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ABSTRACT

The socio-technical perspective on engineering system de-
sign emphasizes the mutual dynamics between interdisciplinary
interactions and system design outcomes. How different disci-
plines interact with each other depends on technical factors such
as design interdependence and system performance. On the other
hand, the design outcomes are influenced by social factors such
as the frequency of interactions and their distribution. Under-
standing this co-evolution can lead to not only better behavioral
insights, but also efficient communication pathways. In this con-
text, we investigate how to quantify the temporal influences of
social and technical factors on interdisciplinary interactions and
their influence on system performance. We present a stochastic
network-behavior dynamics model that quantifies the design in-
terdependence, discipline-specific interaction decisions, the evo-
lution of system performance, as well as their mutual dynamics.
We employ two datasets, one of student subjects designing an
automotive engine and the other of NASA engineers designing
a spacecraft. Then, we apply statistical Bayesian inference to
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estimate model parameters and compare insights across the two
datasets. The results indicate that design interdependence and so-
cial network statistics both have strong positive effects on inter-
disciplinary interactions for the expert and student subjects alike.
For the student subjects, an additional modulating effect of sys-
tem performance on interactions is observed. Inversely, the total
number of interactions, irrespective of their discipline-wise dis-
tribution, has a weak but statistically significant positive effect on
system performance in both cases. However, excessive interac-
tions mirrored with design interdependence and inflexible design
space exploration reduce system performance. These insights
support the case for open organizational boundaries as a way for
increasing interactions and improving system performance.
Keywords: Interdisciplinary Interactions; Systems Design;
Network-Behavior Dynamics; Descriptive Analysis

NOMENCLATURE
S Design interdependence matrix
10,81, stm,--- 1y Equidistant observation times
0 Sampling window, i.e., difference between consecutive ob-
servation times [t,,—1,ty, ] forallm=1,.... M
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T Smoothing window

X(t,) Matrix of interdisciplinary interactions counted during
interval [£,,—1,tp]

Z(ty) System performance vector averaged during interval
[tmfl vtm]

1 Introduction

Most activities in engineering systems design are performed
by people in multiple disciplines working concurrently and col-
laborating with each other [1,2]. The interdisciplinary interac-
tions influence the systems design outcomes such as system per-
formance, design costs, and on-time completion of projects [3].
The interaction patterns generally vary along dimensions such as
the frequency of interactions and the distribution of interactions
across disciplines. Improving the system design outcomes re-
quires understanding which factors drive interdisciplinary inter-
actions as well as understanding which interaction patterns are
effective. This understanding can not only provide behavioral
insights about designers’ decision making, but also lead systems
engineers to devise effective communication pathways.

According to some existing models, the patterns of in-
terdisciplinary interactions predict changes in system perfor-
mance [4,5,6,7,8]. Such studies mainly utilize social network
statistics to represent the mechanisms underlying interactions.
However, it is well known that both social factors arising from
historical interactions and technical factors arising from design
interdependence (what depends on what) or system performance
shape the interactions [2,9, 10]. There is a need to establish mod-
els of simultaneous effects from both the social and technical fac-
tors on interactions, in addition to modeling the effects of result-
ing interaction patterns on the system performance. A model for
this purpose should infer the relative influence of social and tech-
nical factors based on empirical observations. This would allow a
comparison of influences across different design contexts (tasks,
designer expertise, etc.). The model should also capture the tem-
poral co-evolution of interactions and system performance, be-
cause the effectiveness of interactions may vary over time [11].

Towards that goal, the research objective of this paper is fo
quantify the temporal influences of social and technical factors
on interdisciplinary interactions and their influence on system
performance. We hypothesize that this quantification can lead
to insights about structuring effective communication pathways.
Specifically, the focus is on two types of influences: (i) how dif-
ferent social and technical factors influence discipline-level de-
cisions, such as how much to interact (rate of interactions) and
whom to interact with (pairwise interactions), and (ii) how dif-
ferent interaction patterns (e.g. the amount of all interactions or
the degree of mirroring between interactions and design interde-
pendence) influence the system performance. We assume that
a single decision maker represents a discipline. Our approach
consists of a stochastic network-behavior dynamics model, in-

spired from longitudinal network models [12, 13], to capture the
temporal influences. The model represents interactions during
any given time period as a network with disciplines as its nodes.
The link formation represents discipline-level interaction deci-
sions, whereas the network behavior represents the system per-
formance. We train the model separately on two datasets, one of
40 different student teams designing an automotive engine and
the other of six studies by a team of NASA engineers design-
ing a spacecraft. Statistical Bayesian inference is used on both
datasets separately to get posterior parameter estimates for the
dynamics model.

This work contributes a stochastic model along with behav-
ioral insights and has broader implications for the practice of de-
signing engineering systems. First, the theoretical model trained
on empirical observations enables inductive claims about inter-
disciplinary interactions in a generalized situation. The trained
model acts as a generative model of interactions in counterfac-
tual settings, generating potential insights that can be tested using
future experiments. Second, the results shed light on the similar-
ities and differences between interaction patterns of the expert
NASA engineers and beginning student designers. For instance,
comparisons between students’ and NASA engineers’ system de-
sign reveal differences in decisions about how much they inter-
act, but similarities in choosing whom they communicate with.
Third, the insights collectively support the case for interactions
between highly as well as loosely-coupled subsystems (open or-
ganizational boundaries) as a way to improve the performance of
the designed system.

