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Worldwide decline in biodiversity during the Holocene has impeded a com-
prehensive understanding of pre-human biodiversity and biogeography.
This is especially true on islands, because many recently extinct island
taxa were morphologically unique, complicating assessment of their evol-
utionary relationships using morphology alone. The Caribbean remains an
avian hotspot but was more diverse before human arrival in the Holocene.
Among the recently extinct lineages is the enigmatic genus Nesotrochis, com-
prising three flightless species. Based on morphology, Nesotrochis has been
considered an aberrant rail (Rallidae) or related to flufftails (Sarothruridae).
We recovered a nearly complete mitochondrial genome of Nesotrochis
steganinos from fossils, discovering that it is not a rallid but instead is sister
to Sarothruridae, volant birds now restricted to Africa and New Guinea,
and the recently extinct, flightless Aptornithidae of New Zealand. This
result suggests awidespread or highly dispersivemost recent common ances-
tor of the group. Prior to human settlement, the Caribbean avifauna had a far
more cosmopolitan origin than is evident from extant species.
1. Introduction
Islands have been recognized as places to study evolution, ecology and biogeo-
graphy [1,2]. The natural biota of all islands, no matter how remote, has been
altered by humans, leaving a residual modern diversity that is different from
its pre-human condition [3]. Most island diversity has been lost relatively
recently because the mass extinction events that began on continents during
the late Pleistocene did not affect islands until human colonization in the
Holocene (e.g. [4]). Because of this delay, islands acted as refugia of diversity
in the recent past [4,5]. Still, we have a limited understanding of the phylo-
genetic affinities of species lost after human contact, thereby limiting what
we know about the evolutionary and biogeographic mechanisms underpinning
these communities.

The unique morphology of many island birds has been driven by niche
availability and the lack of mammalian predators, making them susceptible
to predation by humans and other invasive predators [6,7]. Doves, rails,
passerines and certain seabirds had the highest overall numbers of insular
avian extinctions [8,9], although losses occurred across all groups of island
birds, involving entire subfamilies (Raphinae—dodo and solitaire), families
(Aptornithidae—adzebills) and even orders (Aepyornithiformes—elephant
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birds; Dinornithiformes—moas). The extreme morphological
diversity that was lost, exemplified by large herbivores
(elephant birds) or predators (adzebills), complicates the recov-
eryof their evolutionary relationshipswith living taxa. Recently,
ancient DNA (aDNA) has illuminated the phylogenetic
placement of previously enigmatic extinct island birds. For
example, aDNA has revealed that elephant birds are sister to
Apterygiformes [10], and adzebills (Aptornithidae) are sister
to flufftails (Sarothruridae; [11]) from sub-Saharan Africa and
New Guinea. These results provide context for lost biogeo-
graphic connections, long-distance dispersal events, and the
evolution of gigantism and flightlessness [12,13].

Nesotrochis is an extinct genus with three flightless species
once found in the Greater Antilles. Nesotrochis debooyi was
described from bones in archaeological middens in the
Virgin Islands, suggesting it survived until European arrival
[14]; later it was discovered in Puerto Rico [15,16]. Nesotrochis
was believed to be related to the rallid genus Aramides, with a
South American origin [15]. Later, Wetmore considered Neso-
trochis related to gallinules (Gallinula, Rallidae; [17]), which
Olson [16] supported. Nesotrochis picipicensis on Cuba was
described first as a coot, Fulica picipicensis (Rallidae; [18]),
but then placed in Nesotrochis from osteological characters
by Olson [16], who also described Nesotrochis steganinos
from Hispaniola. However, morphological and ecological
convergence is commonplace across rails (Rallidae) and the
closely related flufftails (Sarothruridae) [19,20]. Recent work
suggests that Nesotrochis shares diagnostic hypotarsus charac-
ters with flufftails (Sarothruridae) and related taxa
(Heliornithidae) that differ from Rallidae, indicating that
Nesotrochis may not be a member of the Rallidae [21].

The affinities of Nesotrochis based on skeletal morphology
have been conjectural since its description. Here, we use
aDNA from N. steganinos to evaluate the osteology-based
hypothesis that Nesotrochis is closely related to Gallinula
(Rallidae) or to other closely related families, and discuss
the systematic and biogeographic implications of our findings.

