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Abstract 

Human beings subjectively experience a rich visual percept. However, when behavioral 

experiments probe the details of that percept, observers perform poorly, suggesting that 

vision is impoverished. What can explain this awareness puzzle? Is the rich percept a mere 

illusion? How does vision work as well as it does? This paper argues for two important 

pieces of the solution. First, peripheral vision encodes its inputs using a scheme that 

preserves a great deal of useful information, while losing the information necessary to 

perform certain tasks. The tasks that are rendered difficult by the peripheral encoding 

include many of those used to probe the details of visual experience. Second, many tasks 

used to probe attentional and working memory limits arguably are inherently difficult; poor 

performance on these tasks may indicate limits on decision-making capacity. Together, 

these two components can explain a wide variety of phenomena, including vision’s 

marvelous successes, its quirky failures, and our rich subjective impression of the visual 

world. 

1. Introduction 

Without loss of generality, we can assume that all perception arises from performing some 

visual task, i.e. from making some inference about the visual world based on the available 

information, working memory, and prior knowledge. Limits clearly exist, at any given 

moment, in terms of both the information available and the tasks one can successfully 



2 

 

perform. Visual awareness is likely even more limited; organisms can carry out 

considerable visual processing without awareness (Helmholtz, 1867; Koch & Crick, 2001). 

Because of these limits on visual processing and awareness, real-world vision involves an 

iterative process. We start with some – possibly unconscious – task, i.e. some question 

about the world. For instance, we might start by asking, “what is the layout of this room?” 

We do our best to complete that task. If necessary we can gain more information by taking 

actions such as moving our eyes. In the next instance, we shift to another task to gain more 

understanding of the visual world. For example, we might next query, “are there any people 

here?” Similarly, our awareness of what we know about the visual world shifts from 

moment to moment. 

In studying this process of understanding and becoming aware of the visual world, a 

fundamental puzzle has arisen. On one hand, we subjectively experience a rich visual 

world, effortlessly perceived (Dennett, 1991; Noë, 2002). However, when probed on the 

details, observers know surprisingly little. The rich experience suggests a highly capable 

visual system, whereas poor performance reporting details suggests that perception is 

impoverished. For the purposes of this paper, I refer to this puzzling combination of rich 

subjective experience and poor objective task performance as “the awareness puzzle,” 

though of course it is far from the only puzzle when it comes to understanding awareness 

(Tononi, Boly, Massimini, & Koch, 2016).  

For example, we subjectively experience a rich awareness of a real-world scene 

(Dennett, 1991). However, change a portion of that scene (while masking transients that 

would provide a cue), and observers have difficulty noticing what changed (e.g. (Rensink, 

O'Regan, & Clark, 1997)). Similarly, while we experience a rich percept of an ensemble of 

similar items, observers perform poorly when asked to report the features of a particular 

item (Ariely, 2001; Chong & Treisman, 2005; Haberman & Whitney, 2009). Furthermore, it 
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is difficult to search for a particular target item unless that item has a distinct basic feature 

like orientation, color, or motion. Search can be difficult even when, upon examination, 

target and distractors appear quite distinct, e.g. when searching for a T among Ls. Difficult 

search, then, suggests that the details that distinguish the search items must be 

unavailable; otherwise search would be easy.  

An influential theory (Feature Integration Theory, or FIT, (Treisman & Gelade, 

1980)) proposed that poor search performance arises from a particular kind of limited 

capacity: limited access to higher-level processing. According to this theory, observers can 

quickly and easily perform tasks that require only basic feature maps; such tasks rely only 

on “preattentive” visual processing. However, any tasks which rely on binding or conjoining 

an object’s features, such as distinguishing a T from an L, require selective attention. 

According to this theory, attention serially selects what information travels through the 

limited capacity channel to receive higher-level processing.   

Attention, in turn, appears to have greatly limited capacity (Figure 1). Multiple 

object tracking (MOT) tasks, for instance, suggest that observers can attend to and track 

only about 4 objects at a time (e.g.  (Pylyshyn & Storm, 1988)). Furthermore, there is often 

a cost to performing more than one task at once (VanRullen, Reddy, & Koch, 2004), 

particularly when one of the tasks is unknown to the observer, as in the phenomenon of 

inattentional blindness (Mack & Rock, 1998).  

If perception is poor without attention, and attention has limited capacity, then at a 

given instant we cannot perceive very much. Furthermore, we cannot merely build up a 

rich percept by rapidly shifting attention and remembering what we have previously 

perceived, because visual working memory itself appears to have a low capacity of 

approximately 4 items (e.g. (Luck & Vogel, 1997)).  
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A number of philosophers and vision researchers have noted the confusing collection 

of phenomenology described above, and have proposed theories to address the underlying 

puzzles. The first two theories are philosophical in nature, attempting to make sense of the 

apparent contradiction between the rich subjective experience and poor performance at a 

number of objective tasks. The second two classes of theory, more vision science than 

philosophy, suggest visual mechanisms to account for both the awareness puzzle and for 

real-world vision. 

The first philosophical theory, here referred to as the illusion theory, suggests that 

the rich subjective impression is merely an illusion, and therefore not incompatible with the 

impoverished perception observed in behavioral experiments (O'Regan, 1992; Rensink, 

O'Regan, & Clark, 1997; Blackmore, Brelstaff, Nelson, & Troscianko, 1995; Dennett, 1991; 

Dennett, 1998).  This illusion theory must contend with empirical evidence in favor of an 

objectively richer percept. Observers can rapidly get the gist of a scene (e.g., (Potter, 1975; 

Loftus & Ginn, 1984; Rousselet, Joubert, & Fabre-Thorpe, 2005; Loschky, et al., 2007; 

 

Figure 1. Tasks such as visual search, change detection, and perception of individual items of a set have 
suggested that perception is limited without attention. Furthermore, paradigms shown here, such as multiple 
object tracking, dual-task, and inattentional blindness, have suggested that attention is limited. Visual working 
memory tasks, in turn, have suggested that memory has limited capacity. In each paradigm depicted, time 
advances to the right, as indicated by the arrow. This paper argues that these tasks are inherently difficult. 



5 

 

Greene & Oliva, 2009; Potter & Fox, 2009), and this gist includes rich information about 

that scene (Fei-Fei, Iyer, Koch, & Perona, 2007). Similarly, we can rapidly extract 

properties of an ensemble (Chong & Treisman, 2003; Chong & Treisman, 2005; Ariely, 

2001; Alvarez, 2011; Haberman & Whitney, 2009). Clearly these results are, at minimum, 

problematic for the original Feature Integration Theory, as noted in (Treisman, 2006), 

though it remains unclear whether the details objectively available to observers suffice to 

explain the subjective experience. 

The second philosophical theory posits that we are aware of more than we can act 

upon (Lamme, 2010; Block, 2011). In this theory, here referred to as the inaccessibility 

theory, the rich percept is real, but the information is perversely inaccessible when it comes 

to making decisions or otherwise taking action. Proponents of this theory need to explain 

why it appears to lie in opposition to our intuition that awareness should encounter greater 

limits than perception.  