The rest of the paper is structured as follows. Section 2 re-
views the literature on driving factors behind the interdisciplinary
interactions and their effects on system outcomes. We assemble
the insights from this literature into five hypotheses to be tested.
Section 3 begins with key assumptions and explains mathemat-
ical details of the model. Section 4 details the subjects, tasks,
and the contexts of concurrent design activities in two datasets.
Section 5 interprets of the estimated model parameters from the
statistical Bayesian inference for each dataset separately. Section
6 concludes with the summary of key results and contributions
and offers suggestions for future research.

2 Related Work and Hypotheses

2.1 Communication Patterns in Engineering Design
Teams

Current literature in engineering design points to different
types of social and technical factors influencing interdisciplinary
interactions and system performance. This section describes
those factors along with the evidence of their influence.

2.1.1 Social Factors Many empirical studies of real-world
engineering firms reveal that the interdisciplinary interactions are
structured and semantically coherent even though there exists
constant background chatter. Dong et al. [14] observed coherent
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thinking in team social dynamics based on records of design doc-
uments, group- and personal reflections. Snider et al. [15] high-
lighted that the interdependence between communication and de-
sign activities exists in addition to background chatter.

There is also a significant interest in developing agent-based
modeling frameworks that represent interactions as network with
individuals/disciplines as nodes and edges as interactions [16,9].
These frameworks are based on the premise that tracking social
network statistics allows tracking of the progress in design ac-
tivities. Ultimately, the goal of such frameworks is to model the
effects of individual traits and cognitive biases on design team
formation. For example, McComb et al. [4] model cognitive bi-
ases in communication such as preference over own design (self-
bias) and organic interaction timing. Ball and Lewis [7] show
that network statistics such as eigenvalue centrality, network de-
gree, and betweenness are correlated with the diversity of teams
and potentially correlated with design success. Piccollo et al. [6]
model persons and design activities as two separate sets of nodes
in a bipartite network. They simulate design process failure as
targeted removal of people and design activities. Their simula-
tions show that the design process is most vulnerable to failures
arising from people. Wu et al. [5] utilize social network anal-
ysis to represent collaboration in design teams. They showcase
different network statistics to identify team members acting as
leaders and team members performing the same activity.

Assuming individuals are the agents driving interdisci-
plinary interactions, we can consider alternative models of their
decision behaviors. Two primary models are the reciprocity
model, based on the reciprocity between two individuals [17,18],
and the popularity model, based on the popularity of individ-
uals [19]. In the context of engineering systems design, these
models translate into the following hypotheses.

Hypothesis 1a The larger the interactions between two dis-
ciplines in past (i.e. reciprocity), the more likely they will interact
in future.

Hypothesis 1b The larger the overall interactions by a dis-
cipline in past (i.e. popularity), the more likely that the discipline
attracts interactions from other disciplines in future.

2.1.2 Technical Factors Design interdependence of subsys-
tems significantly influences how much and with whom respec-
tive disciplines interact. In complex systems design tasks, mul-
tiple disciplines/designers communicate to match the technical
interfaces between their respective subsystems [9]. Since such
tasks are intractable [20], the mirroring of interactions with the
design interdependence is necessary to manage complexity in
complex system design [21]. That is, ties should exist between
subsystems that are dependent on each other because of shared
design variables, design constraints or requirements. This is
popularly known as the “mirroring hypothesis”. Theoretical ap-
proaches for evaluating mirroring involve the use of the “design
structure matrix” (DSM) [22,23]. For instance, a DSM embody-

ing design interdependence between subsystems may be called
a “technical DSM,” and a DSM embodying interactions may be
called an “interaction DSM”. Theoretical frameworks to evalu-
ate the fit between technical and interaction DSMs are recently
developed [24,25]. The evaluation of this fit can identify missed
interaction opportunities, and thus identifying the need for new
communication pathways.

Hypothesis 2: The number of shared design variables (de-
sign interdependence) between a pair of disciplines increases the
number of interactions between them.

A relatively unexplored factor influencing the interdisci-
plinary interactions is the evolving state of system performance.
Disciplines/designers communicate for the purposes of clari-
fying problem specifications and background, resolving newly
arising issues, and supporting detailed managerial understand-
ing [2, 15, 8]. Since the overarching goal is to improve system
performance outcomes, whenever design inconsistencies or is-
sues arise (i.e. system performance drops), disciplines engage in
design dialogue to resolve those issues.

Hypothesis 3: Lower system performance increases the
likelihood of future interdisciplinary interactions.

2.2 Impact of Communication Patterns on the System
Performance

The inverse problem of finding driving factors behind inter-
action patterns is to identify specific patterns that improve the
system performance. A number of studies suggest a positive im-
pact of the amount of interactions on system performance. In-
teractions are important for resolving design inconsistencies [8]
and building consensus [2].

Hypothesis 4: A larger number of interdisciplinary interac-
tions increases the likelihood of improvements in system perfor-
mance over time.