2. Methods
A Nesotrochis steganinos pedal phalanx (Florida Museum, Univer-
sity of Florida (UF) 431763; Haiti: Trouing Marassa; 20 July
1983, 10X.31Y.26Z subunit A; GenBank accession no.
MW145005.1) was used for DNA extraction and sequencing.
DNA extraction, library preparation, target capture enrichment
and post-sequencing data cleaning followed the methods in
Oswald et al. ([22,23]; full details are also provided in the elec-
tronic supplementary material). An associated phalanx of UF
431763 (same catalogue number) was radiocarbon dated (Beta
Analytic Testing Laboratory ID: Beta-502522) at 6430 ± 30 BP
(conventional radiocarbon age) and calendrically calibrated
(using INTCAL13) to 7424 to 7289 cal BP (early Holocene).
Radiocarbon pretreatment was a collagen extraction with alkali
and ultrafiltration. For target capture enrichment, we used a
mitochondrial DNA bait set designed by Arbor Biosciences
(Ann Arbor, MI) based on the rallid Porphyrio melanotus
(NC025508.1; a hypothetical close relative of Nesotrochis based
on osteology; see electronic supplementary material, table S1
for sample and taxonomic information).

In Geneious (v. 11.1.4; https://www.geneious.com), the Map
to Reference feature set to default settings (Medium-Low Sensi-
tivity; five iterations) was used to map the cleaned, unpaired
reads to P. melanotus. An initial BLAST [24] search of the recov-
ered cytochrome b gene indicated that Nesotrochis was not
closely related to P. melanotus so we repeated the Map to
Reference approach using other Gruiformes as references includ-
ing Aptornis otidiformis (MK434262.1; Aptornithidae), Sarothrura
ayresi (NC034316.1; Sarothruridae) and Canirallus oculeus
(MK434261.1; Rallidae). mapDamage [25] was used to determine
if the base patterns in our reads were consistent with those found
in a DNA, using paired reads mapped to the P. melanotus mito-
chondrial genome as a reference.

The majority consensus sequences for each of the four refer-
ences were aligned to discern possible discrepancies between the
reference used and the resultant base calls. Sites where more than
two of the consensus sequences had an ambiguous base call (e.g.
M or Y, not including the D loop) were reviewed by eye in the
read pile-ups to evaluate the number of reads that supported
the ambiguity and whether it was a possible site of deamination
or degradation, i.e. at the end of the read, where degradation is
more prevalent in ancient data. The greatest area of disagreement
across different references was located in the D loop, which we
subsequently removed from the N. steganinos data before further
analyses.

Following the eBird/Clements checklist [26], we down-
loaded all available Gruiformes mitochondrial genome data
from GenBank. The Gruiformes comprise 192 currently recog-
nized extant or very recently extinct species. Whole or nearly
complete mitochondrial genome sequences were available for
21% of gruiform species. Rallids represented 89% of the missing
species. All recognized extant families were represented by at
least one species in our dataset. The mitochondrial genome of
Rallicula forbesi (Rallina per [26]) was obtained by mapping the
raw read data from Garcia-R et al. [27] to the mitochondrial
genome of C. oculeus in Geneious (v. 11.1.4) using the Medium-
Low Sensitivity default settings. Along with extant species, we
included partial mitochondrial genomes of the extinct New Zeal-
and adzebills: A. otidiformis and Aptornis defossor (Aptornithidae;
[11]). To increase our sampling of Sarothruridae, we also
included three mitochondrial gene regions (ATP6, tRNA-Gly
ND3 and CytB) of Mentocrex kioloides and Mentocrex beankaensis.
Tringa semipalmata and Tringa ochropus (Scolopacidae) were used
as the outgroup. GenBank accession numbers are given in
electronic supplementary material, table S1.

Mitochondrial sequences were aligned using the Geneious
multiple sequence alignment algorithms. Because of the phylo-
genetic diversity in our dataset, the D loop region remaining in
the other taxa aligned poorly and was removed (dataset 1;
15 954 bp). Gblocks [28] was used to remove poorly aligning
regions (dataset 2; 14 514 bp). With each dataset, we performed
a maximum-likelihood analysis in RAxML (8.2.11; [29]) with
three partitions: (i) protein-coding sequences (CDS), (ii) rRNA
and tRNA sequences, and (iii) non-coding sequences. We
assessed topological support with 1000 bootstrap replicates.
Dataset 1 recovered low support for Nesotrochis and putative
sister taxa, so we visualized alternative topologies by calculating
the Robinson–Foulds distance matrix [30] using the package phy-
tool [31] in R v. 3.6.1 [32]. We used classical multidimensional
scaling to reduce this matrix to a single axis representing tree
similarity. We coloured each tree according to topological simi-
larity based on this metric (similarity index).
3. Results
Using Aptornis otidiformis, Sarothrura ayresi, Canirallus oculeus
(MK434261.1) and Porphyrio melanotus as references, we
recovered 329 330, 330 367, 325 644 and 336 218 on-target
reads, respectively, of Nesotrochis steganinos. Average read
length ranged from 93.5 to 93.9 bp with a coverage mean of
1892–1903 reads across the four references. mapDamage frag-
ment misincorporation plots indicate the expected C→T and
A→G substitutions characteristic of a DNA (electronic