It is not obvious how either philosophical theory would lead to a working visual 

system. If perceptual richness is mere illusion, how are we so successful at so many visual 

tasks? Why put energy into awareness but not ensure the ability to act on the available 

information?  

Vision science theories have attempted to account for the awareness puzzle while 

also explaining how real-world vision might work. One class of theories, for instance, asks 

how, if preattentive vision is so poor, and attention so limited, can we intelligently shift 

attention to gather more information? How can we reasonably form and test new 

hypotheses to gain understanding about the visual world? Suppose I want my coffee mug. 

To identify it I need to attend to it; where do I direct my attention? It might help me to 

know that the mug sits on the desk. But this presents a bit of a chicken-and-egg problem: I 

would have to attend to the desk to identify the desk. If it is my desk, in my office, I might 
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have prior knowledge of its location. If it is someone else’s desk, but I know it is brown, I 

could use crude preattentive features to filter for brown stuff (Wolfe, Cave, & Franzel, 

1989). But what if I know neither piece of information? For that matter, how do I ever 

perceive task-irrelevant parts of the scene, such as my colleague sitting behind the desk?  

Mack and Rock (1998), noting that their inattentional blindness studies seemed to 

suggest little or no perception without attention, proposed that some information must be 

capable of “capturing” attention. This suggestion led to the development of a rich literature 

attempting to uncover the rules of attentional capture. Stimulus-driven, or bottom-up 

capture could occur if the information is sufficiently “salient” (Theeuwes, 1992), though this 

might depend upon the task set (Folk, Remington, & Johnston, 1992). Bottom-up saliency, 

i.e. unusual features, could be computed from the hypothesized preattentive features, e.g. 

(Itti & Koch, 2001; Rosenholtz, 1999). Capture by salient items could help us notice 

interesting parts of the scene even if they are not task-relevant. Top-down filters could also 

reveal task-irrelevant information. For instance, Simons and Chabris (1999) suggested that 

observers are more likely to notice an unexpected gorilla walking through a basketball 

game when they count passes of the team with black jerseys, perhaps because the filter for 

“black” accidentally captures the gorilla, leading to identification. However, taking a step 

back, attentional capture seems like an odd proposal for how vision might work: the visual 

system makes up for poor preattentive processing both by being easily distracted by 

irrelevant salient stuff, and by having top-down filters that accidentally capture task-

irrelevant items with crude low-level similarity to the task-relevant items. This is no way to 

design a visual system, and it seems unlikely that such capture can explain vision’s 

successes (Rosenholtz, Huang, & Ehinger, 2012; Nakayama, 1990). 

A second class of vision theories has built on the observation that classic selective 

attention theory can account for some of vision’s quirky failures, but is problematic when it 
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comes to explaining vision’s marvelous successes. This might suggest that the visual system 

augments the selective attention pathway with additional information. Scenes and sets, for 

example, might be processed in a separate, non-selective pathway (Wolfe, Vo, Evans, & 

Greene, 2011; Cohen, Dennett, & Kanwisher, 2016). Alternatively, different modes of 

attention might make available different information; diffusely attend to a scene as a whole 

and get the gist, or attend to a set of items and gain access to ensemble properties like the 

mean size (Nakayama, 1990; Rensink, 2001; Treisman, 2006). Both mechanisms (separate 

pathway and diffuse attentional mode) are presumed to utilize a different sort of encoding, 

unlike that for ordinary object recognition (Nakayama, 1990; Treisman, 2006; Wolfe, Vo, 

Evans, & Greene, 2011; Cohen, Dennett, & Kanwisher, 2016). Researchers have suggested 

that mechanisms might encode some sort of summary statistics that would support both 

scene and ensemble tasks (Treisman, 2006; Oliva & Torralba, 2006; Haberman & Whitney, 

2011; Wolfe, Vo, Evans, & Greene, 2011; Cohen, Dennett, & Kanwisher, 2016).  

I will argue that the tasks that show limits are inherently difficult tasks, given the 

representation of information in the visual system. I propose a unified theory which 

explains the rich subjective experience, the apparent limits, and the power of real-world 

vision. In other words, looked at in the right way, there is in fact no awareness puzzle. 

Various researchers have suggested or echoed aspects of this theory (Ariely, 2001; 

Treisman, 2006; Oliva & Torralba, 2006; Balas, Nakano, & Rosenholtz, 2009; Freeman & 

Simoncelli, 2011; Rosenholtz, 2011; Haberman & Whitney, 2011; Wolfe, Vo, Evans, & 

Greene, 2011; Rosenholtz, Huang, & Ehinger, 2012; Cohen, Dennett, & Kanwisher, 2016). 

Part of the goal of this paper is to clarify and/or modernize these previous suggestions, 

examine the issues that remain, and suggest a new piece of the puzzle.  In particular, the 

next section suggests that change blindness and visual search phenomena may arise in 

large part from an efficient encoding in peripheral vision. This has significant implications 
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for the degree to which vision is impoverished. Section 3.1 further proposes that the tasks 

purporting to demonstrate the low capacity of attention and working memory may be 

inherently difficult tasks.  This implies both that we as a field may have misjudged how 

impoverished vision is, and that visual and cognitive processing may encounter capacity 

limits on decision-making processes. Section 3.2 fleshes out a proposed limit on decision 

complexity, and its implications for the rich subjective experience and real-world vision. 

2. An efficient encoding in peripheral vision explains many of the puzzles of vision 

2.1 Change blindness and difficult search may be due to the limits of peripheral vision, 

not limits on attention 

Change blindness refers to the difficulty detecting a change to an image or scene. In the lab, 

the experimental paradigm often involves flickering between two versions of an image, 

while introducing a brief blank frame between the pair in order to disrupt motion cues 

(Rensink, O'Regan, & Clark, 1997). The phenomenon is related to the childhood puzzle in 

which one must find the differences between two side-by-side images (Scott-Brown, Baker, 

& Orbach, 2000).  

Many researchers have interpreted change blindness as probing the limits of 

perception or memory without attention, e.g. (Rensink, O'Regan, & Clark, 1997; 

Hollingworth & Henderson, 2002; O'Regan, Rensink, & Clark, 1999; O'Regan, 1992; Scholl, 

2000). Supposedly, the observer manipulates a spotlight of attention, and perception is 

richer within that spotlight than outside of it. The difficulty of detecting a change appears 

to imply that little perception occurs without attention.  