Despite its benefits, too many or too few interactions re-
sult in imbalance of resources allocated to interactions versus
design exploration [26]. Quantifying the effects of interaction
amounts can help identify the “sweet spot” between the two
extremes. Some studies investigate the adoption of fechnical-
communication mirroring as a way to improve performance out-
comes in industry studies [21]. According to these studies, the
mirroring has mixed effects. Colfer and Baldwin [21] find that
the mirroring is prevalent in industrial organizations and firms,
but partial mirroring whereby disciplines may break down orga-
nizational barriers and form new ones results in superior perfor-
mance outcomes. For open organizations, full mirroring is absent
which the authors associate with digital modes of interactions
that enable coordination. For engineering design teams alike, the
results suggest that increased knowledge grounding could have
detrimental effects when teams are faced with tasks that fall out-
side the team’s expertise [27]. These studies imply that the per-
fect mirroring between disciplines’ interactions and their design
interdependence is less preferable than partial mirroring whereby
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a suitable fraction of interactions exist between disciplines with
weak design interdependence. This allows disciplines to collec-
tively tackle unforeseen design issues that arise during the design
process.

We extrapolate the influence of moderated the technical-
communication mirroring to the changes in the overall system
performance, as outlined by the following hypothesis. Note that
since the technical-communication mirroring is always partial,
we use the terminology of strongly mirrored interactions to rep-
resent interactions between highly-interdependent disciplines.

Hypothesis H5: An excessive number of strongly mirrored
interactions reduces the system performance over time.

In short, different studies focus on social and technical fac-
tors but rarely incorporate simultaneous effects of those factors
in empirical observations and modeling effort. This paper builds
modeling and empirical support towards a comprehensive induc-
tive framework, with the purpose of explaining interdisciplinary
interactions and evaluating the effectiveness of various interac-
tion patterns. Section 3 details the proposed theoretical model
and its embodied structural assumptions.

3 Stochastic Network-Behavior Dynamics Model

This section presents details of key assumptions behind the
stochastic network-behavior dynamics model.

Engineering systems design is a complex process that in-
volves multiple disciplines. Two main features of this process
are: the interdependence between design variables and the ag-
gregation of subsystem-level objectives. These features neces-
sitate communication between disciplines. The collective goal
of disciplines is to design systems that maximize certain objec-
tives. Individually, a discipline optimizes a subsystem by eval-
uating subsystem-level objectives for different values of design
variables, which are aggregated into the system level objectives.
In most cases, different subsystems share varying number of de-
sign variables between one another. Through design evaluations,
a discipline finds how a design variable affects subsystem-level
objectives and selects a suitable value.

Given this complexity, analytical modeling of a systems de-
sign process requires that we place certain assumptions of the na-
ture of design exploration and interdisciplinary interactions. We
consider that a systems design scenario involves N disciplines.
Each discipline is responsible for deciding a fixed set of design
variables. The interdependence of design variables between dis-
ciplines is a N x N matrix S (design interdependence) whose ele-
ment s;; represents the number of shared variables between dis-
ciplines i and j for all i, j(#i)=1,2,...,N.

We assume that every discipline repeats two decisions: (i)
deciding how much to interact and (i) whom to interact with.
The interdisciplinary interactions are a result of decisions made
by disciplines (i.e., communication is an actor-based process).
Further, there can be only bidirectional interactions between any
two disciplines, which we call pairwise interactions. When mak-

ing a decision, we assume that every discipline tries to maximize
an unobserved utility, and selects the discipline that maximizes
this utility. Also, pairwise interactions are non-hierarchical
meaning that interacting disciplines can have any role, e.g., core
designer, systems engineer, and customer. Mathematically, an
N x N matrix X (#,,) assembles observed interactions over time in-
terval (Z—1,4,]. An element of the adjacency matrix x;;(,,) € Z
denotes the number of interactions between disciplines i and j
during the given time step. A diagonal entry x;;(f,,), if defined,
represents discipline i’s interaction within itself, e.g., local de-
sign iterations.

On the system performance side, each design objective that
constitutes the system performance vector is discrete but or-
dered (ordinal) variable whose higher level is preferred over a
lower level. A K-dimensional vector Z(z,,) in the vector space
Z denotes the average system performance over time interval
(tm=1,tm]-

Clearly, a discipline’s decisions are conditional on what is
observes (complete or incomplete information). When disci-
plines are co-located, all relevant information is most likely ob-
served by every discipline. On the other hand, the information
is partially observed for distributed disciplines. We allow for the
possibility of both cases in the model.

Finally, we assume that the temporal dynamics of inter-
disciplinary interactions and system performance is a result of
the time-homogeneous Markov process. The Markov assump-
tion means that the conditional distribution of future interactions
{X (tm+1) | tm+1 >t} given the past and the present for any time
t,, depends only on the present state of interactions X (f,,,) and
the present system performance Z(t,,), in addition to the design
interdependence S. Similarly, the distribution of future system
performance {Z(t+1)| tm+1 >t} for any time #, is condition-
ally dependent on only the present state X (z,,). We assume that
these myopic effects are independent of the time (¢,,) at which
they are evaluated, hence, time-homogeneous. Figure 1 presents
a graphical form of this temporal dynamics model.

Design
Interdependence

Interdisciplinary
Interactions ’

FIGURE 1: A model of communication and design performance
dynamics.