https://www.geneious.com
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Figure 1. RAxML phylogeny of the Gruiformes based on the Gblocks dataset (dataset 2). The bootstrap support for the sister relationship of Nesotrochis steganinos
to Sarothruridae + Aptornithidae is 100% yet the phylogenetic relationships within this clade are not resolved. See electronic supplementary material, figures S1 and
S2 for the alternative topology, where N. steganinos is sister to Sarothruridae (based on dataset 1). The N. steganinos pedal phalanx from which aDNA was extracted
is shown next to the tip name.
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supplementary material, figure S1). The only missing data,
regardless of the reference used, were within the D loop as
expected based on high divergence within and across taxa.

Our mitochondrial phylogeny, based on both datasets,
recovered the same topology of extant gruiform families as
Prum et al. [33] using targeted genome sequencing. Relation-
ships within Gruidae differ between datasets 1 and 2. The
dataset 1 RAxML phylogeny is the same as that of Krajewski
et al. [34]. The Rallidae topology does not differ between data-
sets. Both RAxML phylogenies indicate thatN. steganinos does
not fall within the Rallidae and instead is in the clade com-
posed of Sarothruridae and the extinct Aptornithidae
(represented by A. otidiformis and Aptornis defossor). The
relationships among Nesotrochis, Sarothruridae and Aptor-
nithidae are not resolved. Dataset 1 suggests Nesotrochis is
sister to Sarothruridae, albeit with only marginal support
(52%; electronic supplementary material, figure S2), and this
clade is sister to Aptornithidae. The alternative topology
(48% of bootstrap replicates) of dataset 1 recoveredNesotrochis
as sister to Aptornithidae + Sarothruridae (electronic sup-
plementary material, figure S3). Dataset 2 resulted in 100%
topological support of a clade comprising Nesotrochis, Aptor-
nithidae and Sarothruridae and 58% topological support for
Nesotrochis as sister to Aptornithidae and Sarothruridae
(figure 1).
4. Discussion
The Cenozoic fossil record of Gruiformes is relatively species-
rich, but the repeated convergent evolution of rail-like body
plans, along with convergence due to flightlessness, hinders
the phylogenetic placement of extinct species. Our aDNA
results supportNesotrochis as sister to the clade Sarothruridae +
the extinct Aptornithidae, or just to the Sarothruridae, both of
which inhabit(ed) the Old World (figure 2). They are part of a
larger clade that also includes the Heliornithidae.Nesotrochis is
the only DNA-based example of a Caribbean avian genus that
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Figure 2. The distribution of Nesotrochis (green) within the Caribbean, Sarothruridae (blue) in Africa and New Guinea, and Aptornithidae (red) in New Zealand. Both
Nesotrochis and Aptornithidae are extinct and are the most closely related lineages to Sarorthruridae. Image credits: ‘Nesotrochis’: T. Michael Keesey and Hutty
Mcphoo, https://creativecommons.org/licenses/by-sa/3.0/; ‘Sarothrura’: Ryan S. Terrill; and Aptornis otidiformis: N. Tamura.
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is sister to families restricted to the Old World. As such, it pro-
vides a dramatic example of human-caused extinction erasing
complex biogeographic history.
(a) Biogeography of families convergent on Rallidae
The finfoots/sungrebe (Heliornithidae), adzebills (Aptor-
nithidae), flufftails (Sarothruridae) and Nesotrochis clade
contains many species that are morphologically convergent
with rallids, with which they shared a common ancestor
likely during the early Cenozoic [11,27]. Holocene extinctions
have greatly diminished this clade; combined data from mor-
phology and aDNA indicate 50% family level extinction
during the Holocene (herein; [11]). Here, we briefly discuss
the clade’s diversity and biogeography.