However, others have suggested that change blindness might be due in part to 

peripheral vision. (Here I use the term to mean visual processing that occurs in the part of 

the visual field outside the foveola.) Peripheral vision is known to be poor relative to foveal 
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vision; visual acuity, contrast sensitivity, color vision, and motion perception all vary with 

eccentricity, i.e. with distance from the center of gaze (see (Rosenholtz, 2016) for a recent 

review). A more consequential difference concerns peripheral vision’s degradation in the 

presence of clutter, known as crowding. The phenomenon of visual crowding illustrates that 

loss of information in the periphery is not merely due to reduced acuity. In classic 

demonstrations, a target letter is easily identified when presented in the periphery on its 

own, but becomes difficult to recognize when flanked too closely by other stimuli, such as 

other letters. An observer might see the crowded letters in the wrong order, they might not 

see the target at all, or they might see a confusing jumble of shapes made up of parts from 

multiple letters (Lettvin, 1976). Crowding occurs with a broad range of stimuli (see (Pelli & 

Tillman, 2008) for a review). It need not involve an individuated “target” and “flankers, per 

se, but rather can occur in peripheral perception of complex objects and scenes (Martelli, 

Majaj, & Pelli, 2005). Moreover, the degree of difficulty an observer has in making sense of 

peripheral stimuli varies considerably with the stimulus and task (Andriessen & Bouma, 

1976; Kooi, Toet, Tripathy, & Levi, 1994; Livne & Sagi, 2007; Sayim, Westheimer, & 

Herzog, 2010; Manassi, Sayim, & Herzog, 2012). 

At any given moment during a change-detection experiment, the changed region 

likely lies in the peripheral visual field. This raises the question of whether observers have 

difficulty detecting changes not because of limited perception without attention, but rather 

because of limited perception in peripheral vision. Henderson and Hollingworth (1999) 

showed that observers are more likely to detect the change once they have fixated on or 

near that change. O’Regan et al. (2000) found that probability of detection depends upon 

the distance between the initial fixation and the change. Furthermore, research from 

Parker (1978) and Zelinsky (2001) has suggested that observers can notice the change in 

the periphery, and that salient changes can even be detected without fixation. 
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We have found additional evidence that peripheral vision is a factor in change 

blindness. We first measured observer change detection performance for a number of image 

pairs, using a standard flicker paradigm (Rensink, O'Regan, & Clark, 1997). Based on this 

data, we categorized these standard change blindness stimuli as easy, medium and hard, 

according to the time needed to detect the changes. We then measured difficulty detecting a 

known and presumably attended change using peripheral vision (Figure 2A). We found that 

for the hard changes, observers needed to fixate significantly closer to the change in order 

to perceive it (Figure 2B), even though they knew in advance the identity of the change and 

its location (Smith, Sharan, Park, Loschky, & Rosenholtz, under revision). Changes that 

are harder to detect in a flicker paradigm are harder to see in the periphery, even when 

observers know the change and its location, and presumably attend to the change. These 

results suggest a more tenuous connection between change blindness and attentional 

limits. Furthermore, they suggest that peripheral vision helps detect changes; otherwise 

peripheral discriminability would not predict change detection difficulty. Change detection 

may occur across the visual field, in parallel, though the observer may not be aware of 

        
A                                                                                                B 

Figure 2. Peripheral vision is a factor in change blindness. A. Observers discriminated known changes in an 
A-B-X paradigm that requires them to identify whether the final image matches the first or the second 
image in the sequence. Fixation was enforced at various distances to the change. The red circle shows one 
such fixation. The difference for this sequence was in the pattern on the ground. B. The threshold 
eccentricity (distance to the change) for easy-, medium-, and hard-to-detect changes. Harder changes require 
closer fixation in order to be discriminated. 
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looking for changes in the periphery. As we will see, this paradigm shift in thinking about 

change blindness has significant implications for the awareness puzzle. 

We can similarly reexamine visual search. In the traditional view, search 

experiments probe limits of attention. By comparing conditions that lead to difficult vs. 

easy visual search, we supposedly determine at what stage selection occurs, and what 

processing is preattentive. Experiments have generally shown that search is difficult 

whenever distinguishing the search target from other distractor items requires more than a 

simple basic feature like color or motion. This implies that only basic features – often 

referred to as “feature maps” – can be computed preattentively, and selection occurs early 

in visual processing. Because attention is a limited resource, this implies that vision is 

highly impoverished. 

However, considerable research has suggested that peripheral vision plays a 

significant role in search difficulty. If so, peripheral vision at minimum acts as a confound 

in most search experiments. Carrasco and colleagues have found eccentricity effects in 

search, and shown that search performance changes when one m-scales the stimuli to 

reduce peripheral factors (Carrasco, Evert, Chang, & Katz, 1995; Carrasco & Frieder, 1997; 

Carrasco & Yeshurun, 1998; Carrasco, McLean, Katz, & Frieder, 1998). Peripheral 

discriminability of Gabors in noise predicts search for Gabor targets (Geisler, Perry, & 

Najemnik, 2006). There have also been hints that search difficulty stems from crowding in 

peripheral vision (Erkelens & Hooge, 1996; Gheri, Morgan, & Solomon, 2007).  

As in the case of change blindness, we have extended this work on search and 

crowding by having observers attend to the periphery, and perform peripheral 

discrimination of a crowded target-present from a target-absent patch. We have shown that 

this peripheral discriminability predicts search performance (Figure 3). Importantly, many 

of the classic phenomena that originally motivated selective attention theory are already 
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present in peripheral vision under conditions of crowding. Even when an observer attends 

to the periphery, they have trouble distinguishing a crowded T from a crowded L. They 

perceive illusory conjunctions. On the other hand, easy search tasks correspond to easy 

peripheral identification. Peripheral vision preserves the necessary information to identify 

unique basic features. The strong relationship between search performance and peripheral 

discriminability, across a wide range of conditions, suggests that search difficulty primarily 

pinpoints loss of information in peripheral vision, rather than attentional limits or the 

limits of preattentive processing (Rosenholtz, Huang, Raj, Balas, & Ilie, 2012; Zhang, 

Huang, Yigit-Elliot, & Rosenholtz, 2015; Chang & Rosenholtz, 2016). 

As a result, we argue that neither search nor change blindness clearly support the 

claim of impoverished vision without attention. Rather, difficulty in those tasks may arise 

 

Figure 3. Peripheral discriminability of a crowded target-present vs. target-absent patch (x-axis) predicts 
search difficulty (y-axis, measured as the slope of the function relating search reaction time to the number of 
display items). Target-present patches consist of a target flanked by a number of distractors, whereas target-
absent patches consist of a distractor flanked by additional distractors. Each symbol represents a different 
search condition, including both five conditions central to Feature Integration Theory and five problematic 
conditions showing unexpectedly easy search for a shaded cube among differently shaded cubes. Figure 
reproduced with permission from (Zhang, Huang, Yigit-Elliot, & Rosenholtz, 2015). 
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from limits in peripheral vision. One might ask why this distinction matters, since either 

explanation implies a loss of information, whether from not attending to a region or from 

not fixating it. At first glance, either theory would appear to suggest impoverished vision. 

However, a peripheral vision explanation implies that perception is richer than previously 

thought. In the attention explanation, unselected stimuli receive virtually no further 

processing beyond the bottleneck of attention. This means that many, if not most, tasks are 

impossible without attention. On the other hand, according to the peripheral vision account, 

difficult change detection and search tasks have relied on information that happens to be 

lost in peripheral vision; these tasks may be especially difficult, and not imply impoverished 

vision overall. Peripheral vision preserves a great deal of information, and critically, 

processing continues. Just what information is preserved, and what tasks that information 

supports, can best be answered with a model of peripheral vision (Section 2.2).  

