The

challenge lies in constructing the two revelation phases in such a way that they

will be part of the equilibrium of the repeated game.

For each player i, we will consider three cases for the revelation phase.

The first case is easiest and applies to stage games G in which player i has

a dominant action. The second case applies when there is a NE of the stage

game G in which player i plays a mixed action. Finally, the third and most

involved case applies when neither of the first two cases does, namely, when

there is no dominant action and, in all NE of G, player i plays a pure action.18

For each kind of revelation phase, we will argue that it can be part of an

equilibrium of the repeated game. This requires that the S type of each player

play a best response to the other player in every stage game. Additionally,

the L type of each player must either best-respond in a stage game or play a

suboptimal action, but can do the latter only finitely many times. Finally, in

18Note that the cases are not mutually exclusive, and that the latter two would suffice.

We include the first for illustrative purposes and because it involves a shorter revelation

phase.
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order to obtain the claimed long-run payoff, the revelation phases must end

with probability 1 in finitely many stages.

D.2.1 Dominant action

Let a be a dominant action of player i. The revelation phase will last one

round, in which the short-sighted type of player i plays action a, and the long-

sighted type of player i plays some other action b 6= a. Both types of player −i
play the same action c that is a best response to the mixed action that plays

a with probability π and b with probability 1 − π, where π is the probability

that player i is the short-sighted type.

This clearly reveals player i’s type, as S and L play different actions. It is

also a best response for the S type, since he plays a dominant action, and for

both types of player −i, since they play a best response. Thus, this revelation

phase can be part of an equilibrium of the repeated game.

D.2.2 Mixed NE action

Suppose now that player i has no dominant action in G. Let α be a NE of

G in which player i plays a mixed strategy, and let a be the action played by

player i with minimal but positive probability in this equilibrium. Suppose

αi(a) = q. Also, suppose that the probability that player i is the short-sighted

type is π. The type-revelation phase for player i will consist of a sequence

of stage games G, where both types of player −i play α−i. The two types of

player i play differently, as follows.

Repeat the following until the posterior π on type S is 0 or 1:

1. If π ≤ q:

• The short-sighted type of player i plays action a.
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• The long-sighted type of player i plays action a such that the

total (unconditional) probability of a is q, and other actions so

that the distribution over actions is αi.

• If after this game player i played an action other than a, then the

posterior becomes π = 0. Otherwise, the posterior π increases

to π/q.

2. If π > q:

• The short-sighted type of player i plays a so that the uncon-

ditional probability of a is q, and plays the other actions with

probabilities proportional to their probabilities under αi.

• The long-sighted type of player i plays all actions except a with

probabilities proportional to their probabilities under αi.

• If after this game player i played action a, then the posterior on

S is π = 1. Otherwise, the posterior π decreases to (π− q)/(1−
q).

Note that this type-revelation phase can be part of an equilibrium of the

repeated game, since both types of both players play actions that are part of

a NE.

Furthermore, this phase leads to the revelation of player i’s type with

probability 1. Suppose first that he is short-sighted. Whenever the players

play (2) above, his type is revealed with probability q/π. When they play

(1) above, his type will not be revealed, but the posterior on π increases by

a factor of 1/q. Within a finite number of stages, then, π will once again be

greater than q, and they will play (2) again, and so on. Thus, player i’s type

will be revealed in a finite number of rounds, and this revelation phase will

end. More formally, for any ε > 0, there is a K such that after K repetitions,

the probability that player i’s type will be revealed as S is at least 1− ε.

42



Finally, a similar argument holds when player i is long-sighted: in that

case he will fully reveal his type when players play (1), and they can play (2)

at most a finite number of times for each time they play (1).

D.2.3 Pure NE action only

The last case to consider is when player i has no dominant action in G and

when all NE ofG are such that i plays a pure action. This case is more involved,

but the basic strategy will be to construct a type-revelation phase that lasts

at most k rounds. In each stage game of the phase, both types of player −i
will best-respond to player i, and the S-type of player i will best-respond to

player −i. The L-type of player i, however, will play a different action with

some small probability, in order to allow for separation. The construction of

such a strategy is closely related to the notion of a trembling-hand perfect

equilibrium and requires some additional definitions.

An ε-mixed action is a mixed action that places weight at least ε on each

pure action. Furthermore, recall that a trembling-hand perfect equilibrium

(THPE) α of a game G is a mixed-action profile such that there exists a

sequence (εk)k≥0 that converges to 0 and a sequence (αk)k≥0 that converges to

α, and for which each αk is εk-mixed, such that for each player i, the mixed

action αi is a best response to αk−i for all k.

Definition 3 A one-sided THPE for player i is a THPE where only player

i trembles. Formally, it is a mixed-action profile, α, such that there exists a

sequence (εk)k≥0 that converges to 0 and a sequence (αki )k≥0 that converges to

αi for which the following hold:

• each αki is εk-mixed;

• αi is a best response to α−i; and

• α−i is a best response to αki for all k.

Note that any (one-sided) THPE is also a NE.
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Lemma 9 In any game, there exists a one-sided THPE for player i.

Lemma 10 For any sequence {εm}m≥0 that converges to 0 there exists a con-

vergent subsequence {εk}k≥0 and a one-sided THPE α for player i with a cor-

responding sequence {αki }k≥0, such that each strategy αki is εk-mixed.

Proof: The proof is analogous to the standard proof for the existence of

a THPE (see, e.g., Proposition 249.1 in Osborne and Rubinstein, 1994), with

the proper modifications for a one-sided THPE for player i. We include it here

for completeness.