System
Performance
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3.1 Measuring Interdisciplinary Interactions and Sys-
tem Performance over Time

The observation times are discrete, equidistant times #(=
0),f1,t2,...,fy in a fixed time interval T = [0,zy/]. Interdisci-
plinary interactions form a finite space X of networks. A sam-
ple network quantifies pairwise interactions (an edge property) in
terms of a weighted adjacency matrix. Such network is a directed
network if identification of the source and the recipient of each
interaction is possible. Accordingly, a time series of interactions
forms a discrete stochastic process {X (t,,)| tm € T} on the net-
work space X'. Similarly, the system performance over time is
a discrete stochastic process {Z ()| t,, € T} on the vector space
Z where m'" time step denotes interval (f,_1,%,]-

A key tuning parameter here is the constant separation be-
tween any two consecutive observation times & =1,,_1 —t,,, which
we call the sampling window. The pairwise interactions within
a sampling window are simultaneous and independent. A large
sampling window & can misclassify interactions as independent,
whereas a small 6 would thinly scatter interactions between ob-
servation times. We also redefine a time-series by taking a mov-
ing average over every T consecutive time steps, where 7 is called
the smoothing window. The moving average time-series smooths
out noisy variations from observations, thereby highlighting es-
sential patterns.

3.2 Modeling the Evolution of Interdisciplinary Inter-
actions

Based on present observations of m'" time step, a discipline

engages in a sequence of decisions that result in future interac-
tions for m + 1" time step. These decisions are:

1. Deciding the rate of interaction, and

2. Deciding the choice probability for pairwise interactions.
Such generation of interdisciplinary interactions, a result of ex-
plicit choices by individual disciplines. Algorithm 1 summarizes
this process.

3.2.1 Deciding the Rate of Interaction The first decision
is how a discipline decides the rate of interaction, i.e., the aver-
age number of interactions by the discipline during given time
step. A simplest model is to assume a constant rate of interac-
tion. However, in accordance with the assumption of our model
in Figure 1, we represent the rate of interaction as a function of
the state of system performance Z(f,,) = z. To allow flexibility,
the direction of the influence is allowed to be positive or negative.
If the influence is negative, the number of interactions increases
if the present system performance is low.

Let vector B, € RX represent the effect of present system
performance on the frequency of interactions of type c. Param-
eter 7, € R is a constant intercept. Then, the time-variant rate of
interaction of type ¢ decided by discipline i is

Aci(tms1|Bes Ve, 2) = Pt (1)

Algorithm 1: Steps in deciding the interdisciplinary
interactions for a future time step

Result: Interdisciplinary interactions X (,,41) at m+ 17"
time step
Require: Interdisciplinary interactions X (,,) = x;
System performance Z(f,,) = z; Design
interdependence S at m'" time step
for Interaction type c in set C do
for Disciplinei=1,2,...,N do
Decide the rate of interaction A ;(t+1|2);
Sample the number of interactions
N i(tms1|z) ~ Poisson(Aci(tm+1]2)) ;
for Pair ij of type ¢ do
Decide the choice probability
P =pij(tms1|X,2,5i);
Sample the number of pairwise interactions
Xij(tm+1) ~ Binomial (N j(tu412), p)
end

end
end

Here, we assume that discipline i fully observes the present sys-
tem performance z. If that is not the case, partially observed sys-
tem performance replaces vector z in Eq (1). Finally, The number
of interactions of type ¢ during the next time step is assumed to
be a Poisson distribution given by:

Ne i(tmr1z) ~ Poisson(Ac i(tn+1]2)). )
Here, the number N, ;(#,+1) counts all interactions of type ¢ in-
volving discipline i.

3.2.2 Deciding the Choice Probability for Pairwise In-
teraction For interaction of certain types (e.g. with peer dis-
ciplines) where a discipline need to select one discipline out of
multiple, we assume that the discipline assigns choice probabil-
ities. Modeling the choice probability requires representation of
a specific mechanism by which a discipline chooses whom to
interact with.

We assume that discipline i has unobserved utility in com-
municating with others which it tries to maximize. In gen-
eral, there could be multiple network statistics dependent on the
present adjacency matrix X (#,) = x. We denote the vector of
network statistics as f;(x) = {fj1 (x), f2(x),..., fi(x)}. Specif-
ically, we consider two network statistics. First, nodal popu-
larity statistic measures the total incoming degree of the dis-
ciplines that discipline i is connected to. It is mathematically
given by f;1(X) = X Lu;50 Xy Xnj» Where indicator function
lx,«j>0 is 1 if x;; is a positive integer and 0 otherwise. Then, a
positive parameter of nodal popularity would imply that disci-
plines with high incoming interactions in the present are likely
to be chosen for more interactions in the future. Second, the
pairwise reciprocity statistic measures the number of mutually
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matched incoming and outgoing links with the connected disci-
plines, fi2(x) = ¥ ;.;min{x;;,x;;}. A positive parameter asso-
ciated with the reciprocity would imply that future interactions
occur between disciplines are that interacting in present. Finally,
in accordance with the mirroring hypotheses, discipline i would
prefer to communicate with others that share higher design inter-
dependence S = {s;;} with it.

By interacting with discipline j, discipline i can potentially
change its dyadic network statistics by amount f;(A;;x) —f;(x),
where operator A;; reflects the single change due to an interaction
added to element x;;. Similarly, by interacting with discipline j,
discipline i increases its utility by amount proportional to design
interdependence s;;. Then, the projected change in utility of dis-
cipline i by interacting with discipline j is:

Uij(x) = B - (£i(Aijx) = £i(x)) + ¥sij + &), 3)
where random parameter &; changes between discipline pairs
and changes with time (which is assumed implicit to simplify
the notation). Parameters B € RY and y represent the relative
preferences for network statistics and design interdependence,
respectively. For co-located disciplines, discipline i fully ob-
serves present interdisciplinary interactions x. For distributed
disciplines, partially observed interactions replaces matrix X in
Eq. 3. Note that discipline i’s utility in Eq.(3) is different from
the the system-discipline design objectives that all disciplines
supposed to maximize collectively.