2.2 A summary statistic encoding in peripheral vision determines difficulty for a range of 

visual tasks 

My lab has argued since 2007 that peripheral vision encodes its inputs in terms of a rich set 

of image statistics. The term “image statistics” refers to statistics computed over either the 

pixels of the image or over the outputs of image processing operations such as filters and 

non-linear operators applied to the image. These statistics are “summary statistics”, 

meaning they pool information over sizeable local regions that grow with the distance to the 

point of fixation, i.e. the eccentricity. For our candidate model (Balas, Nakano, & 

Rosenholtz, 2009), we chose as our set of image statistics those from a state-of-the-art 

model of texture appearance from Portilla & Simoncelli (2000): the marginal distribution of 

luminance; luminance auto correlation; correlations of the magnitude of responses of 

oriented V1-like wavelets across differences in orientation, neighboring positions, and scale; 
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and phase correlation across scale. This seemingly complicated set of parameters is actually 

fairly intuitive: computing a given second-order correlation merely requires taking 

responses of a pair of V1-like filters, point-wise multiplying them, and taking the average 

over the pooling region.  

This encoding leads to significant loss of information, and we have accumulated 

extensive evidence that this loss of information can predict difficulty recognizing peripheral 

objects in cluttered displays or scenes (Balas, Nakano, & Rosenholtz, 2009; Rosenholtz, 

Huang, Raj, Balas, & Ilie, 2012; Zhang, Huang, Yigit-Elliot, & Rosenholtz, 2015; Chang & 

Rosenholtz, 2016; Keshvari & Rosenholtz, 2016; Freeman & Simoncelli, 2011). The loss of 

information predicts difficult search conditions, while preserving the information necessary 

to predict easy “popout” search (Rosenholtz, Huang, Raj, Balas, & Ilie, 2012; Zhang, Huang, 

Yigit-Elliot, & Rosenholtz, 2015; Chang & Rosenholtz, 2016).  

In spite of the loss of information that leads to crowding, this encoding preserves a 

great deal of information. To get a sense of what information is encoded by a rich set of 

image statistics such as those proposed, one can synthesize images that contain the same 

statistics but are otherwise random (Rosenholtz, 2011; Freeman & Simoncelli, 2011; 

Rosenholtz, Huang, & Ehinger, 2012; Ehinger & Rosenholtz, 2016). One should not think of 

these images as “what the world looks like to peripheral vision.” Rather, viewing the 

synthesized images (e.g. Figure 4), provides intuitions about the information lost and 

maintained by the peripheral encoding. We have called these syntheses “mongrels”, for 

short. The encoding appears to preserve considerable information about the fact that the 

underlying image in Figure 4A is a street scene, with people waiting at a bus stop. Detailed 

information survives about the appearance of the buildings and trees, and about the 

general layout of the scene. By asking observers to perform scene tasks with these mongrel 

images, we have demonstrated that the encoding preserves sufficient information to 
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quantitatively predict human performance getting the gist of the scene at a glance, 

including scene category, upcoming turns, presence of a particular object like an animal or 

a stop sign, and what city appears in the photograph (Rosenholtz, Huang, & Ehinger, 2012; 

Ehinger & Rosenholtz, 2016). 

It is not surprising that the encoding preserves so much useful information, as this 

scheme involves measuring a large number of image statistics; as many as 1000 per pooling 

region. This is no mere handful of summary statistics; such an encoding would obviously 

not support the richness of vision. While little has been done to characterize the 

information available in our rich subjective impression of the world, it seems plausible that 

this encoding scheme has sufficient information to support that subjective impression. 

Examining Figure 4, however, it is clear that the encoding does not preserve certain 

details. One cannot read the Thomson Rd. sign, nor easily discriminate the number and 

types of vehicles. This ambiguity of the details could underlie poor performance in change 

detection experiments (Freeman & Simoncelli, 2011; Cohen, Dennett, & Kanwisher, 2016; 

Smith, Sharan, Park, Loschky, & Rosenholtz, under revision). Figure 5 shows a demo of 

         
A                                                                                           B 

Figure 4. Information encoded by a rich set of image statistics. A. Original image, theoretical pooling regions 
superimposed. They grow linearly with eccentricity. B. Image synthesized to have approximately the same 
local image statistic as the original. This encoding captures a great deal of information, though some of the 
details are unclear. 
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this same synthesis technique applied to a change detection pair. When fixating 5 degrees 

away from the change, the model predicts difficulty detecting that change. However when 

fixating 1 degree away, the change becomes clear, in agreement with our data on 

discrimination of this change in the periphery (Smith, Sharan, Park, Loschky, & 

Rosenholtz, under revision). 

A summary statistic encoding in peripheral vision, then, seems promising in terms 

of providing a coherent explanation of a number of diverse phenomena that have previously 

defied easy explanation. The same encoding predicts relative difficulty of different visual 

search conditions, as well as scene perception performance. Peripheral vision is clearly a 

factor in change blindness. While further work (in progress) is necessary to test whether 

the model can quantitatively predict change detection difficulty, results so far appear 

promising: demonstrations of the information available appear to be in line with difficult 

change detection (Figure 5), and extensive work, cited above, validates the ability of this 

encoding to predict peripheral discriminability for a considerable range of conditions. We 

 

Figure 5. Summary image statistics lose information about the details, which can lead to difficult change 
detection. A. Image pair. Red bars indicate changed region; the airplane engine present in the upper image 
but absent in the lower. B. Synthesis visualizes the information available in a summary statistic encoding 
for a fixation 5 degrees (left) and 1 degree (right) from the change. Note that the change is clear in the latter 
pair, but not the former. 
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have also found evidence that peripheral vision is a factor in some inattentional blindness 

phenomena (i.e. we have examined the invisible gorilla effects of (Simons & Chabris, 1999); 

(Rosenholtz, Sharan, & Park, under revision)). Furthermore, a summary statistic encoding 

in peripheral vision can even make some sense of which tasks are difficult in a dual-task 

paradigm (Rosenholtz, Huang, & Ehinger, 2012). 