For each m, define the normal-game Gm to be the one in which player i’s

actions are the set of all εmi -mixed actions of player i in G, and player −i’s
actions are all his mixed actions in G. By Glicksberg (1952), each such game

has a Nash equilibrium αm. By Bolzano-Weierstrass, {αm}m≥0 has a conver-

gent subsequence {αk}k≥0, which converges to some α. It is straightforward to

verify that α is a one-sided THPE for player i, with corresponding sequence

{αki }k≥0 in which each αki is εk-mixed.

Consider a NE of the stage game, α, where player i plays a pure action,

a. Assume that at the given stage, the prior probability that i is of type L

is q = q(0). We now construct an auxiliary strategy profile αq(ε) for any

0 < ε ≤ q. For player −i, let αq(ε)−i(S) = αq(ε)−i(L) = α−i. That is, both

types of player −i play their equilibrium action α−i. On the other hand, type

S of player i plays the pure action a (αq(ε)i(S, a) = 1), and type L mixes as

follows: he plays all actions other than a with equal probabilities, and action a

with some probability, such that the prior probability (not knowing the type)

that a is not played equals ε. This is possible because 0 < ε ≤ q.

Assume we play this stage game action profile once. If i plays an action

other than a, then this reveals that the type of i is L. Otherwise, if a is

played, then the probability that the player is of type L decreases. Denote

this posterior probability by q(1). If it is still greater than or equal to ε, then

the strategy αq(1)(ε) is well-defined.
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We can repeat this iteratively until one of the following occurs: Either, at

some stage, the action a is not played, in which case player −i learns that i

is of type L. Otherwise, action a is repeatedly played until, at some stage k,

the posterior probability that player i is of type L, denoted q(k), is eventually

less than ε.

Lemma 11 There is a sequence {εk}k≥0 converging to 0 such that the follow-

ing holds for each k: if we start with the prior on L equal to q(0) = 1 − βi,
players play the mixed actions αq(·)(εk), and a is not played in one of the first

k− 1 stages, then at the beginning of the k’th stage, the probability that player

i is of type L is exactly εk.

Proof: By construction, for each ε there is some k(ε) such that if we start

with prior q(0) = 1− βi, players play the mixed actions αq(·)(ε), and a is not

played in one of the first k(ε)− 1 stages, then at the k(ε)th stage the posterior

of player i being of type L is q(k(ε)−1) ≤ ε. Denote by g(k, ε) the probability

that player i is an L-type at the beginning of round k, given that players play

the mixed actions αq(·)(ε). Observe that for any ε′ < ε, if k(ε′) = k(ε), then

g(k(ε′), ε′) > g(k(ε), ε). Furthermore, g(k(ε), ε) changes continuously with ε,

conditional on k(ε) remaining fixed.

We now iteratively construct the sequence {εk}k≥0. First, fix ε0 = 1−βi and

the corresponding k = 0. Next, suppose we have constructed the sequences for

all k ≤ k, and consider the case k = k + 1. If we decrease εk to some ε < εk,

then in round k we will have g(k, ε) > g(k, εk). In particular g(k, ε) > εk, since

g(k, εk) ≥ εk, and also g(k, ε) > ε (since ε < εk). Thus, we can add another

round of the stage game. As we consider smaller and smaller ε, the posterior

on L in round k = k+1 will be higher and higher. Since both ε and g(k+1, ε)

change continuously, at some ε they will be equal. Set εk+1 = ε.

When a mixed action is ε-mixed, it may be the case that the mixing player

plays all actions with probability strictly greater than ε. The following lemma

shows that when ε is small enough this is no longer the case.
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Lemma 12 Suppose G is such that in every NE, player i plays a pure strategy.

For any one-sided THPE α for player i with corresponding sequence {αki }k≥0
that is εk-mixed for each k, the mixed action αki places weight exactly εk on all

but at most one action.

Proof: Suppose towards a contradiction that for some k, the mixed action

αki places weight greater than εk on more than one action, say actions a (the

pure equilibrium action) and b. Recall from the proof of Lemma 10 that αki is

a best-response to α−i out of the set of all εk-mixed actions. But since both a

and b are played with probability greater than εk, it holds that both a and b

are best responses of player i to α−i.

Now, since α is a NE, α−i is a best-response of player −i to the pure action

a of player i. By genericity assumption 1 on G, α−i must also be a pure action,

as there are no distinct pure action c and c′ for which u−i(a, c) = u−i(a, c
′).

Thus, as αki is a best response to α−i, it is a best response to a pure action,

say action c. Again by the genericity assumption, it cannot be the case that

ui(a, c) = ui(b, c). Thus, it is impossible for both a and b to be best responses

to α−i, a contradiction.

Combining Lemmas 10, 11, and 12 yields the following. There exists a k

with the following properties:

1. αki places weight exactly εk on all actions other than a, and the action a

is a best response of player i to α−i.

2. α−i is a best response of player −i to αki .

3. If players play the mixed actions αq(·)(εk), and a is not played in one

of the first k − 1 stages, then at the beginning of the k’th stage, the

probability that player i is of type L is exactly εk. In the k’th stage,

the L-type does not play action a, and so his type will be revealed with

certainty.
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This is thus a type-revelation phase that lasts at most k rounds. Note that

in each stage game of the phase both types of player −i best-respond to player

i, and the S-type of player i best-responds to player −i. Finally, after at most

k rounds, the type of player i is revealed with certainty.
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