Then, the choice probability for discipline i to select a dis-
cipline for interaction in the next time step is exponentially pro-
portional to the change in utility in Eq (3). If we consider that &;;
has a standard Logistic distribution, then the probability that dis-
cipline i selects discipline j, given that discipline i is interacting,
is:

B (%) +ysij

pij(X7sij) = Zh;&[ eﬁ'fi(Aihx)JrVSih . (4)

This choice probability function has a multi-logit form similar to
multinomial logistic regression and dependent on present state of
interactions x and pairwise design interdependence s;;.

3.3 Modeling the Evolution of System Performance

In the proposed model, future state of system performance
Z(tm+1) dependence on the present state of observed interdis-
ciplinary interactions X (#,,+1) = x. Through larger interactions
among the disciplines and partial or substantial rework, the de-
sign inconsistencies may get resolved in a long term. The down-
side of misplaced, inefficient distribution of interactions might
be the lost opportunity to recover from design inconsistencies.

Algorithm 2 presents the steps involved in this process. Let
vector N(1,,) € Z€ denote the observed numbers of total interac-
tions through C different types. We assume that the change in a

performance component from its present level to a future level is
in in accordance with the maximization of an objective function
similar to Eq. (3). Note, however, a change in system perfor-
mance is not a matter of conscious choice on part of disciplines
and rather the virtue of the discipline’s design search decisions,
subsystem models, and integration of system-level objectives.
Following these assumptions, we define the utility of generating
level z for the k""-component of the system performance vector
in the next time step zx (fy+1) as:

Ui(z) = By -N(twm)z+ Yiz+ G (5)
Here, positive values of effect parameters B imply that large
numbers of interactions increase Z (t,,+1). Positive y; would sig-
nify that performance levels are always large in general, where
as negative y; would signify the opposite. Random variable (; is
specific to the present time step and design component.
From the set of possible levels Z;, the temporal dynamics
generates a particular level z with the following probability:

Bi-N(tw)z+72

quZk Bi “N(tm)g+ Y/fq'

This choice probability depends on the present interaction state
x. Implicitly, the derivation of Eq.(6) assumes that the random
variable {; has a standard logistic distribution.

pi(z,x) = (6)

Algorithm 2: Steps in predicting the system perfor-
mance for a future time step

Result: System performance Z(f,,+1) at time Step f,,,+1
Data: Interdisciplinary interactions X (#,,) = x
for Design objective k=1,2,... . K do
Read observed interactions of different types
N(tm) = { Xijetype cXij }eeCs
for Performance level 7 in set Z; do
‘ Calculate the choice probability py(z,x);
end
Assemble choice probability vector
P = {Pr(2,X) }rez;
Sample future performance level
2k (tm+1) ~ Categorical (2, py)

end

4 Empirical Datasets

As the source of empirical observations, this section de-
scribes two empirical datasets, engine design dataset and space-
craft design dataset. As an overview, Figure 2 presents the disci-
plines and their interdependence for both datasets (more details
in Ref. [11]). Each discipline represents one subsystem.

4.1 Engine Design Dataset

The engine design task involves design of an engine par-
titioned into five subsystems/disciplines, viz., connecting rod,
crankshaft, piston head, flywheel, and piston-pin. One individual
fulfills the role of each of discipline. The design of each sub-
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(a) Design structure matrix for the engine design problem

Connecting
Rod 6.0

Crankshaft
4.5

Flywheel
Piston 3.0
Pistonpin 15

Broadcast
0.0

s

C&DH 17 12 (23 -30
Comms 19 16|23
g 13 10 11 0 12 11 12
k23 17 19 12 0 10 19
(oJff 10 12 16 11 10 0 10

Power - 23 23 12 19 10 0O

R 21 20 20 13 16 11 21
EE 10 10 10 8 10 8 10
IO EIR 23 21 228 11 19 10 24

ezl © 9 9 8 9 10 8

FIGURE 2: Pairwise design interdependencies in the matrix cells
represent the number of shared design variables

system requires specification of a set of design parameters while
considering the effects of other parameters shared with other sub-
systems. The system-level design objectives in the experimental
task are to minimize the total mass of the engine components and
maximize the factor of safety against failure. The total mass is
the sum of individual masses, whereas the system-level factor of
safety is minimum of individual factors of safety. The perfor-
mance in both cases is measured in five discrete levels.

#Mirrored Core-
Discipline Interactions

#Core-Discipline
Interactions

400
300 { —L ,’I‘,
S

200{71 T L £ L

L1l - ki !

i el R R

11 bt I 7=
100 Lt 1T o T .-——r-; I-;:

(] g exl =
o (mpunl == = T

SPp SP; CPy CPy MDL  SPy SPy CPp CP; MDL

FIGURE 3: The distribution of observed interactions between
core disciplines.

Disciplines working on the same project communicate with
one another through one-to-one text messages. Another compo-
nent of the team is a shared virtual screen, called “broadcast”,
that showed the current values of design objectives and design
parameters. Since disciplines were distributed and were only al-
lowed one-to-one interactions, the broadcast rule was introduced
as an integrative role to facilitate information exchange. The
dataset include timestamped interactions between subjects on the
same team as well as timestamped values of design objectives
(total system mass and factor of safety).