2.3 Comparing the proposed encoding scheme to other theories 

At this point, it is worth revisiting a few of the previous theories discussed in 

Section 1. Several of the theories suggested that a different pathway or a different mode of 

attention might provide information beyond that available in the selective attention 

pathway/mode, and that the extra information might take the form of some sort of 

summary statistics (Treisman, 2006; Oliva & Torralba, 2006; Haberman & Whitney, 2011; 

Wolfe, Vo, Evans, & Greene, 2011; Cohen, Dennett, & Kanwisher, 2016). This proposal 

should sound like (and in the case of Cohen et al., was at least partially inspired by) our 

model of peripheral vision. Note, however, that the “extra” pathway alone can explain 

rather a lot. Researchers added the second pathway to account for good performance on 

scene and set perception tasks, and in fact a summary statistic encoding does seem 

promising at predicting performance at those tasks. However, that same encoding can also 

predict easy vs. difficult search, and likely change blindness; phenomena that allegedly 

arose from limitations of the selective pathway. What, then, is the purpose of the supposed 

selective attention pathway, and what are its mechanisms? Our new understanding of 

peripheral vision demands rethinking attention. Nonetheless, peripheral vision cannot be 

the whole story; Section 3 suggests an alternative hypothesis to account for additional 

phenomena not attributable to peripheral vision alone. 
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The proposed encoding measures a large number of summary image statistics, 

across the field of view, regardless of the contents of the visual stimulus (see also Freeman 

& Simoncelli (2011), the texture descriptors of Wolfe et al. (2011), and the large number of 

image statistics hypothesized to underlie the gist of a scene in Oliva & Torralba (2006)). At 

minimum, a number of previous proposals have lacked clarity on these points. First, 

summary image statistics are not the same as ensemble properties of a set of items (Ariely, 

2001; Treisman, 2006; Haberman & Whitney, 2011; Cohen, Dennett, & Kanwisher, 2016). 

Second, a number of researchers have proposed that ensemble properties represent only 

certain portions of the visual world (Cohen, Dennett, & Kanwisher, 2016), e.g. only sets of 

similar items (Treisman, 2006; Whitney & Leib, 2018), or only textures (Haberman & 

Whitney, 2011). Third, a number of previous proposals have implied that the encoding 

involves only a small number of summary statistics, (e.g. (Cohen, Dennett, & Kanwisher, 

2016; Treisman, 2006; Ariely, 2001; Haberman & Whitney, 2011). 

Though summary image statistics and ensemble properties of a set of objects are 

often confused, there exists an important asymmetry between the two: A large set of image 

statistics cannot only support a variety of scene perception tasks (Ehinger & Rosenholtz, 

2016), but also plausibly form the basis for ensemble perception tasks (Figure 6A, though 

see (Balas, 2016) for questions of whether our particular candidate encoding can 

quantitatively predict judgments of numerosity). In contrast, a handful of ensemble 

statistics cannot obviously support rich scene perception, and without specifying the 

statistics it is not even clear that they can support the rich perception of ensembles. As 

Huan et al. (2017) point out, referring to an array of letters (Figure 6B), observers likely 

know quite a bit about ensembles:  

“Is that really all they see, [3-4 items] perhaps augmented by some summary 

statistics? A moment’s reflection indicates that, if only they were asked, subjects 

could report much more – one certainly perceives that there are many black 
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marks, that they are arranged in rows and columns, in a rectangular array,… 

against a bright homogeneous background… [these percepts are] typically taken 

for granted rather than included in the catalog of conscious contents… While 

subjects may not be able to recognize specific identities,… they can effortlessly 

report that what they saw were letter-like figures.” 

A critical point here, however, is that while “some” unspecified summary statistics 

cannot obviously predict this rich percept, a set of many summary statistics can. As the 

syntheses in Figure 6A show, the proposed encoding clearly preserves sufficient information 

to answer questions about the distribution of line orientations, including the mean and 

variance. In addition, it preserves enough information to tell that the stimulus is made up 

of black lines on a light background, an important characteristic most likely available to the 

 Original image Mongrels  

A        

B         

Figure 6. The proposed set of summary image statistics encode considerable information about sets of 
similar items. A. Original set of oriented lines (left), and two syntheses visualizing the information available 
(right). Modeled with the fixation 10 degrees to the right of the central target, where each line is 1 degree in 
length. B. Array of letters (left) like that in Sperling (1960). Syntheses (right) predict that peripheral vision 
can discern the structure and appearance of the array, and even support identifying the majority of the 
letters. Fixation on the “I”, modeled as subtending approximately 2 degrees of visual angle. 
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observer. The sizes and orientations of items are also largely preserved, but location 

information is lost; the lost information perhaps partially explains the difficulty reporting 

the features of a particular item, e.g. in (Parkes, Lund, Angelucci, Solomon, & Morgan, 

2001; Fischer & Whitney, 2011). The mongrels of the letter arrays (Figure 6B) similarly 

indicate that the encoding preserves precisely the sort of information enumerated by Huan 

et al. In addition, it appears that sufficient information survives to recognize 10-12 of the 

letters – far greater than the average 4.3 items available for immediate report, but 

comparable to the 9.1 letters estimated to be available by partial report (Sperling, 1960). 

Perhaps previous theories have described the representation of ensemble statistics 

instead of image statistics as merely a rhetorical figure of speech. It is easier to get 

intuitions about and to enumerate the mean size and orientation of a set of items than to 

think about more abstract image statistics. In addition, researchers may have inadvertently 

implied that their theories required only a few statistics because of the difficulty coming up 

with a long list of plausible ones.  Both points, however – image statistics, and lots of them 

– are critical to the argument that such an encoding could underlie the richness of 

perception. It is important to be explicit. When Cohen et al. (2016) refer to a “single 

summary statistic”, this could in principle refer to a single high-dimensional vector – which 

is, after all, what underlies their demos from Freeman and Simoncelli (2011) and Oliva and 

Torralba (2006) – but if so they risk confusing their readers. 

Returning to the question posed in Section 2.1: Does it matter, when asking whether 

vision is impoverished, if tasks like search and change blindness are difficult because of the 

limits of attention or the limits of peripheral vision?  Clearly it does. The attention 

explanation requires an additional mechanism to explain why observers easily get the gist 

of scenes and sets, whereas the peripheral vision explanation does not. Furthermore, 

attentional capture theory was developed to make sense of the apparent chicken-and-egg 
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problem of how one can successfully direct attention if perception without attention is so 

poor. The peripheral vision explanation has no such problem. Consider looking for one’s 

mug in the office scene in Figure 7. Starting with a central fixation, the proposed encoding 

scheme provides ample information for locating the desk, noticing the salient painting on 

the wall to the left, and noticing the person seated at the desk. That glance may not, 

however, preserve enough information to immediately find one’s mug. One cannot recover 

the information lost in peripheral vision without an eye movement, but the information 

that remains is capable of supporting performance of many tasks, from guiding eye 

movements, through some object recognition tasks, to getting the gist of a scene and 

navigating the world.  