Heliornithidae consists of threemonotypic genera, each in a
single tropical region (Neotropics—Heliornis fulica; Afrotro-
pics—Podica senegalensis; and SE Asia—Heliopais personatus).
The relationships among these species have not been evaluated
with large-scale genomic data [35], but the family’s pan-tropi-
cal distribution suggests either extinction of a more
widespread temperate taxa or a highly dispersive most recent
common ancestor. Aptornithidae is an extinct family from
New Zealand; its fossil record extends to the Miocene [36],
with divergence from the Sarothruridae conjectured during
the late Eocene [11]. The two Holocene species of aptornithids
were 0.8 m tall, approximately 17 kg, flightless predators until
their extinction following human arrival 600 years ago [37–39].

The greatest extant diversity within the larger clade occurs
in the Sarothruridae, which comprises 15 species in the genera
Sarothrura, Mentocrex and Rallicula (Rallina in [26]). (Rallina
‘rails’ are likely all sarothrurids; Rallina ‘crakes’ are rallids;
see [26,27]). Sarothrurids have been considered to be rallids
based on morphology [19], although hypotarsal characters
support the close relationship of Sarothruridae and Helior-
nithidae [21]. Further study may disclose that some modern
and fossil taxa currently considered to be rallids are actually
sarothrurids (e.g., [20]). Learning just how deeply divergent
Nesotrochis is from the Sarothruridae will require further gen-
etic sampling of sarothrurids and the two other species of
Nesotrochis. If Nesotrochis truly is sister to the Sarothruridae,
the divergence of the two lineages likely took place during
the Eocene or Oligocene based on recent calibrations [11,27].
(b) Caribbean biogeography
Modern Caribbean bird diversity largely consists of New
World families such as Trochilidae (hummingbirds), Mimidae
(mockingbirds, tremblers), Thraupidae (tanagers) and Paruli-
dae (wood-warblers). It also includes four endemic families:
the Todidae (todies), Dulidae (palmchat), Calyptophilidae
(chat-tanagers) and Phaenicophilidae (palm-tanagers). The
phylogenetic relationship of Nesotrochis to Sarothruridae and
Aptornithidae indicates a novel historical biogeographic con-
nection between the Caribbean and the Old World. A similar
hypothesis has been proposed, based on morphology, for the
endemic Cuban dove Starnoenas [40], an idea waiting to be
tested with DNA. Nesotrochis could be a relictual taxon that
survived in the Caribbean after extinction on the adjacent
mainland, or an example of long-distance dispersal from the
Old World to the Caribbean.

This is the first avian Caribbean–Old World connection
supported by DNA-based evidence, yet other non-avian taxa
have been proposed to have dispersed from the Old World.
For example, New World monkeys and caviomorph rodents
arrived from Africa between or during the mid Eocene to
mid Oligocene [41,42]. The enigmatic hoatzin (Opisthocomus
hoazin) of the Amazon Basin is the last living representative
of an avian order found in Europe and Africa from the late
Eocene to Miocene [43–45]. The African Ptilopachus is the
sole genus of New World quail (Odontophoridae) outside of
the Americas, with a divergence that also dates to the mid
Eocene to mid Oligocene [46]. Another American bird with
Old World affinities is the wrentit (Paradoxornithidae),
which colonized the New World in the late Miocene [47].
Others include the bushtit (Aegithalidae), verdin (Remizidae),
and South American painted-snipe (Rostratulidae). For taxa
with calculated divergence times, all divergences occurred
well before the significant global cooling that began during
the Pliocene, which suggests that warmer, less seasonal cli-
matic conditions may have been favourable for long-distance
dispersal and more widespread distributions.
5. Conclusion
Island taxa have been disproportionately affected by human-
caused extinction compared with their continental relatives,

https://creativecommons.org/licenses/by-sa/3.0/
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which has limited our understanding of processes shaping
insular biota. Ancient DNA approaches are critical for the
phylogenetic placement of extinct island taxa, which in turn
supports a broader understanding of biogeography and evol-
ution of often-enigmatic species. New insights from such
research suggest that while islands can act as refugia for pre-
viously widely distributed clades, they may have also
harboured unique, deeply divergent island-endemic groups
such as Nesotrochis. As the fossil record of island vertebrates
grows, we see rich opportunities for combining both morpho-
logical and molecular data within a geographically wide-
open framework.
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