In total, the dataset spans 40 teams, and a total of 200 under-
graduate students in mechanical engineering. Each team belongs
to one of the four experimental conditions varying in: i) design
exploration using simulations on the continuous design space
versus a catalog with pre-evaluated design points scattered across
the design space, and ii) the global availability of shared design
parameter database on the broadcast screen versus no such avail-
ability. The factorial design of experiment generates four exper-
iment treatments: i) simulations without a parameter database
(S-Py), ii) simulations with parameter database (S-P;), iii) cata-
log search without a parameter database (C-Py), and iv) catalog
search with parameter database is visible (C-Py).

4.2 Spacecraft Design Dataset

The spacecraft design task involves conceptual design of
spacecraft systems with 10 core disciplines and 2 integrative dis-
ciplines such as systems engineer and customer. Each core disci-
pline is represented by one engineer, whereas an integrative dis-
cipline includes two or more individuals. Such task is conducted
through 4-day long studies at the NASA Goddard mission design
laboratory (MDL). The dataset includes observations from a total
of six studies. For each study, co-located NASA engineers with
specialized knowledge of one subsystem design their respective
spacecraft subsystems. Additionally, a systems engineer facili-
tates information interaction between different subsystems. One
of the design objectives is to meet customer-specified require-
ments on the spacecraft dry mass, which is the total mass of in-
dividual subsystem designs. Subsystem engineers periodically
post their present subsystem mass to a common database acces-

Copyright © 2021 by ASME



(a) Condition S-P

#Core-Discipline #Local Design
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FIGURE 4: Predicting the rate of interactions. The predictor variables (i.e., the performance metrics) are ordinal variables, whose larger
values are preferred over smaller values. Estimates denoted by filled points are statistically significant with p—value less than 0.01.

sible by others. To introduce consistency with the engine design
dataset, we categorize the achieved system performance (space-
craft dry mass) into five discrete levels based on study-specific
partitions.

The subjects of each study interact face-to-face for meet-
ings. The face-to-face meetings may include groups of two or
more subjects. The spacecraft design dataset converts a group
talk into one-to-one undirected pairwise interactions between all
those involved.

For each of the six spacecraft design studies, the dataset
includes timestamped observations of pairwise interactions, the
identities of disciplines involved in each interaction, and the
system-level spacecraft dry mass. Most of the six studies have
one engineer, mainly the same person, assigned to each subsys-
tem with detailed prior knowledge of their respective spacecraft
subsystems and relevant design interdependence.

5 Results and Discussion

The Bayesian inference on the stochastic network-behavior
dynamics model provides posterior estimates of model parame-
ters conditional on the time-series observations. The posterior es-
timates of model parameters represent the effects of independent
variables from the past on dependent variables in the present.
Examples of independent variables at (m—1)™ timestep are the
number of interactions N(z,—1), system performance Z(t,,_1),
and constant design interdependence S. In general, an indepen-
dent variable is a rolling average (in the case of system perfor-
mance) or rolling sum (in the case of number of interactions) of
observations over small duration in past, referred to as smooth-
ing window 7. We assume that T takes one of three values
7=1{8,58,108}, where 6 is the sampling period for observa-
tions. In the engine design dataset, 6 is 1 minute, where as § is 1
hour for the spacecraft design dataset. The dependent variables
are observations from the present #,, such as (i) the rates of in-
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teraction A (t,) for interaction types ¢ = 1,2,...,C, (ii) pairwise
interdisciplinary interaction X (z,,), and (iii) system performance
Z(tm).

We also define a new quantity named mirrored interactions.
Mirrored interactions are the interactions between highly cou-
pled disciplines in the system design team. Highly-coupled disci-
pline pairs in the engine design problem have one or more shared
design variables. In the spacecraft design problem, discipline
pairs with shared design variables 16 or more are considered to
be highly-coupled.

5.1 Operationalization of Hypotheses
5.2 Model Training

We train the stochastic network-behavior dynamics model
for the engine design and the spacecraft design datasets indepen-
dently. Different experimental conditions in the engine design
dataset are also treated independently. In each case, training data
corresponds to approximately 90% of teams. The trained model
is validated against the data of remaining teams, forming nearly
10% hold-out data. We assign a standard normal distribution as
the prior distribution for every model parameter. The likelihood
functions for three dependent variables are given by Eqgs. 2, 4,
and 6.

5.3 Descriptive Statistics

Figure 3 presents aggregated statistics (mean and variance)
of the number of interdisciplinary interactions. In the engine de-
sign experiment, the amount of total interactions (as well as mir-
rored interactions) is larger when catalogs are used for design
exploration (conditions C-Py and C-P;) than when designs are
sequentially evaluated on a continuous design space (conditions
S-Py and S-Py). Also, the ratio of mirrored interactions to to-
tal interactions in the NASA MDL teams is approximately 80%.
However, the same ratio is relatively small across all conditions
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FIGURE 5: Predicting the rate of interactions through different
channels. Estimates denoted by filled points are statistically sig-
nificant with p—value less than 0.01.

in the engine design dataset (50 —70%). This potentially high-
lights the effect due to differences in domain expertise of NASA
engineers and the student students.

5.4 Effects on the Rate of Interactions

Figures 6 and 7 summarize the effects of system perfor-
mance from past on the present rate of interaction. Positive esti-
mates denote positive effects whereas the negative estimates rep-
resent negative effects. Estimates denoted with filled points are
statistically significant with p—value less than 0.01.