3. A proposal for an additional capacity limit: Limited decision complexity 

3.1 Other difficult tasks may be inherently difficult 

Given the strengths of peripheral vision, it is not surprising that observers can 

easily get the gist of a scene or set. The limitations of peripheral vision can explain many of 

the phenomena previously taken as evidence that perception is poor without attention. This 

 Original image Mongrel  

    

Figure 7. Looking for one’s mug on the desk, the same peripheral encoding that predicts difficult search and 
change blindness provides ample information to locate the desk, notice salient objects, and guide eye 
movements to gather additional information. Fixation as indicated by the red cross. 
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paper began, however, by also enumerating a second set of phenomena that suggest that 

attention itself is limited, as is visual working memory (Figure 1).  These phenomena 

clearly cannot be explained by peripheral vision alone. Peripheral vision could be a factor – 

inattentional blindness, multiple object tracking (MOT), and visual working memory 

(VWM) tasks often utilize crowded displays, and typical dual-task experiments assign one 

task to peripheral vision. However, a number of inattentional blindness (Mack & Rock, 

1998; Levin & Simons, 1997) studies have forced fixation, and found that knowing the task 

matters. Visual working memory studies (e.g. (Tamber-Rosenau, Fintzi, & Marois, 2015; 

Adam, Vogel, & Awh, 2017) have controlled for peripheral crowding and found similar 

memory limits. Typical dual-task experiments (e.g. (VanRullen, Reddy, & Koch, 2004)) hold 

fixation and the display constant, and vary the number of tasks; though peripheral 

discriminability does appear to be a factor in dual-task difficulty (Rosenholtz, Huang, & 

Ehinger, 2012), it cannot explain why many dual-tasks are more difficult than their 

component single tasks. Other tasks may also encounter additional limits; search and 

change detection, for instance, may be more difficult than predicted from peripheral vision 

alone (Rosenholtz, 2017). There must be some other capacity limit(s).  

 It may be tempting, at least in the case of dual-task performance, inattentional 

blindness, and MOT, to fall back on selective attention theory to explain these results. 

Quite a bit of the evidence for that theory, however, had a peripheral vision confound, and 

peripheral vision offers a more parsimonious account. At minimum, it would seem a useful 

exercise to start from scratch in examining the remaining capacity limit(s). For a detailed 

argument for why we need to look for a different sort of capacity limit, and for different 

mechanisms for dealing with that limit, see (Rosenholtz, 2017).  

I argue that this second group of tasks is inherently difficult. Consider a typical 

VWM task. An observer is shown an array of k items, such as colored disks (Figure 1, lower 
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right). After a delay, the experimenter then presents another array. This array either 

duplicates the original, or differs in the color of one of the k disks. In the traditional way of 

thinking of this task, the observer has n memory slots to fill with features from each of the 

k disks. By examining how performance varies as a function of the number of items in the 

display, one can supposedly infer the number of slots. Based on this logic, researchers have 

concluded that a typical observer has only around 4 slots, suggesting a very limited capacity 

for VWM (Luck & Vogel, 1997).  

This logic, however, makes strong assumptions about the mechanisms underlying 

VWM: a fairly strong “brain as computer” analogy in which memory works by putting 

information into some kind of storage for later retrieval. Let us think of the VWM task at a 

more basic level, without such assumptions. The observer must discriminate between the 

array to be remembered and all other similar arrays in which one item differs. (The VWM 

paradigm sometimes instead asks the observer to specify the features of a particular post-

cued item. For the sake of argument, I assume that changing the task in that way does not 

fundamentally change its inherent difficulty.) One could imagine that, for a randomly 

chosen initial display, this discrimination would require a fairly complex classifier. Just 

how complex would depend upon the feature space in which the classifier operates. The 

brain’s feature space seems unlikely to be a vector of k colors. Put another way, arrays of 

colored disks likely occupy a very small region within the brain’s “perceptual encoding 

space” – the space of images one is likely to see, represented in whatever high-dimensional 

encoding the visual system employs. Discriminating between such similar images might be 

quite difficult. A very similar story applies to tasks such as reporting a post-cued member of 

an ensemble. This task is essentially a VWM task, and is likely hard at least in part for the 

same reason.  
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One can make a related argument that MOT tasks (Figure 1, upper left) are 

inherently difficult. In the traditional interpretation, the visual system has m attentional 

spotlights to deploy. Based on performance one can infer m, and as m is low, one concludes 

that attention has limited capacity (Pylyshyn & Storm, 1988). However, as with VWM, this 

account makes strong assumptions about the mechanisms involved. At a basic level, if the 

observer must track k of n items, then on each frame they must distinguish the actual k 

targets from n-choose-k other possible combinations of k items. In the case of tracking 4 of 9 

items, for instance, the observer must distinguish the actual 4 targets from 125 other 

possibilities! One might again imagine that this task is inherently difficult in the abstract, 

though of course motion cues make the task more tractable.  

Consider also typical dual-task experiments (e.g. (VanRullen, Reddy, & Koch, 2004); 

Figure 1, upper right). The observer is asked either to complete a single peripheral task, or 

to perform that task as well as a central task. For instance, the observer might specify 

 

Figure 8. Dual tasks are inherently more complex than their component single tasks. Here, two 2AFC tasks 
(top) become a 4AFC dual task (bottom left). If there exists a limit on task complexity, the observer will have 
to simplify this task (bottom right, solid lines), making errors. 
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whether a peripheral cube is upright or inverted, while also indicating whether a central 

array contains all the same letter (all Ls or all Ts) or different letters (both Ls and Ts). Both 

the central and peripheral task involve distinguishing between two alternatives. The dual 

task involves distinguishing between four possibilities (Figure 8). This renders dual tasks 

inherently more complex, and this complexity may be why multitasking is often difficult. 

Looked at in this way, these tasks appear to be inherently difficult almost regardless 

of the underlying representation (Tsotsos, 1990). Inherently difficult decisions suggest the 

involvement of late, decision-level mechanisms, and decision-level limits. The exact nature 

of these decision-level limits remains unclear. It cannot simply be a limit on task difficulty. 

Dual-task experiments controlled for difficulty of the component tasks (e.g. (VanRullen, 

Reddy, & Koch, 2004)); if task difficulty were the only issue, all dual-tasks would be equally 

hard (Rosenholtz, 2017).  

Based on the arguments above, perhaps decision mechanisms instead face a limit on 

task complexity (Rosenholtz, 2017). This could take a number of different forms. Our 

cognitive processes might be limited in the number of dimensions (or neurons) one could 

use to make a decision; in the number of linear hyperplanes out of which one could form a 

decision boundary; or in the curviness of that boundary, etc. Such a complexity limit might 

exist for the usual reasons, e.g. limits on the size of the brain (Tsotsos, 1990). In addition, in 

learning to perform a classification task, limiting decision complexity might be a way to 

avoid overfitting the decision boundary. 

3.2 Limited decision complexity: Implications for a rich subjective impression and real 

world vision 

Let us consider a couple of examples, both to get used to thinking about decision 

complexity, and to tie this proposal back to the awareness puzzle and the success of real-
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world vision. The reader could, at this point, have an important question: I have argued 

that VWM is limited because it is an inherently complex task; how complex, then, is scene 

perception? In both cases one might think of the implicit task as distinguishing between 

seen and not seen – essentially as localization in some perceptual encoding space (Figure 9). 