In the engine design experiment, the past system or sub-
system performance levels a have negative effect on the present
number of local design searches (i.e., hypothesis H3 is sup-
ported). This effect is statistically significant in conditions S-
Pg, S-P; and C-Py, except condition C-P;. In condition C-Py,
the design space exploration is efficient due to the availability of
catalogs and the global availability of design parameters, which
may not necessitate larger design iterations.

Further, the past system mass performance has a negative
effect on the present rate of text-based interactions between core
disciplines (i.e., hypothesis H3 is supported). Low performance
levels of the system mass in the past drive more one-to-one tex-
tual interactions in the preset, highlighting the subjects’ focus on
the system mass levels. In condition C-Py, the observed negative
effect is only significant between consecutive time steps (7 = 1
minute), suggesting only a myopic effect.

In the NASA studies, Figure 7 reveals that the system mass
performance has a positive effect on the face-to-face interactions
over longer term (7 = 10 hours) (i.e. hypothesis H3 is not sup-
ported). Good system performance from the past fuels more
face-to-face interactions in long term (7 = 10 hours), unlike in the
student teams. The NASA engineers’ continued interdisciplinary
dialogue may be due to their incentives of maintaining the over-
all integrity of the spacecraft design, beyond just reducing the
spacecraft mass. Whereas, the student subjects’ incentives are
aligned with maximizing only the system performance based on
the system-level mass and FoS.

5.5 Effects on Pairwise Interdisciplinary Interactions

For the students’ engine design tasks, Figure 8 reveals that
the design interdependence and the pairwise reciprocity are sta-
tistically significant predictors of how a discipline chooses an-
other discipline for text-based interactions (hypotheses H1 and
H2 are supported). That is, the number of shared design vari-
ables is positively correlated with pairwise-specific interactions.
This positive effect is stronger in the conditions S-Py and S-P;
than in conditions C-Py and C-Pj, possibly because of larger
text-based interactions in S conditions. Additionally, the strong
influence of the pairwise reciprocity, i.e., the inclination to inter-
act with disciplines with history of interactions, signifies the role
of social factors in driving interdisciplinary interactions. The ef-
fect of nodewise popularity is small and statistically insignificant
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FIGURE 6: Predicting different rates of interactions from the past performance levels averaged over past 7 time period, for the student
engine design dataset. The performance levels are ordered discrete whose larger values are preferred over smaller values. The points
represent mean estimates and the bars capture the 5 and 95 percentile bounds. The positive estimates represent positive influence
whereas the negative estimates represent negative influence. The filled points are statistically significant with p—value< 0.01.

which is likely because the disciplines in the engine design task
are not co-located. Their interdisciplinary interactions are text-
based and not observable to all.

According to Figure 9, for the NASA MDL studies, the de-
sign interdependence, nodewise popularity, and pairwise reci-
procity all have statistically significant effects (hypotheses H1
and H2 are supported). As observed, both technical and social
factors drive the interdisciplinary interactions. These effects may
imply that the NASA MDL disciplines first interact with the ex-
pected peers, as guided by the design interdependence, and then
realize there are other critical disciplines. In hindsight, we know
that certain NASA MDL disciplines have regular interactions and
are even co-located to support that, thus increasing pairwise reci-
procity. Whereas, centralized interactions, as modeled by nodal
popularity, are more likely for people like mechanical design and

10

mission planning engineers because of their functional roles in
the design process. Note that the analysis considers only the core
disciplines excluding integrative disciplines such as customers
and systems engineers (and broadcast from student teams).

5.6 Effects on System Performance Changes

As Figure 10 suggests, the effects of amount of interactions
on the system performance are small across all conditions in
the engine design dataset (hypothesis H4 is partially supported).
Consistently, the number of text-based interactions by core dis-
ciplines has a small but significant positive impact on the system
factor of safety (FoS). However, the mirrored interactions are in-
versely correlated with the system performance, especially in the
conditions S-Py and S-P;. On the other hand, condition C-P has
a positive effect. Thus, hypothesis H5 is partially supported. In
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FIGURE 7: Predicting the rates of interactions from the past
performance levels averaged over T time period, for the NASA
spacecraft design dataset. The estimates denoted by filled points
are statistically significant with p—value< 0.01.

condition C-Py, design variables can only be exchanged through
text-based messages without the broadcast. Given lack of alter-
native channels, sharing such information through interactions
can be beneficial.

The number of local design searches also has a negative
correlation with system performance, e.g., the system factor of
safety. Larger design iterations lead to identification of new de-
sign inconsistencies, however, the student subjects’ fail to resolve
those inconsistencies. The problem complexity (the ruggedness
of design space) and the inability to go back to historic system
designs might also play roles in weak effects of communication
and negative effects of local design searches.

On the other hand, Figure 11 suggests that for the NASA
engineers designing a spacecraft system, the number of inter-
actions between core disciplines has a strong and statistically
significant effect on the system performance over the long term
(7 = 10 hours) (hypothesis H4 is supported). This is likely be-
cause a complex system such as a spacecraft may require longer
discussions to achieve meaningful improvement in the system
performance. On the other hand, too many mirrored interactions
result in immediate reduction in the system mass performance
(7 =1 hour) (hypothesis HS is supported). These observations
are consistent with the findings of the student teams, and likely
reflect the negative influence (even if it a small effect) on too
much grounding by design interdependence.

5.7 Model Validation

We also perform visual checks of model predictions against
the observed data and identify following limitations.

1. The models predicts the average number of interactions and
associated variance over longer duration much better than
the trends over short time duration.

2. The changes in the rates of interactions and system perfor-
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mance are not entirely described by social and technical pre-
dictor factors but occur explicitly due to the factor of time.
For example, the number of customer interactions in the
spacecraft dataset are large initially and reduce to 0 over
time. There is also increased interactions by all disciplines
towards the end in the spacecraft design task, due to to a
tag-up event where the disciplines reconvene to verify their
designs.

3. Model fit is poor for predictions of system performance
changes. The present number of core-interactions are weak,
although significant, predictors of the system performance,
as seen from Figure 10. Future work should consider the
content of interdisciplinary interactions as a predictor of sys-
tem performance.

6 Conclusion

This paper presents a quantitative approach combining
stochastic network-behavior dynamics model and empirical ob-
servations to represent causes and effects of interdisciplinary in-
teractions. The results suggest that there are similarities and dif-
ferences in how social and technical factors influence the inter-
disciplinary interactions in the student engine design teams and
the spacecraft design studies by the NASA MDL team. These re-
sults are summarized according to the stated hypotheses below:

1. Hypothesis Hla and H1b: Social network statistics such as
pairwise reciprocity (for both cases) and nodal popularity
(for NASA MDL studies only) are strong drivers of pair-
wise interdisciplinary interactions. This suggests an inher-
ent importance of some disciplines, which is not captured by
design interdependence.

2. Hypothesis H2: Pairwise interactions are proportional to the
design interdependence, measured by the number of shared
variables. This correlation is stronger for NASA spacecraft
design studies compared to the student engine design teams.

3. Hypotheses H3: The student subjects modulate the rate
of interactions against the levels of system performance,
whereas this effect is not significant for interactions among
the NASA engineers.

4. Hypotheses H4/HS5: The amount of interdisciplinary inter-
actions has a positive impact on system performance in the
NASA spacecraft design studies but only over a long time
period. Additionally, the number of mirrored interactions
has a negative effect on the changes in the system perfor-
mance in the NASA MDL studies over short time period.
These effects are not always statistically significant in the
student engine design teams.

The results highlight the importance of interdisciplinary in-
teractions for collective knowledge discovery in engineering sys-
tem design. Social and technical driving factors emphasize the
socio-technical perspective of interdisciplinary interactions [28].
We find that the number of total interactions, irrespective of how
they are distributed, are positively correlated with system perfor-

Copyright © 2021 by ASME



(a) Condition S-Py

Prabability of
Pairwise Interaction

(b) Condition S-P;

Probability of
Pairwise Interaction Pairwise Interaction Pairwise Interaction

(c) Condition C-Py (d) Condition C-P;

Probability of Probability of

T
Design I: le L b
Interdependence | | . . L
I 15 1, I,
I | | 1
1 1 1
Nodewise _}_ 1 1
Popularity T I—E— + TE_
H T = T
. T 1 T
Pairwise : - I | 1
Reciprocity | | : . : :+
0.0 2.5 5.0 1~ 1 —_ 1™
T min = . l . . = .
&+ 1 & 5 - 10 0.0 2.5 5.0 0.0 2.5 5.0 0.0 2.5 5.0

FIGURE 8: Mean and standard deviations for the simultaneous effects of social network statistics from past T time period & design
interdependence on pairwise interdisciplinary interactions, for the student engine design dataset. The estimates denoted by filled points

are statistically significant with p—value< 0.01.

mance. It is therefore important to facilitate interactions through
open communication paths between disciplines. One artifact of
managing such interactions and associated complexity has been
the mirroring between interactions (organizational structure) and
design interdependence (product structure). However, too much
grounding of interactions on technical interfaces may hinder po-
tential performance improvement [21,29].

The results support the case for flexibility and improvisa-
tion. We observe that the total amount of interactions are larger
in conditions C-Py and C-P; with design catalogs than in condi-
tions S-Py and S-P; without catalogs. The flexibility in system
design, e.g. through design catalogs, shifts a designer’s attention
from evaluating and planning design evaluations (local search) to
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FIGURE 9: The simultaneous effects of social network statistics
from past 7 time period & design interdependence on pairwise
interdisciplinary interactions, for the NASA spacecraft design
dataset.
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interactions with other disciplines. These findings also demon-
strate that the statistical Bayesian inference methodology for in-
ferring the optimal structure of interdisciplinary interactions. Fu-
ture work can support the development of a quantitative decision
support tool based on the stochastic network-behavior dynamics
model to assess the structure and improve efficiency of interdis-
ciplinary interactions.

There is potential for improving the present stochastic
network-behavior dynamics model and addressing certain lim-
itations. The model only captures time-homogeneous effects but
the temporal evolution of interdisciplinary interactions is likely
to be due to time-dependent factors such as problem clarification
in the early stage or tag-up towards the end. Also, the model con-
siders non-hierarchical interactions between disciplines but there
is scope for analyzing hierarchical interactions between man-
agers and designers, possibly by extending the present model to
the principal-agent problem [30, 31]. Finally, the present study
considers individual-independent and role-independent effects
for modeling interdisciplinary interactions. Many studies sug-
gest that leader behaviors displaced by “connectors”, “gatekeep-
ers”, and “horizontal weavers” drive the success of interdisci-
plinary interactions [32,5]. Future research could investigate the
correlation between different social, technical factors and leader
behavior and quantify how the degree of leader behavior influ-
ences system performance outcomes.
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