In the proposed theory, what the observer knows about the stimulus as a result of 

performing this localization task – what they perceive – is determined by the classification 

into seen and not seen. If the classification boundary confuses two images then from this 

classification task alone (a point we will consider shortly), the observer cannot perceive the 

differences between them. Lower precision at this task might require less effort, but at the 

cost of confusing more unseen stimuli with the one actually seen; with lower precision, the 

 

Figure 9. At a basic level, we can think of Visual Working Memory (VWM) tasks as distinguishing between 
the observed stimulus and all similar stimuli that differ in one of the items (upper left). If we think of each 
stimulus image as represented by a high-dimensional vector in some perceptual encoding space (shown here 
with only two dimensions for simplicity), then we can think of this discrimination as a classification. Dashed 
lines indicate two possible classification boundaries. The boundary on the right is more precise, 
distinguishing the observed array (blue) from most other arrays, except those with small color differences. 
Capacity limits may prohibit such a precise classification, perhaps because they limit complexity, e.g. 
curvature of the decision boundary. Instead, the brain may be forced to use a less precise decision boundary, 
such as that shown on the left. This may require less effort, but leads to more significant confusions between 
the seen and unseen arrays. 
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observer knows less. With more effort, the observer might be able to utilize a more complex 

– higher curvature – classification boundary between seen and unseen stimuli, making 

fewer errors. However, if there exists a limit on decision complexity, that means that 

precision and knowledge about the stimulus are limited.  

When we speak of a limit, this implies the existence of a single cap that all visual 

tasks must obey. Here I have been assuming that VWM tasks encounter this limit, making 

it appear that we can remember only about four items at a time. If our scene perception 

encounters the same limit, how rich should we expect that percept to be? The answer 

depends fundamentally on the underlying perceptual encoding, which remains essentially 

unknown. However, we can get a hint of the answer from the following mini-experiment: 

Let us take our candidate perceptual encoding from a convolutional neural network 

(CNN), known as VGG-16, which was trained to perform invariant object recognition in 

real-world scenes (Simonyan & Zisserman, 2014).1 CNNs have recently become very 

popular, as for the first time they allow computer vision to approach human performance on 

certain proscribed visual tasks. Researchers have also shown certain similarities between 

the representations learned by CNNs and those found in monkey physiology (Yamins, et al., 

2014). We took a set of arrays of 8 colored squares against a gray background, and fed them 

into the network to generate a feature vector for each image. For the feature vector, we 

used the last representational layer (the “last fully connected layer”) of the network; it is 

common in computer vision to use this layer as the input to classifiers.  

These images are confusable in a standard VWM task; we can measure the distance 

between their VGG-16 feature vectors to give us an estimate of the available precision for 

                                                 

1 Note that this encoding is not foveated. Despite the importance of peripheral vision for 

understanding many relevant perceptual phenomena, for this mini-experiment we use an encoding 

that does not depend upon distance from the point of gaze. 
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localizing any image in perceptual encoding space. Given that same uncertainty, how well 

could we instead pinpoint a natural scene? We took a set of similar street scenes, computed 

their VGG-16 feature vectors, and then asked what scenes would be difficult to 

discriminate, given the same precision inferred from the VWM stimuli. The top left of 

 

Figure 10. (top) The three confusable images on the left have similar mean discriminability as arrays of 8 
colored squares, given the perceptual encoding space of the VGG-16 neural network. The three images on 
the right are less confusable with these images, according to discriminability in that feature space. (bottom) 
Switching to a different task can lead to new understanding of the scene. At the next moment, the visual 
system might attempt to discriminate scenes with nearby pedestrians (right) from those for which the 
pedestrians were absent or farther away (left).  
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Figure 10 shows a set of three confusable scenes, according to this metric. However, by this 

metric these scenes are discriminable from those in the top right.  

The first thing to note is that a distance metric applied to the last fully connected 

layer of VGG-16 seems to give us a reasonable measure of perceptual similarity. It is 

difficult to distinguish arrays of randomly-colored squares from each other (Figure 9), and 

analogously difficult to distinguishing the confusable scenes in Figure 10. Those scenes do 

differ: the camera angle has changed somewhat, and the location and number of vehicles 

and pedestrians has changed. The less confusable scenes in the top right appear more 

readily discriminable. So the mini-experiment is a good first attempt. More importantly, 

note that for the same amount of uncertainty that makes an 8-item VWM task hard, one 

can pinpoint a scene fairly well. No doubt the visual system has developed to make this so. 

In a plausible perceptual encoding space, the same precision can specify either “an array of 

about 8 items of random color and position,” or mostly determine the scene, plus or minus 

some small changes. This suggests there is real hope for a unified explanation. The same 

inference limits that make VWM difficult allow a rich subjective experience of the real 

world.  

In real-world vision, we often need to know more about the scene; for example when 

driving we must estimate the 3D location of the pedestrians in order to judge whether we 

can turn left. Thankfully our perception is not merely limited by the results of performing 

the “gist” task just described. In the next instant, the observer can perform a different task, 

i.e. pose another question and make a new inference. In this case, the observer might next 

ask about the location of the pedestrians, i.e. classify the scene into those containing near 

vs. far pedestrians. The layout information gained from the “gist” inference could help 

refine this task by indicating where pedestrians are likely to be. The pedestrian localization 

task, because it does not require detailed knowledge of the rest of the scene, could be less 
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complex. Even if, in our demo, near and far pedestrians could not be discriminated in the 

“gist” task because of complexity limits, they might nonetheless be discriminated in a 

pedestrian-localization task. The observer gains additional understanding about the 

pedestrians at the expense of comprehension of the scene as a whole. Many typical real-

world tasks probably have low complexity relative to the limit – again, the brain has likely 

developed its representation to make this the case. As a result, while estimating the 3D 

position of the pedestrian the observer may not completely lose the gist of the scene as a 

whole, but may just become more imprecise at localizing the scene in the perceptual 

encoding space.  

Similarly, in the VWM task, the lack of precision when trying to remember the 

entire array does not imply that the observer cannot discriminate whether a particular 

square is red or blue. If that is the task, for instance if one of the squares is pre-cued 

(“remember this one”), then the observer can set up a relatively simple classifier to 

discriminate the color of that square, again likely at the expense of some details about the 

set as a whole. 

In this scheme, then, real-world vision consists of a series of tasks – questions the 

observer asks him- or herself, perhaps unconsciously (Helmholtz, 1867) – and perception is 

composed of the outcomes of those inferences. If a given task exceeds the complexity limit, 

the observer will need to perform a simpler task instead, perhaps without awareness that 

they are doing so.  

This notion of switching between tasks, each leading to different understanding of 

the scene, may sound a bit like the proposal from Treisman (2006) that the observer can 

switch between different attentional “modes”. Treisman suggested that attention is a 

limited resource with some flexibility in how diffusely it can be allocated. Attending to a 

scene or a set yields holistic properties without the details, whereas object-based attention 
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yields understanding of the object at the expense of the scene. (Other researchers have 

made related proposals, e.g. (Nakayama, 1990; Van Essen, Olshausen, Anderson, & 

Gallant, 1991; Rensink, Change blindness: Implications for the nature of attention, 2001). 

It requires little effort to see relationships between switching tasks because of limited 

decision capacity and switching mode because of limited attention. Treisman’s proposal of 

additional attentional modes appeared to point towards a solution to the problems with 

earlier versions of selective attention theory. It paved the way to further studies on what 

information becomes available upon diffusely attending to a scene or a set (Alvarez, 2011; 

Fei-Fei, Iyer, Koch, & Perona, 2007; Greene & Oliva, 2009; Leib, Kosovicheva, & Whitney, 

2016). However, this proposal also raised a number of questions. What, for instance, are the 

mechanisms associated with diffuse attention? How does the brain switch attentional 

modes, and how do upstream processes deal with potentially dramatic changes in the 

encoding of available information? How many different modes of attention are there? How 

can we characterize, and thus predict, the limited detail available under diffuse attention to 

a scene? If diffuse attention and focal attention are two different mechanisms for dealing 

with a single capacity limit, then how should we conceptualize that capacity limit? Even if 

one thinks of the present proposal as a mere reframing of different attentional modes in 

terms of switching tasks to deal with limited decision complexity, this reframing 

illuminates a new path forward in understanding the mechanisms, their flexibility, and the 

nature of the limit.  

For instance, different attentional modes suggest that from moment to moment the 

information encoded by the visual system can change dramatically with the focus and type 

of attention. Later processes must somehow deal with the highly dynamic nature of the 

encoded information. Changing task to accommodate limited decision complexity does not 

raise the same issues. Rather, each new task requires a late mechanism to set up a new 
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classifier and interprets its results (though one may perhaps see effects of this mechanism 

early in visual processing as well). This theory presumes that, to a first approximation, 

changing the task changes neither the encoding nor the available information. Rather, each 

new query changes what we know. The answer to the question of whether the pedestrians 

are near or far gives us new understanding of the scene.  

Similarly, it has been unclear what capacity limit might be satisfied both by focal 

attention to an object and by diffuse attention to a scene; i.e. in what sense these two 

attentional modes might be equivalent in terms of use of available resources. Several 

researchers have speculated about the answer to this question (Nakayama, 1990; Van 

Essen, Olshausen, Anderson, & Gallant, 1991). Van Essen et al., for instance, suggested 

that the visual system might always have access to an approximately 25 × 25 array of 

feature vectors. These feature vectors could be spread either over an object or over the 

entire scene, and might derive from any layer in the visual processing hierarchy. While 

these proposals are intriguing, it has not been obvious how to advance these theories, or 

what alternatives might exist. On the other hand, while the exact nature of the decision 

complexity limit remains unclear, there would appear to be a viable path forward. We have 

considerable understanding of human behavioral limits, and can use those limits to look for 

a consistent complexity limit such as those described above: number of hyperplanes, 

number of dimensions, curvature of the decision boundary and so on. Machine learning also 

has a concept of decision complexity, and can provide other forms that this limit might take, 

e.g. (Vapnik & Chervonenkis, 1971). Of course, looking for a consistent limit requires a 

model of the perceptual encoding space, but vision research has advanced to the point 

where one may feasibly use either computational models, such as trained CNNs, or rich, 

high-dimensional data from physiology, e.g. from fMRI. Understanding of possible decision 

limits, in turn, should make testable predictions of what tasks observers can and cannot do.  
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Unlike the previous proposal that attention is limited to either a focal mode that 

provides object properties, or a diffuse mode that leads to scene and set properties, one 

would expect that a diverse set of decision boundaries satisfy the complexity limit. 

Researchers have suggested only a handful of mechanisms for dealing with attentional 

limits: e.g. attend to only this object, only this color, or only this location. One would expect 

that mechanisms for dealing with limited complexity might be considerably more diverse. If 

the ideal task required too wiggly a decision boundary, the observer would have to perform 

a simpler task instead, and would make errors as a result (Figure 8, bottom right). 

Simplifying strategies might include setting up a classifier to identify only one object, only 

objects with a certain color, or only the object at a particular location, in an obvious parallel 

with attentional theories. However, the visual system may have available more general 

strategies for “cutting corners” – literally (Figure 8) – in order to simplify an overly complex 

decision boundary.   

4. Conclusions: A proposed unifying explanation 

I have argued that the strengths and limitations of visual perception result from 

constraints arising from both perceptual encoding and decision processes. A visual task can 

be difficult because of limits in either of these processes.  

First, a striking number of puzzling visual phenomena can be explained simply by 

the information preserved and lost in peripheral vision. Peripheral vision appears to encode 

its inputs in terms of a rich set of summary image statistics, computed by pooling image 

measurements across sizeable regions of the visual field. These regions grow – and the 

resulting summary statistics become increasingly less informative – with distance from the 

point of gaze. At a given moment, the current fixation largely determines the information 

available across the field of view. If information needed for a task does not survive the 
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peripheral encoding, that task will be difficult. To gather more information, observers must 

move their eyes. Losses in this encoding lead to poor performance on a number of visual 

tasks (difficult search, change blindness), while preserving sufficient information to make 

other tasks relatively easy (easy search, and getting the gist of a scene or set), and to 

support our rich percept of the world.  

However, some tasks are difficult even if the necessary information survives both 

peripheral vision and the perceptual encoding stages more generally. I have argued that the 

second big piece of the solution has to do with decision limits, and in particular, limits on 

decision complexity. Dual tasks may be more difficult than single tasks because they are 

inherently more complex. Inattentional blindness – the inability to perform a task when it 

is unexpected – may occur when limits on decision complexity preclude performing both the 

nominal task and, by chance, also the unexpected task. MOT and VWM may both be 

inherently complex tasks, leading to apparent limits on the number of items that can be 

tracked or remembered.  

If an additional capacity limit applies late in processing, at the decision stage, then 

this raises the intriguing possibility that it might be a general-purpose cognitive capacity 

limit, rather than a limit solely on visual processing. In fact, there exists some evidence for 

this, from analysis of individual differences. Huang et al. (2012) found correlated 

performance at a wide range of tasks, including search, counting, tracking, response 

selection, short-term memory, visual marking, task switching, and mental rotation. 

That perception results from inference suggests that there is some truth to the 

“illusion” theories of awareness. One perceives the results of inference, not some image 

captured by the eye-as-camera, and projected onto an internal screen for viewing by the 

homunculus. In this sense, perception is inherently something of an illusion. However, the 

illusion is not as extreme as previously thought, because vision is less impoverished, and 
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thus the rich percept less surprising. Rather, tasks that seem to show impoverished vision 

may simply be difficult tasks, either due to the encoding or due to limits on inference 

processes. On the other hand, perception is rich, and real-world vision successful, because 

the information for many tasks survives encoding losses, and that encoding evolved to make 

those tasks relatively simple. I have argued that many phenomena – search, set perception, 

scene perception, visual working memory, multiple object tracking, dual-task, and change 

blindness – may encounter the same limits on both the information encoded and the 

complexity of decisions. Given those limits, some tasks may simply be inherently difficult, 

and others easy. If so, there is no need to ponder why, for instance, we get a rich subjective 

impression and yet do poorly at certain tasks; no need to postulate that the details are 

puzzlingly inaccessible for decision and action. If a unified explanation is possible, there is 

no awareness puzzle.   
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